1
|
Yousef RS, Ahmed OK, Taha ZK. Stimulating action of sodium nitroprusside and vinasse on salicin and direct regeneration in Salix Safsaf Forssk. 3 Biotech 2024; 14:236. [PMID: 39310031 PMCID: PMC11413276 DOI: 10.1007/s13205-024-04068-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/24/2024] [Indexed: 09/25/2024] Open
Abstract
The present study aimed to enhance salicin and direct regeneration in willow (Salix safsaf Forssk) using the sodium nitroprusside (SNP) regulation of nitric oxide (NO) and vinasse for its nutrition effect in culture medium. Internodes of Salix safsaf were cultured on Murashige and Skoog (MS) medium supplemented with benzyl adenine (BA) (0.25 mg L-1) and different concentrations of SNP (0, 5, 10, 15, and 20 mg L-1) or vinasse (0, 5, 10, and 20%) to examine shoot regeneration, antioxidant defense enzyme activity, total phenolic compounds, flavonoids, and salicine contents. The reported data revealed that application of SNP at 15 mg L-1 and vinasse at 10% induced a significant effect in vitro Salix safsaf shoot regeneration. To confirm that, nitric oxide is required for auxin-mediated activation of cell division in a dose-dependent manner. A concentration of 15 mg L-1 SNP promotes regeneration and salicin accumulation (3162.16 mg/100 g) during signaling action. On the other hand, the cross talk effect of nitric oxide and vinasse combination in Salix safsaf significantly induced a synergistic effect on direct propagation more than vinasse alone. SNP significantly stimulates salicylate accumulation in a dose-dependent manner, but the data on the association of vinasse and SNP on salicylate up-regulation showed a significant reduction in salicin accumulation when SNP was combined with 10% vinasse, which directly affected the signaling action of SNP as secondary product stimulators. Vinasse's phenolic compounds affect directly on the reduction activity of SNP to suppress its signaling action, or indirectly by inhibiting the sequence cascade of the SNP signaling transduction process to decrease the accumulation of salicin contents. Data confirmed that vinasse and SNP stimulated the antioxidant enzymes activity throw quenching the stimulated reactive oxygen species that produced via SNP. Results show that modified media with SNP administration at 15 mg L-1 and the combination of vinasse at 10% and SNP at 15 mg L-1 are recommended for modifying tissue culture media for induced direct regeneration and salicin accumulation in tissue culture applications, which will be very useful for commercial salicin overproduction as a biological active ingredient in willows.
Collapse
Affiliation(s)
- Rania Saber Yousef
- Biochemistry Department, Faculty of Agriculture, Cairo University, 7 Gamaa St., Giza, 12613 Egypt
| | - Osama Konsowa Ahmed
- Biochemistry Department, Faculty of Agriculture, Cairo University, 7 Gamaa St., Giza, 12613 Egypt
| | - Zeinab K. Taha
- Agricultural Botany Department, Faculty of Agriculture, Cairo University, 7 Gamaa St., Giza, 12613 Egypt
| |
Collapse
|
2
|
Minguillón S, Fischer-Schrader K, Pérez-Rontomé C, Matamoros MA, Becana M. The enigmatic enzyme 'amidoxime reducing component' of Lotus japonicus. Characterization, expression, activity in plant tissues, and proposed role as a nitric oxide-forming nitrite reductase. PHYSIOLOGIA PLANTARUM 2024; 176:e14438. [PMID: 39054574 DOI: 10.1111/ppl.14438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 07/27/2024]
Abstract
Human mitochondria contain a molybdoprotein capable of reducing amidoximes using cytochrome b5/cytochrome b5 reductase (Cb/CbR). This 'amidoxime reducing component' (ARC) also reduces nitrite to nitric oxide (NO). In the plant kingdom, distinct functions have been suggested for ARCs. Thus, the single ARC of Chlamydomonas reinhardtii (crARC) reduces nitrite to NO by taking electrons from nitrate reductase (NR). Therefore, it was proposed that a dual NR/crARC system can generate NO under physiological conditions and the crARC was renamed to 'NO-forming nitrite reductase' (NOFNiR). In contrast to this, the two ARC enzymes from Arabidopsis thaliana were not found to produce NO in vitro at physiological nitrite concentrations, suggesting a different, as yet unknown, function in vascular plants. Here, we have investigated the two ARCs of Lotus japonicus (LjARCs) to shed light on this controversy and to examine, for the first time, the distribution of ARCs in plant tissues. The LjARCs are localized in the cytosol and their activities and catalytic efficiencies, which are much higher than those of A. thaliana, are consistent with a role as NOFNiR. LjARCs are prone to S-nitrosylation in vitro by S-nitrosoglutathione and this post-translational modification drastically inhibits their activities. The enzymes are mainly expressed in flowers, seeds and pods, but are absent in nodules. LjARCs are active with NR and Cb/CbR as electron-transferring systems. However, the LjNR mRNA levels in seeds and pods are negligible, whereas our proteomic analyses show that pods contain the two ARCs, Cb and CbR. We conclude that LjARCs may play a role as NOFNiR by receiving electrons from the Cb/CbR system but do not act in combination with NR.
Collapse
Affiliation(s)
- Samuel Minguillón
- Departamento de Biología Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Zaragoza, Spain
| | - Katrin Fischer-Schrader
- Institute of Biochemistry, Department of Chemistry and Biochemistry, University of Cologne, Germany
| | - Carmen Pérez-Rontomé
- Departamento de Biología Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Zaragoza, Spain
| | - Manuel A Matamoros
- Departamento de Biología Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Zaragoza, Spain
| | - Manuel Becana
- Departamento de Biología Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Zaragoza, Spain
| |
Collapse
|
3
|
Ma X, Feng L, Tao A, Zenda T, He Y, Zhang D, Duan H, Tao Y. Identification and validation of seed dormancy loci and candidate genes and construction of regulatory networks by WGCNA in maize introgression lines. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:259. [PMID: 38038768 DOI: 10.1007/s00122-023-04495-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023]
Abstract
KEY MESSAGE Seventeen PHS-QTLs and candidate genes were obtained, including eleven major loci, three under multiple environments and two with co-localization by the other mapping methods; The functions of three candidate genes were validated using mutants; nine target proteins and five networks were filtered by joint analysis of GWAS and WGCNA. Seed dormancy (SD) and pre-harvest sprouting (PHS) affect yield, as well as grain and hybrid quality in seed production. Therefore, identification of genetic and regulatory pathways underlying PHS and SD is key to gene function analysis, allelic variation mining and genetic improvement. In this study, 78,360 SNPs by SLAF-seq of 230 maize chromosome segment introgression lines (ILs), PHS under five environments were used to conduct GWAS (genome wide association study) (a threshold of 1/n), and seventeen unreported PHS QTLs were obtained, including eleven QTLs with PVE > 10% and three QTLs under multiple environments. Two QTL loci were co-located between the other two genetic mapping methods. Using differential gene expression analyses at two stages of grain development, gene functional analysis of Arabidopsis mutants, and gene functional analysis in the QTL region, seventeen PHS QTL-linked candidate genes were identified, and their five molecular regulatory networks constructed. Based on the Arabidopsis T-DNA mutations, three candidate genes were shown to regulate for SD and PHS. Meanwhile, using RNA-seq of grain development, the weighted correlation network analysis (WGCNA) was performed, deducing five regulatory pathways and target genes that regulate PHS and SD. Based on the conjoint analysis of GWAS and WGCNA, four pathways, nine target proteins and target genes were revealed, most of which regulate cell wall metabolism, cell proliferation and seed dehydration tolerance. This has important theoretical and practical significance for elucidating the genetic basis of maize PHS and SD, as well as mining of genetic resources and genetic improvement of traits.
Collapse
Affiliation(s)
- Xiaolin Ma
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Liqing Feng
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Anyan Tao
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Tinashe Zenda
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Yuan He
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Daxiao Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Huijun Duan
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China.
| | - Yongsheng Tao
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
4
|
Nagel M, Arc E, Rajjou L, Cueff G, Bailly M, Clément G, Sanchez-Vicente I, Bailly C, Seal CE, Roach T, Rolletschek H, Lorenzo O, Börner A, Kranner I. Impacts of drought and elevated temperature on the seeds of malting barley. FRONTIERS IN PLANT SCIENCE 2022; 13:1049323. [PMID: 36570960 PMCID: PMC9773840 DOI: 10.3389/fpls.2022.1049323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
High seed quality is key to agricultural production, which is increasingly affected by climate change. We studied the effects of drought and elevated temperature during seed production on key seed quality traits of two genotypes of malting barley (Hordeum sativum L.). Plants of a "Hana-type" landrace (B1) were taller, flowered earlier and produced heavier, larger and more vigorous seeds that resisted ageing longer compared to a semi-dwarf breeding line (B2). Accordingly, a NAC domain-containing transcription factor (TF) associated with rapid response to environmental stimuli, and the TF ABI5, a key regulator of seed dormancy and vigour, were more abundant in B1 seeds. Drought significantly reduced seed yield in both genotypes, and elevated temperature reduced seed size. Genotype B2 showed partial thermodormancy that was alleviated by drought and elevated temperature. Metabolite profiling revealed clear differences between the embryos of B1 and B2. Drought, but not elevated temperature, affected the metabolism of amino acids, organic acids, osmolytes and nitrogen assimilation, in the seeds of both genotypes. Our study may support future breeding efforts to produce new lodging and drought resistant malting barleys without trade-offs that can occur in semi-dwarf varieties such as lower stress resistance and higher dormancy.
Collapse
Affiliation(s)
- Manuela Nagel
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Seeland, Germany
| | - Erwann Arc
- Department of Botany and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Loïc Rajjou
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Gwendal Cueff
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Marlene Bailly
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Gilles Clément
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Inmaculada Sanchez-Vicente
- Department of Botany and Plant Physiology, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca, Salamanca, Spain
| | - Christophe Bailly
- Unité Mixte de Recherche (UMR) 7622 Biologie du Développement, Institut de Biologie Paris Seine (IBPS), Sorbonne Université, CNRS, Paris, France
| | - Charlotte E. Seal
- Royal Botanic Gardens, Kew, Wakehurst, Ardingly, Haywards Heath, West Sussex, Haywards Heath, United Kingdom
| | - Thomas Roach
- Department of Botany and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Hardy Rolletschek
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Seeland, Germany
| | - Oscar Lorenzo
- Department of Botany and Plant Physiology, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca, Salamanca, Spain
| | - Andreas Börner
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Seeland, Germany
| | - Ilse Kranner
- Department of Botany and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
5
|
Kabange NR, Mun BG, Lee SM, Kwon Y, Lee D, Lee GM, Yun BW, Lee JH. Nitric oxide: A core signaling molecule under elevated GHGs (CO 2, CH 4, N 2O, O 3)-mediated abiotic stress in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:994149. [PMID: 36407609 PMCID: PMC9667792 DOI: 10.3389/fpls.2022.994149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Nitric oxide (NO), an ancient molecule with multiple roles in plants, has gained momentum and continues to govern plant biosciences-related research. NO, known to be involved in diverse physiological and biological processes, is a central molecule mediating cellular redox homeostasis under abiotic and biotic stresses. NO signaling interacts with various signaling networks to govern the adaptive response mechanism towards stress tolerance. Although diverging views question the role of plants in the current greenhouse gases (GHGs) budget, it is widely accepted that plants contribute, in one way or another, to the release of GHGs (carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O) and ozone (O3)) to the atmosphere, with CH4 and N2O being the most abundant, and occur simultaneously. Studies support that elevated concentrations of GHGs trigger similar signaling pathways to that observed in commonly studied abiotic stresses. In the process, NO plays a forefront role, in which the nitrogen metabolism is tightly related. Regardless of their beneficial roles in plants at a certain level of accumulation, high concentrations of CO2, CH4, and N2O-mediating stress in plants exacerbate the production of reactive oxygen (ROS) and nitrogen (RNS) species. This review assesses and discusses the current knowledge of NO signaling and its interaction with other signaling pathways, here focusing on the reported calcium (Ca2+) and hormonal signaling, under elevated GHGs along with the associated mechanisms underlying GHGs-induced stress in plants.
Collapse
Affiliation(s)
- Nkulu Rolly Kabange
- Department of Southern Area Crop Science, National Institute of Crop Science Rural Development Administration (RDA), Miryang, South Korea
| | - Bong-Gyu Mun
- Laboratory of Molecular Pathology and Plant Functional Genomics, Kyungpook National University, Daegu, South Korea
| | - So-Myeong Lee
- Department of Southern Area Crop Science, National Institute of Crop Science Rural Development Administration (RDA), Miryang, South Korea
| | - Youngho Kwon
- Department of Southern Area Crop Science, National Institute of Crop Science Rural Development Administration (RDA), Miryang, South Korea
| | - Dasol Lee
- Laboratory of Molecular Pathology and Plant Functional Genomics, Kyungpook National University, Daegu, South Korea
| | - Geun-Mo Lee
- Laboratory of Molecular Pathology and Plant Functional Genomics, Kyungpook National University, Daegu, South Korea
| | - Byung-Wook Yun
- Laboratory of Molecular Pathology and Plant Functional Genomics, Kyungpook National University, Daegu, South Korea
| | - Jong-Hee Lee
- Department of Southern Area Crop Science, National Institute of Crop Science Rural Development Administration (RDA), Miryang, South Korea
| |
Collapse
|
6
|
Mun BG, Shahid M, Lee GS, Hussain A, Yun BW. A Novel RHS1 Locus in Rice Attributes Seed-Pod Shattering by the Regulation of Endogenous S-Nitrosothiols. Int J Mol Sci 2022; 23:13225. [PMID: 36362013 PMCID: PMC9655508 DOI: 10.3390/ijms232113225] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 01/12/2024] Open
Abstract
Seed or pod shattering in rice (Oryza sativa) is considered to be one of the major factors involved in the domestication of rice as a crop. High seed shattering results in significant yield losses. In this study, we characterize the RICEHIGHSHATTERING 1 (RHS1) that corresponds to the locus LOC_Os04g41250 from a greenhouse screen, involving 145 Ac/Ds transposon mutant rice lines. The knockout mutant line rhs1 exhibited a significantly high shattering of grains in comparison to the wild-type plants. The exogenous application of nitric oxide (NO) resulted in a significant reduction in the expression of RHS1 in wild-type rice plants. The absence of RHS1, which encodes a putative armadillo/beta-catenin repeat family protein, resulted in high sensitivity of the rhs1 plants to nitrosative stress. Interestingly, the basal expression levels of QSH1 and SHAT1 genes (transcription factors that regulate seed-pod shattering in rice) were significantly lower in these plants than in wild-type plants; however, nitrosative stress negatively regulated the expression of QSH1 and SHAT1 in both WT and rhs1 plants, but positively regulated QSH4 expression in rhs1 plants alone. The expression levels of genes responsible for NO production (OsNIA1, OsNIA2, and OsNOA1) were lower in rhs1 plants than in WT plants under normal conditions. However, under nitrosative stress, the expression of OsNIA2 significantly increased in rhs1 plants. The expression of CPL1 (a negative regulator of seed shattering in rice) was significantly lower in rhs1 plants, and we found that CPL1 expression was correlated with S-nitrosothiol (SNO) alteration in rhs1. Interestingly noe1, a rice mutant with high SNO levels, exhibited low seed shattering, whereas rhs1 resulted in low SNO levels with high seed shattering. Therefore, RHS1 is a novel gene that negatively regulates the shattering trait in rice via regulation of endogenous SNO levels. However, the molecular mechanisms involved in the control of RHS1-mediated regulation of seed shattering and its interaction with nitric oxide and involvement in plant defense need to be investigated further.
Collapse
Affiliation(s)
- Bong-Gyu Mun
- School of Applied Bioscience, College of Agriculture and Life Science, Kyungpook National University, Daegu 41566, Korea
| | - Muhammad Shahid
- School of Applied Bioscience, College of Agriculture and Life Science, Kyungpook National University, Daegu 41566, Korea
- Agriculture Research Institute, Khyber Pakhtunkhwa, Mingora 19130, Pakistan
| | - Gang Sub Lee
- Biosafety Division, National Institute of Agricultural Science, Jeonju, 54875, Korea
| | - Adil Hussain
- Department of Agriculture, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Byung-Wook Yun
- School of Applied Bioscience, College of Agriculture and Life Science, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
7
|
Nitrate–Nitrite–Nitric Oxide Pathway: A Mechanism of Hypoxia and Anoxia Tolerance in Plants. Int J Mol Sci 2022; 23:ijms231911522. [PMID: 36232819 PMCID: PMC9569746 DOI: 10.3390/ijms231911522] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Oxygen (O2) is the most crucial substrate for numerous biochemical processes in plants. Its deprivation is a critical factor that affects plant growth and may lead to death if it lasts for a long time. However, various biotic and abiotic factors cause O2 deprivation, leading to hypoxia and anoxia in plant tissues. To survive under hypoxia and/or anoxia, plants deploy various mechanisms such as fermentation paths, reactive oxygen species (ROS), reactive nitrogen species (RNS), antioxidant enzymes, aerenchyma, and adventitious root formation, while nitrate (NO3−), nitrite (NO2−), and nitric oxide (NO) have shown numerous beneficial roles through modulating these mechanisms. Therefore, in this review, we highlight the role of reductive pathways of NO formation which lessen the deleterious effects of oxidative damages and increase the adaptation capacity of plants during hypoxia and anoxia. Meanwhile, the overproduction of NO through reductive pathways during hypoxia and anoxia leads to cellular dysfunction and cell death. Thus, its scavenging or inhibition is equally important for plant survival. As plants are also reported to produce a potent greenhouse gas nitrous oxide (N2O) when supplied with NO3− and NO2−, resembling bacterial denitrification, its role during hypoxia and anoxia tolerance is discussed here. We point out that NO reduction to N2O along with the phytoglobin-NO cycle could be the most important NO-scavenging mechanism that would reduce nitro-oxidative stress, thus enhancing plants’ survival during O2-limited conditions. Hence, understanding the molecular mechanisms involved in reducing NO toxicity would not only provide insight into its role in plant physiology, but also address the uncertainties seen in the global N2O budget.
Collapse
|
8
|
Focus on Nitric Oxide Homeostasis: Direct and Indirect Enzymatic Regulation of Protein Denitrosation Reactions in Plants. Antioxidants (Basel) 2022; 11:antiox11071411. [PMID: 35883902 PMCID: PMC9311986 DOI: 10.3390/antiox11071411] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
Protein cysteines (Cys) undergo a multitude of different reactive oxygen species (ROS), reactive sulfur species (RSS), and/or reactive nitrogen species (RNS)-derived modifications. S-nitrosation (also referred to as nitrosylation), the addition of a nitric oxide (NO) group to reactive Cys thiols, can alter protein stability and activity and can result in changes of protein subcellular localization. Although it is clear that this nitrosative posttranslational modification (PTM) regulates multiple signal transduction pathways in plants, the enzymatic systems that catalyze the reverse S-denitrosation reaction are poorly understood. This review provides an overview of the biochemistry and regulation of nitro-oxidative modifications of protein Cys residues with a focus on NO production and S-nitrosation. In addition, the importance and recent advances in defining enzymatic systems proposed to be involved in regulating S-denitrosation are addressed, specifically cytosolic thioredoxins (TRX) and the newly identified aldo-keto reductases (AKR).
Collapse
|
9
|
Hussain A, Shah F, Ali F, Yun BW. Role of Nitric Oxide in Plant Senescence. FRONTIERS IN PLANT SCIENCE 2022; 13:851631. [PMID: 35463429 PMCID: PMC9022112 DOI: 10.3389/fpls.2022.851631] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/15/2022] [Indexed: 05/27/2023]
Abstract
In plants senescence is the final stage of plant growth and development that ultimately leads to death. Plants experience age-related as well as stress-induced developmental ageing. Senescence involves significant changes at the transcriptional, post-translational and metabolomic levels. Furthermore, phytohormones also play a critical role in the programmed senescence of plants. Nitric oxide (NO) is a gaseous signalling molecule that regulates a plethora of physiological processes in plants. Its role in the control of ageing and senescence has just started to be elucidated. Here, we review the role of NO in the regulation of programmed cell death, seed ageing, fruit ripening and senescence. We also discuss the role of NO in the modulation of phytohormones during senescence and the significance of NO-ROS cross-talk during programmed cell death and senescence.
Collapse
Affiliation(s)
- Adil Hussain
- Department of Entomology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Farooq Shah
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Farman Ali
- Department of Entomology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Byung-Wook Yun
- Department of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
10
|
Effects of Nonthermal Plasma (NTP) on the Growth and Quality of Baby Leaf Lettuce (Lactuca sativa var. acephala Alef.) Cultivated in an Indoor Hydroponic Growing System. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of this research was to develop an effective protocol for the application of nonthermal plasma (NTP) technology to the hydroponic nutrient solution, and to investigate its effects on the growth and quality of baby leaf lettuce (Lactuca sativa var. acephala Alef.) grown in a hydroponic growing system (HGS) specifically designed for indoor home cultivation. Four HGSs were placed in separate growth chambers with temperature of 24 ± 1 °C and relative humidity of 70 ± 5%). Lettuce plants were grown for nine days in nutrient solutions treated with NTP for 0 (control) to 120 s every hour. Results of the first experiments showed that the optimal operating time of NTP was 120 s h−1. Fresh leaf biomass was increased by the 60 and 120 s NTP treatments compared to the control. Treating the nutrient solution with NTP also resulted in greater leaf content of total chlorophylls, carotenoids, total phenols, and total antioxidant capacity. NTP also positively influenced chlorophyll a fluorescence in Photosystem I (PSI) and photosynthetic electron transport. These results revealed that the NTP treatment of the nutrient solution could improve the production and quality of hydroponically grown baby leaf lettuce.
Collapse
|
11
|
Sun C, Zhang Y, Liu L, Liu X, Li B, Jin C, Lin X. Molecular functions of nitric oxide and its potential applications in horticultural crops. HORTICULTURE RESEARCH 2021; 8:71. [PMID: 33790257 PMCID: PMC8012625 DOI: 10.1038/s41438-021-00500-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 05/04/2023]
Abstract
Nitric oxide (NO) regulates plant growth, enhances nutrient uptake, and activates disease and stress tolerance mechanisms in most plants, making NO a potential tool for use in improving the yield and quality of horticultural crop species. Although the use of NO in horticulture is still in its infancy, research on NO in model plant species has provided an abundance of valuable information on horticultural crop species. Emerging evidence implies that the bioactivity of NO can occur through many potential mechanisms but occurs mainly through S-nitrosation, the covalent and reversible attachment of NO to cysteine thiol. In this context, NO signaling specifically affects crop development, immunity, and environmental interactions. Moreover, NO can act as a fumigant against a wide range of postharvest diseases and pests. However, for effective use of NO in horticulture, both understanding and exploring the biological significance and potential mechanisms of NO in horticultural crop species are critical. This review provides a picture of our current understanding of how NO is synthesized and transduced in plants, and particular attention is given to the significance of NO in breaking seed dormancy, balancing root growth and development, enhancing nutrient acquisition, mediating stress responses, and guaranteeing food safety for horticultural production.
Collapse
Affiliation(s)
- Chengliang Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Yuxue Zhang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Lijuan Liu
- Interdisciplinary Research Academy, Zhejiang Shuren University, 310015, Hangzhou, China
| | - Xiaoxia Liu
- Zhejiang Provincial Cultivated Land Quality and Fertilizer Administration Station, Hangzhou, China
| | - Baohai Li
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Chongwei Jin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Xianyong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|
12
|
Alleviative effects of nitric oxide on Vigna radiata seedlings under acidic rain stress. Mol Biol Rep 2021; 48:2243-2251. [PMID: 33689094 DOI: 10.1007/s11033-021-06244-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/18/2021] [Indexed: 10/21/2022]
Abstract
Although nitric oxide (NO) is a key regulatory molecule in plants, its function in plants under conditions of simulated acid rain (SAR) has not been fully established yet. In this study, exogenous sodium nitroprusside (SNP) at three different concentrations were applied to mung bean seedlings. Malondialdehyde (MDA), NO, hydrogen peroxide (H2O2), antioxidant enzyme activities, and nitrate reductases (NR) were measured. Real time PCR was used to measure the NR expression. Compared to the control, the NR activity and NO content under the pH 2 SAR decreased by 79% and 85.6% respectively. Meanwhile, the SAR treatment reduced the activities of superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), while increased MDA content. Application of SNP could potentially reverse the adverse impact of SAR, depending on its concentration. For plants under the pH 2 SAR and 0.25 mM SNP condition, the activities of SOD, POD, APX increased by 123%, 291%, and 135.7% respectively, meanwhile, MDA concentration decreased by 43%, NR activities increased by 269%, and NO concentration increased by 123.6% compared with plants undergoing only pH 2 SAR. The relative expression of the NR1 gene was 2.69 times higher than that of pH 2 SAR alone. Overall, the application of 0.25 mM SNP eliminated reactive oxygen species (ROS) by stimulating antioxidant enzyme activities, reducing oxidative stress and mitigating the toxic effects of SAR on mung bean seedlings. This research provides a foundation for further research on the mechanism of NO on plants under SAR conditions.
Collapse
|
13
|
Klupczyńska EA, Pawłowski TA. Regulation of Seed Dormancy and Germination Mechanisms in a Changing Environment. Int J Mol Sci 2021; 22:1357. [PMID: 33572974 PMCID: PMC7866424 DOI: 10.3390/ijms22031357] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 01/10/2023] Open
Abstract
Environmental conditions are the basis of plant reproduction and are the critical factors controlling seed dormancy and germination. Global climate change is currently affecting environmental conditions and changing the reproduction of plants from seeds. Disturbances in germination will cause disturbances in the diversity of plant communities. Models developed for climate change scenarios show that some species will face a significant decrease in suitable habitat area. Dormancy is an adaptive mechanism that affects the probability of survival of a species. The ability of seeds of many plant species to survive until dormancy recedes and meet the requirements for germination is an adaptive strategy that can act as a buffer against the negative effects of environmental heterogeneity. The influence of temperature and humidity on seed dormancy status underlines the need to understand how changing environmental conditions will affect seed germination patterns. Knowledge of these processes is important for understanding plant evolution and adaptation to changes in the habitat. The network of genes controlling seed dormancy under the influence of environmental conditions is not fully characterized. Integrating research techniques from different disciplines of biology could aid understanding of the mechanisms of the processes controlling seed germination. Transcriptomics, proteomics, epigenetics, and other fields provide researchers with new opportunities to understand the many processes of plant life. This paper focuses on presenting the adaptation mechanism of seed dormancy and germination to the various environments, with emphasis on their prospective roles in adaptation to the changing climate.
Collapse
Affiliation(s)
| | - Tomasz A. Pawłowski
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland;
| |
Collapse
|
14
|
Hancock JT. Nitric Oxide Signaling in Plants. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1550. [PMID: 33198158 PMCID: PMC7697264 DOI: 10.3390/plants9111550] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) is an integral part of cell signaling mechanisms in animals and plants. In plants, its enzymatic generation is still controversial. Evidence points to nitrate reductase being important, but the presence of a nitric oxide synthase-like enzyme is still contested. Regardless, NO has been shown to mediate many developmental stages in plants, and to be involved in a range of physiological responses, from stress management to stomatal aperture closure. Downstream from its generation are alterations of the actions of many cell signaling components, with post-translational modifications of proteins often being key. Here, a collection of papers embraces the differing aspects of NO metabolism in plants.
Collapse
Affiliation(s)
- John T Hancock
- Department of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK
| |
Collapse
|
15
|
Cheng WH, Huang KY, Ong SC, Ku FM, Huang PJ, Lee CC, Yeh YM, Lin R, Chiu CH, Tang P. Protein cysteine S-nitrosylation provides reducing power by enhancing lactate dehydrogenase activity in Trichomonas vaginalis under iron deficiency. Parasit Vectors 2020; 13:477. [PMID: 32948226 PMCID: PMC7501694 DOI: 10.1186/s13071-020-04355-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/11/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Iron plays essential roles in the pathogenesis and proliferation of Trichomonas vaginalis, the causative agent of the most prevalent non-viral human sexually transmitted infection. We previously demonstrated that under iron deficiency, the endogenous nitric oxide (NO) is accumulated and capable of regulating the survival of T. vaginalis. Herein, we aim to explore the influence of NO on the activity of the pyruvate-reducing enzyme lactate dehydrogenase in T. vaginalis (TvLDH). METHODS Levels of lactate and pyruvate were detected for determining glycolysis activity in T. vaginalis under iron deficiency. Quantitative PCR was performed to determine the expression of TvLDH. S-nitrosylated (SNO) proteomics was conducted to identify the NO-modified proteins. The activities of glyceraldehyde-3-phosphate dehydrogenase (TvGAPDH) and TvLDH were measured after sodium nitrate treatment. The effects of protein nitrosylation on the production of cellular reducing power were examined by measuring the amount of nicotinamide adenine dinucleotide (NAD) and the ratio of the NAD redox pair (NAD+/NADH). RESULTS We found that although the glycolytic pathway was activated in cells under iron depletion, the level of pyruvate was decreased due to the increased level of TvLDH. By analyzing the SNO proteome of T. vaginalis upon iron deficiency, we found that TvLDH is one of the glycolytic enzymes modified by SNO. The production of pyruvate was significantly reduced after nitrate treatment, indicating that protein nitrosylation accelerated the consumption of pyruvate by increasing TvLDH activity. Nitrate treatment also induced NAD oxidation, suggesting that protein nitrosylation was the key posttranslational modification controlling cellular redox status. CONCLUSIONS We demonstrated that NO-mediated protein nitrosylation plays pivotal roles in the regulation of glycolysis, pyruvate metabolism, and the activity of TvLDH. The recycling of oxidized NAD catalyzed by TvLDH provided the reducing power that allowed T. vaginalis to adapt to the iron-deficient environment.
Collapse
Affiliation(s)
- Wei-Hung Cheng
- Department of Parasitology, College of Medicine, Chang Gung University, Guishan District, Taoyuan City, Taiwan
| | - Kuo-Yang Huang
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei, Taiwan
| | - Seow-Chin Ong
- Department of Parasitology, College of Medicine, Chang Gung University, Guishan District, Taoyuan City, Taiwan
| | - Fu-Man Ku
- Department of Parasitology, College of Medicine, Chang Gung University, Guishan District, Taoyuan City, Taiwan
| | - Po-Jung Huang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Guishan District, Taoyuan City, Taiwan
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chi-Ching Lee
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
- Department of Computer Science and Information Engineering, College of Engineering, Chang Gung University, Guishan District, Taoyuan City, Taiwan
| | - Yuan-Ming Yeh
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Rose Lin
- Department of Parasitology, College of Medicine, Chang Gung University, Guishan District, Taoyuan City, Taiwan
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Petrus Tang
- Department of Parasitology, College of Medicine, Chang Gung University, Guishan District, Taoyuan City, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| |
Collapse
|
16
|
Padhan BK, Sathee L, Meena HS, Adavi SB, Jha SK, Chinnusamy V. CO 2 Elevation Accelerates Phenology and Alters Carbon/Nitrogen Metabolism vis-à-vis ROS Abundance in Bread Wheat. FRONTIERS IN PLANT SCIENCE 2020; 11:1061. [PMID: 32765552 PMCID: PMC7379427 DOI: 10.3389/fpls.2020.01061] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
Wheat is an important staple food crop of the world and it accounts for 18-20% of human dietary protein. Recent reports suggest that CO2 elevation (CE) reduces grain protein and micronutrient content. In our earlier study, it was found that the enhanced production of nitric oxide (NO) and the concomitant decrease in transcript abundance as well as activity of nitrate reductase (NR) and high affinity nitrate transporters (HATS) resulted in CE-mediated decrease in N metabolites in wheat seedlings. In the current study, two bread wheat genotypes Gluyas Early and B.T. Schomburgk differing in nitrate uptake and assimilation properties were evaluated for their response to CE. To understand the impact of low (LN), optimal (ON) and high (HN) nitrogen supply on plant growth, phenology, N and C metabolism, ROS and RNS signaling and yield, plants were evaluated under short term (hydroponics experiment) and long term (pot experiment) CE. CE improved growth, altered N assimilation, C/N ratio, N use efficiency (NUE) in B.T. Schomburgk. In general, CE decreased shoot N concentration and grain protein concentration in wheat irrespective of N supply. CE accelerated phenology and resulted in early flowering of both the wheat genotypes. Plants grown under CE showed higher levels of nitrosothiol and ROS, mainly under optimal and high nitrogen supply. Photorespiratory ammonia assimilating genes were down regulated by CE, whereas, expression of nitrate transporter/NPF genes were differentially regulated between genotypes by CE under different N availability. The response to CE was dependent on N supply as well as genotype. Hence, N fertilizer recommendation needs to be revised based on these variables for improving plant responses to N fertilization under a future CE scenario.
Collapse
Affiliation(s)
- Birendra K. Padhan
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Lekshmy Sathee
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Hari S. Meena
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sandeep B. Adavi
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Shailendra K. Jha
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
17
|
Ikeya S, Aoyanagi T, Ishizuka I, Takeuchi A, Kozaki A. Nitrate Promotes Germination Under Inhibition by NaCl or High Concentration of Glucose. PLANTS 2020; 9:plants9060707. [PMID: 32498308 PMCID: PMC7355496 DOI: 10.3390/plants9060707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/16/2020] [Accepted: 05/29/2020] [Indexed: 11/16/2022]
Abstract
Seed germination, one of the most important stages in a plant’s life cycle, can be affected by abiotic stresses, such as salinity. The plant hormone abscisic acid (ABA) and high concentrations of glucose are also known to inhibit germination. In contrast, nitrate is known to stimulate germination in many plants. However, this stimulatory effect has not yet been investigated in the presence of inhibitory effects caused by abiotic stresses, ABA, and glucose. In this study, we show that nitrate can alleviate the inhibitory effects of sodium chloride (NaCl) or high concentrations of glucose on seed germination in Arabidopsis, while it was not able to promote germination that was inhibited by exogenous ABA and mannitol (an inducer of osmotic stress). An analysis of the gene expression involved in the regulation of germination showed that GA20ox1, encoding the gibberellin (GA) synthesis enzyme, SPATULA (SPT), encoding a bHLH transcription factor, and CYP707A2, encoding an ABA catabolic enzyme, were significantly upregulated by the addition of KNO3 in the presence of NaCl or glucose. Our results suggest the possibility that these genes are involved in the nitrate-mediated control of seed germination in the presence of NaCl or glucose.
Collapse
Affiliation(s)
- Shun Ikeya
- Department of Biological Science, Faculty of Science, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan; (S.I.); (T.A.)
| | - Takuya Aoyanagi
- Department of Biological Science, Faculty of Science, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan; (S.I.); (T.A.)
| | | | | | - Akiko Kozaki
- Department of Biological Science, Faculty of Science, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan; (S.I.); (T.A.)
- Correspondence: ; Tel.: +81-54-238-4957; Fax: +81-54-238-4957
| |
Collapse
|
18
|
Carrera-Castaño G, Calleja-Cabrera J, Pernas M, Gómez L, Oñate-Sánchez L. An Updated Overview on the Regulation of Seed Germination. PLANTS 2020; 9:plants9060703. [PMID: 32492790 PMCID: PMC7356954 DOI: 10.3390/plants9060703] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023]
Abstract
The ability of a seed to germinate and establish a plant at the right time of year is of vital importance from an ecological and economical point of view. Due to the fragility of these early growth stages, their swiftness and robustness will impact later developmental stages and crop yield. These traits are modulated by a continuous interaction between the genetic makeup of the plant and the environment from seed production to germination stages. In this review, we have summarized the established knowledge on the control of seed germination from a molecular and a genetic perspective. This serves as a “backbone” to integrate the latest developments in the field. These include the link of germination to events occurring in the mother plant influenced by the environment, the impact of changes in the chromatin landscape, the discovery of new players and new insights related to well-known master regulators. Finally, results from recent studies on hormone transport, signaling, and biophysical and mechanical tissue properties are underscoring the relevance of tissue-specific regulation and the interplay of signals in this crucial developmental process.
Collapse
|
19
|
León J, Costa-Broseta Á, Castillo MC. RAP2.3 negatively regulates nitric oxide biosynthesis and related responses through a rheostat-like mechanism in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3157-3171. [PMID: 32052059 PMCID: PMC7260729 DOI: 10.1093/jxb/eraa069] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 02/11/2020] [Indexed: 05/20/2023]
Abstract
Nitric oxide (NO) is sensed through a mechanism involving the degradation of group-VII ERF transcription factors (ERFVIIs) that is mediated by the N-degron pathway. However, the mechanisms regulating NO homeostasis and downstream responses remain mostly unknown. To explore the role of ERFVIIs in regulating NO production and signaling, genome-wide transcriptome analyses were performed on single and multiple erfvii mutants of Arabidopsis following exposure to NO. Transgenic plants overexpressing degradable or non-degradable versions of RAP2.3, one of the five ERFVIIs, were also examined. Enhanced RAP2.3 expression attenuated the changes in the transcriptome upon exposure to NO, and thereby acted as a brake for NO-triggered responses that included the activation of jasmonate and ABA signaling. The expression of non-degradable RAP2.3 attenuated NO biosynthesis in shoots but not in roots, and released the NO-triggered inhibition of hypocotyl and root elongation. In the guard cells of stomata, the control of NO accumulation depended on PRT6-triggered degradation of RAP2.3 more than on RAP2.3 levels. RAP2.3 therefore seemed to work as a molecular rheostat controlling NO homeostasis and signaling. Its function as a brake for NO signaling was released upon NO-triggered PRT6-mediated degradation, thus allowing the inhibition of growth, and the potentiation of jasmonate- and ABA-related signaling.
Collapse
Affiliation(s)
- José León
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas–Universidad Politécnica de Valencia), Valencia, Spain
- Correspondence:
| | - Álvaro Costa-Broseta
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas–Universidad Politécnica de Valencia), Valencia, Spain
| | - Mari Cruz Castillo
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas–Universidad Politécnica de Valencia), Valencia, Spain
| |
Collapse
|
20
|
Santisree P, Sanivarapu H, Gundavarapu S, Sharma KK, Bhatnagar-Mathur P. Nitric Oxide as a Signal in Inducing Secondary Metabolites During Plant Stress. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/978-3-319-96397-6_61] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Wang Z, Ma R, Zhao M, Wang F, Zhang N, Si H. NO and ABA Interaction Regulates Tuber Dormancy and Sprouting in Potato. FRONTIERS IN PLANT SCIENCE 2020; 11:311. [PMID: 32322258 PMCID: PMC7156616 DOI: 10.3389/fpls.2020.00311] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/03/2020] [Indexed: 05/06/2023]
Abstract
In plants, nitric oxide synthase (NOS)-like or nitrate reductase (NR) produces nitric oxide (NO), which is involved in releasing seed dormancy. However, its mechanism of effect in potato remains unclear. In this study, spraying 40 μM sodium nitroprusside (SNP), an exogenous NO donor, quickly broke tuber dormancy and efficiently promoted tuber sprouting, whereas 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO), an NO scavenger, repressed the influence of NO on tuber sprouting. Compared with the control (distilled water), SNP treatment led to a rapid increase in NO content after 6 h and a decreased abscisic acid (ABA) content at 12 and 24 h. c-PTIO treatment significantly inhibited increase of NO levels and increased ABA production. In addition, N G -nitro-L-arginine methyl ester, an NOS inhibitor, clearly inhibited the NOS-like activity, whereas tungstate, an NR inhibitor, inhibited the NR activity. Furthermore, NO promoted the expression of a gene involved in ABA catabolism (StCYP707A1, encoding ABA 8'-hydroxylase) and inhibited the expression of a gene involved in ABA biosynthesis (StNCED1, encoding 9-cis-epoxycarotenoid dioxygenase), thereby decreasing the ABA content, disrupting the balance between ABA and gibberellin acid (GA), and ultimately inducing dormancy release and tuber sprouting. The results demonstrated that NOS-like or NR-generated NO controlled potato tuber dormancy release and sprouting via ABA metabolism and signaling in tuber buds.
Collapse
Affiliation(s)
- Zhike Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Rui Ma
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Dingxi Academy of Agricultural Sciences, Dingxi, China
| | - Mengshi Zhao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Fangfang Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Ning Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Ning Zhang,
| | - Huanjun Si
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
22
|
Ciacka K, Krasuska U, Staszek P, Wal A, Zak J, Gniazdowska A. Effect of Nitrogen Reactive Compounds on Aging in Seed. FRONTIERS IN PLANT SCIENCE 2020; 11:1011. [PMID: 32733516 PMCID: PMC7360797 DOI: 10.3389/fpls.2020.01011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/19/2020] [Indexed: 05/07/2023]
Abstract
Reactive nitrogen species (RNS) are universal compounds that are constantly present in plant cells. RNS function depends on their actual level (the "nitrosative door" concept), duration of plant exposure to RNS and the context of the exposure. RNS are involved in the nitration of nucleic acids and fatty acids, posttranslational protein modifications (nitration and S-nitrosylation), and modulation of reactive oxygen species metabolism. RNS are regulatory molecules of various physiological processes in plants, including seed formation, maturation, dormancy and germination. The free radical theory of aging, well documented for animals, indicated that RNS participate in the regulation of the life span. Some data point to RNS contribution in preservation of seed vigor and/or regulation of seed longevity. Seed aging is a problem for biologists and agriculture, which could be solved by application of RNS, as a factor that may potentially expand seed vitality resulting in increased germination rate. The review is focused on RNS, particularly nitric oxide contribution to regulation of seed aging.
Collapse
|
23
|
Sami A, Riaz MW, Zhou X, Zhu Z, Zhou K. Alleviating dormancy in Brassica oleracea seeds using NO and KAR1 with ethylene biosynthetic pathway, ROS and antioxidant enzymes modifications. BMC PLANT BIOLOGY 2019; 19:577. [PMID: 31870301 PMCID: PMC6929364 DOI: 10.1186/s12870-019-2118-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/05/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Seed dormancy is a prevailing condition in which seeds are unable to germinate, even under favorable environmental conditions. Harvested Brassica oleracea (Chinese cabbage) seeds are dormant and normally germinate (poorly) at 21 °C. This study investigated the connections between ethylene, nitric oxide (NO), and karrikin 1 (KAR1) in the dormancy release of secondary dormant Brassica oleracea seeds. RESULTS NO and KAR1 were found to induce seed germination, and stimulated the production of ethylene and 1-aminocyclopropane-1-carboxylic acid (ACC), and both ethylene biosynthesis enzyme ACC oxidase (ACO) [1] and ACC synthase (ACS) [2]. In the presence of NO and KAR1, ACS and ACO activity reached maximum levels after 36 and 48 h, respectively. The inhibitor of ethylene 2,5-norbornadiene (NBD) had an adverse effect on Brassica oleracea seed germination (inhibiting nearly 50% of germination) in the presence of NO and KAR1. The benefits from NO and KAR1 in the germination of secondary dormant Brassica oleracea seeds were also associated with a marked increase in reactive oxygen species (ROS) (H2O2 and O2˙-) and antioxidant enzyme activity at early germination stages. Catalase (CAT) and glutathione reductase (GR) activity increased 2 d and 4 d, respectively, after treatment, while no significant changes were observed in superoxide dismutase (SOD) activity under NO and KAR1 applications. An increase in H2O2 and O2˙- levels were observed during the entire incubation period, which increasing ethylene production in the presence of NO and KAR1. Abscisic acid (ABA) contents decreased and glutathione reductase (GA) contents increased in the presence of NO and KAR1. Gene expression studies were carried out with seven ethylene biosynthesis ACC synthases (ACS) genes, two ethylene receptors (ETR) genes and one ACO gene. Our results provide more evidence for the involvement of ethylene in inducing seed germination in the presence of NO and KAR1. Three out of seven ethylene biosynthesis genes (BOACS7, BOACS9 and BOACS11), two ethylene receptors (BOETR1 and BOETR2) and one ACO gene (BOACO1) were up-regulated in the presence of NO and KAR1. CONCLUSION Consequently, ACS activity, ACO activity and the expression of different ethylene related genes increased, modified the ROS level, antioxidant enzyme activity, and ethylene biosynthesis pathway and successfully removed (nearly 98%) of the seed dormancy of secondary dormant Brassica olereace seeds after 7 days of NO and KAR1 application.
Collapse
Affiliation(s)
- Abdul Sami
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | | | - Xiangyu Zhou
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Zonghe Zhu
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Kejin Zhou
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
24
|
Adavi SB, Sathee L, Padhan BK, Singh O, Meena HS, Durgesh K, Jha SK. Visualization of Nitric Oxide, Measurement of Nitrosothiols Content, Activity of NOS and NR in Wheat Seedlings. Bio Protoc 2019; 9:e3402. [PMID: 33654903 PMCID: PMC7853982 DOI: 10.21769/bioprotoc.3402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/10/2019] [Accepted: 09/17/2019] [Indexed: 04/01/2024] Open
Abstract
Nitric oxide (NO), is a redox-active, endogenous signalling molecule involved in the regulation of numerous processes. It plays a crucial role in adaptation and tolerance to various abiotic and biotic stresses. In higher plants, NO is produced either by enzymatic or non-enzymatic reduction of nitrite and an oxidative pathway requiring a putative nitric oxide synthase (NOS)-like enzyme. There are several methods to measure NO production: mass spectrometry, tissue localization by DAF-FM dye. Electron paramagnetic resonance (EPR) also known as electron spin resonance (ESR) and spectrophotometric assays. The activity of NOS can be measured by L-citrulline based assay and spectroscopic method (NADPH utilization method). A major route for the transfer of NO bioactivity is S-nitrosylation, the addition of a NO moiety to a protein cysteine thiol forming an S-nitrosothiol (SNO). This experimental method describes visualization of NO using DAF-FM dye by fluorescence microscopy (Zeiss AXIOSKOP 2). The whole procedure is simplified, so it is easy to perform but has a high sensitivity for NO detection. In addition, spectrophotometry based protocols for assay of NOS, Nitrate Reductase (NR) and the content of S-nitrosothiols are also described. These spectrophotometric protocols are easy to perform, less expensive and sufficiently sensitive assays which provide adequate information on NO based regulation of physiological processes depending on the treatments of interest.
Collapse
Affiliation(s)
| | - Lekshmy Sathee
- Division of Plant Physiology, ICAR-IARI, New Delhi, India
| | | | - Ompal Singh
- Division of Plant Physiology, ICAR-IARI, New Delhi, India
| | - Hari S. Meena
- Division of Plant Physiology, ICAR-IARI, New Delhi, India
| | | | | |
Collapse
|
25
|
Bafoil M, Le Ru A, Merbahi N, Eichwald O, Dunand C, Yousfi M. New insights of low-temperature plasma effects on germination of three genotypes of Arabidopsis thaliana seeds under osmotic and saline stresses. Sci Rep 2019; 9:8649. [PMID: 31209339 PMCID: PMC6572809 DOI: 10.1038/s41598-019-44927-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/28/2019] [Indexed: 11/29/2022] Open
Abstract
In order to investigate the effects of low temperature plasmas on germination of Arabidopsis thaliana seeds, a dielectric barrier discharge device generating the plasma in ambient air was used. To highlight the different plasma effects on the seed surface, saline and osmotic stresses were considered in the case of reference Col-0 seeds and two further seed coat mutants gl2 and gpat5 to better analyse the seed surface changes and their consequences on germination. The GL2 gene encode a transcription factor controlling the balance between the biosynthesis of fatty acids in the embryo and the production of mucilage and flavonoid pigments in the seed coat. The GPAT5 gene encode for an acyltransferase necessary for the accumulation of suberin in the seed coat which is essential for the embryo protection. The testa and endosperm ruptures are identified to note the germination stage. An increasing of germination rate, possibly due to the modification of mantle layers structure, is observed in most of cases, even in presence of saline or osmotic stress, after plasma treatment. Furthermore, we demonstrated that the germination rate of the gl2 mutant seeds is increased by at most 47% after plasma treatment, contrariwise, the germination of gpat5 mutant being initially lower is inhibited by the same plasma treatment. The scanning electron microscopy pictures and confocal microscopy fluorescence both showed changes of the exterior aspects of the seeds after plasma treatment. Considering these results, we assumed that lipid compounds can be found on the surface. To validate this hypothesis, permeability tests were performed, and it was clearly shown that a permeability decrease is induced by the low temperature plasma treatment.
Collapse
Affiliation(s)
- Maxime Bafoil
- LAPLACE, UMR CNRS 5213, Université Paul Sabatier, Toulouse, France.,LRSV, UMR CNRS 5546, Université Paul Sabatier, Castanet-Tolosan, France
| | - Aurélie Le Ru
- Fédération de Recherche 3450, Plateforme Imagerie, Pôle de Biotechnologie Végétale, Castanet-Tolosan, France
| | - Nofel Merbahi
- LAPLACE, UMR CNRS 5213, Université Paul Sabatier, Toulouse, France
| | - Olivier Eichwald
- LAPLACE, UMR CNRS 5213, Université Paul Sabatier, Toulouse, France
| | - Christophe Dunand
- LRSV, UMR CNRS 5546, Université Paul Sabatier, Castanet-Tolosan, France.
| | - Mohammed Yousfi
- LAPLACE, UMR CNRS 5213, Université Paul Sabatier, Toulouse, France.
| |
Collapse
|
26
|
Chauffour F, Bailly M, Perreau F, Cueff G, Suzuki H, Collet B, Frey A, Clément G, Soubigou-Taconnat L, Balliau T, Krieger-Liszkay A, Rajjou L, Marion-Poll A. Multi-omics Analysis Reveals Sequential Roles for ABA during Seed Maturation. PLANT PHYSIOLOGY 2019; 180:1198-1218. [PMID: 30948555 PMCID: PMC6548264 DOI: 10.1104/pp.19.00338] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 05/04/2023]
Abstract
Abscisic acid (ABA) is an important hormone for seed development and germination whose physiological action is modulated by its endogenous levels. Cleavage of carotenoid precursors by 9-cis epoxycarotenoid dioxygenase (NCED) and inactivation of ABA by ABA 8'-hydroxylase (CYP707A) are key regulatory metabolic steps. In Arabidopsis (Arabidopsis thaliana), both enzymes are encoded by multigene families, having distinctive expression patterns. To evaluate the genome-wide impact of ABA deficiency in developing seeds at the maturation stage when dormancy is induced, we used a nced2569 quadruple mutant in which ABA deficiency is mostly restricted to seeds, thus limiting the impact of maternal defects on seed physiology. ABA content was very low in nced2569 seeds, similar to the severe mutant aba2; unexpectedly, ABA Glc ester was detected in aba2 seeds, suggesting the existence of an alternative metabolic route. Hormone content in nced2569 seeds compared with nced259 and wild type strongly suggested that specific expression of NCED6 in the endosperm is mainly responsible for ABA production. In accordance, transcriptome analyses revealed broad similarities in gene expression between nced2569 and either wild-type or nced259 developing seeds. Gene ontology enrichments revealed a large spectrum of ABA activation targets involved in reserve storage and desiccation tolerance, and repression of photosynthesis and cell cycle. Proteome and metabolome profiles in dry nced2569 seeds, compared with wild-type and cyp707a1a2 seeds, also highlighted an inhibitory role of ABA on remobilization of reserves, reactive oxygen species production, and protein oxidation. Down-regulation of these oxidative processes by ABA may have an essential role in dormancy control.
Collapse
Affiliation(s)
- Frédéric Chauffour
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-Saclay, 78000 Versailles, France
| | - Marlène Bailly
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-Saclay, 78000 Versailles, France
| | - François Perreau
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-Saclay, 78000 Versailles, France
| | - Gwendal Cueff
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-Saclay, 78000 Versailles, France
| | - Hiromi Suzuki
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-Saclay, 78000 Versailles, France
| | - Boris Collet
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-Saclay, 78000 Versailles, France
| | - Anne Frey
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-Saclay, 78000 Versailles, France
| | - Gilles Clément
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-Saclay, 78000 Versailles, France
| | - Ludivine Soubigou-Taconnat
- Institute of Plant Sciences Paris-Saclay (IPS2), Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université d'Evry, Université Paris-Saclay, 91192 Gif-sur-Yvette, France
- Institute of Plant Sciences Paris-Saclay (IPS2), Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Diderot, Sorbonne Paris-Cité, 91192 Gif-sur-Yvette, France
| | - Thierry Balliau
- Université Paris-Saclay, Unité Mixte de Recherche Génétique Quantitative & Evolution Le Moulon, Institut National de la Recherche Agronomique, Université Paris Sud, Centre National de la Recherche Scientifique, AgroParisTech, La Plateforme d'Analyse Protéomique de Paris Sud Ouest, 91190 Gif-sur-Yvette, France
| | - Anja Krieger-Liszkay
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Énergie Atomique, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Loïc Rajjou
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-Saclay, 78000 Versailles, France
| | - Annie Marion-Poll
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-Saclay, 78000 Versailles, France
| |
Collapse
|
27
|
Andryka-Dudek P, Ciacka K, Wiśniewska A, Bogatek R, Gniazdowska A. Nitric Oxide-Induced Dormancy Removal of Apple Embryos Is Linked to Alterations in Expression of Genes Encoding ABA and JA Biosynthetic or Transduction Pathways and RNA Nitration. Int J Mol Sci 2019; 20:E1007. [PMID: 30813543 PMCID: PMC6429270 DOI: 10.3390/ijms20051007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/13/2019] [Accepted: 02/19/2019] [Indexed: 12/21/2022] Open
Abstract
Short-term (3 h) treatment of embryos isolated from dormant apple (Malus domestica Borkh.) seeds with NO donors stimulates their transition from dormancy to germination. Seed dormancy is maintained by ABA, while germination is controlled mainly by gibberellins (GAs) and jasmonic acid (JA). NO-induced dormancy removal correlates with low ABA concentration in embryonic axes and reduced embryo sensitivity to ABA. We analyzed the expression of genes encoding key enzymes of ABA degradation (CYP707A1, CYP707A2), biosynthesis (NCED3, NCED9), and elements of the ABA transduction pathway (PYL1, PYL2, RCAR1, RCAR3, PP2CA, ABI1, ABI2, SNRK2, ABI5, AREB3, ABF). A role for JA in the regulation of germination led us to investigate the expression of genes encoding enzymes of JA biosynthesis (AOS1, JMT, JAR1) and the transduction pathway (COI1, MYC2, JAZ3, JAZ12). The expression profiles of the genes were estimated in embryonic axes isolated from dormant or NO fumigated apple embryos. The analyzed genes were differentially regulated during dormancy alleviation, the main modifications in the transcription level were detected for NCED3, NCED9, CYP707A2, RCAR1, ABF, AOS1, JMT, JAR1 and JAZ3. A regulatory role of NO in the removal of seed dormancy is associated with the stimulation of expression of genes related to ABA degradation, down-regulation of genes responsible for ABA synthesis, an increase of expression level of genes engaged in JA synthesis and modification of the expression of genes engaged in signaling pathways of the hormones. To confirm a signaling role of NO during dormancy breakage, an increased RNA nitration level in embryonic axes was demonstrated.
Collapse
Affiliation(s)
- Paulina Andryka-Dudek
- Department of Plant Physiology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Katarzyna Ciacka
- Department of Plant Physiology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Anita Wiśniewska
- Department of Plant Physiology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Renata Bogatek
- Department of Plant Physiology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Agnieszka Gniazdowska
- Department of Plant Physiology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| |
Collapse
|
28
|
Hancock JT, Neill SJ. Nitric Oxide: Its Generation and Interactions with Other Reactive Signaling Compounds. PLANTS (BASEL, SWITZERLAND) 2019; 8:E41. [PMID: 30759823 PMCID: PMC6409986 DOI: 10.3390/plants8020041] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/07/2019] [Accepted: 02/10/2019] [Indexed: 12/25/2022]
Abstract
Nitric oxide (NO) is an immensely important signaling molecule in animals and plants. It is involved in plant reproduction, development, key physiological responses such as stomatal closure, and cell death. One of the controversies of NO metabolism in plants is the identification of enzymatic sources. Although there is little doubt that nitrate reductase (NR) is involved, the identification of a nitric oxide synthase (NOS)-like enzyme remains elusive, and it is becoming increasingly clear that such a protein does not exist in higher plants, even though homologues have been found in algae. Downstream from its production, NO can have several potential actions, but none of these will be in isolation from other reactive signaling molecules which have similar chemistry to NO. Therefore, NO metabolism will take place in an environment containing reactive oxygen species (ROS), hydrogen sulfide (H₂S), glutathione, other antioxidants and within a reducing redox state. Direct reactions with NO are likely to produce new signaling molecules such as peroxynitrite and nitrosothiols, and it is probable that chemical competitions will exist which will determine the ultimate end result of signaling responses. How NO is generated in plants cells and how NO fits into this complex cellular environment needs to be understood.
Collapse
Affiliation(s)
- John T Hancock
- Department of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK.
| | - Steven J Neill
- Faculty of Health and Applied Sciences, University of the West of England, Bristol BS16 1QY, UK.
| |
Collapse
|
29
|
Lee EJ, Khan MSI, Shim J, Kim YJ. Roles of oxides of nitrogen on quality enhancement of soybean sprout during hydroponic production using plasma discharged water recycling technology. Sci Rep 2018; 8:16872. [PMID: 30443039 PMCID: PMC6237935 DOI: 10.1038/s41598-018-35385-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/01/2018] [Indexed: 01/30/2023] Open
Abstract
This study was performed to assess the effect of plasma-discharged water recycling technology as irrigation water on soybean sprout production. Two different types of irrigation water were used individually for cultivation, including plasma discharged water as a source of oxides of nitrogen and tap water, irrigation water was recycled for every 30 minutes. Plasma discharged irrigation water reduced overall 4.3 log CFU/ml aerobic microbe and 7.0 log CFU/ml of artificially inoculated S. Typhimurium within 5 minutes and 2 minutes, respectively, therefore sprout production occurs in a hygienic environment. Using of plasma-discharged water for cultivation, increases the amount of ascorbate, asparagine, and γ-aminobutyric acid (GABA) significantly (p < 0.05), in the part of cotyledon and hypocotyl of soybean sprout during 1 to 4 days of farming. A NO scavenger, 2-(4-carboxy-phenyl)-4,4,5,5-tetramethylimidazoline-1-oxy-3-oxide (cPTIO), was added in irrigation water to elucidate the roles of the oxides of nitrogen such as NO3-, NO2- generated in plasma discharged water. It was observed that all three nutrients decreased in the cotyledon part, whereas ascorbate and GABA contents increased in the hypocotyl and radicle part of bean sprout for the same duration of farming. The addition of NO scavenger in the irrigation water also reduced growth and overall yield of the soybean sprouts. A recycling water system with plasma-discharged water helped to reduce the amount of water consumption and allowed soybean sprouts growth in a hygienic environment during the hydroponic production.
Collapse
Affiliation(s)
- Eun-Jung Lee
- Faculty of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul, 05006, Republic of Korea
| | - Muhammad Saiful Islam Khan
- Division of Food Safety and Distribution, Korea Food Research Institute, Wanju-Gun, Jeollabuk-Do, 55365, Republic of Korea
| | - Jaewon Shim
- Division of Food Safety and Distribution, Korea Food Research Institute, Wanju-Gun, Jeollabuk-Do, 55365, Republic of Korea
| | - Yun-Ji Kim
- Division of Food Safety and Distribution, Korea Food Research Institute, Wanju-Gun, Jeollabuk-Do, 55365, Republic of Korea.
- Department of Food Biotechnology, University of Science and Technology, Daejeon, 305-350, Republic of Korea.
| |
Collapse
|
30
|
Castillo MC, Coego A, Costa-Broseta Á, León J. Nitric oxide responses in Arabidopsis hypocotyls are mediated by diverse phytohormone pathways. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5265-5278. [PMID: 30085082 PMCID: PMC6184486 DOI: 10.1093/jxb/ery286] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/24/2018] [Indexed: 05/03/2023]
Abstract
Plants are often exposed to high levels of nitric oxide (NO) that affects development and stress-triggered responses. However, the way in which plants sense NO is still largely unknown. Here we combine the analysis of early changes in the transcriptome of plants exposed to a short acute pulse of exogenous NO with the identification of transcription factors (TFs) involved in NO sensing. The NO-responsive transcriptome was enriched in hormone homeostasis- and signaling-related genes. To assess events involved in NO sensing in hypocotyls, we used a functional sensing assay based on the NO-induced inhibition of hypocotyl elongation in etiolated seedlings. Hormone-related mutants and the TRANSPLANTA collection of transgenic lines conditionally expressing Arabidopsis TFs were screened for NO-triggered hypocotyl shortening. These approaches allowed the identification of hormone-related TFs, ethylene perception and signaling, strigolactone biosynthesis and signaling, and salicylate production and accumulation that are essential for or modulate hypocotyl NO sensing. Moreover, NO inhibits hypocotyl elongation through the positive and negative regulation of some abscisic acid (ABA) receptors and transcripts encoding brassinosteroid signaling components thereby also implicating these hormones in NO sensing.
Collapse
Affiliation(s)
- Mari-Cruz Castillo
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas–Universidad Politécnica de Valencia), Valencia, Spain
| | - Alberto Coego
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas–Universidad Politécnica de Valencia), Valencia, Spain
| | - Álvaro Costa-Broseta
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas–Universidad Politécnica de Valencia), Valencia, Spain
| | - José León
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas–Universidad Politécnica de Valencia), Valencia, Spain
- Correspondence:
| |
Collapse
|
31
|
He Y, Xue H, Li Y, Wang X. Nitric oxide alleviates cell death through protein S-nitrosylation and transcriptional regulation during the ageing of elm seeds. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5141-5155. [PMID: 30053069 PMCID: PMC6184755 DOI: 10.1093/jxb/ery270] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 07/14/2018] [Indexed: 05/23/2023]
Abstract
Seed ageing is a major problem in the conservation of germplasm resources. The involvement of possible signalling molecules during seed deterioration needs to be identified. In this study, we confirmed that nitric oxide (NO), a key signalling molecule in plants, plays a positive role in the resistance of elm seeds to deterioration. To explore which metabolic pathways were affected by NO, an untargeted metabolomic analysis was conducted, and 163 metabolites could respond to both NO and the ageing treatment. The primary altered pathways include glutathione, methionine, and carbohydrate metabolism. The genes involved in glutathione and methionine metabolism were up-regulated by NO at the transcriptional level. Using a biotin switch method, proteins with an NO-dependent post-translational modification were screened during seed deterioration, and 82 putative S-nitrosylated proteins were identified. Eleven of these proteins were involved in carbohydrate metabolism, and the activities of the three enzymes were regulated by NO. In combination, the results of the metabolomic and S-nitrosoproteomic studies demonstrated that NO could activate glycolysis and inhibit the pentose phosphate pathway. In summary, the combination of these results demonstrated that NO could modulate carbohydrate metabolism at the post-translational level and regulate glutathione and methionine metabolism at the transcriptional level. It provides initial insights into the regulatory mechanisms of NO in seed deterioration.
Collapse
Affiliation(s)
- Yuqi He
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Haidian District, Beijing, PR China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Haidian District, Beijing, PR China
| | - Hua Xue
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Haidian District, Beijing, PR China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Haidian District, Beijing, PR China
| | - Ying Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Haidian District, Beijing, PR China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Haidian District, Beijing, PR China
| | - Xiaofeng Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Haidian District, Beijing, PR China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Haidian District, Beijing, PR China
| |
Collapse
|
32
|
Nishimura N, Tsuchiya W, Moresco JJ, Hayashi Y, Satoh K, Kaiwa N, Irisa T, Kinoshita T, Schroeder JI, Yates JR, Hirayama T, Yamazaki T. Control of seed dormancy and germination by DOG1-AHG1 PP2C phosphatase complex via binding to heme. Nat Commun 2018; 9:2132. [PMID: 29875377 PMCID: PMC5989226 DOI: 10.1038/s41467-018-04437-9] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 05/01/2018] [Indexed: 12/23/2022] Open
Abstract
Abscisic acid (ABA) regulates abiotic stress and developmental responses including regulation of seed dormancy to prevent seeds from germinating under unfavorable environmental conditions. ABA HYPERSENSITIVE GERMINATION1 (AHG1) encoding a type 2C protein phosphatase (PP2C) is a central negative regulator of ABA response in germination; however, the molecular function and regulation of AHG1 remain elusive. Here we report that AHG1 interacts with DELAY OF GERMINATION1 (DOG1), which is a pivotal positive regulator in seed dormancy. DOG1 acts upstream of AHG1 and impairs the PP2C activity of AHG1 in vitro. Furthermore, DOG1 has the ability to bind heme. Binding of DOG1 to AHG1 and heme are independent processes, but both are essential for DOG1 function in vivo. Our study demonstrates that AHG1 and DOG1 constitute an important regulatory system for seed dormancy and germination by integrating multiple environmental signals, in parallel with the PYL/RCAR ABA receptor-mediated regulatory system. The hormone abscisic acid (ABA) prevents seeds from germination when conditions are not suitable. Here the authors show that DOG1, a positive regulator of germination, impairs ABA signaling via genetic and physical interactions with the AHG1 phosphatase and that DOG1 binding to heme is required for this activity.
Collapse
Affiliation(s)
- Noriyuki Nishimura
- Radiation Breeding Division, Institute of Crop Science, National Agriculture and Food Research Organization, 2425 Kamimurata, Hitachiohmiya, Ibaraki, 319-2293, Japan. .,Division of Basic Research, Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan.
| | - Wataru Tsuchiya
- Structural Biology Team, Advanced Analysis Center, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8602, Japan
| | - James J Moresco
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Yuki Hayashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Kouji Satoh
- Radiation Breeding Division, Institute of Crop Science, National Agriculture and Food Research Organization, 2425 Kamimurata, Hitachiohmiya, Ibaraki, 319-2293, Japan
| | - Nahomi Kaiwa
- Radiation Breeding Division, Institute of Crop Science, National Agriculture and Food Research Organization, 2425 Kamimurata, Hitachiohmiya, Ibaraki, 319-2293, Japan
| | - Tomoko Irisa
- Radiation Breeding Division, Institute of Crop Science, National Agriculture and Food Research Organization, 2425 Kamimurata, Hitachiohmiya, Ibaraki, 319-2293, Japan
| | - Toshinori Kinoshita
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Julian I Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0116, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Takashi Hirayama
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
| | - Toshimasa Yamazaki
- Structural Biology Team, Advanced Analysis Center, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8602, Japan
| |
Collapse
|
33
|
Wu S, Hu C, Tan Q, Zhao X, Xu S, Xia Y, Sun X. Nitric oxide acts downstream of abscisic acid in molybdenum-induced oxidative tolerance in wheat. PLANT CELL REPORTS 2018; 37:599-610. [PMID: 29340785 DOI: 10.1007/s00299-018-2254-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 01/05/2018] [Indexed: 05/22/2023]
Abstract
Our study first reveals that Mo mediates oxidative tolerance through ABA signaling. Moreover, NO acts downstream of ABA signaling in Mo-induced oxidative tolerance in wheat under drought stress. Nitric oxide (NO) is related to the improvement of molybdenum (Mo)-induced oxidative tolerance. While the function of Mo in abscisic acid (ABA) synthesis and in mediating oxidative tolerance by the interaction of ABA and NO remain to be studied. The -Mo and +Mo treatment-cultivated wheat was separated and subsequently was pretreated with AO inhibitor, ABA synthesis inhibitor, exogenous ABA, NO scavenger, NO donor or their combinations under polyethylene glycol 6000 (PEG)-stimulated drought stress (PSD). The AO activity and ABA content were increased by Mo in wheat under PSD, however, AO inhibitor decreased AO activity, correspondingly reduced ABA accumulation, suggesting that AO involves in the regulation of Mo-induced ABA synthesis. Mo enhanced activities and expressions of antioxidant enzyme, while these effects of Mo were reversed by AO inhibitor and ABA synthesis inhibitor due to the decrease of ABA content, but regained by exogenous ABA, indicating that Mo induces oxidative tolerance through ABA. Moreover, NO scavenger inhibited activities of antioxidant enzyme caused by Mo and exogenous ABA, but the inhibitions were eliminated by NO donor, indicating that NO is involved in ABA pathway in the regulation of Mo-induced oxidative tolerance in wheat under PSD. Finally, we proposed a scheme for the mechanism of Mo-induced oxidative tolerance.
Collapse
Affiliation(s)
- Songwei Wu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Provincial Engineering Laboratory for New-Type Fertilizers, Huazhong Agricultural University, Wuhan, China
| | - Chengxiao Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Provincial Engineering Laboratory for New-Type Fertilizers, Huazhong Agricultural University, Wuhan, China
| | - Qiling Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Provincial Engineering Laboratory for New-Type Fertilizers, Huazhong Agricultural University, Wuhan, China
| | - Xiaohu Zhao
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Provincial Engineering Laboratory for New-Type Fertilizers, Huazhong Agricultural University, Wuhan, China
| | - Shoujun Xu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Provincial Engineering Laboratory for New-Type Fertilizers, Huazhong Agricultural University, Wuhan, China
| | - Yitao Xia
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Provincial Engineering Laboratory for New-Type Fertilizers, Huazhong Agricultural University, Wuhan, China
| | - Xuecheng Sun
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Provincial Engineering Laboratory for New-Type Fertilizers, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
34
|
Mira MM, Huang S, Hill RD, Stasolla C. Protection of root apex meristem during stress responses. PLANT SIGNALING & BEHAVIOR 2018; 13:e1428517. [PMID: 29341848 PMCID: PMC5846546 DOI: 10.1080/15592324.2018.1428517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 01/02/2018] [Accepted: 01/06/2018] [Indexed: 05/26/2023]
Abstract
By regulating the levels of nitric oxide (NO) in a cell and tissue specific fashion, Phytoglobins (Pgbs), plant hemoglobin-like proteins, interfere with many NO-mediated pathways participating in developmental and stress-related responses. Recent evidence reveals that one of the functions of Pgbs is to protect the root apical meristem (RAM) from stress conditions by retaining the viability and function of the quiescent center (QC), required to maintain the stem cells in an undifferentiated state and ensure proper tissue patterning and root viability. Based on this and other evidence, it is suggested that Pgbs regulate cell fate by modulating NO homeostasis.
Collapse
Affiliation(s)
- Mohamed M. Mira
- Permanent address: Department of Botany, Faculty of Science, Tanta University, Tanta, Egypt
| | - Shuanglong Huang
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Robert D. Hill
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
35
|
Study of Different Variants of Mo Enzyme crARC and the Interaction with Its Partners crCytb5-R and crCytb5-1. Int J Mol Sci 2017; 18:ijms18030670. [PMID: 28335548 PMCID: PMC5372681 DOI: 10.3390/ijms18030670] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/07/2017] [Accepted: 03/10/2017] [Indexed: 12/30/2022] Open
Abstract
The mARC (mitochondrial Amidoxime Reducing Component) proteins are recently discovered molybdenum (Mo) Cofactor containing enzymes. They are involved in the reduction of several N-hydroxylated compounds (NHC) and nitrite. Some NHC are prodrugs containing an amidoxime structure or mutagens such as 6-hydroxylaminopurine (HAP). We have studied this protein in the green alga Chlamydomonas reinhardtii (crARC). Interestingly, all the ARC proteins need the reducing power supplied by other proteins. It is known that crARC requires a cytochrome b₅ (crCytb5-1) and a cytochrome b₅ reductase (crCytb5-R) that form an electron transport chain from NADH to the substrates. Here, we have investigated NHC reduction by crARC, the interaction with its partners and the function of important conserved amino acids. Interactions among crARC, crCytb5-1 and crCytb5-R have been studied by size-exclusion chromatography. A protein complex between crARC, crCytb5-1 and crCytb5-R was identified. Twelve conserved crARC amino acids have been substituted by alanine by in vitro mutagenesis. We have determined that the amino acids D182, F210 and R276 are essential for NHC reduction activity, R276 is important and F210 is critical for the Mo Cofactor chelation. Finally, the crARC C-termini were shown to be involved in protein aggregation or oligomerization.
Collapse
|
36
|
Lotfy K. Effects of Cold Atmospheric Plasma Jet Treatment on the Seed Germination and Enhancement Growth of Watermelon. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/ojapps.2017.712050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
León J, Costa Á, Castillo MC. Nitric oxide triggers a transient metabolic reprogramming in Arabidopsis. Sci Rep 2016; 6:37945. [PMID: 27885260 PMCID: PMC5122866 DOI: 10.1038/srep37945] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/02/2016] [Indexed: 01/15/2023] Open
Abstract
Nitric oxide (NO) regulates plant growth and development as well as responses to stress that enhanced its endogenous production. Arabidopsis plants exposed to a pulse of exogenous NO gas were used for untargeted global metabolomic analyses thus allowing the identification of metabolic processes affected by NO. At early time points after treatment, NO scavenged superoxide anion and induced the nitration and the S-nitrosylation of proteins. These events preceded an extensive though transient metabolic reprogramming at 6 h after NO treatment, which included enhanced levels of polyamines, lipid catabolism and accumulation of phospholipids, chlorophyll breakdown, protein and nucleic acid turnover and increased content of sugars. Accordingly, lipid-related structures such as root cell membranes and leaf cuticle altered their permeability upon NO treatment. Besides, NO-treated plants displayed degradation of starch granules, which is consistent with the increased sugar content observed in the metabolomic survey. The metabolic profile was restored to baseline levels at 24 h post-treatment, thus pointing up the plasticity of plant metabolism in response to nitroxidative stress conditions.
Collapse
Affiliation(s)
- José León
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), CPI Edificio 8E, Avda. Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Álvaro Costa
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), CPI Edificio 8E, Avda. Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Mari-Cruz Castillo
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), CPI Edificio 8E, Avda. Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| |
Collapse
|
38
|
Krasuska U, Ciacka K, Orzechowski S, Fettke J, Bogatek R, Gniazdowska A. Modification of the endogenous NO level influences apple embryos dormancy by alterations of nitrated and biotinylated protein patterns. PLANTA 2016; 244:877-91. [PMID: 27299743 DOI: 10.1007/s00425-016-2553-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/06/2016] [Indexed: 05/18/2023]
Abstract
NO donors and Arg remove dormancy of apple embryos and stimulate germination. Compounds lowering NO level (cPTIO, L -NAME, CAN) strengthen dormancy. Embryo transition from dormancy state to germination is linked to increased nitric oxide synthase (NOS)-like activity. Germination of embryos is associated with declined level of biotin containing proteins and nitrated proteins in soluble protein fraction of root axis. Pattern of nitrated proteins suggest that storage proteins are putative targets of nitration. Nitric oxide (NO) acts as a key regulatory factor in removal of seed dormancy and is a signal necessary for seed transition from dormant state into germination. Modulation of NO concentration in apple (Malus domestica Borkh.) embryos by NO fumigation, treatment with NO donor (S-nitroso-N-acetyl-D,L-penicillamine, SNAP), application of 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), N ω-nitro-L-arginine methyl ester (L-NAME), canavanine (CAN) or arginine (Arg) allowed us to investigate the NO impact on seed dormancy status. Arg analogs and NO scavenger strengthened embryo dormancy by lowering reactive nitrogen species level in embryonic axes. This effect was accompanied by strong inhibition of NOS-like activity, without significant influence on tissue NO2 (-) concentration. Germination sensu stricto of apple embryos initiated by dormancy breakage via short term NO treatment or Arg supplementation were linked to a reduced level of biotinylated proteins in root axis. Decrease of total soluble nitrated proteins was observed at the termination of germination sensu stricto. Also modulation of NO tissue status leads to modification in nitrated protein pattern. Among protein bands that correspond to molecular mass of approximately 95 kDa, storage proteins (legumin A-like and seed biotin-containing protein) were identified, and can be considered as good markers for seed dormancy status. Moreover, pattern of nitrated proteins suggest that biotin containing proteins are also targets of nitration.
Collapse
Affiliation(s)
- Urszula Krasuska
- Department of Plant Physiology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Katarzyna Ciacka
- Department of Plant Physiology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Sławomir Orzechowski
- Department of Biochemistry, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Joerg Fettke
- Biopolymer Analytics, University of Potsdam, Karl-Liebknecht 24-25, 14476, Potsdam-Golm, Germany
| | - Renata Bogatek
- Department of Plant Physiology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Agnieszka Gniazdowska
- Department of Plant Physiology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland.
| |
Collapse
|
39
|
Shalimu D, Sun J, Baskin CC, Baskin JM, Sun L, Liu Y. Changes in oxidative patterns during dormancy break by warm and cold stratification in seeds of an edible fruit tree. AOB PLANTS 2016; 8:plw024. [PMID: 27154624 PMCID: PMC4925924 DOI: 10.1093/aobpla/plw024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 04/06/2016] [Indexed: 05/30/2023]
Abstract
The transition from seed dormancy to germination is triggered by environmental factors, and in pomegranate (Punica granatum) seeds higher germination percentages are achieved by warm + cold stratification rather than by cold stratification alone. Our objective was to define the pattern of internal oxidative changes in pomegranate seeds as dormancy was being broken by warm + cold stratification and by cold stratification alone. Embryos isolated from seeds after 1-42 days of warm stratification, after 56 days of warm stratification + 7, 28 or 56 days of cold stratification, and after 1-84 days of cold stratification alone, were used in biochemical tests. Hydrogen peroxide (H2O2), nitric oxide (NO), proline, lipid peroxidation, protein carbonylation, and activities of the scavenging enzymes superoxide dismutase (SOD), hydrogen peroxide enzyme and peroxidase in the embryos were assessed by colorimetric methods. Our results indicated that warm + cold stratification had a stronger dormancy-breaking effect than cold stratification (85% versus 50% germination), which may be attributed to a higher yield of H2O2, NO, lipid peroxidation and protein carbonylation in warm + cold stratification. Furthermore, warm + cold stratification-induced H2O2 change led to greater changes (elevation followed by attenuation) in activities of the scavenging enzymes than that induced by cold stratification alone. These results indicated that restriction of the level of reactive oxygen species change within a positive and safe range by such enzymes promoted seed germination. In addition, a relatively strong elevation of proline during warm + cold stratification also contributed to dormancy breakage and subsequent germination. In conclusion, the strong dormancy alleviating effect of warm + cold stratification on pomegranate seeds may be attributed to the corresponding active oxidative change via H2O2, NO, proline, malondialdehyde, protein carbonylation and scavenging enzymes.
Collapse
Affiliation(s)
- Dilinuer Shalimu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Jia Sun
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Carol C Baskin
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Jerry M Baskin
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Liwei Sun
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yujun Liu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
40
|
Wojtyla Ł, Lechowska K, Kubala S, Garnczarska M. Different Modes of Hydrogen Peroxide Action During Seed Germination. FRONTIERS IN PLANT SCIENCE 2016; 7:66. [PMID: 26870076 PMCID: PMC4740362 DOI: 10.3389/fpls.2016.00066] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/14/2016] [Indexed: 05/18/2023]
Abstract
Hydrogen peroxide was initially recognized as a toxic molecule that causes damage at different levels of cell organization and thus losses in cell viability. From the 1990s, the role of hydrogen peroxide as a signaling molecule in plants has also been discussed. The beneficial role of H2O2 as a central hub integrating signaling network in response to biotic and abiotic stress and during developmental processes is now well established. Seed germination is the most pivotal phase of the plant life cycle, affecting plant growth and productivity. The function of hydrogen peroxide in seed germination and seed aging has been illustrated in numerous studies; however, the exact role of this molecule remains unknown. This review evaluates evidence that shows that H2O2 functions as a signaling molecule in seed physiology in accordance with the known biology and biochemistry of H2O2. The importance of crosstalk between hydrogen peroxide and a number of signaling molecules, including plant phytohormones such as abscisic acid, gibberellins, and ethylene, and reactive molecules such as nitric oxide and hydrogen sulfide acting on cell communication and signaling during seed germination, is highlighted. The current study also focuses on the detrimental effects of H2O2 on seed biology, i.e., seed aging that leads to a loss of germination efficiency. The dual nature of hydrogen peroxide as a toxic molecule on one hand and as a signal molecule on the other is made possible through the precise spatial and temporal control of its production and degradation. Levels of hydrogen peroxide in germinating seeds and young seedlings can be modulated via pre-sowing seed priming/conditioning. This rather simple method is shown to be a valuable tool for improving seed quality and for enhancing seed stress tolerance during post-priming germination. In this review, we outline how seed priming/conditioning affects the integrative role of hydrogen peroxide in seed germination and aging.
Collapse
Affiliation(s)
- Łukasz Wojtyla
- Department of Plant Physiology, Institute of Experimental Biology, Adam Mickiewicz University in PoznanPoznan, Poland
| | | | | | | |
Collapse
|
41
|
Li X, Pan Y, Chang B, Wang Y, Tang Z. NO Promotes Seed Germination and Seedling Growth Under High Salt May Depend on EIN3 Protein in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2016; 6:1203. [PMID: 26779234 PMCID: PMC4703817 DOI: 10.3389/fpls.2015.01203] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/14/2015] [Indexed: 05/23/2023]
Abstract
The gas molecule nitric oxide (NO) can cooperate with ethylene to tightly modulate plant growth and stress responses. One of the mechanism of their crosstalk is that NO is able to activate ethylene biosynthesis, possibly through post-translational modification of key enzymes such as ACC synthase and oxidase by S-nitrosylation. In this paper, we focus on the crosstalk of NO with ethylene signaling transduction transcription factor EIN3 (Ethylene Insensitive 3) and downstream gene expression in alleviating germination inhibition and growth damage induced by high salt. The Arabidopsis lines affected in ethylene signaling (ein3eil1) and NO biosynthesis (nia1nia2) were employed to compare with the wild-type Col-0 and overexpressing line EIN3ox. Firstly, the obviously inhibited germination, greater ratio of bleached leaves and enhanced electrolyte leakage were found in ein3eil1 and nia1nia2 lines than in Col-0 plants upon high salinity. However, the line EIN3ox obtained a notably elevated ability to germinate and improved seedling resistance. The experiment with SNP alone or plus high salt mostly enhanced the expression of EIN3 transcripts, compared with ACO4 and ACS2. The western blot and transcript analysis found that high-salt-induced EIN3 stabilization and EIN3 transcripts were largely attenuated in the NO biogenesis mutant nia1nia2 plants than in Col-0 ones. This observation was confirmed by simulation experiments with NO scavenger cPTIO to block NO emission. Taken together, our study provides insights that NO promotes seed germination and seedlings growth under salinity may depend on EIN3 protein.
Collapse
Affiliation(s)
- Xilong Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry UniversityHarbin, China
| | - Yajie Pan
- The Key Laboratory of Plant Ecology, Northeast Forestry UniversityHarbin, China
| | - Bowen Chang
- The Key Laboratory of Plant Ecology, Northeast Forestry UniversityHarbin, China
| | - Yucheng Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry UniversityHarbin, China
| | - Zhonghua Tang
- The Key Laboratory of Plant Ecology, Northeast Forestry UniversityHarbin, China
| |
Collapse
|
42
|
Baudouin E, Poilevey A, Hewage NI, Cochet F, Puyaubert J, Bailly C. The Significance of Hydrogen Sulfide for Arabidopsis Seed Germination. FRONTIERS IN PLANT SCIENCE 2016; 7:930. [PMID: 27446159 PMCID: PMC4921499 DOI: 10.3389/fpls.2016.00930] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/10/2016] [Indexed: 05/04/2023]
Abstract
Hydrogen sulfide (H2S) recently emerged as an important gaseous signaling molecule in plants. In this study, we investigated the possible functions of H2S in regulating Arabidopsis seed germination. NaHS treatments delayed seed germination in a dose-dependent manner and were ineffective in releasing seed dormancy. Interestingly, endogenous H2S content was enhanced in germinating seeds. This increase was correlated with higher activity of three enzymes (L-cysteine desulfhydrase, D-cysteine desulfhydrase, and β-cyanoalanine synthase) known as sources of H2S in plants. The H2S scavenger hypotaurine and the D/L cysteine desulfhydrase inhibitor propargylglycine significantly delayed seed germination. We analyzed the germinative capacity of des1 seeds mutated in Arabidopsis cytosolic L-cysteine desulfhydrase. Although the mutant seeds do not exhibit germination-evoked H2S formation, they retained similar germination capacity as the wild-type seeds. In addition, des1 seeds responded similarly to temperature and were as sensitive to ABA as wild type seeds. Taken together, these data suggest that, although its metabolism is stimulated upon seed imbibition, H2S plays, if any, a marginal role in regulating Arabidopsis seed germination under standard conditions.
Collapse
|
43
|
González-Calle V, Barrero-Sicilia C, Carbonero P, Iglesias-Fernández R. Mannans and endo-β-mannanases (MAN) in Brachypodium distachyon: expression profiling and possible role of the BdMAN genes during coleorhiza-limited seed germination. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3753-64. [PMID: 25922488 PMCID: PMC4473977 DOI: 10.1093/jxb/erv168] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Immunolocalization of mannans in the seeds of Brachypodium distachyon reveals the presence of these polysaccharides in the root embryo and in the coleorhiza in the early stages of germination (12h), decreasing thereafter to the point of being hardly detected at 27h. Concurrently, the activity of endo-β-mannanases (MANs; EC 3.2.1.78) that catalyse the hydrolysis of β-1,4 bonds in mannan polymers, increases as germination progresses. The MAN gene family is represented by six members in the Brachypodium genome, and their expression has been explored in different organs and especially in germinating seeds. Transcripts of BdMAN2, BdMAN4 and BdMAN6 accumulate in embryos, with a maximum at 24-30h, and are detected in the coleorhiza and in the root by in situ hybridization analyses, before root protrusion (germination sensu stricto). BdMAN4 is not only present in the embryo root and coleorhiza, but is abundant in the de-embryonated (endosperm) imbibed seeds, while BdMAN2 and BdMAN6 are faintly expressed in endosperm during post-germination (36-42h). BdMAN4 and BdMAN6 transcripts are detected in the aleurone layer. These data indicate that BdMAN2, BdMAN4 and BdMAN6 are important for germination sensu stricto and that BdMAN4 and BdMAN6 may also influence reserve mobilization. Whether the coleorhiza in monocots and the micropylar endosperm in eudicots have similar functions, is discussed.
Collapse
Affiliation(s)
- Virginia González-Calle
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and ETSI Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223-Madrid, Spain
| | - Cristina Barrero-Sicilia
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and ETSI Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223-Madrid, Spain
| | - Pilar Carbonero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and ETSI Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223-Madrid, Spain
| | - Raquel Iglesias-Fernández
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and ETSI Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223-Madrid, Spain
| |
Collapse
|
44
|
Mira MM, Adel ES, Stasolla C. Ethylene is integrated into the nitric oxide regulation of Arabidopsis somatic embryogenesis. J Genet Eng Biotechnol 2015; 13:7-17. [PMID: 30647561 PMCID: PMC6299816 DOI: 10.1016/j.jgeb.2015.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/18/2014] [Accepted: 01/10/2015] [Indexed: 01/07/2023]
Abstract
The study confirms the role of the two Arabidopsis hemoglobin genes (Glb1 and Glb2) during somatic embryogenesis and proposes the involvement of ethylene in the regulation of embryo development. Suppression of both Glb1 and Glb2 results in accumulation of nitric oxide (NO) and a different embryogenic response. Compared to WT tissue, down-regulation of Glb1 (Glb1 RNAi line) compromises the embryogenic process, while repression of Glb2 (Glb2-/- line) increases the number of embryos. These differences were ascribed to the differential accumulation of NO in the two lines, as Glb1 is a more effective NO scavenger compared to Glb2. A high elevation of NO level [achieved pharmacologically using the NO donor sodium nitroprusside (SNP), or genetically using the Glb1 suppressing line], activated the two ethylene biosynthetic genes 1-aminocyclopropane-1-carboxylate synthase (ACC synthase) and 1-aminocyclopropane-1-carboxylate oxidase (ACC oxidase). Ethylene accumulation repressed embryogenesis, as shown by the decreased embryo number observed in tissue treated with the ethylene releasing agent Ethephon (ETH), as well as by the increased embryo production obtained with the two ethylene insensitive mutant lines (ein2-1 and ein3-1). A repression in ethylene level increased the expression of many auxin biosynthetic genes and favored the accumulation of the auxin indole-acetic acid (IAA) at the sites of the explants where embryogenic tissue will form. Collectively these data reveal that high levels of NO, generated by the Glb1 suppressing line, but not by the Glb2 suppressing line, might increase the level of ethylene, which represses the production of auxin. Auxin is the inductive signal required for the formation of the embryogenic tissue.
Collapse
Affiliation(s)
- Mohamed M. Mira
- Department of Botany, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - El-Shanshory Adel
- Department of Botany, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
45
|
Baudouin E, Hancock JT. Nitric oxide signaling in plants. FRONTIERS IN PLANT SCIENCE 2013; 4:553. [PMID: 24474956 PMCID: PMC3893618 DOI: 10.3389/fpls.2013.00553] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 12/23/2013] [Indexed: 05/04/2023]
Affiliation(s)
- Emmanuel Baudouin
- Plant Cellular and Molecular Physiology, Sorbonne Universités, UPMC Univ Paris 06, UR5Paris, France
- Plant Cellular and Molecular Physiology, CNRS, EAC 7180Paris, France
- *Correspondence: ;
| | - John T. Hancock
- Department of Health and Life Sciences, Centre for Research in Plant Science, Genomics Research Institute, University of West of EnglandBristol, UK
- *Correspondence: ;
| |
Collapse
|