1
|
Mohan M, Mannan A, Nauriyal A, Singh TG. Emerging targets in amyotrophic lateral sclerosis (ALS): The promise of ATP-binding cassette (ABC) transporter modulation. Behav Brain Res 2025; 476:115242. [PMID: 39243983 DOI: 10.1016/j.bbr.2024.115242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative primarily affecting motor neurons, leading to disability and neuronal death, and ATP-Binding Cassette (ABC) transporter due to their role in drug efflux and modulation of various cellular pathways contributes to the pathogenesis of ALS. In this article, we extensively investigated various molecular and mechanistic pathways linking ALS transporter to the pathogenesis of ALS; this involves inflammatory pathways such as Mitogen-Activated Protein Kinase (MAPK), Phosphatidylinositol-3-Kinase/Protein Kinase B (PI3K/Akt), Toll-Like Receptor (TLR), Glycogen Synthase Kinase 3β (GSK-3β), Nuclear Factor Kappa-B (NF-κB), and Cyclooxygenase (COX). Oxidative pathways such as Astrocytes, Glutamate, Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), Sirtuin 1 (SIRT-1), Forkhead box protein O (FOXO), Extracellular signal-regulated kinase (ERK). Additionally, we delve into the role of autophagic pathways like TAR DNA-binding protein 43 (TDP-43), AMP-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), and lastly, the apoptotic pathways. Furthermore, by understanding these intricate interactions, we aim to develop novel therapeutic strategies targeting ABC transporters, improving drug delivery, and ultimately offering a promising avenue for treating ALS.
Collapse
Affiliation(s)
- Maneesh Mohan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Aayush Nauriyal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
2
|
Menon NA, Kumar CD, Ramachandran P, Blaize B, Gautam M, Cordani M, Lekha Dinesh Kumar. Small-molecule inhibitors of WNT signalling in cancer therapy and their links to autophagy and apoptosis. Eur J Pharmacol 2025; 986:177137. [PMID: 39551337 DOI: 10.1016/j.ejphar.2024.177137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Cancer represents an intricate and heterogeneous ailment that evolves from a multitude of epigenetic and genetic variations that disrupt normal cellular function. The WNT/β-catenin pathway is essential in maintaining the balance between cell renewal and differentiation in various tissues. Abnormal activation of this pathway can lead to uncontrolled cell growth and initiate cancer across a variety of tissues such as the colon, skin, liver, and ovary. It enhances characteristics that lead to cancer progression, including angiogenesis, invasion and metastasis. Processes like autophagy and apoptosis which regulate cell death and play a crucial role in maintaining cellular equilibrium are also intimately linked with WNT/ β-catenin pathway. Thus, targeting WNT pathway has become a key strategy in developing antitumor therapies. Employing small molecule inhibitors has emerged as a targeted therapy to improve the clinical outcome compared to conventional cancer treatments. Many strategies using small molecule inhibitors for modulating the WNT/β-catenin pathway, such as hindering WNT ligands' secretion or interaction, disrupting receptor complex, and blocking the nuclear translocation of β-catenin have been investigated. These interventions have shown promise in both preclinical and clinical settings. This review provides a comprehensive understanding of the role of WNT/β-catenin signalling pathway's role in cancer, emphasizing its regulation of autophagy and apoptosis. Our goal is to highlight the potential of specific small molecule inhibitors targeting this pathway, fostering the development of novel, tailored cancer treatments.
Collapse
Affiliation(s)
- Nayana A Menon
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Chethana D Kumar
- Department of Surgical ICU, Christian Medical College, IDA Scudder Road, Vellore, 632004, Tamil Nadu, India
| | - Pournami Ramachandran
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Britny Blaize
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Mridul Gautam
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040, Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040, Madrid, Spain.
| | - Lekha Dinesh Kumar
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad, 500007, Telangana, India.
| |
Collapse
|
3
|
Rekha RS, Padhi A, Frengen N, Hauenstein J, Végvári Á, Agerberth B, Månsson R, Guðmundsson GH, Bergman P. The di-leucine motif in the host defense peptide LL-37 is essential for initiation of autophagy in human macrophages. Cell Rep 2024; 44:115031. [PMID: 39708316 DOI: 10.1016/j.celrep.2024.115031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/16/2024] [Accepted: 11/13/2024] [Indexed: 12/23/2024] Open
Abstract
The human cathelicidin peptide LL-37 induces autophagy in human macrophages. Different post-translational modifications (PTMs) such as citrullination, acetylation, and formylation impact LL-37, yet their effect on autophagy remains unknown. Thus, we set out to study how the cellular source could impact PTM of LL-37 and subsequent effects on autophagy initiation. Neutrophil-released LL-37 failed to induce autophagy, unlike macrophage-released LL-37. Mass spectrometry analysis revealed modifications on neutrophil-derived LL-37, especially at the N terminus, while macrophage-derived LL-37 remained mostly native. Native LL-37 initiated autophagy, while formylated and acetylated versions did not. Truncated peptides lacking the N-terminal di-leucine motif or substituted with di-alanine did not initiate autophagy. Native LL-37 failed to initiate autophagy in macrophages with genetic inactivation of dipeptidyl peptidase-1. An intact N-terminal di-leucine motif in LL-37 was crucial for autophagy initiation, and modifications abrogated the effects. This pathway presents a novel way to regulate the effects of LL-37 in infection or inflammation.
Collapse
Affiliation(s)
- Rokeya Sultana Rekha
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Avinash Padhi
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
| | - Nicolai Frengen
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Julia Hauenstein
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Ákos Végvári
- Division of Chemistry I, Department of Medical Biochemistry & Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Birgitta Agerberth
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Robert Månsson
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska Institutet, Huddinge, Stockholm, Sweden; Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden; Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Guðmundur H Guðmundsson
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska Institutet, Huddinge, Stockholm, Sweden; Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Peter Bergman
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska Institutet, Huddinge, Stockholm, Sweden; Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
4
|
Ji Y, Jeon YG, Lee WT, Han JS, Shin KC, Huh JY, Kim JB. PKA regulates autophagy through lipolysis during fasting. Mol Cells 2024; 47:100149. [PMID: 39547583 PMCID: PMC11697058 DOI: 10.1016/j.mocell.2024.100149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024] Open
Abstract
Autophagy is a crucial intracellular degradation process that provides energy and supports nutrient deprivation adaptation. However, the mechanisms by which these cells detect lipid scarcity and regulate autophagy are poorly understood. In this study, we demonstrate that protein kinase A (PKA)-dependent lipolysis delays autophagy initiation during short-term nutrient deprivation by inhibiting AMP-activated protein kinase (AMPK). Using coherent anti-Stokes Raman spectroscopy, we visualized free fatty acids (FFAs) in vivo and observed that lipolysis-derived FFAs were used before the onset of autophagy. Our data suggest that autophagy is triggered when the supply of FFAs is insufficient to meet energy demands. Furthermore, PKA activation promotes lipolysis and suppresses AMPK-driven autophagy during early fasting. Disruption of this regulatory axis impairs motility and reduces the lifespan of Caenorhabditis elegans during fasting. These findings establish PKA as a critical regulator of catabolic pathways, prioritizing lipolysis over autophagy by modulating AMPK activity to prevent premature autophagic degradation during transient nutrient deprivation.
Collapse
Affiliation(s)
- Yul Ji
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Yong Geun Jeon
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Won Taek Lee
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Ji Seul Han
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Kyung Cheul Shin
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jin Young Huh
- Department of Life Science, Sogang University, Seoul, South Korea
| | - Jae Bum Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea.
| |
Collapse
|
5
|
Singh S, Singh PK, Ahmad Z, Das S, Foretz M, Viollet B, Giri S, Kumar A. Myeloid Cell-Specific Deletion of AMPKα1 Worsens Ocular Bacterial Infection by Skewing Macrophage Phenotypes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1656-1665. [PMID: 39413004 PMCID: PMC11573643 DOI: 10.4049/jimmunol.2400282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/11/2024] [Indexed: 10/18/2024]
Abstract
AMP-activated protein kinase (AMPK) plays a crucial role in governing essential cellular functions such as growth, proliferation, and survival. Previously, we observed increased vulnerability to bacterial (Staphylococcus aureus) endophthalmitis in global AMPKα1 knockout mice. In this study, we investigated the specific involvement of AMPKα1 in myeloid cells using LysMCre;AMPKα1fl mice. Our findings revealed that whereas endophthalmitis resolved in wild-type C57BL/6 mice, the severity of the disease progressively worsened in AMPKα1-deficient mice over time. Moreover, the intraocular bacterial load and inflammatory mediators (e.g., IL-1β, TNF-α, IL-6, and CXCL2) were markedly elevated in the LysMCre;AMPKα1fl mice. Mechanistically, the deletion of AMPKα1 in myeloid cells skewed macrophage polarization toward the inflammatory M1 phenotype and impaired the phagocytic clearance of S. aureus by macrophages. Notably, transferring AMPK-competent bone marrow from wild-type mice to AMPKα1 knockout mice preserved retinal function and mitigated the severity of endophthalmitis. Overall, our study underscores the role of myeloid-specific AMPKα1 in promoting the resolution of inflammation in the eye during bacterial infection. Hence, therapeutic strategies aimed at restoring or enhancing AMPKα1 activity could improve visual outcomes in endophthalmitis and other ocular infections.
Collapse
Affiliation(s)
- Sukhvinder Singh
- Department of Ophthalmology, Visual and Anatomical Sciences, Kresge Eye Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Pawan Kumar Singh
- Department of Ophthalmology/ Mason Eye Institute, University of Missouri School of Medicine, Columbia, MO, USA
| | - Zeeshan Ahmad
- Department of Ophthalmology, Visual and Anatomical Sciences, Kresge Eye Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Susmita Das
- Department of Ophthalmology, Visual and Anatomical Sciences, Kresge Eye Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Marc Foretz
- Université Paris cité, CNRS, Inserm, Institut Cochin, Paris 75014, France
| | - Benoit Viollet
- Université Paris cité, CNRS, Inserm, Institut Cochin, Paris 75014, France
| | - Shailendra Giri
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Ashok Kumar
- Department of Ophthalmology, Visual and Anatomical Sciences, Kresge Eye Institute, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
6
|
Simmons DA, Alexander N, Cao G, Rippin I, Lugassy Y, Eldar-Finkelman H, Longo FM. Small molecule modulation of p75 NTR engages the autophagy-lysosomal pathway and reduces huntingtin aggregates in cellular and mouse models of Huntington's disease. Neurotherapeutics 2024:e00495. [PMID: 39592326 DOI: 10.1016/j.neurot.2024.e00495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/11/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG repeat expansion in the HTT gene encoding a mutant huntingtin (mHtt) protein. mHtt aggregates within neurons causing degeneration primarily in the striatum. There is currently a need for disease-modifying treatments for HD. Many therapeutic studies have focused on lowering mHtt levels by reducing its production or enhancing its clearance. One way to clear mHtt aggregates is to promote autophagy, which is disrupted in HD. Our previous studies showed that the small molecule p75 neurotrophin receptor (p75NTR) ligand, LM11A-31, prevented HD-related neuropathologies and behavioral deficits in multiple HD mouse models. This study investigated whether modulating p75NTR with LM11A-31, would reduce mHtt aggregates via autophagic/lysosomal mechanisms in HD models. LM11A-31 decreased mHtt aggregates in human neuroblastoma SH-SY5Y cells expressing mHtt (exon 1 with 74 CAG repeats) and in the striatum of R6/2 and zQ175dn mouse models of HD. The LM11A-31 associated decrease in mHtt aggregates in vitro was accompanied by increased autophagic/lysosomal activity as indicated by altered levels of relevant markers including p62/SQSTM1 and the lysosomal protease, mature cathepsin D, and increased autophagy flux. In R6/2 and/or zQ175dn striatum, LM11A-31 increased AMPK activation, normalized p62/SQSTM1 and LC3II levels, and enhanced LAMP1 and decreased LC3B association with mHtt. Thus, LM11A-31 reduces mHtt aggregates and may do so via engaging autophagy/lysosomal systems. LM11A-31 has successfully completed a Phase 2a clinical trial for mild-to-moderate Alzheimer's disease and our results here strengthen its potential as a candidate for HD clinical testing.
Collapse
Affiliation(s)
- Danielle A Simmons
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Namitha Alexander
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gloria Cao
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ido Rippin
- Department of Human Molecular Genetics & Biochemistry, Faculty of Medicine and Health Sciences, Tel Aviv University, Israel
| | - Yarine Lugassy
- Department of Human Molecular Genetics & Biochemistry, Faculty of Medicine and Health Sciences, Tel Aviv University, Israel
| | - Hagit Eldar-Finkelman
- Department of Human Molecular Genetics & Biochemistry, Faculty of Medicine and Health Sciences, Tel Aviv University, Israel
| | - Frank M Longo
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
7
|
Ma L, Li K, Guo Y, Liu J, Dong J, Li J, Ren Y, Shi L. Selenium triggers AMPK-mTOR pathway to modulate autophagy related to oxidative stress of sheep Leydig cells. Reprod Biol 2024; 25:100973. [PMID: 39580868 DOI: 10.1016/j.repbio.2024.100973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/20/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024]
Abstract
The objective of this study was to investigate the effect of oxidative stress induced by excessive Se on autophagy of sheep Leydig cells and its underlying mechanism. Leydig cells isolated from the testis of 8-month-old sheep were purified using a discontinuous Percoll density gradient. Cells were divided into four treatment groups (0, 2.0, 4.0 and 8.0 μmol/L of Se). After treatment with Se for 48 h, cell proliferation was detected by CCK-8 assay kit. The biochemical methods were used to evaluate the antioxidant status of Leydig cells. The mRNA transcript and protein abundance related to the AMPK-mTOR pathway and autophagy were detected by real-time PCR and western blot analysis. The results showed that the Leydig cells treated with 8.0 μmol/L Se have the lowest cell viability. The greater ROS content and lower GSH-Px activity were also observed in the Se8.0 group. The inclusion of 2.0 μmol/L Se in the medium did not affect the autophagy of Leydig cells. However, the relative abundance of ATG5 protein and LC3II/I ratio were elevated in the Se8.0 group. Oxidative stress induced by excessive Se (8.0 μmol/L) dramatically improved the abundance of key proteins related to AMPK-mTOR pathway and led to an increase of phosphorylated AMPK, mTOR and ULK1. Compared with the Se8.0 group, compound C could significantly inhibit the key molecules of AMPK-mTOR signaling pathway and mitigate the autophagy of Leydig cells induced by excessive Se. These results indicate that appropriate Se (2.0 μmol/L) can enhance the viability of sheep Leydig cells. Oxidative stress caused by Se excess can induce cell autophagy via activating AMPK-mTOR signaling pathway. The existed crosstalk between autophagy and apoptosis could decide the fate of Leydig cells. This process could play a decisive role in the maintenance of normal male fertility and spermatogenesis by affecting the number of Leydig cells in testis.
Collapse
Affiliation(s)
- Liang Ma
- Laboratory of Animal Reproductive biotechnology, Shanxi Agricultural University, Taigu 030801, PR China
| | - Kexin Li
- Laboratory of Animal Reproductive biotechnology, Shanxi Agricultural University, Taigu 030801, PR China
| | - Yaru Guo
- Laboratory of Animal Reproductive biotechnology, Shanxi Agricultural University, Taigu 030801, PR China
| | - Jinyu Liu
- Laboratory of Animal Reproductive biotechnology, Shanxi Agricultural University, Taigu 030801, PR China
| | - Jianing Dong
- Laboratory of Animal Reproductive biotechnology, Shanxi Agricultural University, Taigu 030801, PR China
| | - Jun Li
- Laboratory of Animal Reproductive biotechnology, Shanxi Agricultural University, Taigu 030801, PR China
| | - Youshe Ren
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, PR China; Laboratory of Animal Reproductive biotechnology, Shanxi Agricultural University, Taigu 030801, PR China.
| | - Lei Shi
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, PR China; Laboratory of Animal Reproductive biotechnology, Shanxi Agricultural University, Taigu 030801, PR China.
| |
Collapse
|
8
|
Clemente-Suárez VJ, Rubio-Zarapuz A, Belinchón-deMiguel P, Beltrán-Velasco AI, Martín-Rodríguez A, Tornero-Aguilera JF. Impact of Physical Activity on Cellular Metabolism Across Both Neurodegenerative and General Neurological Conditions: A Narrative Review. Cells 2024; 13:1940. [PMID: 39682689 DOI: 10.3390/cells13231940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Regular physical activity plays a crucial role in modulating cellular metabolism and mitigating the progression of neurodegenerative diseases such as Alzheimer's, Parkinson's, and Multiple Sclerosis. OBJECTIVE The objective of this review is to evaluate the molecular mechanisms by which exercise influences cellular metabolism, with a focus on its potential as a therapeutic intervention for neurological disorders. METHODS A comprehensive literature review was conducted using peer-reviewed scientific articles, with a focus on the period between 2015 and 2024, to analyze the effects of exercise on mitochondrial function, oxidative stress, and metabolic health. RESULTS The findings indicate that exercise promotes mitochondrial biogenesis, enhances oxidative phosphorylation, and reduces reactive oxygen species, contributing to improved energy production and cellular resilience. These metabolic adaptations are associated with delayed disease progression and reduced symptoms in patients with neurodegenerative conditions. Additionally, integrating exercise with nutritional strategies may further enhance therapeutic outcomes by addressing metabolic disturbances comprehensively. CONCLUSIONS This review concludes that personalized exercise protocols should be developed to optimize metabolic benefits for patients with neurological diseases, while future research should focus on biomarker development for individualized treatment approaches. These findings highlight the importance of non-pharmacological interventions in managing neurodegenerative diseases.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Alejandro Rubio-Zarapuz
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain
| | - Pedro Belinchón-deMiguel
- Department of Nursing, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
| | | | - Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain
- Faculty of Applied Social Sciences and Communications, Universidad Internacional de la Empresa (UNIE), 28015 Madrid, Spain
| | | |
Collapse
|
9
|
Santos de Macedo BG, Albuquerque de Melo M, Pereira-Martins DA, Machado-Neto JA, Traina F. An updated outlook on autophagy mechanism and how it supports acute myeloid leukemia maintenance. Biochim Biophys Acta Rev Cancer 2024; 1879:189214. [PMID: 39515545 DOI: 10.1016/j.bbcan.2024.189214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
The gradual acquisition of genetic and epigenetic disturbances bestows malignant traits upon hematopoietic stem cells, subverting them into a founder and reservoir cell for de novo acute myeloid leukemia (AML) known as leukemic stem cells (LSC). Beyond its molecular heterogeneity, AML is also characterized by rewiring biological processes to support its onset and maintenance. LSC were observed to inherently and actively trigger mitochondrial turnover through selective autophagic removal such that impairing the process led to cell differentiation at the expense of its stemness. This review provides a current take on autophagy regulation mechanisms according to the current molecular characterization of the process; describes autophagy as a drug resistance mechanism, and a pivotal mechanism whereby LSC harmonize their strong reliance on mitochondrial respiration to obtain energy, and their necessity for lower internal oxidative stress to avoid exhaustion. Therefore, targeting autophagy presents a promising strategy to promote long-term remissions in AML.
Collapse
Affiliation(s)
- Brunno Gilberto Santos de Macedo
- Department of Medical Images, Hematology, and Oncology, Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Manuela Albuquerque de Melo
- Department of Medical Images, Hematology, and Oncology, Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - João Agostinho Machado-Neto
- Department of Medical Images, Hematology, and Oncology, Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Department of Pharmacology, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Fabiola Traina
- Department of Medical Images, Hematology, and Oncology, Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
10
|
Mandic M, Paunovic V, Vucicevic L, Kosic M, Mijatovic S, Trajkovic V, Harhaji-Trajkovic L. No energy, no autophagy-Mechanisms and therapeutic implications of autophagic response energy requirements. J Cell Physiol 2024; 239:e31366. [PMID: 38958520 DOI: 10.1002/jcp.31366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/29/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
Autophagy is a lysosome-mediated self-degradation process of central importance for cellular quality control. It also provides macromolecule building blocks and substrates for energy metabolism during nutrient or energy deficiency, which are the main stimuli for autophagy induction. However, like most biological processes, autophagy itself requires ATP, and there is an energy threshold for its initiation and execution. We here present the first comprehensive review of this often-overlooked aspect of autophagy research. The studies in which ATP deficiency suppressed autophagy in vitro and in vivo were classified according to the energy pathway involved (oxidative phosphorylation or glycolysis). A mechanistic insight was provided by pinpointing the critical ATP-consuming autophagic events, including transcription/translation/interaction of autophagy-related molecules, autophagosome formation/elongation, autophagosome fusion with the lysosome, and lysosome acidification. The significance of energy-dependent fine-tuning of autophagic response for preserving the cell homeostasis, and potential implications for the therapy of cancer, autoimmunity, metabolic disorders, and neurodegeneration are discussed.
Collapse
Affiliation(s)
- Milos Mandic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Verica Paunovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ljubica Vucicevic
- Department of Neurophysiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milica Kosic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Srdjan Mijatovic
- Clinic for Emergency Surgery, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Vladimir Trajkovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ljubica Harhaji-Trajkovic
- Department of Neurophysiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
11
|
Bellver-Sanchis A, Ávila-López PA, Tic I, Valle-García D, Ribalta-Vilella M, Labrador L, Banerjee DR, Guerrero A, Casadesus G, Poulard C, Pallàs M, Griñán-Ferré C. Neuroprotective effects of G9a inhibition through modulation of peroxisome-proliferator activator receptor gamma-dependent pathways by miR-128. Neural Regen Res 2024; 19:2532-2542. [PMID: 38526289 PMCID: PMC11090428 DOI: 10.4103/1673-5374.393102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/17/2023] [Accepted: 12/28/2023] [Indexed: 03/26/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202419110-00033/figure1/v/2024-03-08T184507Z/r/image-tiff Dysregulation of G9a, a histone-lysine N-methyltransferase, has been observed in Alzheimer's disease and has been correlated with increased levels of chronic inflammation and oxidative stress. Likewise, microRNAs are involved in many biological processes and diseases playing a key role in pathogenesis, especially in multifactorial diseases such as Alzheimer's disease. Therefore, our aim has been to provide partial insights into the interconnection between G9a, microRNAs, oxidative stress, and neuroinflammation. To better understand the biology of G9a, we compared the global microRNA expression between senescence-accelerated mouse-prone 8 (SAMP8) control mice and SAMP8 treated with G9a inhibitor UNC0642. We found a downregulation of miR-128 after a G9a inhibition treatment, which interestingly binds to the 3' untranslated region (3'-UTR) of peroxisome-proliferator activator receptor γ (PPARG) mRNA. Accordingly, Pparg gene expression levels were higher in the SAMP8 group treated with G9a inhibitor than in the SAMP8 control group. We also observed modulation of oxidative stress responses might be mainly driven Pparg after G9a inhibitor. To confirm these antioxidant effects, we treated primary neuron cell cultures with hydrogen peroxide as an oxidative insult. In this setting, treatment with G9a inhibitor increases both cell survival and antioxidant enzymes. Moreover, up-regulation of PPARγ by G9a inhibitor could also increase the expression of genes involved in DNA damage responses and apoptosis. In addition, we also described that the PPARγ/AMPK axis partially explains the regulation of autophagy markers expression. Finally, PPARγ/GADD45α potentially contributes to enhancing synaptic plasticity and neurogenesis after G9a inhibition. Altogether, we propose that pharmacological inhibition of G9a leads to a neuroprotective effect that could be due, at least in part, by the modulation of PPARγ-dependent pathways by miR-128.
Collapse
Affiliation(s)
- Aina Bellver-Sanchis
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Barcelona, Spain
| | - Pedro A. Ávila-López
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Iva Tic
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Barcelona, Spain
| | - David Valle-García
- Institute of Biotechnology, National Autonomous University of Mexico, Cuernavaca, Mexico
| | - Marta Ribalta-Vilella
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Barcelona, Spain
| | - Luis Labrador
- Department of Pharmacology and Therapeutics, Health Science Center-University of Florida, Gainesville, FL, USA
| | - Deb Ranjan Banerjee
- Department of Chemistry, National Institute of Technology Durgapur, M G Avenue, Durgapur, West Bengal, India
| | - Ana Guerrero
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Barcelona, Spain
| | - Gemma Casadesus
- Department of Pharmacology and Therapeutics, Health Science Center-University of Florida, Gainesville, FL, USA
| | - Coralie Poulard
- Cancer Research Cancer Lyon, Université de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérlogie de Lyon, Lyon, France
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Christian Griñán-Ferré
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
12
|
Al-Salam S, Hashmi S, Jagadeesh GS, Sudhadevi M, Awwad A, Nemmar A. Early Cardiac Ischemia-Reperfusion Injury: Interactions of Autophagy with Galectin-3 and Oxidative Stress. Biomedicines 2024; 12:2474. [PMID: 39595040 PMCID: PMC11591886 DOI: 10.3390/biomedicines12112474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/20/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Cardiovascular diseases are the leading cause of death worldwide, including the United Arab Emirates. Ischemia-reperfusion (IR) injury results in the death of cardiac myocytes that were viable immediately before myocardial reperfusion. We aim to investigate the role of galectin-3 (Gal-3) in autophagy during ischemia-reperfusion injuries. Methods: Male C57B6/J and Gal-3 knockout (KO) mice were used for the murine model of IR injury. Heart samples and serum were collected 24 h post-IR and were processed for immunohistochemical and immunofluorescent labeling and an enzyme-linked immunosorbent assay. Results: There was a significant increase in left ventricle (LV) concentrations of Gal-3 in Gal-3 wild-type mice compared to sham mice. There were significantly higher concentrations of LV autophagy proteins and phospho-AMPK in IR Gal-3 KO mice than in IR Gal-3 wild-type mice, compared to lower concentrations of LV phospho-mTOR and p62 in IR Gal-3 KO than in IR wild-type mice. Antioxidant activities were higher in the LVs of IR Gal-3 wild-type mice, while oxidative stress was higher in the LVs of IR Gal-3 KO mice. Conclusions: Our study supports the interaction of Gal-3 with autophagy proteins, oxidative stress, and antioxidant proteins and demonstrates that the absence of Gal-3 can enhance autophagy in the heart after IR injury.
Collapse
Affiliation(s)
- Suhail Al-Salam
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (G.S.J.); (M.S.)
| | - Satwat Hashmi
- Department of Biological and Biomedical Sciences, Agha Khan University, Karachi City 74000, Pakistan;
| | - Govindan S. Jagadeesh
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (G.S.J.); (M.S.)
| | - Manjusha Sudhadevi
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (G.S.J.); (M.S.)
| | - Aktham Awwad
- Department of Laboratory Medicine, Tawam Hospital, Al Ain P.O. Box 5674, United Arab Emirates;
| | - Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| |
Collapse
|
13
|
Liang Z, Pi D, Zhen J, Yan H, Zheng C, Liang Chen J, Fan W, Song Q, Pan J, Liu D, Pan M, Yang Q, Zhang Y. The AMPK-mTOR Pathway Is Inhibited by Chaihu Shugan Powder, Which Relieves Nonalcoholic Steatohepatitis by Suppressing Autophagic Ferroptosis. Mediators Inflamm 2024; 2024:4777789. [PMID: 39502754 PMCID: PMC11535263 DOI: 10.1155/2024/4777789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 09/03/2024] [Accepted: 09/23/2024] [Indexed: 11/08/2024] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is the advanced stage of nonalcoholic fatty liver disease (NAFLD), which is distinguished by the accumulation of fat in the liver, damage to liver cells, and inflammation. Chaihu Shugan powder (CSP), a renowned traditional Chinese medicine (TCM) blend extensively utilized in China to address liver disease, has demonstrated its efficacy in reducing lipid buildup and effectively combating inflammation. Hence, the primary objective of this research is to examine the impacts and possible mechanisms of CSP on NASH through assessments of liver histopathology, lipidomic analysis, and gene expression. To induce a mouse model of NASH, we employed a diet which deficient in methionine and choline, known as methionine-choline deficient (MCD) diet. Initially, we examined the impact of administering CSP to NASH mice by assessing the levels of serum and liver indicators. We found that CSP was able to reduce lipid buildup and inflammation in mice. In addition, a total of 1009 genes exhibited enrichment in both the autophagy and ferroptosis pathways. The liver protein levels of Adenosine monophosphate-activated protein kinase-mammalian target of rapamycin (AMPK-mTOR)-mediated autophagy and ferroptosis markers, such as p-AMPKα/AMPKα, p-mTOR/mTOR, Beclin-1, microtubule associated protein 1 light chain 3 gamma (LC3), p62 (sequestosome 1 [SQSTM1/p62]), Kelch-like ECH-associated protein 1 (KEAP1), nuclear factor erythroid 2-related factor 2 (Nrf-2), ferritin heavy chain 1 (FTH1), and glutathione peroxidase 4 (GPX4), were restored by CSP. Furthermore, our findings indicated that the suppression of autophagy had a repressive impact on the occurrence of ferroptosis in the mouse model, indicating that autophagy activation likely plays a role in mediating ferroptosis in NASH.
Collapse
Affiliation(s)
| | - Dajin Pi
- Jinan University, Guang Zhou 510632, China
| | | | | | | | | | - Wen Fan
- Jinan University, Guang Zhou 510632, China
| | | | - Jinyue Pan
- Jinan University, Guang Zhou 510632, China
| | | | | | - Qinhe Yang
- Jinan University, Guang Zhou 510632, China
| | | |
Collapse
|
14
|
Elmorsy EA, Youssef ME, Abdel-Hamed MR, Amer MM, Elghandour SR, Alkhamiss AS, Mohamed NB, Khodeir MM, Elsisi HA, Alsaeed TS, Kamal MM, Ellethy AT, Elesawy BH, Saber S. Activation of AMPK/SIRT1/FOXO3a signaling by BMS-477118 (saxagliptin) mitigates chronic colitis in rats: uncovering new anti-inflammatory and antifibrotic roles. Front Pharmacol 2024; 15:1456058. [PMID: 39359253 PMCID: PMC11445602 DOI: 10.3389/fphar.2024.1456058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
Ulcerative colitis (UC) is a debilitating chronic disease marked by persistent inflammation and intestinal fibrosis. Despite the availability of various treatments, many patients fail to achieve long-term remission, underscoring a significant unmet therapeutic need. BMS-477118, a reversible inhibitor of dipeptidyl peptidase 4 (DPP4), has demonstrated anti-inflammatory properties in preclinical and clinical studies with minimal adverse effects compared to other antidiabetic agents. However, the potential benefits of BMS-477118 in chronic UC have not yet been explored. In this study, we aimed to investigate the effects of BMS-477118 in rats subjected to chronic dextran sodium sulfate (DSS) administration. Our findings indicate that BMS-477118 activates the interconnected positive feedback loop involving AMPK, SIRT1, and FOXO3a, improving histological appearance in injured rat colons. BMS-477118 also reduced fibrotic changes associated with the chronic nature of the animal model, alleviated macroscopic damage and disease severity, and improved the colon weight-to-length ratio. Additionally, BMS-477118 prevented DSS-induced weight loss and enhanced tight junction proteins. These effects, in conjunction with reduced oxidative stress and its potential anti-inflammatory, antiapoptotic, and autophagy-inducing properties, fostered prolonged survival in rats with chronic UC. To conclude, BMS-477118 has the potential to activate the AMPK/SIRT1/FOXO3a signaling pathway in inflamed colons. These results suggest that the AMPK/SIRT1/FOXO3a pathway could be a new therapeutic target for UC. Further research is mandatory to explore the therapeutic possibilities of this pathway. Additionally, continued studies on the therapeutic potential of BMS-477118 and other DPP4 inhibitors are promising for creating new treatments for various conditions, including UC in diabetic patients.
Collapse
Affiliation(s)
- Elsayed A. Elmorsy
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Mahmoud E. Youssef
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Mohamed R. Abdel-Hamed
- Department of Anatomy, College of Medicine, Qassim University, Buraidah, Saudi Arabia
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Maha M. Amer
- Department of Anatomy, College of Medicine, Qassim University, Buraidah, Saudi Arabia
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sahar R. Elghandour
- Department of Anatomy and Histology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Abdullah S. Alkhamiss
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Nahla B. Mohamed
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Mostafa M. Khodeir
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
- Department of Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hossam A. Elsisi
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraidah, Saudi Arabia
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Thamir Saad Alsaeed
- Department of Biology and Immunology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Manal M. Kamal
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Physiology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Abousree T. Ellethy
- Department of Oral and Medical Basic Sciences, Biochemistry Division, College of Dentistry, Qassim University, Buraidah, Saudi Arabia
| | - Basem H. Elesawy
- Department of Pathology, College of Medicine, Taif University, Taif, Saudi Arabia
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| |
Collapse
|
15
|
Elesawy WH, El-Sahar AE, Sayed RH, Ashour AM, Alsufyani SE, Arab HH, Kandil EA. Repurposing ezetimibe as a neuroprotective agent in a rotenone-induced Parkinson's disease model in rats: Role of AMPK/SIRT-1/PGC-1α signaling and autophagy. Int Immunopharmacol 2024; 138:112640. [PMID: 38981225 DOI: 10.1016/j.intimp.2024.112640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
As a severe neurological disorder, Parkinson's disease (PD) is distinguished by dopaminergic neuronal degeneration in the substantia nigra (SN), culminating in motor impairments. Several studies have shown that activation of the AMPK/SIRT1/PGC1α pathway contributes to an increase in mitochondrial biogenesis and is a promising candidate for the management of PD. Furthermore, turning on the AMPK/SIRT1/PGC1α pathway causes autophagy activation, which is fundamental for maintaining neuronal homeostasis. Interestingly, ezetimibe is an antihyperlipidemic agent that was recently reported to possess pleiotropic properties in neurology by triggering the phosphorylation and activation of AMPK. Thus, our study aimed to investigate the neuroprotective potential of ezetimibe in rats with rotenone-induced PD by activating AMPK. Adult male Wistar rats received rotenone (1.5 mg/kg, s.c.) every other day for 21 days to induce experimental PD. Rats were treated with ezetimibe (5 mg/kg/day, i.p.) 1 h before rotenone. Ezetimibe ameliorated the motor impairments in open field, rotarod and grip strength tests, restored striatal dopamine and tyrosine hydroxylase in the SN, up-regulated p-AMPK, SIRT1, and PGC1α striatal expression, upsurged the expression of ULK1, beclin1, and LC3II/I, reduced Bax/Bcl2 ratio, and alleviated rotenone-induced histopathological changes in striatum and SN. Our findings also verified the contribution of AMPK activation to the neuroprotective effect of ezetimibe by using the AMPK inhibitor dorsomorphin. Together, this work revealed that ezetimibe exerts a neuroprotective impact in rotenone-induced PD by activating AMPK/SIRT-1/PGC-1α signaling, enhancing autophagy, and attenuating apoptosis. Thus, ezetimibe's activation of AMPK could hold significant therapeutic promise for PD management.
Collapse
Affiliation(s)
- Wessam H Elesawy
- Department of Pharmacology and Toxicology, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6 October, Egypt
| | - Ayman E El-Sahar
- Biology Department, School of Pharmacy, Newgiza University, Giza, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Ahmed M Ashour
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al Qura University, P.O. Box 13578, Makkah 21955, Saudi Arabia
| | - Shuruq E Alsufyani
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Hany H Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Esraa A Kandil
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
16
|
Chen L, Wei M, Zhou B, Wang K, Zhu E, Cheng Z. The roles and mechanisms of endoplasmic reticulum stress-mediated autophagy in animal viral infections. Vet Res 2024; 55:107. [PMID: 39227990 PMCID: PMC11373180 DOI: 10.1186/s13567-024-01360-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/28/2024] [Indexed: 09/05/2024] Open
Abstract
The endoplasmic reticulum (ER) is a unique organelle responsible for protein synthesis and processing, lipid synthesis in eukaryotic cells, and the replication of many animal viruses is closely related to ER. A considerable number of viral proteins are synthesised during viral infection, resulting in the accumulation of unfolded and misfolded proteins in ER, which in turn induces endoplasmic reticulum stress (ERS). ERS further drives three signalling pathways (PERK, IRE1, and ATF6) of the cellular unfolded protein response (UPR) to respond to the ERS. In numerous studies, ERS has been shown to mediate autophagy, a highly conserved cellular degradation mechanism to maintain cellular homeostasis in eukaryotic cells, through the UPR to restore ER homeostasis. ERS-mediated autophagy is closely linked to the occurrence and development of numerous viral diseases in animals. Host cells can inhibit viral replication by regulating ERS-mediated autophagy, restoring the ER's normal physiological process. Conversely, many viruses have evolved strategies to exploit ERS-mediated autophagy to achieve immune escape. These strategies include the regulation of PERK-eIF2α-Beclin1, PERK-eIF2α-ATF4-ATG12, IRE1α-JNK-Beclin1, and other signalling pathways, which provide favourable conditions for the replication of animal viruses in host cells. The ERS-mediated autophagy pathway has become a hot topic in animal virological research. This article reviews the most recent research regarding the regulatory functions of ERS-mediated autophagy pathways in animal viral infections, emphasising the underlying mechanisms in the context of different viral infections. Furthermore, it considers the future direction and challenges in the development of ERS-mediated autophagy targeting strategies for combating animal viral diseases, which will contribute to unveiling their pathogenic mechanism from a new perspective and provide a scientific reference for the discovery and development of new antiviral drugs and preventive strategies.
Collapse
Affiliation(s)
- Lan Chen
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Miaozhan Wei
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Bijun Zhou
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Animal Disease and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Kaigong Wang
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Animal Disease and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Erpeng Zhu
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Animal Disease and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, 550025, China.
| | - Zhentao Cheng
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Animal Disease and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
17
|
He R, Zhou W. Application and research progress of cordycepin in the treatment of tumours (Review). Mol Med Rep 2024; 30:161. [PMID: 38994776 PMCID: PMC11258602 DOI: 10.3892/mmr.2024.13285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
Cordycepin is a nucleoside molecule found in Cordyceps sinensis and can be obtained through chemical synthesis and biotransformation. Cordycepin has been extensively studied and has been shown to have antitumour activity. This activity includes effects on the autophagy process and inhibition of the MAPK/ERK and Hedgehog pathways. Ultimately, the inhibitory effect of cordycepin on tumour cells is due to the interplay of these effects. Cordycepin was shown to enhance the therapeutic effects of radiotherapy. There is increasing evidence indicating that cordycepin plays an anticancer role in the treatment of various cancers. The present review aims to provide a clear understanding of the antitumour mechanisms of cordycepin and discuss its present application in the treatment of tumours. This information can be an important theoretical basis and provide clinical guidance for the further development of cordycepin as an antitumour drug.
Collapse
Affiliation(s)
- Ru He
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Wence Zhou
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
18
|
Sophronea T, Agrawal S, Kumari N, Mishra J, Walecha V, Luthra PM. A 2AR antagonists triggered the AMPK/m-TOR autophagic pathway to reverse the calcium-dependent cell damage in 6-OHDA induced model of PD. Neurochem Int 2024; 178:105793. [PMID: 38880232 DOI: 10.1016/j.neuint.2024.105793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/23/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Calcium dyshomeostasis, oxidative stress, autophagy and apoptosis are the pathogenesis of selective dopaminergic neuronal loss in Parkinson's disease (PD). Earlier, we reported that A2A R modulates IP3-dependent intracellular Ca2+ signalling via PKA. Moreover, A2A R antagonist has been reported to reduce oxidative stress and apoptosis in PD models, however intracellular Ca2+ ([Ca2+]i) dependent autophagy regulation in the 6-OHDA model of PD has not been explored. In the present study, we investigated the A2A R antagonists mediated neuroprotective effects in 6-OHDA-induced primary midbrain neuronal (PMN) cells and unilateral lesioned rat model of PD. 6-OHDA-induced oxidative stress (ROS and superoxide) and [Ca2+]i was measured using Fluo4AM, DCFDA and DHE dye respectively. Furthermore, autophagy was assessed by Western blot of p-m-TOR/mTOR, p-AMPK/AMPK, LC3I/II, Beclin and β-actin. Apoptosis was measured by Annexin V-APC-PI detection and Western blot of Bcl2, Bax, caspase3 and β-actin. Dopamine levels were measured by Dopamine ELISA kit and Western blot of tyrosine hydroxylase. Our results suggest that 6-OHDA-induced PMN cell death occurred due to the interruption of [Ca2+]i homeostasis, accompanied by activation of autophagy and apoptosis. A2A R antagonists prevented 6-OHDA-induced neuronal cell death by decreasing [Ca2+]i overload and oxidative stress. In addition, we found that A2A R antagonists upregulated mTOR phosphorylation and downregulated AMPK phosphorylation thereby reducing autophagy and apoptosis both in 6-OHDA induced PMN cells and 6-OHDA unilateral lesioned rat model. In conclusion, A2A R antagonists alleviated 6-OHDA toxicity by modulating [Ca2+]i signalling to inhibit autophagy mediated by the AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Tuithung Sophronea
- Neuropharmaceutical Chemistry Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, North Campus, University of Delhi, Delhi, 110007, India
| | - Saurabh Agrawal
- Neuropharmaceutical Chemistry Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, North Campus, University of Delhi, Delhi, 110007, India
| | - Namrata Kumari
- Neuropharmaceutical Chemistry Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, North Campus, University of Delhi, Delhi, 110007, India
| | - Jyoti Mishra
- Neuropharmaceutical Chemistry Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, North Campus, University of Delhi, Delhi, 110007, India
| | - Vaishali Walecha
- Neuropharmaceutical Chemistry Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, North Campus, University of Delhi, Delhi, 110007, India
| | - Pratibha Mehta Luthra
- Neuropharmaceutical Chemistry Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, North Campus, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
19
|
Kazyken D, Dame SG, Wang C, Wadley M, Fingar DC. Unexpected roles for AMPK in the suppression of autophagy and the reactivation of MTORC1 signaling during prolonged amino acid deprivation. Autophagy 2024; 20:2017-2040. [PMID: 38744665 PMCID: PMC11346535 DOI: 10.1080/15548627.2024.2355074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024] Open
Abstract
AMPK promotes catabolic and suppresses anabolic cell metabolism to promote cell survival during energetic stress, in part by inhibiting MTORC1, an anabolic kinase requiring sufficient levels of amino acids. We found that cells lacking AMPK displayed increased apoptotic cell death during nutrient stress caused by prolonged amino acid deprivation. We presumed that impaired macroautophagy/autophagy explained this phenotype, as a prevailing view posits that AMPK initiates autophagy (often a pro-survival response) through phosphorylation of ULK1. Unexpectedly, however, autophagy remained unimpaired in cells lacking AMPK, as monitored by several autophagic readouts in several cell lines. More surprisingly, the absence of AMPK increased ULK1 signaling and MAP1LC3B/LC3B lipidation during amino acid deprivation while AMPK-mediated phosphorylation of ULK1 S555 (a site proposed to initiate autophagy) decreased upon amino acid withdrawal or pharmacological MTORC1 inhibition. In addition, activation of AMPK with compound 991, glucose deprivation, or AICAR blunted autophagy induced by amino acid withdrawal. These results demonstrate that AMPK activation and glucose deprivation suppress autophagy. As AMPK controlled autophagy in an unexpected direction, we examined how AMPK controls MTORC1 signaling. Paradoxically, we observed impaired reactivation of MTORC1 in cells lacking AMPK upon prolonged amino acid deprivation. Together these results oppose established views that AMPK promotes autophagy and inhibits MTORC1 universally. Moreover, they reveal unexpected roles for AMPK in the suppression of autophagy and the support of MTORC1 signaling in the context of prolonged amino acid deprivation. These findings prompt a reevaluation of how AMPK and its control of autophagy and MTORC1 affect health and disease.
Collapse
Affiliation(s)
- Dubek Kazyken
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sydney G. Dame
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Claudia Wang
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Maxwell Wadley
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Diane C. Fingar
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
20
|
Mahboobnia K, Beveridge DJ, Yeoh GC, Kabir TD, Leedman PJ. MicroRNAs in Hepatocellular Carcinoma Pathogenesis: Insights into Mechanisms and Therapeutic Opportunities. Int J Mol Sci 2024; 25:9393. [PMID: 39273339 PMCID: PMC11395074 DOI: 10.3390/ijms25179393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Hepatocellular carcinoma (HCC) presents a significant global health burden, with alarming statistics revealing its rising incidence and high mortality rates. Despite advances in medical care, HCC treatment remains challenging due to late-stage diagnosis, limited effective therapeutic options, tumor heterogeneity, and drug resistance. MicroRNAs (miRNAs) have attracted substantial attention as key regulators of HCC pathogenesis. These small non-coding RNA molecules play pivotal roles in modulating gene expression, implicated in various cellular processes relevant to cancer development. Understanding the intricate network of miRNA-mediated molecular pathways in HCC is essential for unraveling the complex mechanisms underlying hepatocarcinogenesis and developing novel therapeutic approaches. This manuscript aims to provide a comprehensive review of recent experimental and clinical discoveries regarding the complex role of miRNAs in influencing the key hallmarks of HCC, as well as their promising clinical utility as potential therapeutic targets.
Collapse
Affiliation(s)
- Khadijeh Mahboobnia
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Dianne J Beveridge
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - George C Yeoh
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Tasnuva D Kabir
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Peter J Leedman
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
21
|
Kovale L, Singh MK, Kim J, Ha J. Role of Autophagy and AMPK in Cancer Stem Cells: Therapeutic Opportunities and Obstacles in Cancer. Int J Mol Sci 2024; 25:8647. [PMID: 39201332 PMCID: PMC11354724 DOI: 10.3390/ijms25168647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Cancer stem cells represent a resilient subset within the tumor microenvironment capable of differentiation, regeneration, and resistance to chemotherapeutic agents, often using dormancy as a shield. Their unique properties, including drug resistance and metastatic potential, pose challenges for effective targeting. These cells exploit certain metabolic processes for their maintenance and survival. One of these processes is autophagy, which generally helps in energy homeostasis but when hijacked by CSCs can help maintain their stemness. Thus, it is often referred as an Achilles heel in CSCs, as certain cancers tend to depend on autophagy for survival. Autophagy, while crucial for maintaining stemness in cancer stem cells (CSCs), can also serve as a vulnerability in certain contexts, making it a complex target for therapy. Regulators of autophagy like AMPK (5' adenosine monophosphate-activated protein kinase) also play a crucial role in maintaining CSCs stemness by helping CSCs in metabolic reprogramming in harsh environments. The purpose of this review is to elucidate the interplay between autophagy and AMPK in CSCs, highlighting the challenges in targeting autophagy and discussing therapeutic strategies to overcome these limitations. This review focuses on previous research on autophagy and its regulators in cancer biology, particularly in CSCs, addresses the remaining unanswered questions, and potential targets for therapy are also brought to attention.
Collapse
Affiliation(s)
- Lochana Kovale
- Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (L.K.); (M.K.S.)
| | - Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (L.K.); (M.K.S.)
| | - Joungmok Kim
- Department of Oral Biochemistry and Molecular Biology, College of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (L.K.); (M.K.S.)
| |
Collapse
|
22
|
Pareek G, Kundu M. Physiological functions of ULK1/2. J Mol Biol 2024; 436:168472. [PMID: 38311233 PMCID: PMC11382334 DOI: 10.1016/j.jmb.2024.168472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
UNC-51-like kinases 1 and 2 (ULK1/2) are serine/threonine kinases that are best known for their evolutionarily conserved role in the autophagy pathway. Upon sensing the nutrient status of a cell, ULK1/2 integrate signals from upstream cellular energy sensors such as mTOR and AMPK and relay them to the downstream components of the autophagy machinery. ULK1/2 also play indispensable roles in the selective autophagy pathway, removing damaged mitochondria, invading pathogens, and toxic protein aggregates. Additional functions of ULK1/2 have emerged beyond autophagy, including roles in protein trafficking, RNP granule dynamics, and signaling events impacting innate immunity, axon guidance, cellular homeostasis, and cell fate. Therefore, it is no surprise that alterations in ULK1/2 expression and activity have been linked with pathophysiological processes, including cancer, neurological disorders, and cardiovascular diseases. Growing evidence suggests that ULK1/2 function as biological rheostats, tuning cellular functions to intra and extra-cellular cues. Given their broad physiological relevance, ULK1/2 are candidate targets for small molecule activators or inhibitors that may pave the way for the development of therapeutics for the treatment of diseases in humans.
Collapse
Affiliation(s)
- Gautam Pareek
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mondira Kundu
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
23
|
Singh A, Ravendranathan N, Frisbee JC, Singh KK. Complex Interplay between DNA Damage and Autophagy in Disease and Therapy. Biomolecules 2024; 14:922. [PMID: 39199310 PMCID: PMC11352539 DOI: 10.3390/biom14080922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 09/01/2024] Open
Abstract
Cancer, a multifactorial disease characterized by uncontrolled cellular proliferation, remains a global health challenge with significant morbidity and mortality. Genomic and molecular aberrations, coupled with environmental factors, contribute to its heterogeneity and complexity. Chemotherapeutic agents like doxorubicin (Dox) have shown efficacy against various cancers but are hindered by dose-dependent cytotoxicity, particularly on vital organs like the heart and brain. Autophagy, a cellular process involved in self-degradation and recycling, emerges as a promising therapeutic target in cancer therapy and neurodegenerative diseases. Dysregulation of autophagy contributes to cancer progression and drug resistance, while its modulation holds the potential to enhance treatment outcomes and mitigate adverse effects. Additionally, emerging evidence suggests a potential link between autophagy, DNA damage, and caretaker breast cancer genes BRCA1/2, highlighting the interplay between DNA repair mechanisms and cellular homeostasis. This review explores the intricate relationship between cancer, Dox-induced cytotoxicity, autophagy modulation, and the potential implications of autophagy in DNA damage repair pathways, particularly in the context of BRCA1/2 mutations.
Collapse
Affiliation(s)
- Aman Singh
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond Street North, London, ON N6A 5C1, Canada; (A.S.); (N.R.); (J.C.F.)
| | - Naresh Ravendranathan
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond Street North, London, ON N6A 5C1, Canada; (A.S.); (N.R.); (J.C.F.)
| | - Jefferson C. Frisbee
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond Street North, London, ON N6A 5C1, Canada; (A.S.); (N.R.); (J.C.F.)
| | - Krishna K. Singh
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond Street North, London, ON N6A 5C1, Canada; (A.S.); (N.R.); (J.C.F.)
- Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
24
|
Corsetti G, Pasini E, Scarabelli TM, Romano C, Singh A, Scarabelli CC, Dioguardi FS. Importance of Energy, Dietary Protein Sources, and Amino Acid Composition in the Regulation of Metabolism: An Indissoluble Dynamic Combination for Life. Nutrients 2024; 16:2417. [PMID: 39125298 PMCID: PMC11313897 DOI: 10.3390/nu16152417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
PURPOSE This paper aims to present a unique perspective that emphasizes the intricate interplay between energy, dietary proteins, and amino acid composition, underscoring their mutual dependence for health-related considerations. Energy and protein synthesis are fundamental to biological processes, crucial for the sustenance of life and the growth of organisms. METHODS AND RESULTS We explore the intricate relationship between energy metabolism, protein synthesis, regulatory mechanisms, protein sources, amino acid availability, and autophagy in order to elucidate how these elements collectively maintain cellular homeostasis. We underscore the vital role this dynamic interplay has in preserving cell life. CONCLUSIONS A deeper understanding of the link between energy and protein synthesis is essential to comprehend fundamental cellular processes. This insight could have a wide-ranging impact in several medical fields, such as nutrition, metabolism, and disease management.
Collapse
Affiliation(s)
- Giovanni Corsetti
- Division of Human Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25023 Brescia, Italy;
| | - Evasio Pasini
- Italian Association of Functional Medicine, 20855 Lesmo, Italy;
- Department of Clinical and Experimental Sciences, University of Brescia, 25023 Brescia, Italy
| | | | - Claudia Romano
- Division of Human Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25023 Brescia, Italy;
| | - Arashpreet Singh
- School of Osteopathic Medicine, Campbell University, Lillington, NC 27546, USA;
| | | | | |
Collapse
|
25
|
Li J, Xie L, Dou Z, Zhou Y, Mo J, Chen W. Genipin Activates Autophagy and Promotes Myoblast Differentiation by Activating AMPK Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15190-15197. [PMID: 38807430 DOI: 10.1021/acs.jafc.3c06638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Cultured meat technology is expected to solve problems such as resource shortages and environmental pollution, but the muscle fiber differentiation efficiency of cultured meat is low. Genipin is the active compound derived from Gardenia jasminoides Ellis, which has a variety of activities. Additionally, genipin serves as a noncytotoxic agent for cross-linking, which is suitable as a foundational scaffold for in vitro tissue regeneration. However, the impact of genipin on myoblast differentiation remains to be studied. The research revealed that genipin was found to improve the differentiation efficiency of myoblasts. Genipin improved mitochondrial membrane potential by activating the AMPK signaling pathway of myoblasts, promoting mitochondrial biogenesis, and mitochondrial network remodeling. Genipin activated autophagy in myoblasts and maintained cellular homeostasis. Autophagy inhibitors blocked the pro-differentiation effect of genipin. These results showed that genipin improved the differentiation efficiency of myoblasts, which provided a theoretical basis for the development of cultured meat technology.
Collapse
Affiliation(s)
- Jiaxin Li
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Lianghua Xie
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Zishan Dou
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yiyang Zhou
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jianling Mo
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Wei Chen
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
26
|
Hassan AMIA, Zhao Y, Chen X, He C. Blockage of Autophagy for Cancer Therapy: A Comprehensive Review. Int J Mol Sci 2024; 25:7459. [PMID: 39000565 PMCID: PMC11242824 DOI: 10.3390/ijms25137459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
The incidence and mortality of cancer are increasing, making it a leading cause of death worldwide. Conventional treatments such as surgery, radiotherapy, and chemotherapy face significant limitations due to therapeutic resistance. Autophagy, a cellular self-degradation mechanism, plays a crucial role in cancer development, drug resistance, and treatment. This review investigates the potential of autophagy inhibition as a therapeutic strategy for cancer. A systematic search was conducted on Embase, PubMed, and Google Scholar databases from 1967 to 2024 to identify studies on autophagy inhibitors and their mechanisms in cancer therapy. The review includes original articles utilizing in vitro and in vivo experimental methods, literature reviews, and clinical trials. Key terms used were "Autophagy", "Inhibitors", "Molecular mechanism", "Cancer therapy", and "Clinical trials". Autophagy inhibitors such as chloroquine (CQ) and hydroxychloroquine (HCQ) have shown promise in preclinical studies by inhibiting lysosomal acidification and preventing autophagosome degradation. Other inhibitors like wortmannin and SAR405 target specific components of the autophagy pathway. Combining these inhibitors with chemotherapy has demonstrated enhanced efficacy, making cancer cells more susceptible to cytotoxic agents. Clinical trials involving CQ and HCQ have shown encouraging results, although further investigation is needed to optimize their use in cancer therapy. Autophagy exhibits a dual role in cancer, functioning as both a survival mechanism and a cell death pathway. Targeting autophagy presents a viable strategy for cancer therapy, particularly when integrated with existing treatments. However, the complexity of autophagy regulation and the potential side effects necessitate further research to develop precise and context-specific therapeutic approaches.
Collapse
Affiliation(s)
| | - Yuxin Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China (X.C.)
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China (X.C.)
- Department of Pharmaceutical Science, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China (X.C.)
- Department of Pharmaceutical Science, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| |
Collapse
|
27
|
Katerelos M, Gleich K, Harley G, Loh K, Oakhill JS, Kemp BE, de Souza DP, Narayana VK, Coughlan MT, Laskowski A, Ling NXY, Murray-Segal L, Brink R, Lee M, Power DA, Mount PF. The AMPK activator ATX-304 alters cellular metabolism to protect against cisplatin-induced acute kidney injury. Biomed Pharmacother 2024; 175:116730. [PMID: 38749175 DOI: 10.1016/j.biopha.2024.116730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024] Open
Abstract
Acute kidney injury (AKI) disrupts energy metabolism. Targeting metabolism through AMP-activated protein kinase (AMPK) may alleviate AKI. ATX-304, a pan-AMPK activator, was evaluated in C57Bl/6 mice and tubular epithelial cell (TEC) cultures. Mice received ATX-304 (1 mg/g) or control chow for 7 days before cisplatin-induced AKI (CI-AKI). Primary cultures of tubular epithelial cells (TECs) were pre-treated with ATX-304 (20 µM, 4 h) prior to exposure to cisplatin (20 µM, 23 h). ATX-304 increased acetyl-CoA carboxylase phosphorylation, indicating AMPK activation. It protected against CI-AKI measured by serum creatinine (control 0.05 + 0.03 mM vs ATX-304 0.02 + 0.01 mM, P = 0.03), western blot for neutrophil gelatinase-associated lipocalin (NGAL) (control 3.3 + 1.8-fold vs ATX-304 1.2 + 0.55-fold, P = 0.002), and histological injury (control 3.5 + 0.59 vs ATX-304 2.7 + 0.74, P = 0.03). In TECs, pre-treatment with ATX-304 protected against cisplatin-mediated injury, as measured by lactate dehydrogenase release, MTS cell viability, and cleaved caspase 3 expression. ATX-304 protection against cisplatin was lost in AMPK-null murine embryonic fibroblasts. Metabolomic analysis in TECs revealed that ATX-304 (20 µM, 4 h) altered 66/126 metabolites, including fatty acids, tricarboxylic acid cycle metabolites, and amino acids. Metabolic studies of live cells using the XFe96 Seahorse analyzer revealed that ATX-304 increased the basal TEC oxygen consumption rate by 38%, whereas maximal respiration was unchanged. Thus, ATX-304 protects against cisplatin-mediated kidney injury via AMPK-dependent metabolic reprogramming, revealing a promising therapeutic strategy for AKI.
Collapse
Affiliation(s)
- Marina Katerelos
- Department of Nephrology, Austin Health, Heidelberg, Victoria 3084, Australia; Kidney Laboratory, The Institute for Breathing and Sleep (IBAS), Austin Health, Heidelberg, Victoria 3084, Australia
| | - Kurt Gleich
- Department of Nephrology, Austin Health, Heidelberg, Victoria 3084, Australia; Kidney Laboratory, The Institute for Breathing and Sleep (IBAS), Austin Health, Heidelberg, Victoria 3084, Australia
| | - Geoff Harley
- Department of Nephrology, Austin Health, Heidelberg, Victoria 3084, Australia; Kidney Laboratory, The Institute for Breathing and Sleep (IBAS), Austin Health, Heidelberg, Victoria 3084, Australia
| | - Kim Loh
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Jonathan S Oakhill
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Bruce E Kemp
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - David P de Souza
- Metabolomics Australia, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Vinod K Narayana
- Metabolomics Australia, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Melinda T Coughlan
- Glycation, Nutrition and Metabolism Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University Parkville Campus, Parkville, Victoria 3052, Australia
| | - Adrienne Laskowski
- Glycation, Nutrition and Metabolism Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Naomi X Y Ling
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Lisa Murray-Segal
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Robert Brink
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia; St. Vincent's Clinical School, University of New South Wales, St. Vincent's Hospital, Darlinghurst, New South Wales 2010, Australia
| | - Mardiana Lee
- Department of Nephrology, Austin Health, Heidelberg, Victoria 3084, Australia; Kidney Laboratory, The Institute for Breathing and Sleep (IBAS), Austin Health, Heidelberg, Victoria 3084, Australia
| | - David A Power
- Department of Nephrology, Austin Health, Heidelberg, Victoria 3084, Australia; Kidney Laboratory, The Institute for Breathing and Sleep (IBAS), Austin Health, Heidelberg, Victoria 3084, Australia; Department of Medicine (Austin), The University of Melbourne, Heidelberg ,Victoria 3084, Australia
| | - Peter F Mount
- Department of Nephrology, Austin Health, Heidelberg, Victoria 3084, Australia; Kidney Laboratory, The Institute for Breathing and Sleep (IBAS), Austin Health, Heidelberg, Victoria 3084, Australia; Department of Medicine (Austin), The University of Melbourne, Heidelberg ,Victoria 3084, Australia.
| |
Collapse
|
28
|
Shao Y, Zheng L, Jiang Y. Cadmium toxicity and autophagy: a review. Biometals 2024; 37:609-629. [PMID: 38277035 DOI: 10.1007/s10534-023-00581-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/31/2023] [Indexed: 01/27/2024]
Abstract
Cadmium (Cd) is an important environmental pollutant that poses a threat to human health and represents a critical component of air pollutants, food sources, and cigarette smoke. Cd is a known carcinogen and has toxic effects on the environment and various organs in humans. Heavy metals within an organism are difficult to biodegrade, and those that enter the respiratory tract are difficult to remove. Autophagy is a key mechanism for counteracting extracellular (microorganisms and foreign bodies) or intracellular (damaged organelles and proteins that cannot be degraded by the proteasome) stress and represents a self-protective mechanism for eukaryotes against heavy metal toxicity. Autophagy maintains cellular homeostasis by isolating and gathering information about foreign chemicals associated with other molecular events. However, autophagy may trigger cell death under certain pathological conditions, including cancer. Autophagy dysfunction is one of the main mechanisms underlying Cd-induced cytotoxicity. In this review, the toxic effects of Cd-induced autophagy on different human organ systems were evaluated, with a focus on hepatotoxicity, nephrotoxicity, respiratory toxicity, and neurotoxicity. This review also highlighted the classical molecular pathways of Cd-induced autophagy, including the ROS-dependent signaling pathways, endoplasmic reticulum (ER) stress pathway, Mammalian target of rapamycin (mTOR) pathway, Beclin-1 and Bcl-2 family, and recently identified molecules associated with Cd. Moreover, research directions for Cd toxicity regarding autophagic function were proposed. This review presents the latest theories to comprehensively reveal autophagy behavior in response to Cd toxicity and proposes novel potential autophagy-targeted prevention and treatment strategies for Cd toxicity and Cd-associated diseases in humans.
Collapse
Affiliation(s)
- Yueting Shao
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Liting Zheng
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yiguo Jiang
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China.
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
29
|
Liu K, Zhang Z, Xu Y, Wu Y, Lian P, Ma Z, Tang Z, Zhang X, Yang X, Zhai H, Zhang L, Xu Y, Cao X. AMPK-mediated autophagy pathway activation promotes ΔFosB degradation to improve levodopa-induced dyskinesia. Cell Signal 2024; 118:111125. [PMID: 38432574 DOI: 10.1016/j.cellsig.2024.111125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/16/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Parkinson's disease patients on chronic levodopa often suffer from motor complications, which tend to reduce their quality of life. Levodopa-induced dyskinesia (LID) is one of the most prevalent motor complications, often characterized by abnormal involuntary movements, and the pathogenesis of LID is still unclear but recent studies have suggested the involvement of autophagy. METHODS The onset of LID was mimicked by chronic levodopa treatment in a unilateral 6-hydroxydopamine (6-OHDA) -lesion rat model. Overexpression of ΔFosB in HEK293 cells to mimic the state of ΔFosB accumulation. The modulation of the AMP-activated protein kinase (AMPK)-mediated autophagy pathway using by metformin, AICAR (an AMPK activator), Compound C (an AMPK inhibitor) and chloroquine (an autophagy pathway inhibitor). The severity of LID was assessed by axial, limb, and orofacial (ALO) abnormal involuntary movements (AIMs) score and in vivo electrophysiology. The activity of AMPK pathway as well as autophagy markers and FosB-ΔFosB levels were detected by western blotting. RT-qPCR was performed to detect the transcription level of FosB-ΔFosB. The mechanism of autophagy dysfunction was further explored by immunofluorescence and transmission electron microscopy. RESULTS In vivo experiments demonstrated that chronic levodopa treatment reduced AMPK phosphorylation, impaired autophagosome-lysosomal fusion and caused FosB-ΔFosB accumulation in the striatum of PD rats. Long-term metformin intervention improved ALO AIMs scores as well as reduced the mean power of high gamma (hγ) oscillations and the proportion of striatal projection neurons unstable in response to dopamine for LID rats. Moreover, the intervention of metformin promoted AMPK phosphorylation, ameliorated the impairment of autophagosome-lysosomal fusion, thus, promoting FosB-ΔFosB degradation to attenuate its accumulation in the striatum of LID rats. However, the aforementioned roles of metformin were reversed by Compound C and chloroquine. The results of in vitro studies demonstrated the ability of metformin and AICAR to attenuate ΔFosB levels by promoting its degradation, while Compound C and chloroquine could block this effect. CONCLUSIONS In conclusion, our results suggest that long-term metformin treatment could promote ΔFosB degradation and thus attenuate the development of LID through activating the AMPK-mediated autophagy pathway. Overall, our results support the AMPK-mediated autophagy pathway as a novel therapeutic target for LID and also indicate that metformin is a promising therapeutic candidate for LID.
Collapse
Affiliation(s)
- Ke Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhaoyuan Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Piaopiao Lian
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhuoran Ma
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhicheng Tang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoqian Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoman Yang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Heng Zhai
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lei Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Xuebing Cao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
30
|
Duan H, Yang S, Yang S, Zeng J, Yan Z, Zhang L, Ma X, Dong W, Zhang Y, Zhao X, Hu J, Xiao L. The mechanism of curcumin to protect mouse ovaries from oxidative damage by regulating AMPK/mTOR mediated autophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155468. [PMID: 38471315 DOI: 10.1016/j.phymed.2024.155468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/19/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND Oxidative stress is considered the main cause of granulosa cell apoptosis in ovarian disease. Curcumin has various biological roles, but its potential role in protecting granulosa cells from oxidative damage remains unidentified. PURPOSE The study revealed the protective effect of curcumin on granulosa cell survival under oxidative stress, and explored its mode of action. STUDY DESIGN The protective effect of curcumin on oxidative stress-induced ovarian cell apoptosis was evaluated in vivo and in vitro, and the role of autophagy and AMPK/mTOR signaling pathway in this process was also demonstrated. METHODS First, mice were injected to 3-nitropropionic acid (3-NPA, 20 mg/kg/day) for 14 consecutive days to establish the ovarian oxidative stress model, at same time, curcumin (50, 100, 200 mg/kg/day) was given orally. Thereafter, functional changes, cell apoptosis, and autophagy in ovarian tissue were evaluated by hematoxylin-eosin staining, enzyme-linked immunosorbent assay, western blotting, TUNEL assays, and transmission electron microscopy. Finally, oxidative stress model of granulosa cells was established with H2O2in vitro and treated with curcumin. The underlying mechanisms of curcumin to protect the apoptosis under oxidative stress in vitro were determined using western blotting and TUNEL assays. RESULTS In our study, after curcumin treatment, the mouse ovarian function disorder under 3-nitropropionic acid-induced oxidative stress recovered significantly, and ovarian cell apoptosis decreased. H2O2 induced granulosa cell apoptosis in vitro, and curcumin antagonized this process. Autophagy contributes to tissue and cell survival under stress. We therefore examined the role of autophagy in this process. According to the in vivo and in vitro results, curcumin restored autophagy under oxidative stress. The autophagy inhibitor (chloroquine) exhibited the same effect as curcumin, whereas the autophagy activator (rapamycin) antagonized the effect of curcumin. In addition, the study found that the AMPK/mTOR pathway plays a crucial role in curcumin- mediated autophagy to protect against oxidative stress-induced apoptosis. CONCLUSION Our findings for the first time systematically revealed a new mechanism through which curcumin protects ovarian granulosa cells from oxidative stress-induced damage through AMPK/mTOR-mediated autophagy and suggested that it can be a new therapeutic direction for female ovarian diseases.
Collapse
Affiliation(s)
- Hongwei Duan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China
| | - Shanshan Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Shuai Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China
| | - Jianlin Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China
| | - Zhenxing Yan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China
| | - Lihong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China
| | - Xiaofei Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China
| | - Weitao Dong
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China.
| | - Longfei Xiao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Animal Science and Technology College, Beijing University of Agriculture, 102206, Beijing, China.
| |
Collapse
|
31
|
Basyal D, Lee S, Kim HJ. Antioxidants and Mechanistic Insights for Managing Dry Age-Related Macular Degeneration. Antioxidants (Basel) 2024; 13:568. [PMID: 38790673 PMCID: PMC11117704 DOI: 10.3390/antiox13050568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Age-related macular degeneration (AMD) severely affects central vision due to progressive macular degeneration and its staggering prevalence is rising globally, especially in the elderly population above 55 years. Increased oxidative stress with aging is considered an important contributor to AMD pathogenesis despite multifaceted risk factors including genetic predisposition and environmental agents. Wet AMD can be managed with routine intra-vitreal injection of angiogenesis inhibitors, but no satisfactory medicine has been approved for the successful management of the dry form. The toxic carbonyls due to photo-oxidative degradation of accumulated bisretinoids within lysosomes initiate a series of events including protein adduct formation, impaired autophagy flux, complement activation, and chronic inflammation, which is implicated in dry AMD. Therapy based on antioxidants has been extensively studied for its promising effect in reducing the impact of oxidative stress. This paper reviews the dry AMD pathogenesis, delineates the effectiveness of dietary and nutrition supplements in clinical studies, and explores pre-clinical studies of antioxidant molecules, extracts, and formulations with their mechanistic insights.
Collapse
Affiliation(s)
| | | | - Hye Jin Kim
- College of Pharmacy, Keimyung University, Dauge 42601, Republic of Korea
| |
Collapse
|
32
|
Ortega MA, Fraile-Martinez O, de Leon-Oliva D, Boaru DL, Lopez-Gonzalez L, García-Montero C, Alvarez-Mon MA, Guijarro LG, Torres-Carranza D, Saez MA, Diaz-Pedrero R, Albillos A, Alvarez-Mon M. Autophagy in Its (Proper) Context: Molecular Basis, Biological Relevance, Pharmacological Modulation, and Lifestyle Medicine. Int J Biol Sci 2024; 20:2532-2554. [PMID: 38725847 PMCID: PMC11077378 DOI: 10.7150/ijbs.95122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
Autophagy plays a critical role in maintaining cellular homeostasis and responding to various stress conditions by the degradation of intracellular components. In this narrative review, we provide a comprehensive overview of autophagy's cellular and molecular basis, biological significance, pharmacological modulation, and its relevance in lifestyle medicine. We delve into the intricate molecular mechanisms that govern autophagy, including macroautophagy, microautophagy and chaperone-mediated autophagy. Moreover, we highlight the biological significance of autophagy in aging, immunity, metabolism, apoptosis, tissue differentiation and systemic diseases, such as neurodegenerative or cardiovascular diseases and cancer. We also discuss the latest advancements in pharmacological modulation of autophagy and their potential implications in clinical settings. Finally, we explore the intimate connection between lifestyle factors and autophagy, emphasizing how nutrition, exercise, sleep patterns and environmental factors can significantly impact the autophagic process. The integration of lifestyle medicine into autophagy research opens new avenues for promoting health and longevity through personalized interventions.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Diego de Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Luis G Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Unit of Biochemistry and Molecular Biology, Department of System Biology (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain
| | - Diego Torres-Carranza
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel A Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Pathological Anatomy Service, Central University Hospital of Defence-UAH Madrid, 28801 Alcala de Henares, Spain
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Department of General and Digestive Surgery, Príncipe de Asturias Universitary Hospital, 28805 Alcala de Henares, Spain
| | - Agustin Albillos
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine (CIBEREHD), Príncipe de Asturias University Hospital, 28806 Alcala de Henares, Spain
| |
Collapse
|
33
|
You W, Knoops K, Berendschot TTJM, Benedikter BJ, Webers CAB, Reutelingsperger CPM, Gorgels TGMF. PGC-1a mediated mitochondrial biogenesis promotes recovery and survival of neuronal cells from cellular degeneration. Cell Death Discov 2024; 10:180. [PMID: 38632223 PMCID: PMC11024166 DOI: 10.1038/s41420-024-01953-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
Neurodegenerative disorders are characterized by the progressive loss of structure and function of neurons, often including the death of the neuron. Previously, we reported that, by removing the cell death stimulus, dying/injured neurons could survive and recover from the process of regulated cell death, even if the cells already displayed various signs of cellular damage. Now we investigated the role of mitochondrial dynamics (fission/fusion, biogenesis, mitophagy) in both degeneration and in recovery of neuronal cells. In neuronal PC12 cells, exposure to ethanol (EtOH) induced massive neurite loss along with widespread mitochondrial fragmentation, mitochondrial membrane potential loss, reduced ATP production, and decreased total mitochondrial volume. By removing EtOH timely all these mitochondrial parameters recovered to normal levels. Meanwhile, cells regrew neurites and survived. Study of the mitochondrial dynamics showed that autophagy was activated only during the cellular degeneration phase (EtOH treatment) but not in the recovery phase (EtOH removed), and it was not dependent on the Parkin/PINK1 mediated mitophagy pathway. Protein expression of key regulators of mitochondrial fission, phospho-Drp1Ser616 and S-OPA1, increased during EtOH treatment and recovered to normal levels after removing EtOH. In addition, the critical role of PGC-1α mediated mitochondrial biogenesis in cellular recovery was revealed: inhibition of PGC-1α using SR-18292 after EtOH removal significantly impeded recovery of mitochondrial damage, regeneration of neurites, and cell survival in a concentration-dependent manner. Taken together, our study showed reversibility of mitochondrial morphological and functional damage in stressed neuronal cells and revealed that PGC-1α mediated mitochondrial biogenesis played a critical role in the cellular recovery. This molecular mechanism could be a target for neuroprotection and neurorescue in neurodegenerative diseases.
Collapse
Affiliation(s)
- Wenting You
- University Eye Clinic Maastricht UMC+, Maastricht University Medical Center+, Maastricht, The Netherlands
- Department of Biochemistry, CARIM School for Cardiovascular Disease, Maastricht University, Maastricht, The Netherlands
- Department of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Kèvin Knoops
- The Microscopy CORE lab, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, The Netherlands
| | - Tos T J M Berendschot
- University Eye Clinic Maastricht UMC+, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Birke J Benedikter
- University Eye Clinic Maastricht UMC+, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Carroll A B Webers
- University Eye Clinic Maastricht UMC+, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Chris P M Reutelingsperger
- Department of Biochemistry, CARIM School for Cardiovascular Disease, Maastricht University, Maastricht, The Netherlands.
| | - Theo G M F Gorgels
- University Eye Clinic Maastricht UMC+, Maastricht University Medical Center+, Maastricht, The Netherlands.
| |
Collapse
|
34
|
Chakraborty S, Nandi P, Mishra J, Niharika, Roy A, Manna S, Baral T, Mishra P, Mishra PK, Patra SK. Molecular mechanisms in regulation of autophagy and apoptosis in view of epigenetic regulation of genes and involvement of liquid-liquid phase separation. Cancer Lett 2024; 587:216779. [PMID: 38458592 DOI: 10.1016/j.canlet.2024.216779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
Cellular physiology is critically regulated by multiple signaling nexuses, among which cell death mechanisms play crucial roles in controlling the homeostatic landscape at the tissue level within an organism. Apoptosis, also known as programmed cell death, can be induced by external and internal stimuli directing the cells to commit suicide in unfavourable conditions. In contrast, stress conditions like nutrient deprivation, infection and hypoxia trigger autophagy, which is lysosome-mediated processing of damaged cellular organelle for recycling of the degraded products, including amino acids. Apparently, apoptosis and autophagy both are catabolic and tumor-suppressive pathways; apoptosis is essential during development and cancer cell death, while autophagy promotes cell survival under stress. Moreover, autophagy plays dual role during cancer development and progression by facilitating the survival of cancer cells under stressed conditions and inducing death in extreme adversity. Despite having two different molecular mechanisms, both apoptosis and autophagy are interconnected by several crosslinking intermediates. Epigenetic modifications, such as DNA methylation, post-translational modification of histone tails, and miRNA play a pivotal role in regulating genes involved in both autophagy and apoptosis. Both autophagic and apoptotic genes can undergo various epigenetic modifications and promote or inhibit these processes under normal and cancerous conditions. Epigenetic modifiers are uniquely important in controlling the signaling pathways regulating autophagy and apoptosis. Therefore, these epigenetic modifiers of both autophagic and apoptotic genes can act as novel therapeutic targets against cancers. Additionally, liquid-liquid phase separation (LLPS) also modulates the aggregation of misfolded proteins and provokes autophagy in the cytosolic environment. This review deals with the molecular mechanisms of both autophagy and apoptosis including crosstalk between them; emphasizing epigenetic regulation, involvement of LLPS therein, and possible therapeutic approaches against cancers.
Collapse
Affiliation(s)
- Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Prahallad Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bypass Road, Bhauri, Bhopal, 462 030, MP, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India.
| |
Collapse
|
35
|
Cho W, Oh H, Abd El-Aty AM, Özten Ö, Jeong JH, Jung TW. Interleukin-27 as a novel player in alleviating hepatic steatosis: Mechanistic insights from an in vitro analysis. Biochem Biophys Res Commun 2024; 703:149671. [PMID: 38367515 DOI: 10.1016/j.bbrc.2024.149671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/19/2024]
Abstract
Interleukin-27 (IL-27) is a recently discovered cytokine that has been implicated in inflammatory and metabolic conditions, such as atherosclerosis and insulin resistance. However, the mechanisms by which IL-27 attenuates hepatic lipid accumulation in hyperlipidemic conditions and counteracts endoplasmic reticulum (ER) stress, a known risk factor for impaired hepatic lipid metabolism, have not been elucidated. This in vitro study was designed to examine the effect of IL-27 on hepatic lipid metabolism. The study included the evaluation of lipogenesis-associated proteins and ER stress markers by Western blotting, the determination of hepatic lipid accumulation by Oil Red O staining, and the examination of autophagosome formation by MDC staining. The results showed that IL-27 treatment reduced lipogenic lipid deposition and the expression of ER stress markers in cultured hepatocytes exposed to palmitate. Moreover, treatment with IL-27 suppressed CD36 expression and enhanced fatty acid oxidation in palmitate-treated hepatocytes. The effects of IL-27 on hyperlipidemic hepatocytes were attenuated when adenosine monophosphate-activated protein kinase (AMPK) or 3-methyladenine (3 MA) were inhibited by small interfering RNA (siRNA). These results suggest that IL-27 attenuates hepatic ER stress and fatty acid uptake and stimulates fatty acid oxidation via AMPK/autophagy signaling, thereby alleviating hepatic steatosis. In conclusion, this study identified IL-27 as a promising therapeutic target for nonalcoholic fatty liver disease (NAFLD).
Collapse
Affiliation(s)
- Wonjun Cho
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Heeseung Oh
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240 Erzurum, Turkey.
| | - Ömer Özten
- Department of Pharmacy Services, Vocational School of Health Services, Bayburt University, Bayburt, 69010, Turkey
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
36
|
Zhu P, Li J, Yan F, Islam S, Lin X, Xu X. Allelic heterogeneity of TTNtv dilated cardiomyopathy can be modeled in adult zebrafish. JCI Insight 2024; 9:e175501. [PMID: 38412038 PMCID: PMC11128207 DOI: 10.1172/jci.insight.175501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/21/2024] [Indexed: 02/29/2024] Open
Abstract
Allelic heterogeneity (AH) has been noted in truncational TTN-associated (TTNtv-associated) dilated cardiomyopathy (DCM); i.e., mutations affecting A-band-encoding exons are pathogenic, but those affecting Z-disc-encoding exons are likely benign. The lack of an in vivo animal model that recapitulates AH hinders the deciphering of the underlying mechanism. Here, we explored zebrafish as a candidate vertebrate model by phenotyping a collection of zebrafish ttntv alleles. We noted that cardiac function and sarcomere structure were more severely disrupted in ttntv-A than in ttntv-Z homozygous embryos. Consistently, cardiomyopathy-like phenotypes were present in ttntv-A but not ttntv-Z adult heterozygous mutants. The phenotypes observed in ttntv-A alleles were recapitulated in null mutants with the full titin-encoding sequences removed. Defective autophagic flux, largely due to impaired autophagosome-lysosome fusion, was also noted only in ttntv-A but not in ttntv-Z models. Moreover, we found that genetic manipulation of ulk1a restored autophagy flux and rescued cardiac dysfunction in ttntv-A animals. Together, our findings presented adult zebrafish as an in vivo animal model for studying AH in TTNtv DCM, demonstrated TTN loss of function is sufficient to trigger ttntv DCM in zebrafish, and uncovered ulk1a as a potential therapeutic target gene for TTNtv DCM.
Collapse
Affiliation(s)
- Ping Zhu
- Department of Biochemistry and Molecular Biology and
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jiarong Li
- Department of Biochemistry and Molecular Biology and
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Cardiovascular Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Feixiang Yan
- Department of Biochemistry and Molecular Biology and
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Shahidul Islam
- Department of Biochemistry and Molecular Biology and
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Xueying Lin
- Department of Biochemistry and Molecular Biology and
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology and
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
37
|
Al-Salam S, Jagadeesh GS, Sudhadevi M, Yasin J. Galectin-3 and Autophagy in Renal Acute Tubular Necrosis. Int J Mol Sci 2024; 25:3604. [PMID: 38612416 PMCID: PMC11012141 DOI: 10.3390/ijms25073604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 04/14/2024] Open
Abstract
Acute kidney injury (AKI) is a public health burden with increasing morbidity and mortality rates and health care costs. Acute tubular necrosis (ATN) is the most common cause of AKI. Cisplatin (CIS) is a platinum-based chemotherapeutic agent used in the treatment of a wide variety of malignancies such as lung, breast, ovary, testis, bladder, cervix, and head and neck cancers. Autophagy plays an important role in AKI. Galectin-3 (Gal-3) is significantly increased in renal tubules in AKI; however, its role in autophagy is not well understood. Male C57B6/J and B6.Cg-Lgals3 /J Gal-3 knockout (KO) mice were used to induce AKI using a CIS mouse model of ATN. Renal Gal-3 and autophagy proteins' expression were measured using standard histologic, immunofluorescent, and enzyme-linked immunosorbent assay techniques. The data were presented as the mean ± S.E. Statistically significant differences (p < 0.05) were calculated between experimental groups and corresponding control groups by one-way analysis of variance. There was a significant increase in renal concentrations of Gal-3 in the Gal-3 wild-type CIS-treated mice when compared with sham control mice. There were significantly higher concentrations of renal LC3B, ATG13, Ulk-1, Beclin, ATG5, ATG12, ATG9A, and p-AMPK in the CIS-treated Gal-3 KO mice than in the Gal-3 wild-type CIS-treated mice. Further, there were significantly higher concentrations of mTOR, p- NF-κB, beta-catenin, and p62 in the kidneys of the Gal-3 wild-type CIS-treated mice than in the Gal-3 KO CIS-treated mice. Our findings affirm the connection between Gal-3 and autophagy, revealing its central role as a connector with prosurvival signaling proteins. Gal-3 plays a pivotal role in orchestrating cellular responses by interacting with prosurvival signal pathways and engaging with autophagy proteins. Notably, our observations highlight that the absence of Gal-3 can enhance autophagy in CIS-induced ATN.
Collapse
Affiliation(s)
- Suhail Al-Salam
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Alain P.O. Box 15551, United Arab Emirates
| | - Govindan S. Jagadeesh
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Alain P.O. Box 15551, United Arab Emirates
| | - Manjusha Sudhadevi
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Alain P.O. Box 15551, United Arab Emirates
| | - Javed Yasin
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Alain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
38
|
da Silva HNM, Fernandes EM, Pereira VA, Mizobuti DS, Covatti C, da Rocha GL, Minatel E. LEDT and Idebenone treatment modulate autophagy and improve regenerative capacity in the dystrophic muscle through an AMPK-pathway. PLoS One 2024; 19:e0300006. [PMID: 38498472 PMCID: PMC10947673 DOI: 10.1371/journal.pone.0300006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
PURPOSE Considering the difficulties and challenges in Duchenne muscular dystrophy (DMD) treatment, such as the adverse effects of glucocorticoids, which are the main medical prescription used by dystrophic patients, new treatment concepts for dystrophic therapy are very necessary. Thus, in this study, we explore the effects of photobiomodulation (PBM; a non-invasive therapy) and Idebenone (IDE) treatment (a potent antioxidant), applied alone or in association, in dystrophic muscle cells and the quadriceps muscle, with special focus on autophagy and regenerative pathways. METHODS For the in vitro studies, the dystrophic primary muscle cells received 0.5J LEDT and 0.06μM IDE; and for the in vivo studies, the dystrophic quadriceps muscle received 3J LEDT and the mdx mice were treated with 200mg/kg IDE. RESULTS LEDT and IDE treatment modulate autophagy by increasing autophagy markers (SQSTM1/p62, Beclin and Parkin) and signaling pathways (AMPK and TGF-β). Concomitantly, the treatments prevented muscle degeneration by reducing the number of IgG-positive fibers and the fibers with a central nucleus; decreasing the fibrotic area; up-regulating the myogenin and MCH-slow levels; and down-regulating the MyoD and MHC-fast levels. CONCLUSION These results suggest that LEDT and IDE treatments enhance autophagy and prevented muscle degeneration in the dystrophic muscle of the experimental model. These findings illustrate the potential efficacy of LEDT and IDE treatment as an alternative therapy focused on muscle recovery in the dystrophic patient.
Collapse
Affiliation(s)
| | - Evelyn Mendes Fernandes
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Valéria Andrade Pereira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Daniela Sayuri Mizobuti
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Caroline Covatti
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Guilherme Luiz da Rocha
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Elaine Minatel
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| |
Collapse
|
39
|
Kazyken D, Dame SG, Wang C, Wadley M, Fingar DC. Unexpected roles for AMPK in the suppression of autophagy and the reactivation of mTORC1 signaling during prolonged amino acid deprivation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.20.572593. [PMID: 38187762 PMCID: PMC10769220 DOI: 10.1101/2023.12.20.572593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
AMPK promotes catabolic and suppresses anabolic cell metabolism to promote cell survival during energetic stress, in part by inhibiting mTORC1, an anabolic kinase requiring sufficient levels of amino acids. We found that cells lacking AMPK displayed increased apoptotic cell death during nutrient stress caused by prolonged amino acid deprivation. We presumed that impaired autophagy explained this phenotype, as a prevailing view posits that AMPK initiates autophagy (often a pro-survival response) through phosphorylation of ULK1. Unexpectedly, however, autophagy remained unimpaired in cells lacking AMPK, as monitored by several autophagic readouts in several cell lines. More surprisingly, the absence of AMPK increased ULK1 signaling and LC3b lipidation during amino acid deprivation while AMPK-mediated phosphorylation of ULK1 S555 (a site proposed to initiate autophagy) decreased upon amino acid withdrawal or pharmacological mTORC1 inhibition. In addition, activation of AMPK with compound 991, glucose deprivation, or AICAR blunted autophagy induced by amino acid withdrawal. These results demonstrate that AMPK activation and glucose deprivation suppress autophagy. As AMPK controlled autophagy in an unexpected direction, we examined how AMPK controls mTORC1 signaling. Paradoxically, we observed impaired reactivation of mTORC1 in cells lacking AMPK upon prolonged amino acid deprivation. Together these results oppose established views that AMPK promotes autophagy and inhibits mTORC1 universally. Moreover, they reveal unexpected roles for AMPK in the suppression of autophagy and the support of mTORC1 signaling in the context of prolonged amino acid deprivation. These findings prompt a reevaluation of how AMPK and its control of autophagy and mTORC1 impact health and disease.
Collapse
|
40
|
Jiang M, Wu W, Xiong Z, Yu X, Ye Z, Wu Z. Targeting autophagy drug discovery: Targets, indications and development trends. Eur J Med Chem 2024; 267:116117. [PMID: 38295689 DOI: 10.1016/j.ejmech.2023.116117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 02/25/2024]
Abstract
Autophagy plays a vital role in sustaining cellular homeostasis and its alterations have been implicated in the etiology of many diseases. Drugs development targeting autophagy began decades ago and hundreds of agents were developed, some of which are licensed for the clinical usage. However, no existing intervention specifically aimed at modulating autophagy is available. The obstacles that prevent drug developments come from the complexity of the actual impact of autophagy regulators in disease scenarios. With the development and application of new technologies, several promising categories of compounds for autophagy-based therapy have emerged in recent years. In this paper, the autophagy-targeted drugs based on their targets at various hierarchical sites of the autophagic signaling network, e.g., the upstream and downstream of the autophagosome and the autophagic components with enzyme activities are reviewed and analyzed respectively, with special attention paid to those at preclinical or clinical trials. The drugs tailored to specific autophagy alone and combination with drugs/adjuvant therapies widely used in clinical for various diseases treatments are also emphasized. The emerging drug design and development targeting selective autophagy receptors (SARs) and their related proteins, which would be expected to arrest or reverse the progression of disease in various cancers, inflammation, neurodegeneration, and metabolic disorders, are critically reviewed. And the challenges and perspective in clinically developing autophagy-targeted drugs and possible combinations with other medicine are considered in the review.
Collapse
Affiliation(s)
- Mengjia Jiang
- Department of Pharmacology and Pharmacy, China Jiliang University, China
| | - Wayne Wu
- College of Osteopathic Medicine, New York Institute of Technology, USA
| | - Zijie Xiong
- Department of Pharmacology and Pharmacy, China Jiliang University, China
| | - Xiaoping Yu
- Department of Biology, China Jiliang University, China
| | - Zihong Ye
- Department of Biology, China Jiliang University, China
| | - Zhiping Wu
- Department of Pharmacology and Pharmacy, China Jiliang University, China.
| |
Collapse
|
41
|
Athari SZ, Farajdokht F, Keyhanmanesh R, Mohaddes G. AMPK Signaling Pathway as a Potential Therapeutic Target for Parkinson's Disease. Adv Pharm Bull 2024; 14:120-131. [PMID: 38585465 PMCID: PMC10997932 DOI: 10.34172/apb.2024.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 09/30/2023] [Accepted: 10/08/2023] [Indexed: 04/09/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease caused by the loss of dopaminergic neurons. Genetic factors, inflammatory responses, oxidative stress, metabolic disorders, cytotoxic factors, and mitochondrial dysfunction are all involved in neuronal death in neurodegenerative diseases. The risk of PD can be higher in aging individuals due to decreased mitochondrial function, energy metabolism, and AMP-activated protein kinase (AMPK) function. The potential of AMPK to regulate neurodegenerative disorders lies in its ability to enhance antioxidant capacity, reduce oxidative stress, improve mitochondrial function, decrease mitophagy and macroautophagy, and inhibit inflammation. In addition, it has been shown that modulating the catalytic activity of AMPK can protect the nervous system. This article reviews the mechanisms by which AMPK activation can modulate PD.
Collapse
Affiliation(s)
- Seyed Zanyar Athari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Keyhanmanesh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gisou Mohaddes
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biomedical Education, California Health Sciences University, College of Osteopathic Medicine, Clovis, CA, USA
| |
Collapse
|
42
|
Zheng LY, Da YX, Luo X, Zhang X, Sun ZJ, Dong DL. Sorafenib extends the lifespan of C. elegans through mitochondrial uncoupling mechanism. Free Radic Biol Med 2024; 214:101-113. [PMID: 38360276 DOI: 10.1016/j.freeradbiomed.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
Sorafenib is a targeted anticancer drug in clinic. Low-dose sorafenib has been reported to activate AMPK through inducing mitochondrial uncoupling without detectable toxicities. AMPK activation has been the approach for extending lifespan, therefore, we investigated the effect of sorafenib on lifespan and physical activity of C. elegans and the underlying mechanisms. In the present study, we found that the effect of sorafenib on C. elegans lifespan was typically hermetic. Sorafenib treatment at higher concentrations (100 μM) was toxic but at lower concentrations (1, 2.5, 5 μM) was beneficial to C. elegans. Sorafenib (1 μM) treatment for whole-life period extended C. elegans lifespan and improved C. elegans physical activity as manifested by increasing pharyngeal pumping and body movement, preserving intestinal barrier integrity, muscle fibers organization and mitochondrial morphology. In addition, sorafenib (1 μM) treatment enhanced C. elegans stress resistance. Sorafenib activated AMPK through inducing mitochondrial uncoupling in C. elegans. Sorafenib treatment activated DAF-16, SKN-1, and increased SOD-3, HSP-16.2, GST-4 expression in C. elegans. Sorafenib treatment induced AMPK-dependent autophagy in C. elegans. We conclude that low-dose sorafenib protects C. elegans against aging through activating AMPK/DAF-16 dependent anti-oxidant pathways and stimulating autophagy responses. Low-dose sorafenib could be a strategy for treating aging and aging-related diseases.
Collapse
Affiliation(s)
- Lu-Yao Zheng
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yan-Xin Da
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Xiu Luo
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Xiao Zhang
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Zhi-Jie Sun
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China.
| | - De-Li Dong
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China.
| |
Collapse
|
43
|
Scorza C, Goncalves V, Finsterer J, Scorza F, Fonseca F. Exploring the Prospective Role of Propolis in Modifying Aging Hallmarks. Cells 2024; 13:390. [PMID: 38474354 DOI: 10.3390/cells13050390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Aging populations worldwide are placing age-related diseases at the forefront of the research agenda. The therapeutic potential of natural substances, especially propolis and its components, has led to these products being promising agents for alleviating several cellular and molecular-level changes associated with age-related diseases. With this in mind, scientists have introduced a contextual framework to guide future aging research, called the hallmarks of aging. This framework encompasses various mechanisms including genomic instability, epigenetic changes, mitochondrial dysfunction, inflammation, impaired nutrient sensing, and altered intercellular communication. Propolis, with its rich array of bioactive compounds, functions as a potent functional food, modulating metabolism, gut microbiota, inflammation, and immune response, offering significant health benefits. Studies emphasize propolis' properties, such as antitumor, cardioprotective, and neuroprotective effects, as well as its ability to mitigate inflammation, oxidative stress, DNA damage, and pathogenic gut bacteria growth. This article underscores current scientific evidence supporting propolis' role in controlling molecular and cellular characteristics linked to aging and its hallmarks, hypothesizing its potential in geroscience research. The aim is to discover novel therapeutic strategies to improve health and quality of life in older individuals, addressing existing deficits and perspectives in this research area.
Collapse
Affiliation(s)
- Carla Scorza
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil
| | - Valeria Goncalves
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil
| | | | - Fúlvio Scorza
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil
| | - Fernando Fonseca
- Laboratório de Análises Clínicas da Faculdade de Medicina do ABC, Santo André 09060-650, Brazil
- Departamento de Ciencias Farmaceuticas, Universidade Federal de Sao Paulo (UNIFESP), Diadema 09972-270, Brazil
| |
Collapse
|
44
|
Xu Z, Lu J, Gao S, Rui YN. THSD1 Suppresses Autophagy-Mediated Focal Adhesion Turnover by Modulating the FAK-Beclin 1 Pathway. Int J Mol Sci 2024; 25:2139. [PMID: 38396816 PMCID: PMC10889294 DOI: 10.3390/ijms25042139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Focal adhesions (FAs) play a crucial role in cell spreading and adhesion, and their autophagic degradation is an emerging area of interest. This study investigates the role of Thrombospondin Type 1 Domain-Containing Protein 1 (THSD1) in regulating autophagy and FA stability in brain endothelial cells, shedding light on its potential implications for cerebrovascular diseases. Our research reveals a physical interaction between THSD1 and FAs. Depletion of THSD1 significantly reduces FA numbers, impairing cell spreading and adhesion. The loss of THSD1 also induces autophagy independently of changes in mTOR and AMPK activation, implying that THSD1 primarily governs FA dynamics rather than serving as a global regulator of nutrient and energy status. Mechanistically, THSD1 negatively regulates Beclin 1, a central autophagy regulator, at FAs through interactions with focal adhesion kinase (FAK). THSD1 inactivation diminishes FAK activity and relieves its inhibitory phosphorylation on Beclin 1. This, in turn, promotes the complex formation between Beclin 1 and ATG14, a critical event for the activation of the autophagy cascade. In summary, our findings identify THSD1 as a novel regulator of autophagy that degrades FAs in brain endothelial cells. This underscores the distinctive nature of THSD1-mediated, cargo-directed autophagy and its potential relevance to vascular diseases due to the loss of endothelial FAs. Investigating the underlying mechanisms of THSD1-mediated pathways holds promise for discovering novel therapeutic targets in vascular diseases.
Collapse
Affiliation(s)
- Zhen Xu
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jiayi Lu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Song Gao
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yan-Ning Rui
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
45
|
Sadeghsoltani F, Hassanpour P, Safari MM, Haiaty S, Rahbarghazi R, Rahmati M, Mota A. Angiogenic activity of mitochondria; beyond the sole bioenergetic organelle. J Cell Physiol 2024; 239:e31185. [PMID: 38219050 DOI: 10.1002/jcp.31185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/15/2024]
Abstract
Angiogenesis is a complex process that involves the expansion of the pre-existing vascular plexus to enhance oxygen and nutrient delivery and is stimulated by various factors, including hypoxia. Since the process of angiogenesis requires a lot of energy, mitochondria play an important role in regulating and promoting this phenomenon. Besides their roles as an oxidative metabolism base, mitochondria are potential bioenergetics organelles to maintain cellular homeostasis via sensing alteration in oxygen levels. Under hypoxic conditions, mitochondria can regulate angiogenesis through different factors. It has been indicated that unidirectional and bidirectional exchange of mitochondria or their related byproducts between the cells is orchestrated via different intercellular mechanisms such as tunneling nanotubes, extracellular vesicles, and gap junctions to maintain the cell homeostasis. Even though, the transfer of mitochondria is one possible mechanism by which cells can promote and regulate the process of angiogenesis under reperfusion/ischemia injury. Despite the existence of a close relationship between mitochondrial donation and angiogenic response in different cell types, the precise molecular mechanisms associated with this phenomenon remain unclear. Here, we aimed to highlight the possible role of mitochondria concerning angiogenesis, especially the role of mitochondrial transport and the possible relation of this transfer with autophagy, the housekeeping phenomenon of cells, and angiogenesis.
Collapse
Affiliation(s)
- Fatemeh Sadeghsoltani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Hassanpour
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mir-Meghdad Safari
- Open Heart ICU of Shahid Madani Cardiovascular Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanya Haiaty
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohamad Rahmati
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mota
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
46
|
Li J, Lin Y, Wang X, Lu M. Interconnection of cellular autophagy and endosomal vesicle trafficking and its role in hepatitis B virus replication and release. Virol Sin 2024; 39:24-30. [PMID: 38211880 PMCID: PMC10877419 DOI: 10.1016/j.virs.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/06/2024] [Indexed: 01/13/2024] Open
Abstract
Hepatitis B virus (HBV) produces and releases various particle types, including complete virions, subviral particles with envelope proteins, and naked capsids. Recent studies demonstrate that HBV exploits distinct intracellular membrane trafficking pathways, including the endosomal vesicle trafficking and autophagy pathway, to assemble and release viral and subviral particles. Herein, we summarize the findings about the distinct roles of autophagy and endosomal membrane trafficking and the interaction of both pathways in HBV replication, assembly, and release.
Collapse
Affiliation(s)
- Jia Li
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, 45122, Germany
| | - Yong Lin
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Xueyu Wang
- The Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Mengji Lu
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, 45122, Germany.
| |
Collapse
|
47
|
Hochecker B, Molinski N, Matt K, Meßmer A, Scherer M, von Ardenne A, Bergemann J. Heat treatment in health and disease: How water-filtered infrared-A (wIRA) irradiation affects key cellular mechanisms in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) patients compared to healthy donors. J Therm Biol 2024; 120:103813. [PMID: 38412735 DOI: 10.1016/j.jtherbio.2024.103813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 12/22/2023] [Accepted: 02/14/2024] [Indexed: 02/29/2024]
Abstract
Heat treatment or hyperthermia is a promising therapy for many diseases, especially cancer, and can be traced back thousands of years. Despite its long history, little is known about the cellular and molecular effects of heat on human cells. Therefore, we investigated the impact of water-filtered infrared-A (wIRA) irradiation (39 °C, 60 min) on key cellular mechanisms, namely autophagy, mitochondrial function and mRNA expression, in human fibroblasts and peripheral blood mononuclear cells (PBMCs) from healthy donors and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) patients. Our results show an induction of autophagy in healthy fibroblasts and PBMCs from healthy donors and ME/CFS patients. ME/CFS patients have higher mitochondrial function compared to healthy donors. The wIRA treatment leads to a slight reduction in mitochondrial function in PBMCs from ME/CFS patients, thereby approaching the level of mitochondrial function of healthy donors. Furthermore, an activation of the mRNA expression of the autophagy-related genes MAP1LC3B and SIRT1 as well as for HSPA1, which codes for a heat shock protein, can be observed. These results confirm an impact of heat treatment in human cells on key cellular mechanisms, namely autophagy and mitochondrial function, in health and disease, and provide hope for a potential treatment option for ME/CFS patients.
Collapse
Affiliation(s)
- Barbara Hochecker
- Department of Life Sciences, Albstadt-Sigmaringen University of Applied Sciences, Sigmaringen, Germany.
| | - Noah Molinski
- Von Ardenne Institute of Applied Medical Research GmbH, Dresden, Germany.
| | - Katja Matt
- Department of Life Sciences, Albstadt-Sigmaringen University of Applied Sciences, Sigmaringen, Germany.
| | - Alica Meßmer
- Department of Life Sciences, Albstadt-Sigmaringen University of Applied Sciences, Sigmaringen, Germany.
| | - Melanie Scherer
- Department of Life Sciences, Albstadt-Sigmaringen University of Applied Sciences, Sigmaringen, Germany.
| | | | - Jörg Bergemann
- Department of Life Sciences, Albstadt-Sigmaringen University of Applied Sciences, Sigmaringen, Germany.
| |
Collapse
|
48
|
Chu Y, Hua Y, He L, He J, Chen Y, Yang J, Mahmoud I, Zeng F, Zeng X, Benavides GA, Darley-Usmar VM, Young ME, Ballinger SW, Prabhu SD, Zhang C, Xie M. β-hydroxybutyrate administered at reperfusion reduces infarct size and preserves cardiac function by improving mitochondrial function through autophagy in male mice. J Mol Cell Cardiol 2024; 186:31-44. [PMID: 37979443 PMCID: PMC11094739 DOI: 10.1016/j.yjmcc.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 11/20/2023]
Abstract
Ischemia/reperfusion (I/R) injury after revascularization contributes ∼50% of infarct size and causes heart failure, for which no established clinical treatment exists. β-hydroxybutyrate (β-OHB), which serves as both an energy source and a signaling molecule, has recently been reported to be cardioprotective when administered immediately before I/R and continuously after reperfusion. This study aims to determine whether administering β-OHB at the time of reperfusion with a single dose can alleviate I/R injury and, if so, to define the mechanisms involved. We found plasma β-OHB levels were elevated during ischemia in STEMI patients, albeit not to myocardial protection level, and decreased after revascularization. In mice, compared with normal saline, β-OHB administrated at reperfusion reduced infarct size (by 50%) and preserved cardiac function, as well as activated autophagy and preserved mtDNA levels in the border zone. Our treatment with one dose β-OHB reached a level achievable with fasting and strenuous physical activity. In neonatal rat ventricular myocytes (NRVMs) subjected to I/R, β-OHB at physiologic level reduced cell death, increased autophagy, preserved mitochondrial mass, function, and membrane potential, in addition to attenuating reactive oxygen species (ROS) levels. ATG7 knockdown/knockout abolished the protective effects of β-OHB observed both in vitro and in vivo. Mechanistically, β-OHB's cardioprotective effects were associated with inhibition of mTOR signaling. In conclusion, β-OHB, when administered at reperfusion, reduces infarct size and maintains mitochondrial homeostasis by increasing autophagic flux (potentially through mTOR inhibition). Since β-OHB has been safely tested in heart failure patients, it may be a viable therapeutic to reduce infarct size in STEMI patients.
Collapse
Affiliation(s)
- Yuxin Chu
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China; Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Yutao Hua
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Lihao He
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Jin He
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Yunxi Chen
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Jing Yang
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Ismail Mahmoud
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Fanfang Zeng
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35233, USA; Department of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences Shenzhen, Shenzhen 518020, China
| | - Xiaochang Zeng
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35233, USA; Department of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences Shenzhen, Shenzhen 518020, China
| | - Gloria A Benavides
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Victor M Darley-Usmar
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Martin E Young
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Scott W Ballinger
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Sumanth D Prabhu
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Cheng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| | - Min Xie
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| |
Collapse
|
49
|
Yang X, Ding W, Chen Z, Lai K, Liu Y. The role of autophagy in insulin resistance and glucolipid metabolism and potential use of autophagy modulating natural products in the treatment of type 2 diabetes mellitus. Diabetes Metab Res Rev 2024; 40:e3762. [PMID: 38287719 DOI: 10.1002/dmrr.3762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/19/2023] [Accepted: 11/30/2023] [Indexed: 01/31/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a severe, long-term condition characterised by disruptions in glucolipid and energy metabolism. Autophagy, a fundamental cellular process, serves as a guardian of cellular health by recycling and renewing cellular components. To gain a comprehensive understanding of the vital role that autophagy plays in T2DM, we conducted an extensive search for high-quality publications across databases such as Web of Science, PubMed, Google Scholar, and SciFinder and used keywords like 'autophagy', 'insulin resistance', and 'type 2 diabetes mellitus', both individually and in combinations. A large body of evidence underscores the significance of activating autophagy in alleviating T2DM symptoms. An enhanced autophagic activity, either by activating the adenosine monophosphate-activated protein kinase and sirtuin-1 signalling pathways or inhibiting the mechanistic target of rapamycin complex 1 signalling pathway, can effectively improve insulin resistance and balance glucolipid metabolism in key tissues like the hypothalamus, skeletal muscle, liver, and adipose tissue. Furthermore, autophagy can increase β-cell mass and functionality in the pancreas. This review provides a narrative summary of autophagy regulation with an emphasis on the intricate connection between autophagy and T2DM symptoms. It also discusses the therapeutic potentials of natural products with autophagy activation properties for the treatment of T2DM conditions. Our findings suggest that autophagy activation represents an innovative approach of treating T2DM.
Collapse
Affiliation(s)
- Xiaoxue Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Wenwen Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Ziyi Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Kaiyi Lai
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
50
|
Mirabdali S, Ghafouri K, Farahmand Y, Gholizadeh N, Yazdani O, Esbati R, Hajiagha BS, Rahimi A. The role and function of autophagy through signaling and pathogenetic pathways and lncRNAs in ovarian cancer. Pathol Res Pract 2024; 253:154899. [PMID: 38061269 DOI: 10.1016/j.prp.2023.154899] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 01/24/2024]
Abstract
Lysosomal-driven autophagy is a tightly controlled cellular catabolic process that breaks down and recycles broken or superfluous cell parts. It is involved in several illnesses, including cancer, and is essential in preserving cellular homeostasis. Autophagy prevents DNA mutation and cancer development by actively eliminating pro-oxidative mitochondria and protein aggregates from healthy cells. Oncosuppressor and oncogene gene mutations cause dysregulation of autophagy. Increased autophagy may offer cancer cells a pro-survival advantage when oxygen and nutrients are scarce and resistance to chemotherapy and radiation. This finding justifies the use of autophagy inhibitors in addition to anti-neoplastic treatments. Excessive autophagy levels can potentially kill cells. The diagnosis and treatment of ovarian cancer present many difficulties due to its complexity and heterogeneity. Understanding the role of autophagy, a cellular process involved in the breakdown and recycling of cellular components, in ovarian cancer has garnered increasing attention in recent years. Of particular note is the increasing amount of data indicating a close relationship between autophagy and ovarian cancer. Autophagy either promotes or restricts tumor growth in ovarian cancer. Dysregulation of autophagy signaling pathways in ovarian cancers can affect the development, metastasis, and response to tumor treatment. The precise mechanism underlying autophagy concerning ovarian cancer remains unclear, as does the role autophagy plays in ovarian carcinoma. In this review, we tried to encapsulate and evaluate current findings in investigating autophagy in ovarian cancer.
Collapse
Affiliation(s)
- Seyedsaber Mirabdali
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kimia Ghafouri
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yalda Farahmand
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Gholizadeh
- Department of Dermatology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Omid Yazdani
- Department of Medicine, Shahid Beheshti University, Tehran, Iran
| | - Romina Esbati
- Department of Medicine, Shahid Beheshti University, Tehran, Iran
| | - Bahareh Salmanian Hajiagha
- Department of Cellular and Molecular Biology, Faculty of Basic Science, Tehran East Branch, Islamic Azad University, Tehran, Iran.
| | - Asiye Rahimi
- Faculty of Nursing and Midwifery, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|