1
|
Huang CH, Peng FL, Lee YRJ, Liu B. The microtubular preprophase band recruits Myosin XI to the cortical division site to guide phragmoplast expansion during plant cytokinesis. Dev Cell 2024; 59:2333-2346.e6. [PMID: 38848716 DOI: 10.1016/j.devcel.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/22/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024]
Abstract
In plant vegetative tissues, cell division employs a mitotic microtubule array called the preprophase band (PPB) that marks the cortical division site. This transient cytoskeletal array imprints the spatial information to be read by the cytokinetic phragmoplast at later stages of mitotic cell division. In Arabidopsis thaliana, we discovered that the PPB recruited the Myosin XI motor MYA1/Myo11F to the cortical division site, where it joined microtubule-associated proteins and motors to form a ring of prominent cytoskeletal assemblies that received the expanding phragmoplast. Such a myosin localization pattern at the cortical division site was dependent on the POK1/2 Kinesin-12 motors. This regulatory function of MYA1/Myo11F in phragmoplast guidance was dependent on intact actin filaments. The discovery of these cytoskeletal motor assemblies pinpoints a mechanism underlying how two dynamic cytoskeletal networks work in concert to govern PPB-dependent division plane orientation in flowering plants.
Collapse
Affiliation(s)
- Calvin Haoyuan Huang
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Felicia Lei Peng
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Yuh-Ru Julie Lee
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Bo Liu
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA.
| |
Collapse
|
2
|
Kollmar M, Welz T, Ravi A, Kaufmann T, Alzahofi N, Hatje K, Alghamdi A, Kim J, Briggs DA, Samol-Wolf A, Pylypenko O, Hume AN, Burkhardt P, Faix J, Kerkhoff E. Actomyosin organelle functions of SPIRE actin nucleators precede animal evolution. Commun Biol 2024; 7:832. [PMID: 38977899 PMCID: PMC11231147 DOI: 10.1038/s42003-024-06458-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 06/14/2024] [Indexed: 07/10/2024] Open
Abstract
An important question in cell biology is how cytoskeletal proteins evolved and drove the development of novel structures and functions. Here we address the origin of SPIRE actin nucleators. Mammalian SPIREs work with RAB GTPases, formin (FMN)-subgroup actin assembly proteins and class-5 myosin (MYO5) motors to transport organelles along actin filaments towards the cell membrane. However, the origin and extent of functional conservation of SPIRE among species is unknown. Our sequence searches show that SPIRE exist throughout holozoans (animals and their closest single-celled relatives), but not other eukaryotes. SPIRE from unicellular holozoans (choanoflagellate), interacts with RAB, FMN and MYO5 proteins, nucleates actin filaments and complements mammalian SPIRE function in organelle transport. Meanwhile SPIRE and MYO5 proteins colocalise to organelles in Salpingoeca rosetta choanoflagellates. Based on these observations we propose that SPIRE originated in unicellular ancestors of animals providing an actin-myosin driven exocytic transport mechanism that may have contributed to the evolution of complex multicellular animals.
Collapse
Affiliation(s)
- Martin Kollmar
- Group Systems Biology of Motor Proteins, Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.
| | - Tobias Welz
- Molecular Cell Biology Laboratory, Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Aishwarya Ravi
- Michael Sars Centre, University of Bergen, Bergen, Norway
| | - Thomas Kaufmann
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Noura Alzahofi
- School of Life Sciences, University of Nottingham, Nottingham, UK
- Biology Department, College of Science, Taibah University, Medina, Kingdom of Saudi Arabia
| | - Klas Hatje
- Group Systems Biology of Motor Proteins, Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Asmahan Alghamdi
- School of Life Sciences, University of Nottingham, Nottingham, UK
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Kingdom of Saudi Arabia
| | - Jiyu Kim
- Molecular Cell Biology Laboratory, Department of Neurology, University Hospital Regensburg, Regensburg, Germany
- Department of Anatomy, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Deborah A Briggs
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Annette Samol-Wolf
- Molecular Cell Biology Laboratory, Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Olena Pylypenko
- Dynamics of Intra-Cellular Organization, Institute Curie, PSL Research University, CNRS UMR144, Paris, France
| | - Alistair N Hume
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | - Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Eugen Kerkhoff
- Molecular Cell Biology Laboratory, Department of Neurology, University Hospital Regensburg, Regensburg, Germany.
| |
Collapse
|
3
|
Symonds K, Teresinski HJ, Hau B, Dwivedi V, Belausov E, Bar-Sinai S, Tominaga M, Haraguchi T, Sadot E, Ito K, Snedden WA. Functional characterization of calmodulin-like proteins, CML13 and CML14, as novel light chains of Arabidopsis class VIII myosins. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2313-2329. [PMID: 38280207 PMCID: PMC11272076 DOI: 10.1093/jxb/erae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/24/2024] [Indexed: 01/29/2024]
Abstract
Myosins are important motor proteins that associate with the actin cytoskeleton. Structurally, myosins function as heteromeric complexes where smaller light chains, such as calmodulin (CaM), bind to isoleucine-glutamine (IQ) domains in the neck region to facilitate mechano-enzymatic activity. We recently identified Arabidopsis CaM-like (CML) proteins CML13 and CML14 as interactors of proteins containing multiple IQ domains, including a myosin VIII. Here, we demonstrate that CaM, CML13, and CML14 bind the neck region of all four Arabidopsis myosin VIII isoforms. Among CMLs tested for binding to myosins VIIIs, CaM, CML13, and CML14 gave the strongest signals using in planta split-luciferase protein interaction assays. In vitro, recombinant CaM, CML13, and CML14 showed specific, high-affinity, calcium-independent binding to the IQ domains of myosin VIIIs. CaM, CML13, and CML14 co-localized to plasma membrane-bound puncta when co-expressed with red fluorescent protein-myosin fusion proteins containing IQ and tail domains of myosin VIIIs. In vitro actin motility assays using recombinant myosin VIIIs demonstrated that CaM, CML13, and CML14 function as light chains. Suppression of CML13 or CML14 expression using RNA silencing resulted in a shortened-hypocotyl phenotype, similar to that observed in a quadruple myosin mutant, myosin viii4KO. Collectively, our data indicate that Arabidopsis CML13 and CML14 are novel myosin VIII light chains.
Collapse
Affiliation(s)
- Kyle Symonds
- Department of Biology, Queen’s University, Kingston, ON, Canada
| | | | - Bryan Hau
- Department of Biology, Queen’s University, Kingston, ON, Canada
| | - Vikas Dwivedi
- Institute of Plant Sciences, Volcani Institute, ARO, Rishon LeZion 7528809, Israel
| | - Eduard Belausov
- Institute of Plant Sciences, Volcani Institute, ARO, Rishon LeZion 7528809, Israel
| | - Sefi Bar-Sinai
- Institute of Plant Sciences, Volcani Institute, ARO, Rishon LeZion 7528809, Israel
| | - Motoki Tominaga
- Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
- Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Takeshi Haraguchi
- Department of Biology, Graduate School of Science, Chiba University, Inage-ku, Chiba 263-8522, Japan
| | - Einat Sadot
- Institute of Plant Sciences, Volcani Institute, ARO, Rishon LeZion 7528809, Israel
| | - Kohji Ito
- Department of Biology, Graduate School of Science, Chiba University, Inage-ku, Chiba 263-8522, Japan
| | - Wayne A Snedden
- Department of Biology, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
4
|
Chustecki JM, Johnston IG. Collective mitochondrial dynamics resolve conflicting cellular tensions: From plants to general principles. Semin Cell Dev Biol 2024; 156:253-265. [PMID: 38043948 DOI: 10.1016/j.semcdb.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/18/2023] [Accepted: 09/15/2023] [Indexed: 12/05/2023]
Abstract
Mitochondria play diverse and essential roles in eukaryotic cells, and plants are no exception. Plant mitochondria have several differences from their metazoan and fungal cousins: they often exist in a fragmented state, move rapidly on actin rather than microtubules, have many plant-specific metabolic features and roles, and usually contain only a subset of the complete mtDNA genome, which itself undergoes frequent recombination. This arrangement means that exchange and complementation is essential for plant mitochondria, and recent work has begun to reveal how their collective dynamics and resultant "social networks" of encounters support this exchange, connecting plant mitochondria in time rather than in space. This review will argue that this social network perspective can be extended to a "societal network", where mitochondrial dynamics are an essential part of the interacting cellular society of organelles and biomolecules. Evidence is emerging that mitochondrial dynamics allow optimal resolutions to competing cellular priorities; we will survey this evidence and review potential future research directions, highlighting that plant mitochondria can help reveal and test principles that apply across other kingdoms of life. In parallel with this fundamental cell biology, we also highlight the translational "One Health" importance of plant mitochondrial behaviour - which is exploited in the production of a vast amount of crops consumed worldwide - and the potential for multi-objective optimisation to understand and rationally re-engineer the evolved resolutions to these tensions.
Collapse
Affiliation(s)
- Joanna M Chustecki
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Iain G Johnston
- Department of Mathematics, University of Bergen, Bergen, Norway; Computational Biology Unit, University of Bergen, Bergen, Norway.
| |
Collapse
|
5
|
Uyehara AN, Rasmussen CG. Redundant mechanisms in division plane positioning. Eur J Cell Biol 2023; 102:151308. [PMID: 36921356 DOI: 10.1016/j.ejcb.2023.151308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/05/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
Redundancies in plant cell division contribute to the maintenance of proper division plane orientation. Here we highlight three types of redundancy: 1) Temporal redundancy, or correction of earlier defects that results in proper final positioning, 2) Genetic redundancy, or functional compensation by homologous genes, and 3) Synthetic redundancy, or redundancy within or between pathways that contribute to proper division plane orientation. Understanding the types of redundant mechanisms involved provides insight into current models of division plane orientation and opens up new avenues for exploration.
Collapse
Affiliation(s)
- Aimee N Uyehara
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, USA
| | - Carolyn G Rasmussen
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, USA.
| |
Collapse
|
6
|
Abstract
Cells are the smallest building blocks of all living eukaryotic organisms, usually ranging from a couple of micrometers (for example, platelets) to hundreds of micrometers (for example, neurons and oocytes) in size. In eukaryotic cells that are more than 100 µm in diameter, very often a self-organized large-scale movement of cytoplasmic contents, known as cytoplasmic streaming, occurs to compensate for the physical constraints of large cells. In this Review, we discuss cytoplasmic streaming in multiple cell types and the mechanisms driving this event. We particularly focus on the molecular motors responsible for cytoplasmic movements and the biological roles of cytoplasmic streaming in cells. Finally, we describe bulk intercellular flow that transports cytoplasmic materials to the oocyte from its sister germline cells to drive rapid oocyte growth.
Collapse
Affiliation(s)
- Wen Lu
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611-3008, USA
| | - Vladimir I. Gelfand
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611-3008, USA
| |
Collapse
|
7
|
Ahmad HM, Alafari HA, Fiaz S, Alshaya DS, Toor S, Ijaz M, Rasool N, Attia KA, Zaynab M, Azmat S, Abushady AM, Chen Y. Genome-wide comparison and identification of myosin gene family in Arabidopsis thaliana and Helianthus annuus. Heliyon 2022; 8:e12070. [PMID: 36561675 PMCID: PMC9763749 DOI: 10.1016/j.heliyon.2022.e12070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/05/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
Myosins are essential components of organelle trafficking in all the eukaryotic cells. Myosin driven movement plays a vital role in the development of pollen tubes, root hairs and root tips of flowering plants. The present research characterized the myosin genes in Arabidopsis thaliana and Helianthus annuus by using different computational tools. We discovered a total of 50 myosin genes and their splice variants in both pant species. Phylogenetic analysis indicated that myosin genes were divided into four subclasses. Chromosomal location revealed that myosin genes were located on all five chromosomes in A. thaliana, whereas they were present on nine chromosomes in H. annuus. Conserved motifs showed that conserved regions were closely similar within subgroups. Gene structure analysis showed that Atmyosin2.2 and Atmyosin2.3 had the highest number of introns/exons. Gene ontology analysis indicated that myosin genes were involved in vesicle transport along actin filament and cytoskeleton trafficking. Expression analysis showed that expression of myosin genes was higher during the flowering stage as compared to the seedling and budding stages. Tissue specific expression indicated that HanMYOSIN11.2, HanMYOSIN16.2 were highly expressed in stamen, whereas HanMYOSIN 2.2, HanMYOSIN 12.1 and HanMYOSIN 17.1 showed higher expression in nectary. This study enhance our understanding the function of myosins in plant development, and forms the basis for future research about the comparative genomics of plant myosin in other crop plants.
Collapse
Affiliation(s)
- Hafiz Muhammad Ahmad
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Pakistan,Corresponding author.
| | - Hayat Ali Alafari
- Deparment of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, University of Haripur, Haripur 22620, Pakistan,Corresponding author.
| | - Dalal S. Alshaya
- Deparment of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Sidra Toor
- Department of Life Sciences, University of Management and Technology, Lahore, Pakistan
| | - Munazza Ijaz
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Nouman Rasool
- Department of Plant Breeding and Genetics, University of Haripur, Haripur 22620, Pakistan
| | - Kotb A. Attia
- Center of Excellence in Biotechnology Research, King Saud University, P.O. Box 2455-11451, Riyadh 11451, Saudi Arabia,Department of Rice Biotechnology, RRTC, Institute of Field Crops, ARC, Sakha, 33177, Kafrelsheikh, Egypt
| | - Madiha Zaynab
- College of Life Science & Oceanography, Shenzhen University, China
| | - Saira Azmat
- Agriculture Extension and Adaptive Research, Agriculture Department, Government of Punjab, Pakistan
| | - Asmaa M. Abushady
- Biotechnology School, Nile University, 26th of July Corridor, Sheikh Zayed City, Giza, 12588, Egypt,Department of Genetics, Agriculture College, Ain Shams University, Cairo, Egypt
| | - Yinglong Chen
- School of Earth and Environment and UWA Institute of Agriculture, University of Western Australia, Australia
| |
Collapse
|
8
|
Van Leene J, Eeckhout D, Gadeyne A, Matthijs C, Han C, De Winne N, Persiau G, Van De Slijke E, Persyn F, Mertens T, Smagghe W, Crepin N, Broucke E, Van Damme D, Pleskot R, Rolland F, De Jaeger G. Mapping of the plant SnRK1 kinase signalling network reveals a key regulatory role for the class II T6P synthase-like proteins. NATURE PLANTS 2022; 8:1245-1261. [PMID: 36376753 DOI: 10.1038/s41477-022-01269-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
The central metabolic regulator SnRK1 controls plant growth and survival upon activation by energy depletion, but detailed molecular insight into its regulation and downstream targets is limited. Here we used phosphoproteomics to infer the sucrose-dependent processes targeted upon starvation by kinases as SnRK1, corroborating the relation of SnRK1 with metabolic enzymes and transcriptional regulators, while also pointing to SnRK1 control of intracellular trafficking. Next, we integrated affinity purification, proximity labelling and crosslinking mass spectrometry to map the protein interaction landscape, composition and structure of the SnRK1 heterotrimer, providing insight in its plant-specific regulation. At the intersection of this multi-dimensional interactome, we discovered a strong association of SnRK1 with class II T6P synthase (TPS)-like proteins. Biochemical and cellular assays show that TPS-like proteins function as negative regulators of SnRK1. Next to stable interactions with the TPS-like proteins, similar intricate connections were found with known regulators, suggesting that plants utilize an extended kinase complex to fine-tune SnRK1 activity for optimal responses to metabolic stress.
Collapse
Affiliation(s)
- Jelle Van Leene
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Dominique Eeckhout
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Astrid Gadeyne
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Caroline Matthijs
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Chao Han
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Nancy De Winne
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Geert Persiau
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Eveline Van De Slijke
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Freya Persyn
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Toon Mertens
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Wouter Smagghe
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Nathalie Crepin
- Laboratory for Molecular Plant Biology, Biology Department, KU Leuven, Heverlee-Leuven, Belgium
- KU Leuven Plant Institute-LPI, Heverlee-Leuven, Belgium
| | - Ellen Broucke
- Laboratory for Molecular Plant Biology, Biology Department, KU Leuven, Heverlee-Leuven, Belgium
- KU Leuven Plant Institute-LPI, Heverlee-Leuven, Belgium
| | - Daniël Van Damme
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Roman Pleskot
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
| | - Filip Rolland
- Laboratory for Molecular Plant Biology, Biology Department, KU Leuven, Heverlee-Leuven, Belgium
- KU Leuven Plant Institute-LPI, Heverlee-Leuven, Belgium
| | - Geert De Jaeger
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium.
- VIB Center for Plant Systems Biology, Ghent, Belgium.
| |
Collapse
|
9
|
Hajibarat Z, Saidi A, Gorji AM, Zeinalabedini M, Ghaffari MR, Hajibarat Z, Nasrollahi A. Identification of myosin genes and their expression in response to biotic (PVY, PVX, PVS, and PVA) and abiotic (Drought, Heat, Cold, and High-light) stress conditions in potato. Mol Biol Rep 2022; 49:11983-11996. [PMID: 36271979 DOI: 10.1007/s11033-022-08007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/04/2022] [Indexed: 10/24/2022]
Abstract
BACKGROUND Plant organelles are highly motile where their movement is significant for fast distribution of material around the cell, facilitation of the plant's ability to respond to abiotic and biotic signals, and for appropriate growth. Abiotic and biotic stresses are among the major factors limiting crop yields, and biological membranes are the first target of these stresses. Plants utilize adaptive mechanisms namely myosin to repair injured membranes following exposure to abiotic and biotic stresses. OBJECTIVE Due to the economic importance and cultivation of potato grown under abiotic and biotic stress prone areas, identification and characterization of myosin family members in potato were performed in the present research. METHODS To identify the myosin genes in potato, we performed genome-wide analysis of myosin genes in the S. tuberosum genome using the phytozome. All putative sequences were approved with the interproscan. Bioinformatics analysis was conducted using phylogenetic tree, gene structure, cis-regulatory elements, protein-protein interaction, and gene expression. RESULT The majority of the cell machinery contain actin cytoskeleton and myosins, where motility of organelles are dependent on them. Homology-based analysis was applied to determine seven myosin genes in the potato genome. The members of myosin could be categorized into two groups (XI and VIII). Some of myosin proteins were sub-cellularly located in the nucleus containing 71.5% of myosin proteins and other myosin proteins were localized in the mitochondria, plasma-membrane, and cytoplasm. Determination of co-expressed network, promoter analysis, and gene structure were also performed and gene expression pattern of each gene was surveyed. Number of introns in the gene family members varied from 1 to 39. Gene expression analysis demonstrated that StMyoXI-B and StMyoVIII-2 had the highest transcripts, induced by biotic and abiotic stresses in all three tissues of stem, root, and leaves, respectively. Overall, different cis-elements including abiotic and biotic responsive, hormonal responsive, light responsive, defense responsive elements were found in the myosin promoter sequences. Among the cis-elements, the MYB, G-box, ABRE, JA, and SA contributed the most in the plant growth and development, and in response to abiotic and biotic stress conditions. CONCLUSION Our results showed that myosin genes can be utilized in breeding programs and genetic engineering of plants with the aim of increasing tolerance to abiotic and biotic stresses, especially to viral stresses such as PVY, PVX, PVA, PVS, high light, drought, cold and heat.
Collapse
Affiliation(s)
- Zahra Hajibarat
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Abbas Saidi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Ahmad Mosuapour Gorji
- Department of Vegetable Research, Seed and Plant Improvement Institute (SPII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mehrshad Zeinalabedini
- Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohammad Reza Ghaffari
- Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Zohreh Hajibarat
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Ali Nasrollahi
- Department of Vegetable Research, Seed and Plant Improvement Institute (SPII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
10
|
Acevedo-Garcia J, Walden K, Leissing F, Baumgarten K, Drwiega K, Kwaaitaal M, Reinstädler A, Freh M, Dong X, James GV, Baus LC, Mascher M, Stein N, Schneeberger K, Brocke-Ahmadinejad N, Kollmar M, Schulze-Lefert P, Panstruga R. Barley Ror1 encodes a class XI myosin required for mlo-based broad-spectrum resistance to the fungal powdery mildew pathogen. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:84-103. [PMID: 35916711 DOI: 10.1111/tpj.15930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/17/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Loss-of-function alleles of plant MLO genes confer broad-spectrum resistance to powdery mildews in many eudicot and monocot species. Although barley (Hordeum vulgare) mlo mutants have been used in agriculture for more than 40 years, understanding of the molecular principles underlying this type of disease resistance remains fragmentary. Forward genetic screens in barley have revealed mutations in two Required for mlo resistance (Ror) genes that partially impair immunity conferred by mlo mutants. While Ror2 encodes a soluble N-ethylmaleimide-sensitive factor-attached protein receptor (SNARE), the identity of Ror1, located at the pericentromeric region of barley chromosome 1H, remained elusive. We report the identification of Ror1 based on combined barley genomic sequence information and transcriptomic data from ror1 mutant plants. Ror1 encodes the barley class XI myosin Myo11A (HORVU.MOREX.r3.1HG0046420). Single amino acid substitutions of this myosin, deduced from non-functional ror1 mutant alleles, map to the nucleotide-binding region and the interface between the relay-helix and the converter domain of the motor protein. Ror1 myosin accumulates transiently in the course of powdery mildew infection. Functional fluorophore-labeled Ror1 variants associate with mobile intracellular compartments that partially colocalize with peroxisomes. Single-cell expression of the Ror1 tail region causes a dominant-negative effect that phenocopies ror1 loss-of-function mutants. We define a myosin motor for the establishment of mlo-mediated resistance, suggesting that motor protein-driven intracellular transport processes are critical for extracellular immunity, possibly through the targeted transfer of antifungal and/or cell wall cargoes to pathogen contact sites.
Collapse
Affiliation(s)
- Johanna Acevedo-Garcia
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Kim Walden
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
| | - Franz Leissing
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
| | - Kira Baumgarten
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
| | - Katarzyna Drwiega
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
| | - Mark Kwaaitaal
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
| | - Anja Reinstädler
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
| | - Matthias Freh
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
| | - Xue Dong
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Geo Velikkakam James
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Lisa C Baus
- Faculty of Biology, LMU Munich, 82152, Planegg-Martinsried, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466, Seeland, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466, Seeland, Germany
- Center of integrated Breeding Research (CiBreed), Department of Crop Sciences, Georg-August-University Göttingen, Von Siebold Str. 8, 37075, Göttingen, Germany
| | - Korbinian Schneeberger
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
- Faculty of Biology, LMU Munich, 82152, Planegg-Martinsried, Germany
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Nahal Brocke-Ahmadinejad
- INRES Crop Bioinformatics, University of Bonn, Katzenburgweg 2, 53115, Bonn, Germany
- Institute of Biochemistry and Molecular Biology, University of Bonn, Nussallee 11, D-53115, Bonn, Germany
| | - Martin Kollmar
- Department of NMR-based Structural Biology, Group Systems Biology of Motor Proteins, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Paul Schulze-Lefert
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| |
Collapse
|
11
|
Hong WJ, Kim EJ, Yoon J, Silva J, Moon S, Min CW, Cho LH, Kim ST, Park SK, Kim YJ, Jung KH. A myosin XI adaptor, TAPE, is essential for pollen tube elongation in rice. PLANT PHYSIOLOGY 2022; 190:562-575. [PMID: 35736513 PMCID: PMC9434255 DOI: 10.1093/plphys/kiac299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Pollen tube (PT) elongation is important for double fertilization in angiosperms and affects the seed-setting rate and, therefore, crop productivity. Compared to Arabidopsis (Arabidopsis thaliana L.), information on PT elongation in rice (Oryza sativa L.) is limited by the difficulty in obtaining homozygous mutants. In a screen of T-DNA insertional mutants, we identified a mutant in the Tethering protein of actomyosin transport in pollen tube elongation (TAPE) gene with an unusual segregation ratio by genotyping analysis. A CRISPR/Cas9 knockout mutant of TAPE that produced a short PT was sterile, and TAPE was expressed specifically in pollen grains. TAPE is a homolog of a myosin XI adaptor in Arabidopsis with three tetratricopeptide repeat and Phox and Bem1 protein domains. TAPE showed latrunculin B-sensitive, actin-dependent localization to the endoplasmic reticulum. Yeast two-hybrid screening and transcriptome analysis revealed that TAPE interacted with pollen-specific LIM protein 2b and elongation factor 1-alpha. Loss of TAPE affected transcription of 1,259 genes, especially genes related to cell organization, which were downregulated. In summary, TAPE encodes a myosin XI adaptor essential for rice PT elongation.
Collapse
Affiliation(s)
- Woo-Jong Hong
- Graduate School of Green-Bio Science & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Eui-Jung Kim
- Graduate School of Green-Bio Science & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Jinmi Yoon
- Department of Plant Bioscience, Pusan National University, Miryang, 50463, Republic of Korea
| | - Jeniffer Silva
- Graduate School of Green-Bio Science & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Sunok Moon
- Graduate School of Green-Bio Science & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Cheol Woo Min
- Department of Plant Bioscience, Pusan National University, Miryang, 50463, Republic of Korea
| | - Lae-Hyeon Cho
- Department of Plant Bioscience, Pusan National University, Miryang, 50463, Republic of Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Pusan National University, Miryang, 50463, Republic of Korea
| | - Soon Ki Park
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Yu-Jin Kim
- Authors for correspondence: (Y.-J.K.); (K.-H.J.)
| | - Ki-Hong Jung
- Authors for correspondence: (Y.-J.K.); (K.-H.J.)
| |
Collapse
|
12
|
Haraguchi T, Ito K, Morikawa T, Yoshimura K, Shoji N, Kimura A, Iwaki M, Tominaga M. Autoregulation and dual stepping mode of MYA2, an Arabidopsis myosin XI responsible for cytoplasmic streaming. Sci Rep 2022; 12:3150. [PMID: 35210477 PMCID: PMC8873201 DOI: 10.1038/s41598-022-07047-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 02/08/2022] [Indexed: 11/09/2022] Open
Abstract
Arabidopsis thaliana has 13 genes belonging to the myosin XI family. Myosin XI-2 (MYA2) plays a major role in the generation of cytoplasmic streaming in Arabidopsis cells. In this study, we investigated the molecular properties of MYA2 expressed by the baculovirus transfer system. Actin-activated ATPase activity and in vitro motility assays revealed that activity of MYA2 was regulated by the globular tail domain (GTD). When the GTD is not bound to the cargo, the GTD inhibits ADP dissociation from the motor domain. Optical nanometry of single MYA2 molecules, combining total internal reflection fluorescence microscopy (TIRFM) and the fluorescence imaging with one-nanometer accuracy (FIONA) method, revealed that the MYA2 processively moved on actin with three different step sizes: − 28 nm, 29 nm, and 60 nm, at low ATP concentrations. This result indicates that MYA2 uses two different stepping modes; hand-over-hand and inchworm-like. Force measurement using optical trapping showed the stall force of MYA2 was 0.85 pN, which was less than half that of myosin V (2–3 pN). These results indicated that MYA2 has different transport properties from that of the myosin V responsible for vesicle transport in animal cells. Such properties may enable multiple myosin XIs to transport organelles quickly and smoothly, for the generation of cytoplasmic streaming in plant cells.
Collapse
Affiliation(s)
- Takeshi Haraguchi
- Department of Biology, Graduate School of Science, Chiba University, Chiba, 263-8522, Japan
| | - Kohji Ito
- Department of Biology, Graduate School of Science, Chiba University, Chiba, 263-8522, Japan.
| | | | - Kohei Yoshimura
- Department of Biology, Graduate School of Science, Chiba University, Chiba, 263-8522, Japan
| | - Nao Shoji
- Department of Biology, Graduate School of Science, Chiba University, Chiba, 263-8522, Japan
| | - Atsushi Kimura
- Department of Biology, Graduate School of Science, Chiba University, Chiba, 263-8522, Japan
| | - Mitsuhiro Iwaki
- RIKEN Center for Biosystems Dynamics Research, RIKEN, Osaka, Japan.
| | - Motoki Tominaga
- Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan. .,Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.
| |
Collapse
|
13
|
Stephan L, Jakoby M, Das A, Koebke E, Hülskamp M. Unravelling the molecular basis of the dominant negative effect of myosin XI tails on P-bodies. PLoS One 2021; 16:e0252327. [PMID: 34038472 PMCID: PMC8153422 DOI: 10.1371/journal.pone.0252327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 05/13/2021] [Indexed: 11/30/2022] Open
Abstract
The directional movement and positioning of organelles and macromolecules is essential for regulating and maintaining cellular functions in eukaryotic cells. In plants, these processes are actin-based and driven by class XI myosins, which transport various cargos in a directed manner. As the analysis of myosin function is challenging due to high levels of redundancy, dominant negative acting truncated myosins have frequently been used to study intracellular transport processes. A comparison of the dominant negative effect of the coiled-coil domains and the GTD domains revealed a much stronger inhibition of P-body movement by the GTD domains. In addition, we show that the GTD domain does not inhibit P-body movement when driven by a hybrid myosin in which the GTD domain was replaced by DCP2. These data suggest that the dominant negative effect of myosin tails involves a competition of the GTD domains for cargo binding sites.
Collapse
Affiliation(s)
- Lisa Stephan
- Botanical Institute, Biocenter, Cologne University, Cologne, Germany
| | - Marc Jakoby
- Botanical Institute, Biocenter, Cologne University, Cologne, Germany
| | - Arijit Das
- Faculty of Medicine, Institute of Medical Statistics and Computational Biology & Institute for Diagnostic and Interventional Radiology, University Hospital Cologne, Cologne, Germany
| | - Eva Koebke
- Botanical Institute, Biocenter, Cologne University, Cologne, Germany
| | - Martin Hülskamp
- Botanical Institute, Biocenter, Cologne University, Cologne, Germany
- * E-mail:
| |
Collapse
|
14
|
Alers-Velazquez R, Jacques S, Muller C, Boldt J, Schoelz J, Leisner S. Cauliflower mosaic virus P6 inclusion body formation: A dynamic and intricate process. Virology 2021; 553:9-22. [PMID: 33197754 DOI: 10.1016/j.virol.2020.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/13/2020] [Accepted: 10/18/2020] [Indexed: 11/17/2022]
Abstract
During an infection, Cauliflower mosaic virus (CaMV) forms inclusion bodies (IBs) mainly composed of viral protein P6, where viral activities occur. Because viral processes occur in IBs, understanding the mechanisms by which they are formed is crucial. FL-P6 expressed in N. benthamiana leaves formed IBs of a variety of shapes and sizes. Small IBs were dynamic, undergoing fusion/dissociation events. Co-expression of actin-binding polypeptides with FL-P6 altered IB size distribution and inhibited movement. This suggests that IB movement is required for fusion and growth. A P6 deletion mutant was discovered that formed a single large IB per cell, which suggests it exhibited altered fusion/dissociation dynamics. Myosin-inhibiting drugs did not affect small IB movement, while those inhibiting actin polymerization did. Large IBs colocalized with components of the aggresome pathway, while small ones generally did not. This suggests a possible involvement of the aggresome pathway in large IB formation.
Collapse
Affiliation(s)
- Roberto Alers-Velazquez
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Mail Stop 601, Toledo, OH, 43606, USA
| | - Sarah Jacques
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Mail Stop 601, Toledo, OH, 43606, USA
| | - Clare Muller
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Mail Stop 601, Toledo, OH, 43606, USA
| | - Jennifer Boldt
- USDA-Agricultural Research Service, Application Technology Research Unit, 2801 West Bancroft Street, Mail Stop 604, Toledo, OH, 43606, USA
| | - James Schoelz
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Scott Leisner
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Mail Stop 601, Toledo, OH, 43606, USA.
| |
Collapse
|
15
|
Duan Z, Tanaka M, Kanazawa T, Haraguchi T, Takyu A, Era A, Ueda T, Ito K, Tominaga M. Characterization of ancestral myosin XI from Marchantia polymorpha by heterologous expression in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:460-473. [PMID: 32717107 PMCID: PMC7689712 DOI: 10.1111/tpj.14937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/16/2020] [Indexed: 05/30/2023]
Abstract
Previous studies have revealed duplications and diversification of myosin XI genes between angiosperms and bryophytes; however, the functional differentiation and conservation of myosin XI between them remain unclear. Here, we identified a single myosin XI gene from the liverwort Marchantia polymorpha (Mp). The molecular properties of Mp myosin XI are similar to those of Arabidopsis myosin XIs responsible for cytoplasmic streaming, suggesting that the motor function of myosin XI is able to generate cytoplasmic streaming. In cultured Arabidopsis cells, transiently expressed green fluorescent protein (GFP)-fused Mp myosin XI was observed as some intracellular structures moving along the F-actin. These intracellular structures were co-localized with motile endoplasmic reticulum (ER) strands, suggesting that Mp myosin XI binds to the ER and generates intracellular transport in Arabidopsis cells. The tail domain of Mp myosin XI was co-localized with that of Arabidopsis myosin XI-2 and XI-K, suggesting that all these myosin XIs bind to common cargoes. Furthermore, expression of GFP-fused Mp myosin XI rescued the defects of growth, cytoplasmic streaming and actin organization in Arabidopsis multiple myosin XI knockout mutants. The heterologous expression experiments demonstrated the cellular and physiological competence of Mp myosin XI in Arabidopsis. However, the average velocity of organelle transport in Marchantia rhizoids was 0.04 ± 0.01 μm s-1 , which is approximately one-hundredth of that in Arabidopsis cells. Taken together, our results suggest that the molecular properties of myosin XI are conserved, but myosin XI-driven intracellular transport in vivo would be differentiated from bryophytes to angiosperms.
Collapse
Affiliation(s)
- Zhongrui Duan
- Faculty of Education and Integrated Arts and SciencesWaseda University2‐2 Wakamatsu‐cho, Shinjuku‐kuTokyo162‐8480Japan
| | - Misato Tanaka
- Graduate School of Science and EngineeringWaseda University2‐2 Wakamatsu‐cho, Shinjuku‐kuTokyo162‐8480Japan
| | - Takehiko Kanazawa
- Division of Cellular DynamicsNational Institute for Basic BiologyNishigonaka 38, MyodaijiOkazakiAichi444‐8585Japan
- Department of Basic BiologySOKENDAINishigonaka 38, MyodaijiOkazakiAichi444‐8585Japan
| | - Takeshi Haraguchi
- Department of BiologyGraduate School of ScienceChiba UniversityInage‐kuChiba263‐8522Japan
| | - Akiko Takyu
- Department of BiologyGraduate School of ScienceChiba UniversityInage‐kuChiba263‐8522Japan
| | - Atsuko Era
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoBunkyo‐kuTokyo113‐0033Japan
| | - Takashi Ueda
- Division of Cellular DynamicsNational Institute for Basic BiologyNishigonaka 38, MyodaijiOkazakiAichi444‐8585Japan
- Department of Basic BiologySOKENDAINishigonaka 38, MyodaijiOkazakiAichi444‐8585Japan
| | - Kohji Ito
- Department of BiologyGraduate School of ScienceChiba UniversityInage‐kuChiba263‐8522Japan
| | - Motoki Tominaga
- Faculty of Education and Integrated Arts and SciencesWaseda University2‐2 Wakamatsu‐cho, Shinjuku‐kuTokyo162‐8480Japan
- Graduate School of Science and EngineeringWaseda University2‐2 Wakamatsu‐cho, Shinjuku‐kuTokyo162‐8480Japan
| |
Collapse
|
16
|
Duan Z, Ito K, Tominaga M. Heterologous transformation of Camelina sativa with high-speed chimeric myosin XI-2 promotes plant growth and leads to increased seed yield. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2020; 37:253-259. [PMID: 33088188 PMCID: PMC7557661 DOI: 10.5511/plantbiotechnology.20.0225b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/25/2020] [Indexed: 06/11/2023]
Abstract
Camelina sativa is a Brassicaceae oilseed plant used as a biotechnology platform for biofuel and healthy vegetable oil. As Camelina is closely related to the model plant Arabidopsis, the genetic tools of Arabidopsis are considered useful when applied to Camelina. Myosin XI-2 is one of the major motive forces driving cytoplasmic streaming in Arabidopsis. In our previous study, high-speed chimeric myosin XI-2, a myosin XI-2 artificially modified by genetically exchanging the motor domain of Arabidopsis myosin XI-2 with the faster Chara myosin XI, was shown to accelerate cytoplasmic streaming and promote plant growth in Arabidopsis. Here, we heterologously transformed this high-speed Chara-Arabidopsis chimeric myosin XI-2 gene in Camelina. The transgenic plants exhibited not only enhancement of leaf development and main stem elongation but also early flowering and seed setting, indicating that the high-speed chimeric myosin XI-2 can improve plant growth in Camelina. Interestingly, total seed yield was significantly increased in the transgenic plants as the total seed number increased. Our results suggest that the high-speed myosin XI system might also be effective to improve the growth of other closely related plant species.
Collapse
Affiliation(s)
- Zhongrui Duan
- Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Kohji Ito
- Department of Biology, Graduate School of Science, Chiba University, Inage-ku, Chiba 263-8522, Japan
| | - Motoki Tominaga
- Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|
17
|
Genome-Wide Identification and Comparative Analysis of Myosin Gene Family in Four Major Cotton Species. Genes (Basel) 2020; 11:genes11070731. [PMID: 32630134 PMCID: PMC7397272 DOI: 10.3390/genes11070731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 11/16/2022] Open
Abstract
Myosin protein as a molecular motor, binding with Actin, plays a significant role in various physiological activities such as cell division, movement, migration, and morphology; however, there are only a few studies on plant Myosin gene family, particularly in cotton. A total of 114 Myosin genes were found in Gossypium hirsutum, Gossypium barbadense, Gossypium raimondii, and Gossypium arboreum. All Myosins could be grouped into six groups, and for each group of these genes, similar gene structures are found. Study of evolution suggested that the whole genome duplications event occurring about 13-20 MYA (millions of years ago) is the key explanation for Myosins expanse in cotton. Cis-element and qPCR analysis revealed that plant hormones such as abscisic acid, methyl jasmonate, and salicylic acid can control the expression of Myosins. This research provides useful information on the function of Myosin genes in regulating plant growth, production, and fiber elongation for further studies.
Collapse
|
18
|
Haraguchi T, Ito K, Duan Z, Rula S, Takahashi K, Shibuya Y, Hagino N, Miyatake Y, Nakano A, Tominaga M. Functional Diversity of Class XI Myosins in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2018; 59:2268-2277. [PMID: 30398666 PMCID: PMC6217714 DOI: 10.1093/pcp/pcy147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 07/20/2018] [Indexed: 05/24/2023]
Abstract
Plant myosin XI acts as a motive force for cytoplasmic streaming through interacting with actin filaments within the cell. Arabidopsis thaliana (At) has 13 genes belonging to the myosin XI family. Previous reverse genetic approaches suggest that At myosin XIs are partially redundant, but are functionally diverse for their specific tasks within the plant. However, the tissue-specific expression and enzymatic properties of myosin XIs have to date been poorly understood, primarily because of the difficulty in cloning and expressing large myosin XI genes and proteins. In this study, we cloned full-length cDNAs and promoter regions for all 13 At myosin XIs and identified tissue-specific expression (using promoter-reporter assays) and motile and enzymatic activities (using in vitro assays). In general, myosins belonging to the same class have similar velocities and ATPase activities. However, the velocities and ATPase activities of the 13 At myosin XIs are significantly different and are classified broadly into three groups based on velocity (high group, medium group and low group). Interestingly, the velocity groups appear roughly correlated with the tissue-specific expression patterns. Generally, ubiquitously expressed At myosin XIs belong to the medium-velocity group, pollen-specific At myosin XIs belong to the high-velocity group and only one At myosin XI (XI-I) is classified as belonging to the low-velocity group. In this study, we demonstrated the diversity of the 13 myosin XIs in Arabidopsis at the molecular and tissue levels. Our results indicate that myosin XIs in higher plants have distinct motile and enzymatic activities adapted for their specific roles.
Collapse
Affiliation(s)
- Takeshi Haraguchi
- Department of Biology, Graduate School of Science, Chiba University, Inage-ku, Chiba, Japan
| | - Kohji Ito
- Department of Biology, Graduate School of Science, Chiba University, Inage-ku, Chiba, Japan
| | - Zhongrui Duan
- Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, Japan
| | - Sa Rula
- Department of Biology, Graduate School of Science, Chiba University, Inage-ku, Chiba, Japan
| | - Kento Takahashi
- Department of Biology, Graduate School of Science, Chiba University, Inage-ku, Chiba, Japan
| | - Yuno Shibuya
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, Japan
| | - Nanako Hagino
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, Japan
| | - Yuko Miyatake
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, Japan
| | - Akihiko Nakano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Live Cell Super-Resolution Imaging Research Team, Extreme Photonics Research Group, RIKEN Center for Advanced Photonics, Wako, Saitama, Japan
| | - Motoki Tominaga
- Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, Japan
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
19
|
Duan Z, Tominaga M. Actin-myosin XI: an intracellular control network in plants. Biochem Biophys Res Commun 2018; 506:403-408. [PMID: 29307817 DOI: 10.1016/j.bbrc.2017.12.169] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 12/31/2017] [Indexed: 11/29/2022]
Abstract
Actin is one of the three major cytoskeletal components in eukaryotic cells. Myosin XI is an actin-based motor protein in plant cells. Organelles are attached to myosin XI and translocated along the actin filaments. This dynamic actin-myosin XI system plays a major role in subcellular organelle transport and cytoplasmic streaming. Previous studies have revealed that myosin-driven transport and the actin cytoskeleton play essential roles in plant cell growth. Recent data have indicated that the actin-myosin XI cytoskeleton is essential for not only cell growth but also reproductive processes and responses to the environment. In this review, we have summarized previous reports regarding the role of the actin-myosin XI cytoskeleton in cytoplasmic streaming and plant development and recent advances in the understanding of the functions of actin-myosin XI cytoskeleton in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Zhongrui Duan
- Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Motoki Tominaga
- Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan; Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.
| |
Collapse
|
20
|
Haraguchi T, Tominaga M, Nakano A, Yamamoto K, Ito K. Myosin XI-I is Mechanically and Enzymatically Unique Among Class-XI Myosins in Arabidopsis. PLANT & CELL PHYSIOLOGY 2016; 57:1732-1743. [PMID: 27273580 DOI: 10.1093/pcp/pcw097] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/03/2016] [Indexed: 06/06/2023]
Abstract
Arabidopsis possesses 13 genes encoding class-XI myosins. Among these, myosin XI-I is phylogenetically distant. To examine the molecular properties of Arabidopsis thaliana myosin XI-I (At myosin XI-I), we performed in vitro mechanical and enzymatic analyses using recombinant constructs of At myosin XI-I. Unlike other biochemically studied class-XI myosins, At myosin XI-I showed extremely low actin-activated ATPase activity (Vmax = 3.7 Pi s(-1) head(-1)). The actin-sliding velocity of At myosin XI-I was 0.25 µm s(-1), >10 times lower than those of other class-XI myosins. The ADP dissociation rate from acto-At myosin XI-I was 17 s(-1), accounting for the low actin-sliding velocity. In contrast, the apparent affinity for actin in the presence of ATP, estimated from Kapp (0.61 µM) of actin-activated ATPase, was extremely high. The equilibrium dissociation constant for actin was very low in both the presence and absence of ATP, indicating a high affinity for actin. To examine At myosin XI-I motility in vivo, green fluorescent protein-fused full-length At myosin XI-I was expressed in cultured Arabidopsis cells. At myosin XI-I localized not only on the nuclear envelope but also on small dots moving slowly (0.23 µm s(-1)) along actin filaments. Our results show that the properties of At myosin XI-I differ from those of other Arabidopsis class-XI myosins. The data suggest that At myosin XI-I does not function as a driving force for cytoplasmic streaming but regulates the organelle velocity, supports processive organelle movement or acts as a tension generator.
Collapse
Affiliation(s)
- Takeshi Haraguchi
- Department of Biology, Graduate School of Science, Chiba University, Inage-ku, Chiba, 263-8522 Japan These authors contributed equally to this work.
| | - Motoki Tominaga
- Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480 Japan These authors contributed equally to this work.
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, Extreme Photonics Research Group, RIKEN Center for Advanced Photonics, Wako, Saitama, 351-0198 Japan Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Keiichi Yamamoto
- Department of Biology, Graduate School of Science, Chiba University, Inage-ku, Chiba, 263-8522 Japan
| | - Kohji Ito
- Department of Biology, Graduate School of Science, Chiba University, Inage-ku, Chiba, 263-8522 Japan
| |
Collapse
|
21
|
Ueda H, Tamura K, Hara-Nishimura I. Functions of plant-specific myosin XI: from intracellular motility to plant postures. CURRENT OPINION IN PLANT BIOLOGY 2015; 28:30-8. [PMID: 26432645 DOI: 10.1016/j.pbi.2015.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 08/11/2015] [Accepted: 08/14/2015] [Indexed: 05/02/2023]
Abstract
The plant-specific protein motor class myosin XI is known to function in rapid bulk flow of the cytoplasm (cytoplasmic streaming) and in organellar movements. Recent studies unveiled a wide range of physiological functions of myosin XI motors, from intracellular motility to organ movements. Arabidopsis thaliana has 13 members of myosin XI class. In vegetative organs, myosins XIk, XI1, and XI2 primarily contribute to dynamics and spatial configurations of endoplasmic reticulum that develops a tubular network in the cell periphery and thick strand-like structures in the inner cell regions. Myosin XI-i forms a nucleocytoplasmic linker and is responsible for nuclear movement and shape. In addition to these intracellular functions, myosin XIf together with myosin XIk is involved in the fundamental nature of plants; the actin-myosin XI cytoskeleton regulates organ straightening to adjust plant posture.
Collapse
Affiliation(s)
- Haruko Ueda
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Kentaro Tamura
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Ikuko Hara-Nishimura
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
22
|
Tominaga M, Ito K. The molecular mechanism and physiological role of cytoplasmic streaming. CURRENT OPINION IN PLANT BIOLOGY 2015; 27:104-110. [PMID: 26202096 DOI: 10.1016/j.pbi.2015.06.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/25/2015] [Accepted: 06/26/2015] [Indexed: 05/20/2023]
Abstract
Cytoplasmic streaming occurs widely in plants ranging from algae to angiosperms. However, the molecular mechanism and physiological role of cytoplasmic streaming have long remained unelucidated. Recent molecular genetic approaches have identified specific myosin members (XI-2 and XI-K as major and XI-1, XI-B, and XI-I as minor motive forces) for the generation of cytoplasmic streaming among 13 myosin XIs in Arabidopsis thaliana. Simultaneous knockout of these myosin XI members led to a reduced velocity of cytoplasmic streaming and marked defects of plant development. Furthermore, the artificial modifications of myosin XI-2 velocity changed plant and cell sizes along with the velocity of cytoplasmic streaming. Therefore, we assume that cytoplasmic streaming is one of the key regulators in determining plant size.
Collapse
Affiliation(s)
- Motoki Tominaga
- Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan.
| | - Kohji Ito
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| |
Collapse
|
23
|
Zhang HM, Wheeler S, Xia X, Radchuk R, Weber H, Offler CE, Patrick JW. Differential transcriptional networks associated with key phases of ingrowth wall construction in trans-differentiating epidermal transfer cells of Vicia faba cotyledons. BMC PLANT BIOLOGY 2015; 15:103. [PMID: 25887034 PMCID: PMC4437447 DOI: 10.1186/s12870-015-0486-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/01/2015] [Indexed: 05/08/2023]
Abstract
BACKGROUND Transfer cells are characterized by intricate ingrowth walls, comprising an uniform wall upon which wall ingrowths are deposited. The ingrowth wall forms a scaffold to support an amplified plasma membrane surface area enriched in membrane transporters that collectively confers transfer cells with an enhanced capacity for membrane transport at bottlenecks for apo-/symplasmic exchange of nutrients. However, the underlying molecular mechanisms regulating polarized construction of the ingrowth wall and membrane transporter profile are poorly understood. RESULTS An RNAseq study of an inducible epidermal transfer cell system in cultured Vicia faba cotyledons identified transfer cell specific transcriptomes associated with uniform wall and wall ingrowth deposition. All functional groups of genes examined were expressed before and following transition to a transfer cell fate. What changed were the isoform profiles of expressed genes within functional groups. Genes encoding ethylene and Ca(2+) signal generation and transduction pathways were enriched during uniform wall construction. Auxin-and reactive oxygen species-related genes dominated during wall ingrowth formation and ABA genes were evenly expressed across ingrowth wall construction. Expression of genes encoding kinesins, formins and villins was consistent with reorganization of cytoskeletal components. Uniform wall and wall ingrowth specific expression of exocyst complex components and SNAREs suggested specific patterns of exocytosis while dynamin mediated endocytotic activity was consistent with establishing wall ingrowth loci. Key regulatory genes of biosynthetic pathways for sphingolipids and sterols were expressed across ingrowth wall construction. Transfer cell specific expression of cellulose synthases was absent. Rather xyloglucan, xylan and pectin biosynthetic genes were selectively expressed during uniform wall construction. More striking was expression of genes encoding enzymes for re-modelling/degradation of cellulose, xyloglucans, pectins and callose. Extensins dominated the cohort of expressed wall structural proteins and particularly so across wall ingrowth development. Ion transporters were selectively expressed throughout ingrowth wall development along with organic nitrogen transporters and a large group of ABC transporters. Sugar transporters were less represented. CONCLUSIONS Pathways regulating signalling and intracellular organization were fine tuned whilst cell wall construction and membrane transporter profiles were altered substantially upon transiting to a transfer cell fate. Each phase of ingrowth wall construction was linked with unique cohorts of expressed genes.
Collapse
Affiliation(s)
- Hui-Ming Zhang
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Simon Wheeler
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Xue Xia
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Ruslana Radchuk
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466, Gatersleben, Germany.
| | - Hans Weber
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466, Gatersleben, Germany.
| | - Christina E Offler
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia.
| | - John W Patrick
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
24
|
Okamoto K, Ueda H, Shimada T, Tamura K, Kato T, Tasaka M, Morita MT, Hara-Nishimura I. Regulation of organ straightening and plant posture by an actin-myosin XI cytoskeleton. NATURE PLANTS 2015; 1:15031. [PMID: 27247032 DOI: 10.1038/nplants.2015.31] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/17/2015] [Indexed: 05/08/2023]
Abstract
Plants are able to bend nearly every organ in response to environmental stimuli such as gravity and light(1,2). After this first phase, the responses to stimuli are restrained by an independent mechanism, or even reversed, so that the organ will stop bending and attain its desired posture. This phenomenon of organ straightening has been called autotropism(3) and autostraightening(4) and modelled as proprioception(5). However, the machinery that drives organ straightening and where it occurs are mostly unknown. Here, we show that the straightening of inflorescence stems is regulated by an actin-myosin XI cytoskeleton in specialized immature fibre cells that are parallel to the stem and encircle it in a thin band. Arabidopsis mutants defective in myosin XI (specifically XIf and XIk) or ACTIN8 exhibit hyperbending of stems in response to gravity, an effect independent of the physical properties of the shoots. The actin-myosin XI cytoskeleton enables organs to attain their new position more rapidly than would an oscillating series of diminishing overshoots in environmental stimuli. We propose that the long actin filaments in elongating fibre cells act as a bending tensile sensor to perceive the organ's posture and trigger the straightening system.
Collapse
Affiliation(s)
- Keishi Okamoto
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Haruko Ueda
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Tomoo Shimada
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Kentaro Tamura
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Takehide Kato
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0101, Japan
| | - Masao Tasaka
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0101, Japan
| | - Miyo Terao Morita
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | | |
Collapse
|
25
|
Buchnik L, Abu-Abied M, Sadot E. Role of plant myosins in motile organelles: is a direct interaction required? JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:23-30. [PMID: 25196231 DOI: 10.1111/jipb.12282] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/31/2014] [Indexed: 06/03/2023]
Abstract
Plant organelles are highly motile, with speed values of 3-7 µm/s in cells of land plants and about 20-60 µm/s in characean algal cells. This movement is believed to be important for rapid distribution of materials around the cell, for the plant's ability to respond to environmental biotic and abiotic signals and for proper growth. The main machinery that propels motility of organelles within plant cells is based on the actin cytoskeleton and its motor proteins the myosins. Most plants express multiple members of two main classes: myosin VIII and myosin XI. While myosin VIII has been characterized as a slow motor protein, myosins from class XI were found to be the fastest motor proteins known in all kingdoms. Paradoxically, while it was found that myosins from class XI regulate most organelle movement, it is not quite clear how or even if these motor proteins attach to the organelles whose movement they regulate.
Collapse
Affiliation(s)
- Limor Buchnik
- The Institute of Plant Sciences, The Volcani Center, ARO, PO Box 6, Bet-Dagan, 50250, Israel
| | | | | |
Collapse
|
26
|
Abstract
Advances in microscopy techniques applied to living cells have dramatically transformed our view of the actin cytoskeleton as a framework for cellular processes. Conventional fluorescence imaging and static analyses are useful for quantifying cellular architecture and the network of filaments that support vesicle trafficking, organelle movement, and response to biotic stress. However, new imaging techniques have revealed remarkably dynamic features of individual actin filaments and the mechanisms that underpin their construction and turnover. In this review, we briefly summarize knowledge about actin and actin-binding proteins in plant systems. We focus on the quantitative properties of the turnover of individual actin filaments, highlight actin-binding proteins that participate in actin dynamics, and summarize the current genetic evidence that has been used to dissect specific aspects of the stochastic dynamics model. Finally, we describe some signaling pathways in which recent data implicate changes in actin filament dynamics and the associated cytoplasmic responses.
Collapse
Affiliation(s)
- Jiejie Li
- Department of Biological Sciences and
| | | | | |
Collapse
|
27
|
Diensthuber RP, Tominaga M, Preller M, Hartmann FK, Orii H, Chizhov I, Oiwa K, Tsiavaliaris G. Kinetic mechanism of Nicotiana tabacum myosin-11 defines a new type of a processive motor. FASEB J 2015; 29:81-94. [PMID: 25326536 DOI: 10.1096/fj.14-254763] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The 175-kDa myosin-11 from Nicotiana tabacum (Nt(175kDa)myosin-11) is exceptional in its mechanical activity as it is the fastest known processive actin-based motor, moving 10 times faster than the structurally related class 5 myosins. Although this ability might be essential for long-range organelle transport within larger plant cells, the kinetic features underlying the fast processive movement of Nt(175kDa)myosin-11 still remain unexplored. To address this, we generated a single-headed motor domain construct and carried out a detailed kinetic analysis. The data demonstrate that Nt(175kDa)myosin-11 is a high duty ratio motor, which remains associated with actin most of its enzymatic cycle. However, different from other processive myosins that establish a high duty ratio on the basis of a rate-limiting ADP-release step, Nt(175kDa)myosin-11 achieves a high duty ratio by a prolonged duration of the ATP-induced isomerization of the actin-bound states and ADP release kinetics, both of which in terms of the corresponding time constants approach the total ATPase cycle time. Molecular modeling predicts that variations in the charge distribution of the actin binding interface might contribute to the thermodynamic fine-tuning of the kinetics of this myosin. Our study unravels a new type of a high duty ratio motor and provides important insights into the molecular mechanism of processive movement of higher plant myosins.
Collapse
Affiliation(s)
- Ralph P Diensthuber
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Motoki Tominaga
- Live Cell Molecular Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, Japan; Science and Technology Agency, PRESTO, Saitama, Japan
| | - Matthias Preller
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany; Centre for Structural Systems Biology, German Electron Synchrotron (DESY), Hamburg, Germany
| | - Falk K Hartmann
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Hidefumi Orii
- Graduate School of Life Science, University of Hyogo, Hyogo, Japan; and
| | - Igor Chizhov
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Kazuhiro Oiwa
- Graduate School of Life Science, University of Hyogo, Hyogo, Japan; and Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Kobe, Japan
| | | |
Collapse
|
28
|
Henn A, Sadot E. The unique enzymatic and mechanistic properties of plant myosins. CURRENT OPINION IN PLANT BIOLOGY 2014; 22:65-70. [PMID: 25435181 DOI: 10.1016/j.pbi.2014.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/04/2014] [Accepted: 09/15/2014] [Indexed: 06/04/2023]
Abstract
Myosins are molecular motors that move along actin-filament tracks. Plants express two main classes of myosins, myosin VIII and myosin XI. Along with their relatively conserved sequence and functions, plant myosins have acquired some unique features. Myosin VIII has the enzymatic characteristics of a tension sensor and/or a tension generator, similar to functions found in other eukaryotes. Interestingly, class XI plant myosins have gained a novel function that consists of propelling the exceptionally rapid cytoplasmic streaming. This specific class includes the fastest known translocating molecular motors, which can reach an extremely high velocity of about 60μms(-1). However, the enzymatic properties and mechanistic basis for these remarkable manifestations are not yet fully understood. Here we review recent progress in understanding the uniqueness of plant myosins, while emphasizing the unanswered questions.
Collapse
Affiliation(s)
- Arnon Henn
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Einat Sadot
- The Institute of Plant Sciences, Volcani Center, PO Box 6, Bet-Dagan 5025000, Israel.
| |
Collapse
|
29
|
Ito Y, Uemura T, Nakano A. Formation and maintenance of the Golgi apparatus in plant cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 310:221-87. [PMID: 24725428 DOI: 10.1016/b978-0-12-800180-6.00006-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Golgi apparatus plays essential roles in intracellular trafficking, protein and lipid modification, and polysaccharide synthesis in eukaryotic cells. It is well known for its unique stacked structure, which is conserved among most eukaryotes. However, the mechanisms of biogenesis and maintenance of the structure, which are deeply related to ER-Golgi and intra-Golgi transport systems, have long been mysterious. Now having extremely powerful microscopic technologies developed for live-cell imaging, the plant Golgi apparatus provides an ideal system to resolve the question. The plant Golgi apparatus has unique features that are not conserved in other kingdoms, which will also give new insights into the Golgi functions in plant life. In this review, we will summarize the features of the plant Golgi apparatus and transport mechanisms around it, with a focus on recent advances in Golgi biogenesis by live imaging of plants cells.
Collapse
Affiliation(s)
- Yoko Ito
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tomohiro Uemura
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Akihiko Nakano
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan; Live Cell Molecular Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, Japan.
| |
Collapse
|
30
|
Wang N, Lo Presti L, Zhu YH, Kang M, Wu Z, Martin SG, Wu JQ. The novel proteins Rng8 and Rng9 regulate the myosin-V Myo51 during fission yeast cytokinesis. ACTA ACUST UNITED AC 2014; 205:357-75. [PMID: 24798735 PMCID: PMC4018781 DOI: 10.1083/jcb.201308146] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The myosin-V family of molecular motors is known to be under sophisticated regulation, but our knowledge of the roles and regulation of myosin-Vs in cytokinesis is limited. Here, we report that the myosin-V Myo51 affects contractile ring assembly and stability during fission yeast cytokinesis, and is regulated by two novel coiled-coil proteins, Rng8 and Rng9. Both rng8Δ and rng9Δ cells display similar defects as myo51Δ in cytokinesis. Rng8 and Rng9 are required for Myo51's localizations to cytoplasmic puncta, actin cables, and the contractile ring. Myo51 puncta contain multiple Myo51 molecules and walk continuously on actin filaments in rng8(+) cells, whereas Myo51 forms speckles containing only one dimer and does not move efficiently on actin tracks in rng8Δ. Consistently, Myo51 transports artificial cargos efficiently in vivo, and this activity is regulated by Rng8. Purified Rng8 and Rng9 form stable higher-order complexes. Collectively, we propose that Rng8 and Rng9 form oligomers and cluster multiple Myo51 dimers to regulate Myo51 localization and functions.
Collapse
Affiliation(s)
- Ning Wang
- Department of Molecular Genetics, 2 Department of Molecular and Cellular Biochemistry, and 3 Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | | | | | | | | | | | | |
Collapse
|
31
|
Cytoplasmic streaming velocity as a plant size determinant. Dev Cell 2014; 27:345-52. [PMID: 24229646 DOI: 10.1016/j.devcel.2013.10.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/23/2013] [Accepted: 10/10/2013] [Indexed: 11/21/2022]
Abstract
Cytoplasmic streaming is active transport widely occurring in plant cells ranging from algae to angiosperms. Although it has been revealed that cytoplasmic streaming is generated by organelle-associated myosin XI moving along actin bundles, the fundamental function in plants remains unclear. We generated high- and low-speed chimeric myosin XI by replacing the motor domains of Arabidopsis thaliana myosin XI-2 with those of Chara corallina myosin XI and Homo sapiens myosin Vb, respectively. Surprisingly, the plant sizes of the transgenic Arabidopsis expressing high- and low-speed chimeric myosin XI-2 were larger and smaller, respectively, than that of the wild-type plant. This size change correlated with acceleration and deceleration, respectively, of cytoplasmic streaming. Our results strongly suggest that cytoplasmic streaming is a key determinant of plant size. Furthermore, because cytoplasmic streaming is a common system for intracellular transport in plants, our system could have applications in artificial size control in plants.
Collapse
|
32
|
Hamada T. Microtubule organization and microtubule-associated proteins in plant cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 312:1-52. [PMID: 25262237 DOI: 10.1016/b978-0-12-800178-3.00001-4] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Plants have unique microtubule (MT) arrays, cortical MTs, preprophase band, mitotic spindle, and phragmoplast, in the processes of evolution. These MT arrays control the directions of cell division and expansion especially in plants and are essential for plant morphogenesis and developments. Organizations and functions of these MT arrays are accomplished by diverse MT-associated proteins (MAPs). This review introduces 10 of conserved MAPs in eukaryote such as γ-TuC, augmin, katanin, kinesin, EB1, CLASP, MOR1/MAP215, MAP65, TPX2, formin, and several plant-specific MAPs such as CSI1, SPR2, MAP70, WVD2/WDL, RIP/MIDD, SPR1, MAP18/PCaP, EDE1, and MAP190. Most of the studies cited in this review have been analyzed in the particular model plant, Arabidopsis thaliana. The significant knowledge of A. thaliana is the important established base to understand MT organizations and functions in plants.
Collapse
Affiliation(s)
- Takahiro Hamada
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
33
|
Peremyslov VV, Morgun EA, Kurth EG, Makarova KS, Koonin EV, Dolja VV. Identification of myosin XI receptors in Arabidopsis defines a distinct class of transport vesicles. THE PLANT CELL 2013; 25:3022-38. [PMID: 23995081 PMCID: PMC3784596 DOI: 10.1105/tpc.113.113704] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
To characterize the mechanism through which myosin XI-K attaches to its principal endomembrane cargo, a yeast two-hybrid library of Arabidopsis thaliana cDNAs was screened using the myosin cargo binding domain as bait. This screen identified two previously uncharacterized transmembrane proteins (hereinafter myosin binding proteins or MyoB1/2) that share a myosin binding, conserved domain of unknown function 593 (DUF593). Additional screens revealed that MyoB1/2 also bind myosin XI-1, whereas myosin XI-I interacts with the distantly related MyoB7. The in vivo interactions of MyoB1/2 with myosin XI-K were confirmed by immunoprecipitation and colocalization analyses. In epidermal cells, the yellow fluorescent protein-tagged MyoB1/2 localize to vesicles that traffic in a myosin XI-dependent manner. Similar to myosin XI-K, MyoB1/2 accumulate in the tip-growing domain of elongating root hairs. Gene knockout analysis demonstrated that functional cooperation between myosin XI-K and MyoB proteins is required for proper plant development. Unexpectedly, the MyoB1-containing vesicles did not correspond to brefeldin A-sensitive Golgi and post-Golgi or prevacuolar compartments and did not colocalize with known exocytic or endosomal compartments. Phylogenomic analysis suggests that DUF593 emerged in primitive land plants and founded a multigene family that is conserved in all flowering plants. Collectively, these findings indicate that MyoB are membrane-anchored myosin receptors that define a distinct, plant-specific transport vesicle compartment.
Collapse
Affiliation(s)
- Valera V. Peremyslov
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331
| | - Eva A. Morgun
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - Elizabeth G. Kurth
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331
| | - Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - Valerian V. Dolja
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331
- Address correspondence to
| |
Collapse
|
34
|
Niehl A, Peña EJ, Amari K, Heinlein M. Microtubules in viral replication and transport. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:290-308. [PMID: 23379770 DOI: 10.1111/tpj.12134] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/29/2013] [Accepted: 01/31/2013] [Indexed: 05/05/2023]
Abstract
Viruses use and subvert host cell mechanisms to support their replication and spread between cells, tissues and organisms. Microtubules and associated motor proteins play important roles in these processes in animal systems, and may also play a role in plants. Although transport processes in plants are mostly actin based, studies, in particular with Tobacco mosaic virus (TMV) and its movement protein (MP), indicate direct or indirect roles of microtubules in the cell-to-cell spread of infection. Detailed observations suggest that microtubules participate in the cortical anchorage of viral replication complexes, in guiding their trafficking along the endoplasmic reticulum (ER)/actin network, and also in developing the complexes into virus factories. Microtubules also play a role in the plant-to-plant transmission of Cauliflower mosaic virus (CaMV) by assisting in the development of specific virus-induced inclusions that facilitate viral uptake by aphids. The involvement of microtubules in the formation of virus factories and of other virus-induced inclusions suggests the existence of aggresomal pathways by which plant cells recruit membranes and proteins into localized macromolecular assemblies. Although studies related to the involvement of microtubules in the interaction of viruses with plants focus on specific virus models, a number of observations with other virus species suggest that microtubules may have a widespread role in viral pathogenesis.
Collapse
Affiliation(s)
- Annette Niehl
- Zürich-Basel Plant Science Center, Botany, Department of Environmental Sciences, University of Basel, Hebelstrasse 1, CH-4056 Basel, Switzerland
| | | | | | | |
Collapse
|
35
|
Sattarzadeh A, Schmelzer E, Hanson MR. Arabidopsis myosin XI sub-domains homologous to the yeast myo2p organelle inheritance sub-domain target subcellular structures in plant cells. FRONTIERS IN PLANT SCIENCE 2013; 4:407. [PMID: 24187546 PMCID: PMC3807578 DOI: 10.3389/fpls.2013.00407] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/26/2013] [Indexed: 05/20/2023]
Abstract
Myosin XI motor proteins transport plant organelles on the actin cytoskeleton. The Arabidopsis gene family that encodes myosin XI has 13 members, 12 of which have sub-domains within the tail region that are homologous to well-characterized cargo-binding domains in the yeast myosin V myo2p. Little is presently known about the cargo-binding domains of plant myosin XIs. Prior experiments in which most or all of the tail regions of myosin XIs have been fused to yellow fluorescent protein (YFP) and transiently expressed have often not resulted in fluorescent labeling of plant organelles. We identified 42 amino-acid regions within 12 Arabidopsis myosin XIs that are homologous to the yeast myo2p tail region known to be essential for vacuole and mitochondrial inheritance. A YFP fusion of the yeast region expressed in plants did not label tonoplasts or mitochondria. We investigated whether the homologous Arabidopsis regions, termed by us the "PAL" sub-domain, could associate with subcellular structures following transient expression of fusions with YFP in Nicotiana benthamiana. Seven YFP::PAL sub-domain fusions decorated Golgi and six were localized to mitochondria. In general, the myosin XI PAL sub-domains labeled organelles whose motility had previously been observed to be affected by mutagenesis or dominant negative assays with the respective myosins. Simultaneous transient expression of the PAL sub-domains of myosin XI-H, XI-I, and XI-K resulted in inhibition of movement of mitochondria and Golgi.
Collapse
Affiliation(s)
- Amirali Sattarzadeh
- Department of Molecular Biology and Genetics, Cornell UniversityIthaca, NY, USA
- Central Microscopy, Max-Planck-Institute for Plant Breeding ResearchCologne, Germany
| | - Elmon Schmelzer
- Central Microscopy, Max-Planck-Institute for Plant Breeding ResearchCologne, Germany
- *Correspondence: Elmon Schmelzer, Central Microscopy Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829 Köln, Germany e-mail:
| | - Maureen R. Hanson
- Department of Molecular Biology and Genetics, Cornell UniversityIthaca, NY, USA
| |
Collapse
|