1
|
Soleja N, Mohsin M. Exploring the landscape of FRET-based molecular sensors: Design strategies and recent advances in emerging applications. Biotechnol Adv 2024; 77:108466. [PMID: 39419421 DOI: 10.1016/j.biotechadv.2024.108466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
Probing biological processes in living organisms that could provide one-of-a-kind insights into real-time alterations of significant physiological parameters is a formidable task that calls for specialized analytic devices. Classical biochemical methods have significantly aided our understanding of the mechanisms that regulate essential biological processes. These methods, however, are typically insufficient for investigating transient molecular events since they focus primarily on the end outcome. Fluorescence resonance energy transfer (FRET) microscopy is a potent tool used for exploring non-invasively real-time dynamic interactions between proteins and a variety of biochemical signaling events using sensors that have been meticulously constructed. Due to their versatility, FRET-based sensors have enabled the rapid and standardized assessment of a large array of biological variables, facilitating both high-throughput research and precise subcellular measurements with exceptional temporal and spatial resolution. This review commences with a brief introduction to FRET theory and a discussion of the fluorescent molecules that can serve as tags in different sensing modalities for studies in chemical biology, followed by an outlining of the imaging techniques currently utilized to quantify FRET highlighting their strengths and shortcomings. The article also discusses the various donor-acceptor combinations that can be utilized to construct FRET scaffolds. Specifically, the review provides insights into the latest real-time bioimaging applications of FRET-based sensors and discusses the common architectures of such devices. There has also been discussion of FRET systems with multiplexing capabilities and multi-step FRET protocols for use in dual/multi-analyte detections. Future research directions in this exciting field are also mentioned, along with the obstacles and opportunities that lie ahead.
Collapse
Affiliation(s)
- Neha Soleja
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Mohd Mohsin
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
2
|
Vogelsang L, Eirich J, Finkemeier I, Dietz KJ. Specificity and dynamics of H 2O 2 detoxification by the cytosolic redox regulatory network as revealed by in vitro reconstitution. Redox Biol 2024; 72:103141. [PMID: 38599017 PMCID: PMC11022108 DOI: 10.1016/j.redox.2024.103141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
The thiol redox state is a decisive functional characteristic of proteins in cell biology. Plasmatic cell compartments maintain a thiol-based redox regulatory network linked to the glutathione/glutathione disulfide couple (GSH/GSSG) and the NAD(P)H system. The basic network constituents are known and in vivo cell imaging with gene-encoded probes have revealed insight into the dynamics of the [GSH]2/[GSSG] redox potential, cellular H2O2 and NAD(P)H+H+ amounts in dependence on metabolic and environmental cues. Less understood is the contribution and interaction of the network components, also because of compensatory reactions in genetic approaches. Reconstituting the cytosolic network of Arabidopsis thaliana in vitro from fifteen recombinant proteins at in vivo concentrations, namely glutathione peroxidase-like (GPXL), peroxiredoxins (PRX), glutaredoxins (GRX), thioredoxins, NADPH-dependent thioredoxin reductase A and glutathione reductase and applying Grx1-roGFP2 or roGFP2-Orp1 as dynamic sensors, allowed for monitoring the response to a single H2O2 pulse. The major change in thiol oxidation as quantified by mass spectrometry-based proteomics occurred in relevant peptides of GPXL, and to a lesser extent of PRX, while other Cys-containing peptides only showed small changes in their redox state and protection. Titration of ascorbate peroxidase (APX) into the system together with dehydroascorbate reductase lowered the oxidation of the fluorescent sensors in the network but was unable to suppress it. The results demonstrate the power of the network to detoxify H2O2, the partially independent branches of electron flow with significance for specific cell signaling and the importance of APX to modulate the signaling without suppressing it and shifting the burden to glutathione oxidation.
Collapse
Affiliation(s)
- Lara Vogelsang
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany; CeBiTec, Bielefeld University, 33615, Bielefeld, Germany.
| | - Jürgen Eirich
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, 48149, Münster, Germany.
| | - Iris Finkemeier
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, 48149, Münster, Germany.
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany; CeBiTec, Bielefeld University, 33615, Bielefeld, Germany.
| |
Collapse
|
3
|
Carrillo-Carrasco VP, Hernández-García J, Weijers D. Electroporation-based delivery of proteins in Penium margaritaceum and other zygnematophycean algae. PHYSIOLOGIA PLANTARUM 2023; 175:e14121. [PMID: 38148204 DOI: 10.1111/ppl.14121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/28/2023]
Abstract
Zygnematophycean algae represent the streptophyte group identified as the closest sister clade to land plants. Their phylogenetic position and growing genomic resources make these freshwater algae attractive models for evolutionary studies in the context of plant terrestrialization. However, available genetic transformation protocols are limited and exclusively DNA-based. To expand the zygnematophycean toolkit, we developed a DNA-free method for protein delivery into intact cells using electroporation. We use confocal microscopy coupled with fluorescence lifetime imaging to assess the delivery of mNeonGreen into algal cells. We optimized the method to obtain high efficiency of delivery and cell recovery after electroporation in two strains of Penium margaritaceum and show that the experimental setup can also be used to deliver proteins in other zygnematophycean species such as Closterium peracerosum-strigosum-littorale complex and Mesotaenium endlicherianum. We discuss the possible applications of this proof-of-concept method.
Collapse
Affiliation(s)
| | | | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
4
|
Sarhadi TR, Panse JS, Nagotu S. Mind the gap: Methods to study membrane contact sites. Exp Cell Res 2023; 431:113756. [PMID: 37633408 DOI: 10.1016/j.yexcr.2023.113756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/28/2023]
Abstract
Organelles are dynamic entities whose functions are essential for the optimum functioning of cells. It is now known that the juxtaposition of organellar membranes is essential for the exchange of metabolites and their communication. These functional apposition sites are termed membrane contact sites. Dynamic membrane contact sites between various sub-cellular structures such as mitochondria, endoplasmic reticulum, peroxisomes, Golgi apparatus, lysosomes, lipid droplets, plasma membrane, endosomes, etc. have been reported in various model systems. The burgeoning area of research on membrane contact sites has witnessed several manuscripts in recent years that identified the contact sites and components involved. Several methods have been developed to identify, measure and analyze the membrane contact sites. In this manuscript, we aim to discuss important methods developed to date that are used to study membrane contact sites.
Collapse
Affiliation(s)
- Tanveera Rounaque Sarhadi
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Janhavee Shirish Panse
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Shirisha Nagotu
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
5
|
Ahmad M, Movileanu L. Multiplexed imaging for probing RAS-RAF interactions in living cells. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184173. [PMID: 37211322 PMCID: PMC10330472 DOI: 10.1016/j.bbamem.2023.184173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/23/2023]
Abstract
GTP-bound RAS interacts with its protein effectors in response to extracellular stimuli, leading to chemical inputs for downstream pathways. Significant progress has been made in measuring these reversible protein-protein interactions (PPIs) in various cell-free environments. Yet, acquiring high sensitivity in heterogeneous solutions remains challenging. Here, using an intermolecular fluorescence resonance energy transfer (FRET) biosensing approach, we develop a method to visualize and localize HRAS-CRAF interactions in living cells. We demonstrate that the EGFR activation and the HRAS-CRAF complex formation can be concurrently probed in a single cell. This biosensing strategy discriminates EGF-stimulated HRAS-CRAF interactions at the cell and organelle membranes. In addition, we provide quantitative FRET measurements for assessing these transient PPIs in a cell-free environment. Finally, we prove the utility of this approach by showing that an EGFR-binding compound is a potent inhibitor of HRAS-CRAF interactions. The outcomes of this work form a fundamental basis for further explorations of the spatiotemporal dynamics of various signaling networks.
Collapse
Affiliation(s)
- Mohammad Ahmad
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
| | - Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA; Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, NY 13244, USA; The BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA.
| |
Collapse
|
6
|
Somayaji H, Scholes GD. Waveguided energy transfer in pseudo-two-dimensional systems. J Chem Phys 2023; 158:2895247. [PMID: 37290084 DOI: 10.1063/5.0145540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023] Open
Abstract
Resonance energy transfer (RET) is an important and ubiquitous process whereby energy is transferred from a donor chromophore to an acceptor chromophore without contact via Coulombic coupling. There have been a number of recent advances exploiting the quantum electrodynamics (QED) framework for RET. Here, we extend the QED RET theory to investigate whether real photon exchange can allow for excitation transfer over very long distances if the exchanged photon is waveguided. To study this problem, we consider RET in two spatial dimensions. We derive the RET matrix element using QED in two dimensions, consider an even greater confinement by deriving the RET matrix element for a two-dimensional waveguide using ray theory, and compare the resulting RET elements in 3D and 2D and for the 2D waveguide. We see greatly enhanced RET rates over long distances for both the 2D and 2D waveguide systems and see a great preference for transverse photon mediated transfer in the 2D waveguide system.
Collapse
Affiliation(s)
- Hrishikesh Somayaji
- Department of Chemistry, Princeton University, Princeton, New Jersey 08540, USA
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08540, USA
| |
Collapse
|
7
|
Wang X, Clavier G, Zhang Y, Batra K, Xiao N, Maurin G, Ding B, Tissot A, Serre C. A MOF/DNA luminescent sensing platform for detection of potential COVID-19 biomarkers and drugs. Chem Sci 2023; 14:5386-5395. [PMID: 37234896 PMCID: PMC10207894 DOI: 10.1039/d3sc00106g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/02/2023] [Indexed: 05/28/2023] Open
Abstract
COVID-19 has afflicted people's lives worldwide. Interleukin-6 (IL-6) is an important COVID-19 biomarker in human body fluids that can be used as a reference to monitor COVID-19 in real-time and therefore to reduce the risk of virus transmission. On the other hand, oseltamivir is a potential COVID-19 curing drug, but its overuse easily leads to hazardous side effects, calling for its real time monitoring in body fluids. For these purposes, a new yttrium metal-organic framework (Y-MOF) has been synthesized, in which the 5-(4-(imidazole-1-yl)phenyl)isophthalic linker contains a large aromatic backbone capable of strongly interacting with DNA sequences through π-π stacking interactions, which makes it appealing to build a unique sensor based on DNA functionalized MOFs. The MOF/DNA sequence hybrid luminescent sensing platform presents excellent optical properties associated with a high Förster resonance energy transfer (FRET) efficiency. Furthermore, to construct a dual emission sensing platform, a 5'-carboxylfluorescein (FAM) labeled DNA sequence (S2) with a stem-loop structure that can specifically interact with IL-6 has been associated with the Y-MOF. The resulting Y-MOF@S2 exhibits an efficient ratiometric detection of IL-6 in human body fluids with an extremely high Ksv value 4.3 × 108 M-1 and a low detection limit (LOD) of 70 pM. Finally, the Y-MOF@S2@IL-6 hybrid platform allows the detection of oseltamivir with high sensitivity (Ksv value is as high as 5.6 × 105 M-1 and LOD is 54 nM), due to the fact that oseltamivir can disconnect the loop stem structure constructed by S2, leading to a strong quenching effect towards Y-MOF@S2@IL-6. The nature of the interactions between oseltamivir and Y-MOF has been elucidated using density functional theory calculations while the sensing mechanism for the dual detection of IL-6 and oseltamivir has been deciphered based on luminescence lifetime tests and confocal laser scanning microscopy.
Collapse
Affiliation(s)
- Xinrui Wang
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University 75005 Paris France
| | - Gilles Clavier
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM 91190 Gif-sur-Yvette France
| | - Yan Zhang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Kamal Batra
- ICGM, Univ. Montpellier, CNRS, ENSCM Montpellier 34095 France
| | - Nanan Xiao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | | | - Bin Ding
- Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University 393 Binshui West Road Tianjin 300387 P. R. China
| | - Antoine Tissot
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University 75005 Paris France
| | - Christian Serre
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University 75005 Paris France
| |
Collapse
|
8
|
Zhang Y, Chen M, Liu T, Qin K, Fernie AR. Investigating the dynamics of protein-protein interactions in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:965-983. [PMID: 36919339 DOI: 10.1111/tpj.16182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 05/27/2023]
Abstract
Both stable and transient protein interactions play an important role in the complex assemblies required for the proper functioning of living cells. Several methods have been developed to monitor protein-protein interactions in plants. However, the detection of dynamic protein complexes is very challenging, with few technologies available for this purpose. Here, we developed a new platform using the plant UBIQUITIN promoter to drive transgene expression and thereby to detect protein interactions in planta. Typically, to decide which side of the protein to link the tags, the subcellular localization of the protein fused either N-terminal or C-terminal mCitrine was firstly confirmed by using eight different specific mCherry markers. Following stable or transient protein expression in plants, the protein interaction network was detected by affinity purification mass spectrometry. These interactions were subsequently confirmed by bimolecular fluorescence complementation (BiFC), bioluminescence resonance energy transfer and co-immunoprecipitation assays. The dynamics of these interactions were monitored by Förster resonance energy transfer (FRET) and split-nano luciferase, whilst the ternary protein complex association was monitored by BiFC-FRET. Using the canonical glycolytic metabolon as an example, the interaction between these enzymes was characterized under conditions that mimic physiologically relevant energy statuses.
Collapse
Affiliation(s)
- Youjun Zhang
- Center of Plant System Biology and Biotechnology, 4000, Plovdiv, Bulgaria
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Moxian Chen
- Co-Innovation Center for Sustainable Forestry in Southern China & Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Tieyuan Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China
| | - Kezhen Qin
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Center of Plant System Biology and Biotechnology, 4000, Plovdiv, Bulgaria
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| |
Collapse
|
9
|
Glöckner N, zur Oven-Krockhaus S, Rohr L, Wackenhut F, Burmeister M, Wanke F, Holzwart E, Meixner AJ, Wolf S, Harter K. Three-Fluorophore FRET Enables the Analysis of Ternary Protein Association in Living Plant Cells. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11192630. [PMID: 36235497 PMCID: PMC9571070 DOI: 10.3390/plants11192630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/19/2022] [Accepted: 09/24/2022] [Indexed: 05/13/2023]
Abstract
Protein-protein interaction studies provide valuable insights into cellular signaling. Brassinosteroid (BR) signaling is initiated by the hormone-binding receptor Brassinosteroid Insensitive 1 (BRI1) and its co-receptor BRI1 Associated Kinase 1 (BAK1). BRI1 and BAK1 were shown to interact independently with the Receptor-Like Protein 44 (RLP44), which is implicated in BRI1/BAK1-dependent cell wall integrity perception. To demonstrate the proposed complex formation of BRI1, BAK1 and RLP44, we established three-fluorophore intensity-based spectral Förster resonance energy transfer (FRET) and FRET-fluorescence lifetime imaging microscopy (FLIM) for living plant cells. Our evidence indicates that RLP44, BRI1 and BAK1 form a ternary complex in a distinct plasma membrane nanodomain. In contrast, although the immune receptor Flagellin Sensing 2 (FLS2) also forms a heteromer with BAK1, the FLS2/BAK1 complexes are localized to other nanodomains. In conclusion, both three-fluorophore FRET approaches provide a feasible basis for studying the in vivo interaction and sub-compartmentalization of proteins in great detail.
Collapse
Affiliation(s)
- Nina Glöckner
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| | - Sven zur Oven-Krockhaus
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
- Institute for Physical & Theoretical Chemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Leander Rohr
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| | - Frank Wackenhut
- Institute for Physical & Theoretical Chemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Moritz Burmeister
- Institute for Physical & Theoretical Chemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Friederike Wanke
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| | - Eleonore Holzwart
- Centre for Organismal Studies (COS), University of Heidelberg, 69117 Heidelberg, Germany
| | - Alfred J. Meixner
- Institute for Physical & Theoretical Chemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Sebastian Wolf
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
- Centre for Organismal Studies (COS), University of Heidelberg, 69117 Heidelberg, Germany
| | - Klaus Harter
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
- Correspondence: ; Tel.: +49-(0)-7071-2972605
| |
Collapse
|
10
|
Hsiao AS, Huang JY. Bioimaging tools move plant physiology studies forward. FRONTIERS IN PLANT SCIENCE 2022; 13:976627. [PMID: 36204075 PMCID: PMC9530904 DOI: 10.3389/fpls.2022.976627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Affiliation(s)
- An-Shan Hsiao
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Ji-Ying Huang
- Cell Biology Core Lab, Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
11
|
Architecting novel multilayer nanosponges for co-administration of two drugs managing high-risk type II diabetes mellitus patients suffering from cardiovascular diseases. Int J Biol Macromol 2022; 220:1429-1443. [PMID: 36115452 DOI: 10.1016/j.ijbiomac.2022.09.099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/01/2022] [Accepted: 09/11/2022] [Indexed: 11/20/2022]
Abstract
Nanosponges are porous solid nanoparticles composed of hyper-cross-linked polymers that serve as specific micro-domains designed for the co-encapsulation of two drugs with different chemical structures. Our goal was to engineer a novel assembly of multilayer nanosponges (MLNS) based on a layer-by-layer approach. This MLNS was engineered to incorporate two drugs (linagliptin and empagliflozin) in a new drug delivery route. Linagliptin has a low oral bioavailability due to intestinal degradation and low permeability. Its pharmacokinetics shows a non-linear profile which leads to a disproportionate increase in its effectiveness with increasing the dose frequency. Empagliflozin has a low permeability and is very slightly soluble in aqueous media between pH 1-7.5. MLNS could improve their bioavailability along with resolving possible risks due to the non-linear pharmacokinetics of linagliptin and maximizing its dose efficiency. 23 factorial design was used to optimize the novel systems. MLNS (F4) was chosen as the optimal system with an average diameter of 40 nm and the highest entrapment efficiency which accounts for 92.93 % ± 2.27 and 100.94 % ± 0.55 for linagliptin and empagliflozin respectively. Förster resonance energy transfer confirmed the formation of a multilayer structure in MLNS. The optimized system was incorporated within chitosan mucoadhesive buccal films which were optimized through 22factorial design. The permeation study from optimized MLNS-film (B4) ensured an improved empagliflozin permeation along with a controlled efflux for linagliptin, resolving possible risks due to the nonlinear plasma profile. The in-vivo study of MLNS-film (B4) revealed that AUC(0-∞)of linagliptin and empagliflozin was enhanced by two-fold and ten-fold, respectively. Therefore, the nano-buccal formulation for the co-delivered hypoglycemic drugs could contribute to improved clinical efficacy in the treatment of diabetes.
Collapse
|
12
|
Jiang X, Pees T, Reinhold-Hurek B. Deep-learning-based removal of autofluorescence and fluorescence quantification in plant-colonizing bacteria in vivo. THE NEW PHYTOLOGIST 2022; 235:2481-2495. [PMID: 35752974 DOI: 10.1111/nph.18344] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Fluorescence microscopy is common in bacteria-plant interaction studies. However, strong autofluorescence from plant tissues impedes in vivo studies on endophytes tagged with fluorescent proteins. To solve this problem, we developed a deep-learning-based approach to eliminate plant autofluorescence from fluorescence microscopy images, tested for the model endophyte Azoarcus olearius BH72 colonizing Oryza sativa roots. Micrographs from three channels (tdTomato for gene expression, green fluorescent protein (GFP) and AutoFluorescence (AF)) were processed by a neural network based approach, generating images that simulate the background autofluorescence in the tdTomato channel. After subtracting the model-generated signals from each pixel in the genuine channel, the autofluorescence in the tdTomato channel was greatly reduced or even removed. The deep-learning-based approach can be applied for fluorescence detection and quantification, exemplified by a weakly expressed, a cell-density modulated and a nitrogen-fixation gene in A. olearius. A transcriptional nifH::tdTomato fusion demonstrated stronger induction of nif genes inside roots than outside, suggesting extension of the rhizosphere effect for diazotrophs into the endorhizosphere. The pre-trained convolutional neural network model is easily applied to process other images of the same plant tissues with the same settings. This study showed the high potential of deep-learning-based approaches in image processing. With proper training data and strategies, autofluorescence in other tissues or materials can be removed for broad applications.
Collapse
Affiliation(s)
- Xun Jiang
- Department of Microbe-Plant Interactions, CBIB Center for Biomolecular Interactions, Faculty of Biology and Chemistry, University of Bremen, PO Box 33 04 40, D-28334, Bremen, Germany
| | - Tobias Pees
- Department of Microbe-Plant Interactions, CBIB Center for Biomolecular Interactions, Faculty of Biology and Chemistry, University of Bremen, PO Box 33 04 40, D-28334, Bremen, Germany
| | - Barbara Reinhold-Hurek
- Department of Microbe-Plant Interactions, CBIB Center for Biomolecular Interactions, Faculty of Biology and Chemistry, University of Bremen, PO Box 33 04 40, D-28334, Bremen, Germany
| |
Collapse
|
13
|
De Oliveira PA, Moreno E, Casajuana-Martin N, Casadó-Anguera V, Cai NS, Camacho-Hernandez GA, Zhu H, Bonifazi A, Hall MD, Weinshenker D, Newman AH, Logothetis DE, Casadó V, Plant LD, Pardo L, Ferré S. Preferential Gs protein coupling of the galanin Gal 1 receptor in the µ-opioid-Gal 1 receptor heterotetramer. Pharmacol Res 2022; 182:106322. [PMID: 35750299 PMCID: PMC9462584 DOI: 10.1016/j.phrs.2022.106322] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/18/2022] [Accepted: 06/19/2022] [Indexed: 12/25/2022]
Abstract
Recent studies have proposed that heteromers of µ-opioid receptors (MORs) and galanin Gal1 receptors (Gal1Rs) localized in the mesencephalon mediate the dopaminergic effects of opioids. The present study reports converging evidence, using a peptide-interfering approach combined with biophysical and biochemical techniques, including total internal reflection fluorescence microscopy, for a predominant homodimeric structure of MOR and Gal1R when expressed individually, and for their preference to form functional heterotetramers when co-expressed. Results show that a heteromerization-dependent change in the Gal1R homodimeric interface leads to a switch in G-protein coupling from inhibitory Gi to stimulatory Gs proteins. The MOR-Gal1R heterotetramer, which is thus bound to Gs via the Gal1R homodimer and Gi via the MOR homodimer, provides the framework for a canonical Gs-Gi antagonist interaction at the adenylyl cyclase level. These novel results shed light on the intense debate about the oligomeric quaternary structure of G protein-coupled receptors, their predilection for heteromer formation, and the resulting functional significance.
Collapse
Affiliation(s)
| | - Estefanía Moreno
- Laboratory of Molecular Neuropharmacology, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology and Institute of Biomedicine, University of Barcelona, Barcelona, Spain
| | - Nil Casajuana-Martin
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Autonomous University of Barcelona, Bellaterra, Spain
| | - Verònica Casadó-Anguera
- Laboratory of Molecular Neuropharmacology, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology and Institute of Biomedicine, University of Barcelona, Barcelona, Spain
| | | | - Gisela Andrea Camacho-Hernandez
- Medicinal Chemistry Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Hu Zhu
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Alessandro Bonifazi
- Medicinal Chemistry Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Matthew D Hall
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Amy Hauck Newman
- Medicinal Chemistry Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Diomedes E Logothetis
- Departments of Pharmaceutical Sciences, Chemistry and Chemical Biology and Center for Drug Discovery, School of Pharmacy at the Bouvé College of Health Sciences and College of Science, Northeastern University, Boston, MA, USA
| | - Vicent Casadó
- Laboratory of Molecular Neuropharmacology, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology and Institute of Biomedicine, University of Barcelona, Barcelona, Spain.
| | - Leigh D Plant
- Departments of Pharmaceutical Sciences, Chemistry and Chemical Biology and Center for Drug Discovery, School of Pharmacy at the Bouvé College of Health Sciences and College of Science, Northeastern University, Boston, MA, USA.
| | - Leonardo Pardo
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Autonomous University of Barcelona, Bellaterra, Spain.
| | | |
Collapse
|
14
|
Penjweini R, Roarke B, Alspaugh G, Link KA, Andreoni A, Mori MP, Hwang PM, Sackett DL, Knutson JR. Intracellular imaging of metmyoglobin and oxygen using new dual purpose probe EYFP-Myoglobin-mCherry. JOURNAL OF BIOPHOTONICS 2022; 15:e202100166. [PMID: 34689421 PMCID: PMC8901566 DOI: 10.1002/jbio.202100166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/04/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
The biological relevance of nitric oxide (NO) and reactive oxygen species (ROS) in signaling, metabolic regulation, and disease treatment has become abundantly clear. The dramatic change in NO/ROS processing that accompanies a changing oxygen landscape calls for new imaging tools that can provide cellular details about both [O2 ] and the production of reactive species. Myoglobin oxidation to the met state by NO/ROS is a known sensor with absorbance changes in the visible range. We previously employed Förster resonance energy transfer to read out the deoxygenation/oxygenation of myoglobin, creating the subcellular [O2 ] sensor Myoglobin-mCherry. We now add the fluorescent protein EYFP to this sensor to create a novel probe that senses both met formation, a proxy for ROS/NO exposure, and [O2 ]. Since both proteins are present in the construct, it can also relieve users from the need to measure fluorescence lifetime, making [O2 ] sensing available to a wider group of laboratories.
Collapse
Affiliation(s)
- Rozhin Penjweini
- Laboratory of Advanced Microscopy and Biophotonics, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892-1412
| | - Branden Roarke
- Laboratory of Advanced Microscopy and Biophotonics, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892-1412
| | - Greg Alspaugh
- Laboratory of Advanced Microscopy and Biophotonics, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892-1412
| | - Katie A. Link
- Laboratory of Advanced Microscopy and Biophotonics, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892-1412
| | - Alessio Andreoni
- Laboratory of Advanced Microscopy and Biophotonics, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892-1412
- Laboratory of Optical Neurophysiology, Department of Biochemistry and Molecular Medicine, University of California Davis, Tupper Hall, Davis, CA 95616
| | - Mateus P. Mori
- Laboratory of Cardiovascular and Cancer Genetics, NHLBI, NIH, Bethesda, MD 20892-1412
| | - Paul M. Hwang
- Laboratory of Cardiovascular and Cancer Genetics, NHLBI, NIH, Bethesda, MD 20892-1412
| | - Dan L. Sackett
- Cytoskeletal Dynamics Group, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda MD, 20892-0924
| | - Jay R. Knutson
- Laboratory of Advanced Microscopy and Biophotonics, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892-1412
| |
Collapse
|
15
|
Interactome of Arabidopsis Thaliana. PLANTS 2022; 11:plants11030350. [PMID: 35161331 PMCID: PMC8838453 DOI: 10.3390/plants11030350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 01/24/2023]
Abstract
More than 95,000 protein–protein interactions of Arabidopsis thaliana have been published and deposited in databases. This dataset was supplemented by approximately 900 additional interactions, which were identified in the literature from the years 2002–2021. These protein–protein interactions were used as the basis for a Cytoscape network and were supplemented with data on subcellular localization, gene ontologies, biochemical properties and co-expression. The resulting network has been exemplarily applied in unraveling the PPI-network of the plant vacuolar proton-translocating ATPase (V-ATPase), which was selected due to its central importance for the plant cell. In particular, it is involved in cellular pH homeostasis, providing proton motive force necessary for transport processes, trafficking of proteins and, thereby, cell wall synthesis. The data points to regulation taking place on multiple levels: (a) a phosphorylation-dependent regulation by 14-3-3 proteins and by kinases such as WNK8 and NDPK1a, (b) an energy-dependent regulation via HXK1 and the glucose receptor RGS1 and (c) a Ca2+-dependent regulation by SOS2 and IDQ6. The known importance of V-ATPase for cell wall synthesis is supported by its interactions with several proteins involved in cell wall synthesis. The resulting network was further analyzed for (experimental) biases and was found to be enriched in nuclear, cytosolic and plasma membrane proteins but depleted in extracellular and mitochondrial proteins, in comparison to the entity of protein-coding genes. Among the processes and functions, proteins involved in transcription were highly abundant in the network. Subnetworks were extracted for organelles, processes and protein families. The degree of representation of organelles and processes reveals limitations and advantages in the current knowledge of protein–protein interactions, which have been mainly caused by a high number of database entries being contributed by only a few publications with highly specific motivations and methodologies that favor, for instance, interactions in the cytosol and the nucleus.
Collapse
|
16
|
Poggio E, Brini M, Calì T. Get Closer to the World of Contact Sites: A Beginner's Guide to Proximity-Driven Fluorescent Probes. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2022; 5:25152564221135748. [PMID: 37366505 PMCID: PMC10243574 DOI: 10.1177/25152564221135748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
To maintain cellular homeostasis and to coordinate the proper response to a specific stimulus, information must be integrated throughout the cell in a well-organized network, in which organelles are the crucial nodes and membrane contact sites are the main edges. Membrane contact sites are the cellular subdomains where two or more organelles come into close apposition and interact with each other. Even though many inter-organelle contacts have been identified, most of them are still not fully characterized, therefore their study is an appealing and expanding field of research. Thanks to significant technological progress, many tools are now available or are in rapid development, making it difficult to choose which one is the most suitable for answering a specific biological question. Here we distinguish two different experimental approaches for studying inter-organelle contact sites. The first one aims to morphologically characterize the sites of membrane contact and to identify the molecular players involved, relying mainly on the application of biochemical and electron microscopy (EM)-related methods. The second approach aims to understand the functional importance of a specific contact, focusing on spatio-temporal details. For this purpose, proximity-driven fluorescent probes are the experimental tools of choice, since they allow the monitoring and quantification of membrane contact sites and their dynamics in living cells under different cellular conditions or upon different stimuli. In this review, we focus on these tools with the purpose of highlighting their great versatility and how they can be applied in the study of membrane contacts. We will extensively describe all the different types of proximity-driven fluorescent tools, discussing their benefits and drawbacks, ultimately providing some suggestions to choose and apply the appropriate methods on a case-to-case basis and to obtain the best experimental outcomes.
Collapse
Affiliation(s)
- Elena Poggio
- Department of Biology (DiBio), University of
Padova, Padova, Italy
| | - Marisa Brini
- Department of Biology (DiBio), University of
Padova, Padova, Italy
- Study Center for Neurodegeneration (CESNE),
University of Padova, Padova, Italy
| | - Tito Calì
- Study Center for Neurodegeneration (CESNE),
University of Padova, Padova, Italy
- Department of Biomedical Sciences (DSB),
University of Padova, Padova, Italy
- Padova Neuroscience Center (PNC), University
of Padova, Padova, Italy
| |
Collapse
|
17
|
Mizuta Y. Advances in Two-Photon Imaging in Plants. PLANT & CELL PHYSIOLOGY 2021; 62:1224-1230. [PMID: 34019083 PMCID: PMC8579158 DOI: 10.1093/pcp/pcab062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/16/2021] [Accepted: 05/20/2021] [Indexed: 05/06/2023]
Abstract
Live and deep imaging play a significant role in the physiological and biological study of organisms. Two-photon excitation microscopy (2PEM), also known as multiphoton excitation microscopy, is a fluorescent imaging technique that allows deep imaging of living tissues. Two-photon lasers use near-infrared (NIR) pulse lasers that are less invasive and permit deep tissue penetration. In this review, recent advances in two-photon imaging and their applications in plant studies are discussed. Compared to confocal microscopy, NIR 2PEM exhibits reduced plant-specific autofluorescence, thereby achieving greater depth and high-resolution imaging in plant tissues. Fluorescent proteins with long emission wavelengths, such as orange-red fluorescent proteins, are particularly suitable for two-photon live imaging in plants. Furthermore, deep- and high-resolution imaging was achieved using plant-specific clearing methods. In addition to imaging, optical cell manipulations can be performed using femtosecond pulsed lasers at the single cell or organelle level. Optical surgery and manipulation can reveal cellular communication during development. Advances in in vivo imaging using 2PEM will greatly benefit biological studies in plant sciences.
Collapse
Affiliation(s)
- Yoko Mizuta
- Institute for Advanced Research (IAR), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
18
|
Mishima K, Shoji M, Umena Y, Boero M, Shigeta Y. Estimation of the relative contributions to the electronic energy transfer rates based on Förster theory: The case of C-phycocyanin chromophores. Biophys Physicobiol 2021; 18:196-214. [PMID: 34552842 PMCID: PMC8421246 DOI: 10.2142/biophysico.bppb-v18.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/20/2021] [Indexed: 12/01/2022] Open
Abstract
In the present study, we provide a reformulation of the theory originally proposed by Förster which allows for simple and convenient formulas useful to estimate the relative contributions of transition dipole moments of a donor and acceptor (chemical factors), their orientation factors (intermolecular structural factors), intermolecular center-to-center distances (intermolecular structural factors), spectral overlaps of absorption and emission spectra (photophysical factors), and refractive index (material factor) to the excitation energy transfer (EET) rate constant. To benchmark their validity, we focused on the EET occurring in C-phycocyanin (C-PC) chromophores. To this aim, we resorted to quantum chemistry calculations to get optimized molecular structures of the C-PC chromophores within the density functional theory (DFT) framework. The absorption and emission spectra, as well as transition dipole moments, were computed by using the time-dependent DFT (TDDFT). Our method was applied to several types of C-PCs showing that the EET rates are determined by an interplay of their specific physical, chemical, and geometrical features. These results show that our formulas can become a useful tool for a reliable estimation of the relative contributions of the factors regulating the EET transfer rate.
Collapse
Affiliation(s)
- Kenji Mishima
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Mitsuo Shoji
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan.,JST-PRESTO, Kawaguchi, Saitama 332-0012, Japan
| | - Yasufumi Umena
- Department of Physiology, Division of Biophysics, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Mauro Boero
- University of Strasbourg, Institut de Physique et Chimie des Matériaux de Strasbourg, France
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
19
|
Ugalde JM, Fuchs P, Nietzel T, Cutolo EA, Homagk M, Vothknecht UC, Holuigue L, Schwarzländer M, Müller-Schüssele SJ, Meyer AJ. Chloroplast-derived photo-oxidative stress causes changes in H2O2 and EGSH in other subcellular compartments. PLANT PHYSIOLOGY 2021; 186:125-141. [PMID: 33793922 PMCID: PMC8154069 DOI: 10.1093/plphys/kiaa095] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/03/2020] [Indexed: 05/19/2023]
Abstract
Metabolic fluctuations in chloroplasts and mitochondria can trigger retrograde signals to modify nuclear gene expression. Mobile signals likely to be involved are reactive oxygen species (ROS), which can operate protein redox switches by oxidation of specific cysteine residues. Redox buffers, such as the highly reduced glutathione pool, serve as reservoirs of reducing power for several ROS-scavenging and ROS-induced damage repair pathways. Formation of glutathione disulfide and a shift of the glutathione redox potential (EGSH) toward less negative values is considered as hallmark of several stress conditions. Here we used the herbicide methyl viologen (MV) to generate ROS locally in chloroplasts of intact Arabidopsis (Arabidopsis thaliana) seedlings and recorded dynamic changes in EGSH and H2O2 levels with the genetically encoded biosensors Grx1-roGFP2 (for EGSH) and roGFP2-Orp1 (for H2O2) targeted to chloroplasts, the cytosol, or mitochondria. Treatment of seedlings with MV caused rapid oxidation in chloroplasts and, subsequently, in the cytosol and mitochondria. MV-induced oxidation was significantly boosted by illumination with actinic light, and largely abolished by inhibitors of photosynthetic electron transport. MV also induced autonomous oxidation in the mitochondrial matrix in an electron transport chain activity-dependent manner that was milder than the oxidation triggered in chloroplasts by the combination of MV and light. In vivo redox biosensing resolves the spatiotemporal dynamics of compartmental responses to local ROS generation and provides a basis for understanding how compartment-specific redox dynamics might operate in retrograde signaling and stress acclimation in plants.
Collapse
Affiliation(s)
- José Manuel Ugalde
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, D-53113 Bonn, Germany
| | - Philippe Fuchs
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, D-53113 Bonn, Germany
- Institute of Plant Biology and Biotechnology, University of Münster, D-48143 Münster, Germany
| | - Thomas Nietzel
- Institute of Plant Biology and Biotechnology, University of Münster, D-48143 Münster, Germany
| | - Edoardo A Cutolo
- Institute of Cellular and Molecular Botany (IZMB), University of Bonn, D-53115 Bonn, Germany
| | - Maria Homagk
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, D-53113 Bonn, Germany
| | - Ute C Vothknecht
- Institute of Cellular and Molecular Botany (IZMB), University of Bonn, D-53115 Bonn, Germany
| | - Loreto Holuigue
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, University of Münster, D-48143 Münster, Germany
| | | | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, D-53113 Bonn, Germany
| |
Collapse
|
20
|
Aplin CP, Miller RC, Kay TM, Heikal AA, Boersma AJ, Sheets ED. Fluorescence depolarization dynamics of ionic strength sensors using time-resolved anisotropy. Biophys J 2021; 120:1417-1430. [PMID: 33582140 DOI: 10.1016/j.bpj.2021.01.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/17/2020] [Accepted: 01/20/2021] [Indexed: 10/22/2022] Open
Abstract
Eukaryotic cells exploit dynamic and compartmentalized ionic strength to impact a myriad of biological functions such as enzyme activities, protein-protein interactions, and catalytic functions. Herein, we investigated the fluorescence depolarization dynamics of recently developed ionic strength biosensors (mCerulean3-linker-mCitrine) in Hofmeister salt (KCl, NaCl, NaI, and Na2SO4) solutions. The mCerulean3-mCitrine acts as a Förster resonance energy transfer (FRET) pair, tethered together by two oppositely charged α-helices in the linker region. We developed a time-resolved fluorescence depolarization anisotropy approach for FRET analyses, in which the donor (mCerulean3) is excited by 425-nm laser pulses, followed by fluorescence depolarization analysis of the acceptor (mCitrine) in KE (lysine-glutamate), arginine-aspartate, and arginine-glutamate ionic strength sensors with variable amino acid sequences. Similar experiments were carried out on the cleaved sensors as well as an E6G2 construct, which has neutral α-helices in the linker region, as a control. Our results show distinct dynamics of the intact and cleaved sensors. Importantly, the FRET efficiency decreases and the donor-acceptor distance increases as the environmental ionic strength increases. Our chemical equilibrium analyses of the collapsed-to-stretched conformational state transition of KE reveal that the corresponding equilibrium constant and standard Gibbs free energy changes are ionic strength dependent. We also tested the existing theoretical models for FRET analyses using steady-state anisotropy, which reveal that the angle between the dipole moments of the donor and acceptor in the KE sensor are sensitive to the ionic strength. These results help establish the time-resolved depolarization dynamics of these genetically encoded donor-acceptor pairs as a quantitative means for FRET analysis, which complement traditional methods such as time-resolved fluorescence for future in vivo studies.
Collapse
Affiliation(s)
- Cody P Aplin
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota
| | - Robert C Miller
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota
| | - Taryn M Kay
- Department of Physics and Astronomy, University of Minnesota Duluth, Duluth, Minnesota
| | - Ahmed A Heikal
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota.
| | - Arnold J Boersma
- DWI-Leibniz Institute for Interactive Materials, Aachen, Germany.
| | - Erin D Sheets
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota.
| |
Collapse
|
21
|
Lankatillake C, Luo S, Flavel M, Lenon GB, Gill H, Huynh T, Dias DA. Screening natural product extracts for potential enzyme inhibitors: protocols, and the standardisation of the usage of blanks in α-amylase, α-glucosidase and lipase assays. PLANT METHODS 2021; 17:3. [PMID: 33407662 PMCID: PMC7789656 DOI: 10.1186/s13007-020-00702-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/19/2020] [Indexed: 06/01/2023]
Abstract
BACKGROUND Enzyme assays have widespread applications in drug discovery from plants to natural products. The appropriate use of blanks in enzyme assays is important for assay baseline-correction, and the correction of false signals associated with background matrix interferences. However, the blank-correction procedures reported in published literature are highly inconsistent. We investigated the influence of using different types of blanks on the final calculated activity/inhibition results for three enzymes of significance in diabetes and obesity; α-glucosidase, α-amylase, and lipase. This is the first study to examine how different blank-correcting methods affect enzyme assay results. Although assays targeting the above enzymes are common in the literature, there is a scarcity of detailed published protocols. Therefore, we have provided comprehensive, step-by-step protocols for α-glucosidase-, α-amylase- and lipase-inhibition assays that can be performed in 96-well format in a simple, fast, and resource-efficient manner with clear instructions for blank-correction and calculation of results. RESULTS In the three assays analysed here, using only a buffer blank underestimated the enzyme inhibitory potential of the test sample. In the absorbance-based α-glucosidase assay, enzyme inhibition was underestimated when a sample blank was omitted for the coloured plant extracts. Similarly, in the fluorescence-based α-amylase and lipase assays, enzyme inhibition was underestimated when a substrate blank was omitted. For all three assays, method six [Raw Data - (Substrate + Sample Blank)] enabled the correction of interferences due to the buffer, sample, and substrate without double-blanking, and eliminated the need to add substrate to each sample blank. CONCLUSION The choice of blanks and blank-correction methods contribute to the variability of assay results and the likelihood of underestimating the enzyme inhibitory potential of a test sample. This highlights the importance of standardising the use of blanks and the reporting of blank-correction procedures in published studies in order to ensure the accuracy and reproducibility of results, and avoid overlooked opportunities in drug discovery research due to inadvertent underestimation of enzyme inhibitory potential of test samples resulting from unsuitable blank-correction. Based on our assessments, we recommend method six [RD - (Su + SaB)] as a suitable method for blank-correction of raw data in enzyme assays.
Collapse
Affiliation(s)
- Chintha Lankatillake
- School of Health and Biomedical Sciences, Discipline of Laboratory Medicine, RMIT University, Bundoora, 3083, Australia
| | - Shiqi Luo
- School of Health and Biomedical Sciences, Discipline of Laboratory Medicine, RMIT University, Bundoora, 3083, Australia
| | - Matthew Flavel
- TPM Bioactives Division, The Product Makers Pty Ltd, Melbourne, Australia
- School of Life Sciences, La Trobe University, Melbourne, Australia
| | - George Binh Lenon
- School of Health and Biomedical Sciences, Discipline of Laboratory Medicine, RMIT University, Bundoora, 3083, Australia
| | - Harsharn Gill
- School of Science, RMIT University, Bundoora, 3083, Australia
| | - Tien Huynh
- School of Science, RMIT University, Bundoora, 3083, Australia
| | - Daniel Anthony Dias
- School of Health and Biomedical Sciences, Discipline of Laboratory Medicine, RMIT University, Bundoora, 3083, Australia.
| |
Collapse
|
22
|
Liu X, Biboy J, Consoli E, Vollmer W, den Blaauwen T. MreC and MreD balance the interaction between the elongasome proteins PBP2 and RodA. PLoS Genet 2020; 16:e1009276. [PMID: 33370261 PMCID: PMC7793260 DOI: 10.1371/journal.pgen.1009276] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/08/2021] [Accepted: 11/12/2020] [Indexed: 12/23/2022] Open
Abstract
Rod-shape of most bacteria is maintained by the elongasome, which mediates the synthesis and insertion of peptidoglycan into the cylindrical part of the cell wall. The elongasome contains several essential proteins, such as RodA, PBP2, and the MreBCD proteins, but how its activities are regulated remains poorly understood. Using E. coli as a model system, we investigated the interactions between core elongasome proteins in vivo. Our results show that PBP2 and RodA form a complex mediated by their transmembrane and periplasmic parts and independent of their catalytic activity. MreC and MreD also interact directly with PBP2. MreC elicits a change in the interaction between PBP2 and RodA, which is suppressed by MreD. The cytoplasmic domain of PBP2 is required for this suppression. We hypothesize that the in vivo measured PBP2-RodA interaction change induced by MreC corresponds to the conformational change in PBP2 as observed in the MreC-PBP2 crystal structure, which was suggested to be the "on state" of PBP2. Our results indicate that the balance between MreC and MreD determines the activity of PBP2, which could open new strategies for antibiotic drug development.
Collapse
Affiliation(s)
- Xiaolong Liu
- Bacterial Cell Biology & Physiology, Swammerdam Institute for Life Science, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Jacob Biboy
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Elisa Consoli
- Bacterial Cell Biology & Physiology, Swammerdam Institute for Life Science, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Tanneke den Blaauwen
- Bacterial Cell Biology & Physiology, Swammerdam Institute for Life Science, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Benderskii VA, Kim IP. Photovoltaic Effect in Phthalocyanine-Based Organic Solar Cells: 2. Trapping of Molecular Excitons by Impurities. HIGH ENERGY CHEMISTRY 2020. [DOI: 10.1134/s0018143920060028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Weihs F, Wang J, Pfleger KDG, Dacres H. Experimental determination of the bioluminescence resonance energy transfer (BRET) Förster distances of NanoBRET and red-shifted BRET pairs. Anal Chim Acta X 2020; 6:100059. [PMID: 33392495 PMCID: PMC7772631 DOI: 10.1016/j.acax.2020.100059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/08/2020] [Accepted: 08/30/2020] [Indexed: 01/07/2023] Open
Abstract
Bioluminescence Resonance Energy Transfer (BRET) is widely applied to study protein-protein interactions, as well as increasingly to monitor both ligand binding and molecular rearrangements. The Förster distance (R0) describes the physical distance between the two chromophores at which 50% of the maximal energy transfer occurs and it depends on the choice of RET components. R0 can be experimentally determined using flexible peptide linkers of known lengths to separate the two chromophores. Knowledge of the R0 helps to inform on the choice of BRET system. For example, we have previously shown that BRET2 exhibits the largest R0 to date for any genetically encoded RET pair, which may be advantageous for investigating large macromolecular complexes if its issues of low and fast-decaying bioluminescence signal can be accommodated. In this study we have determined R0 for a range of bright and red-shifted BRET pairs, including NanoBRET with tetramethylrhodamine (TMR), non-chloro TOM (NCT), mCherry or Venus as acceptor, and BRET6, a red-shifted BRET2-like system. This study revealed R0 values of 6.15 nm and 6.94 nm for NanoBRET using TMR or NCT as acceptor ligands, respectively. R0 was 5.43 nm for NanoLuc-mCherry, 5.59 nm for NanoLuc-Venus and 5.47 nm for BRET6. This extends the palette of available BRET Förster distances, to give researchers a better-informed choice when considering BRET systems and points towards NanoBRET with NCT as a good alternative to BRET2 as an analysis tool for large macromolecular complexes. Experimental determination of Förster distances (R0) for commonly applied BRET pairs. Determination of R0 for NanoBRET with Venus, mCherry and HaloTag (TMR, NCT). Determination of R0 for BRET6. NanoLuc-HaloTag (NCT) exhibits the second largest R0 of any genetically encoded system.
Collapse
Affiliation(s)
- Felix Weihs
- CSIRO Health & Biosecurity, Parkville, 343 Royal Parade, Melbourne, VIC, 3030, Australia
| | - Jian Wang
- CSIRO Health & Biosecurity, Canberra, ACT, 2601, Australia
| | - Kevin D G Pfleger
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, WA, 6009, Australia.,Australian Research Council Centre for Personalised Therapeutics Technologies, Australia.,Dimerix Limited, Nedlands, WA, Australia
| | - Helen Dacres
- CSIRO Health & Biosecurity, Food Innovation Centre, 671 Sneydes Road, Werribee, VIC, 3030, Australia
| |
Collapse
|
25
|
Cho U, Chen JK. Lanthanide-Based Optical Probes of Biological Systems. Cell Chem Biol 2020; 27:921-936. [PMID: 32735780 DOI: 10.1016/j.chembiol.2020.07.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/28/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023]
Abstract
The unique photophysical properties of lanthanides, such as europium, terbium, and ytterbium, make them versatile molecular probes of biological systems. In particular, their long-lived photoluminescence, narrow bandwidth emissions, and large Stokes shifts enable experiments that are infeasible with organic fluorophores and fluorescent proteins. The ability of these metal ions to undergo luminescence resonance energy transfer, and photon upconversion further expands the capabilities of lanthanide probes. In this review, we describe recent advances in the design of lanthanide luminophores and their application in biological research. We also summarize the latest detection systems that have been developed to fully exploit the optical properties of lanthanide luminophores. We conclude with a discussion of remaining challenges and new frontiers in lanthanide technologies. The unprecedented levels of sensitivity and multiplexing afforded by rare-earth elements illustrate how chemistry can enable new approaches in biology.
Collapse
Affiliation(s)
- Ukrae Cho
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA.
| | - James K Chen
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
26
|
Kotova A, Timonina K, Zoidl GR. Endocytosis of Connexin 36 is Mediated by Interaction with Caveolin-1. Int J Mol Sci 2020; 21:E5401. [PMID: 32751343 PMCID: PMC7432810 DOI: 10.3390/ijms21155401] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 12/22/2022] Open
Abstract
The gap junctional protein connexin 36 (Cx36) has been co-purified with the lipid raft protein caveolin-1 (Cav-1). The relevance of an interaction between the two proteins is unknown. In this study, we explored the significance of Cav-1 interaction in the context of intracellular and membrane transport of Cx36. Coimmunoprecipitation assays and Förster resonance energy transfer analysis (FRET) were used to confirm the interaction between the two proteins in the Neuro 2a cell line. We found that the Cx36 and Cav-1 interaction was dependent on the intracellular calcium levels. By employing different microscopy techniques, we demonstrated that Cav-1 enhances the vesicular transport of Cx36. Pharmacological interventions coupled with cell surface biotinylation assays and FRET analysis revealed that Cav-1 regulates membrane localization of Cx36. Our data indicate that the interaction between Cx36 and Cav-1 plays a role in the internalization of Cx36 by a caveolin-dependent pathway.
Collapse
Affiliation(s)
- Anna Kotova
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (A.K.); (K.T.)
| | - Ksenia Timonina
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (A.K.); (K.T.)
| | - Georg R. Zoidl
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (A.K.); (K.T.)
- Department of Psychology, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
27
|
Abstract
Plants contain abundant autofluorescent molecules that can be used for biochemical, physiological, or imaging studies. The two most studied molecules are chlorophyll (orange/red fluorescence) and lignin (blue/green fluorescence). Chlorophyll fluorescence is used to measure the physiological state of plants using handheld devices that can measure photosynthesis, linear electron flux, and CO2 assimilation by directly scanning leaves, or by using reconnaissance imaging from a drone, an aircraft or a satellite. Lignin fluorescence can be used in imaging studies of wood for phenotyping of genetic variants in order to evaluate reaction wood formation, assess chemical modification of wood, and study fundamental cell wall properties using Förster Resonant Energy Transfer (FRET) and other methods. Many other fluorescent molecules have been characterized both within the protoplast and as components of cell walls. Such molecules have fluorescence emissions across the visible spectrum and can potentially be differentiated by spectral imaging or by evaluating their response to change in pH (ferulates) or chemicals such as Naturstoff reagent (flavonoids). Induced autofluorescence using glutaraldehyde fixation has been used to enable imaging of proteins/organelles in the cell protoplast and to allow fluorescence imaging of fungal mycelium.
Collapse
|
28
|
Miller RC, Aplin CP, Kay TM, Leighton R, Libal C, Simonet R, Cembran A, Heikal AA, Boersma AJ, Sheets ED. FRET Analysis of Ionic Strength Sensors in the Hofmeister Series of Salt Solutions Using Fluorescence Lifetime Measurements. J Phys Chem B 2020; 124:3447-3458. [PMID: 32267692 DOI: 10.1021/acs.jpcb.9b10498] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Living cells are complex, crowded, and dynamic and continually respond to environmental and intracellular stimuli. They also have heterogeneous ionic strength with compartmentalized variations in both intracellular concentrations and types of ions. These challenges would benefit from the development of quantitative, noninvasive approaches for mapping the heterogeneous ionic strength fluctuations in living cells. Here, we investigated a class of recently developed ionic strength sensors that consists of mCerulean3 (a cyan fluorescent protein) and mCitrine (a yellow fluorescent protein) tethered via a linker made of two charged α-helices and a flexible loop. The two helices are designed to bear opposite charges, which is hypothesized to increase the ionic screening and therefore a larger intermolecular distance. In these protein constructs, mCerulean3 and mCitrine act as a donor-acceptor pair undergoing Förster resonance energy transfer (FRET) that is dependent on both the linker amino acids and the environmental ionic strength. Using time-resolved fluorescence of the donor (mCerulean3), we determined the sensitivity of the energy transfer efficiencies and the donor-acceptor distances of these sensors at variable concentrations of the Hofmeister series of salts (KCl, LiCl, NaCl, NaBr, NaI, Na2SO4). As controls, similar measurements were carried out on the FRET-incapable, enzymatically cleaved counterparts of these sensors as well as a construct designed with two electrostatically neutral α-helices (E6G2). Our results show that the energy transfer efficiencies of these sensors are sensitive to both the linker amino acid sequence and the environmental ionic strength, whereas the sensitivity of these sensors to the identity of the dissolved ions of the Hofmeister series of salts seems limited. We also developed a theoretical framework to explain the observed trends as a function of the ionic strength in terms of the Debye screening of the electrostatic interaction between the two charged α-helices in the linker region. These controlled solution studies represent an important step toward the development of rationally designed FRET-based environmental sensors while offering different models for calculating the energy transfer efficiency using time-resolved fluorescence that is compatible with future in vivo studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Arnold J Boersma
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52056 Aachen, Germany
| | | |
Collapse
|
29
|
Role of an Aromatic-Aromatic Interaction in the Assembly and Trafficking of the Zebrafish Panx1a Membrane Channel. Biomolecules 2020; 10:biom10020272. [PMID: 32053881 PMCID: PMC7072349 DOI: 10.3390/biom10020272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/29/2020] [Accepted: 02/05/2020] [Indexed: 12/28/2022] Open
Abstract
Pannexin 1 (Panx1) is a ubiquitously expressed hexameric integral membrane protein known to function as an adenosine triphosphate (ATP) release channel. Panx1 proteins exist in unglycosylated core form (Gly0). They undergo critical post-translational modifications forming the high mannose glycosylation state (Gly1) in the endoplasmic reticulum (ER) and the complex glycosylation state (Gly2) in the Golgi apparatus. The regulation of transition from the ER to the cell membrane is not fully understood. Using site-specific mutagenesis, dye uptake assays, and interaction testing, we identified two conserved aromatic residues, Trp123 and Tyr205, in the transmembrane domains 2 and 3 of the zebrafish panx1a protein. Results suggest that both residues primarily govern the assembly of panx1a subunits into channels, with mutant proteins failing to interact. The results provide insight into a mechanism enabling regulation of Panx1 oligomerization, glycosylation, and trafficking.
Collapse
|
30
|
Galletti PA, Carvalho MEA, Hirai WY, Brancaglioni VA, Arthur V, Barboza da Silva C. Integrating Optical Imaging Tools for Rapid and Non-invasive Characterization of Seed Quality: Tomato ( Solanum lycopersicum L.) and Carrot ( Daucus carota L.) as Study Cases. FRONTIERS IN PLANT SCIENCE 2020; 11:577851. [PMID: 33408727 PMCID: PMC7779677 DOI: 10.3389/fpls.2020.577851] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/25/2020] [Indexed: 05/22/2023]
Abstract
Light-based methods are being further developed to meet the growing demands for food in the agricultural industry. Optical imaging is a rapid, non-destructive, and accurate technology that can produce consistent measurements of product quality compared to conventional techniques. In this research, a novel approach for seed quality prediction is presented. In the proposed approach two advanced optical imaging techniques based on chlorophyll fluorescence and chemometric-based multispectral imaging were employed. The chemometrics encompassed principal component analysis (PCA) and quadratic discrimination analysis (QDA). Among plants that are relevant as both crops and scientific models, tomato, and carrot were selected for the experiment. We compared the optical imaging techniques to the traditional analytical methods used for quality characterization of commercial seedlots. Results showed that chlorophyll fluorescence-based technology is feasible to discriminate cultivars and to identify seedlots with lower physiological potential. The exploratory analysis of multispectral imaging data using a non-supervised approach (two-component PCA) allowed the characterization of differences between carrot cultivars, but not for tomato cultivars. A Random Forest (RF) classifier based on Gini importance was applied to multispectral data and it revealed the most meaningful bandwidths from 19 wavelengths for seed quality characterization. In order to validate the RF model, we selected the five most important wavelengths to be applied in a QDA-based model, and the model reached high accuracy to classify lots with high-and low-vigor seeds, with a correct classification from 86 to 95% in tomato and from 88 to 97% in carrot for validation set. Further analysis showed that low quality seeds resulted in seedlings with altered photosynthetic capacity and chlorophyll content. In conclusion, both chlorophyll fluorescence and chemometrics-based multispectral imaging can be applied as reliable proxies of the physiological potential in tomato and carrot seeds. From the practical point of view, such techniques/methodologies can be potentially used for screening low quality seeds in food and agricultural industries.
Collapse
Affiliation(s)
- Patrícia A. Galletti
- Department of Crop Science, College of Agriculture “Luiz de Queiroz”, University of São Paulo, Piracicaba, Brazil
| | - Marcia E. A. Carvalho
- Department of Genetics, College of Agriculture “Luiz de Queiroz”, University of São Paulo, Piracicaba, Brazil
| | - Welinton Y. Hirai
- Department of Exacts Sciences, College of Agriculture “Luiz de Queiroz”, University of São Paulo, Piracicaba, Brazil
| | - Vivian A. Brancaglioni
- Department of Exacts Sciences, College of Agriculture “Luiz de Queiroz”, University of São Paulo, Piracicaba, Brazil
| | - Valter Arthur
- Laboratory of Radiobiology and Environment, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Clíssia Barboza da Silva
- Laboratory of Radiobiology and Environment, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
- *Correspondence: Clíssia Barboza da Silva ;
| |
Collapse
|
31
|
Conti D, Gul P, Islam A, Martín-Durán JM, Pickersgill RW, Draviam VM. Kinetochores attached to microtubule-ends are stabilised by Astrin bound PP1 to ensure proper chromosome segregation. eLife 2019; 8:49325. [PMID: 31808746 PMCID: PMC6930079 DOI: 10.7554/elife.49325] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 12/01/2019] [Indexed: 12/12/2022] Open
Abstract
Microtubules segregate chromosomes by attaching to macromolecular kinetochores. Only microtubule-end attached kinetochores can be pulled apart; how these end-on attachments are selectively recognised and stabilised is not known. Using the kinetochore and microtubule-associated protein, Astrin, as a molecular probe, we show that end-on attachments are rapidly stabilised by spatially-restricted delivery of PP1 near the C-terminus of Ndc80, a core kinetochore-microtubule linker. PP1 is delivered by the evolutionarily conserved tail of Astrin and this promotes Astrin’s own enrichment creating a highly-responsive positive feedback, independent of biorientation. Abrogating Astrin:PP1-delivery disrupts attachment stability, which is not rescued by inhibiting Aurora-B, an attachment destabiliser, but is reversed by artificially tethering PP1 near the C-terminus of Ndc80. Constitutive Astrin:PP1-delivery disrupts chromosome congression and segregation, revealing a dynamic mechanism for stabilising attachments. Thus, Astrin-PP1 mediates a dynamic ‘lock’ that selectively and rapidly stabilises end-on attachments, independent of biorientation, and ensures proper chromosome segregation.
Collapse
Affiliation(s)
- Duccio Conti
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom.,Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Parveen Gul
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Asifa Islam
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - José M Martín-Durán
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Richard W Pickersgill
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Viji M Draviam
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom.,Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
32
|
Trümper V, von Knethen A, Preuß A, Ermilov E, Hackbarth S, Kuchler L, Gunne S, Schäfer A, Bornhütter T, Vereb G, Ujlaky-Nagy L, Brüne B, Röder B, Schindler M, Parnham MJ, Knape T. Flow cytometry-based FRET identifies binding intensities in PPARγ1 protein-protein interactions in living cells. Theranostics 2019; 9:5444-5463. [PMID: 31534496 PMCID: PMC6735382 DOI: 10.7150/thno.29367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 05/01/2019] [Indexed: 01/10/2023] Open
Abstract
PPARγ is a pharmacological target in inflammatory and metabolic diseases. Upon agonistic treatment or following antagonism, binding of co-factors is altered, which consequently affects PPARγ-dependent transactivation as well as its DNA-independent properties. Therefore, establishing techniques to characterize these interactions is an important issue in living cells. Methods: Using the FRET pair Clover/mRuby2, we set up a flow cytometry-based FRET assay by analyzing PPARγ1 binding to its heterodimerization partner RXRα. Analyses of PPARγ-reporter and co-localization studies by laser-scanning microscopy validated this system. Refining the system, we created a new readout to distinguish strong from weak interactions, focusing on PPARγ-binding to the co-repressor N-CoR2. Results: We observed high FRET in cells expressing Clover-PPARγ1 and mRuby2-RXRα, but no FRET when cells express a mRuby2-RXRα deletion mutant, lacking the PPARγ interaction domain. Focusing on the co-repressor N-CoR2, we identified in HEK293T cells the new splice variant N-CoR2-ΔID1-exon. Overexpressing this isoform tagged with mRuby2, revealed no binding to Clover-PPARγ1, nor in murine J774A.1 macrophages. In HEK293T cells, binding was even lower in comparison to N-CoR2 constructs in which domains established to mediate interaction with PPARγ binding are deleted. These data suggest a possible role of N-CoR2-ΔID1-exon as a dominant negative variant. Because binding to N-CoR2-mRuby2 was not altered following activation or antagonism of Clover-PPARγ1, we determined the effect of pharmacological treatment on FRET intensity. Therefore, we calculated flow cytometry-based FRET efficiencies based on our flow cytometry data. As with PPARγ antagonism, PPARγ agonist treatment did not prevent binding of N-CoR2. Conclusion: Our system allows the close determination of protein-protein interactions with a special focus on binding intensity, allowing this system to characterize the role of protein domains as well as the effect of pharmacological agents on protein-protein interactions.
Collapse
Affiliation(s)
- Verena Trümper
- Institute of Biochemistry I - Pathobiochemistry, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
| | - Andreas von Knethen
- Institute of Biochemistry I - Pathobiochemistry, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
- Branch for Translational Medicine and Pharmacology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596 Frankfurt/Main, Germany
| | - Annegret Preuß
- Department of Physics, Humboldt University Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Eugeny Ermilov
- Department of Physics, Humboldt University Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Steffen Hackbarth
- Department of Physics, Humboldt University Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Laura Kuchler
- Institute of Biochemistry I - Pathobiochemistry, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
| | - Sandra Gunne
- Branch for Translational Medicine and Pharmacology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596 Frankfurt/Main, Germany
| | - Anne Schäfer
- Institute of Biochemistry I - Pathobiochemistry, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
| | - Tobias Bornhütter
- Department of Physics, Humboldt University Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - György Vereb
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Lázló Ujlaky-Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Bernhard Brüne
- Institute of Biochemistry I - Pathobiochemistry, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
- Branch for Translational Medicine and Pharmacology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596 Frankfurt/Main, Germany
| | - Beate Röder
- Department of Physics, Humboldt University Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Michael Schindler
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Karls University Tübingen, Elfriede-Aulhorn-Str. 6, 72076 Tübingen
| | - Michael J. Parnham
- Branch for Translational Medicine and Pharmacology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596 Frankfurt/Main, Germany
| | - Tilo Knape
- Branch for Translational Medicine and Pharmacology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596 Frankfurt/Main, Germany
| |
Collapse
|
33
|
Behrendorff JBYH, Sandoval-Ibañez OA, Sharma A, Pribil M. Membrane-Bound Protein Scaffolding in Diverse Hosts Using Thylakoid Protein CURT1A. ACS Synth Biol 2019; 8:611-620. [PMID: 30884945 DOI: 10.1021/acssynbio.8b00418] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Protein scaffolding is a useful strategy for controlling the spatial arrangement of cellular components via protein-protein interactions. Protein scaffolding has primarily been used to colocalize soluble proteins in the cytoplasm, but many proteins require membrane association for proper function. Scaffolding at select membrane domains would provide an additional level of control over the distribution of proteins within a cell and could aid in exploiting numerous metabolic pathways that contain membrane-associated enzymes. We developed and characterized a membrane-bound protein scaffolding module based on the thylakoid protein CURT1A. This scaffolding module forms homo-oligomers in the membrane, causing proteins fused to CURT1A to cluster together at membrane surfaces. It is functional in diverse expression hosts and can scaffold proteins at thylakoid membranes in chloroplasts, endoplasmic reticulum in higher plants and Saccharomyces cerevisiae, and the inner membrane of Escherichia coli.
Collapse
Affiliation(s)
- James B. Y. H. Behrendorff
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Omar A. Sandoval-Ibañez
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Anurag Sharma
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Mathias Pribil
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| |
Collapse
|
34
|
Schwarz J, J Leopold H, Leighton R, Miller RC, Aplin CP, Boersma AJ, Heikal AA, Sheets ED. Macromolecular crowding effects on energy transfer efficiency and donor-acceptor distance of hetero-FRET sensors using time-resolved fluorescence. Methods Appl Fluoresc 2019; 7:025002. [PMID: 30690439 DOI: 10.1088/2050-6120/ab0242] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Living cells are crowded with macromolecules and organelles, which affect a myriad of biochemical processes. As a result, there is a need for sensitive molecular sensors for quantitative, site-specific assessment of macromolecular crowding. Here, we investigated the excited-state dynamics of recently developed hetero-FRET sensors (mCerulean3-linker-mCitrine) in homogeneous and heterogeneous environments using time-resolved fluorescence measurements, which are compatible with fluorescence lifetime imaging microscopy (FLIM). The linker in these FRET constructs, which tether the mCerulean3 (the donor) and mCitrine (the acceptor), vary in both length and flexibility. Glycerol and Ficoll-70 solutions were used for homogeneous and heterogeneous environments, respectively, at variable concentrations. The wavelength-dependent studies suggest that the 425-nm excitation and the 475-nm emission of the donor are best suited for quantitative assessment of the energy transfer efficiency and the donor-acceptor distance of these FRET probes. Under the same experimental conditions, the enzymatically cleaved counterpart of these probes was used as a control as well as a means to account for the changes in the environmental refractive indices. Our results indicate that the energy transfer efficiency of these FRET probes increases as the linker becomes shorter and more flexible in pure buffer at room temperature. In addition, the FRET probes favor a compact structure with enhanced energy transfer efficiency and a shorter donor-acceptor distance in the heterogeneous, polymer-crowded environment due to steric hindrance. In contrast, the stretched conformation of these FRET probes is more favorable in the viscous, homogeneous environment with a reduced energy transfer efficiency and relatively larger donor-acceptor distance as compared with those in pure buffer, which was attributed to a reduced structural fluctuation of the mCerulean3-mCitrine FRET pair in the viscous, more restrictive glycerol-enriched buffer. Our findings will help to advance the potential of these hetero-FRET probes using FLIM for spatio-temporal assessment of the compartmentalized crowding in living cells.
Collapse
Affiliation(s)
- Jacob Schwarz
- Department of Chemistry and Biochemistry, Swenson College of Science and Engineering, University of Minnesota Duluth, Duluth, MN, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Leopold HJ, Leighton R, Schwarz J, Boersma AJ, Sheets ED, Heikal AA. Crowding Effects on Energy-Transfer Efficiencies of Hetero-FRET Probes As Measured Using Time-Resolved Fluorescence Anisotropy. J Phys Chem B 2019; 123:379-393. [PMID: 30571116 DOI: 10.1021/acs.jpcb.8b09829] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Macromolecular crowding is prevalent in all living cells due to the presence of large biomolecules and organelles. Cellular crowding is heterogeneous and is known to influence biomolecular transport, biochemical reactions, and protein folding. Emerging evidence suggests that some cell pathologies may be correlated with compartmentalized crowding. As a result, there is a need for robust biosensors that are sensitive to crowding as well as quantitative, noninvasive fluorescence methods that are compatible with living cells studies. Here, we have developed a model that describes the rotational dynamics of hetero-Förster resonance energy transfer (FRET) biosensors as a means to determine the energy-transfer efficiency and donor-acceptor distance. The model was tested on wavelength-dependent time-resolved fluorescence anisotropy of hetero-FRET probes (mCerulean3-linker-mCitrine) with variable linkers in both crowded (Ficoll-70) and viscous (glycerol) solutions at room temperature. Our results indicate that the energy-transfer efficiencies of these FRET probes increase as the linker becomes shorter and more flexible in pure buffer at room temperature. In addition, the FRET probes favor compact structures with enhanced energy-transfer efficiencies and a shorter donor-acceptor distance in the heterogeneous, polymer-crowded environment due to steric hindrance. In contrast, the extended conformation of these FRET probes is more favorable in viscous, homogeneous environments with a reduced energy-transfer efficiency compared to those in pure buffer, which we attribute to reduced structural fluctuations of the mCerulean3-mCitrine FRET pair in the glycerol-enriched buffer. Our results represent an important step toward the application of quantitative and noninvasive time-resolved fluorescence anisotropy of hetero-FRET probes to investigate compartmentalized macromolecular crowding and protein-protein interactions in living cells as well as in controlled environments.
Collapse
Affiliation(s)
- Hannah J Leopold
- Department of Chemistry and Biochemistry, Swenson College of Science and Engineering , University of Minnesota Duluth , Duluth , Minnesota 55812 , United States
| | - Ryan Leighton
- Department of Chemistry and Biochemistry, Swenson College of Science and Engineering , University of Minnesota Duluth , Duluth , Minnesota 55812 , United States
| | - Jacob Schwarz
- Department of Chemistry and Biochemistry, Swenson College of Science and Engineering , University of Minnesota Duluth , Duluth , Minnesota 55812 , United States
| | - Arnold J Boersma
- DW1-Leibniz Institute for Interactive Materials , Forckenbeckstr. 50 , 52056 Aachen , Germany
| | - Erin D Sheets
- Department of Chemistry and Biochemistry, Swenson College of Science and Engineering , University of Minnesota Duluth , Duluth , Minnesota 55812 , United States
| | - Ahmed A Heikal
- Department of Chemistry and Biochemistry, Swenson College of Science and Engineering , University of Minnesota Duluth , Duluth , Minnesota 55812 , United States
| |
Collapse
|
36
|
Shcherbakova DM, Stepanenko OV, Turoverov KK, Verkhusha VV. Near-Infrared Fluorescent Proteins: Multiplexing and Optogenetics across Scales. Trends Biotechnol 2018; 36:1230-1243. [PMID: 30041828 DOI: 10.1016/j.tibtech.2018.06.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 10/28/2022]
Abstract
Since mammalian tissue is relatively transparent to near-infrared (NIR) light, NIR fluorescent proteins (FPs) engineered from bacterial phytochromes have become widely used probes for non-invasive in vivo imaging. Recently, these genetically encoded NIR probes have been substantially improved, enabling imaging experiments that were not possible previously. Here, we discuss the use of monomeric NIR FPs and NIR biosensors for multiplexed imaging with common visible GFP-based probes and blue light-activatable optogenetic tools. These NIR probes are suitable for visualization of functional activities from molecular to organismal levels. In combination with advanced imaging techniques, such as two-photon microscopy with adaptive optics, photoacoustic tomography and its recent modification reversibly switchable photoacoustic computed tomography, NIR probes allow subcellular resolution at millimeter depths.
Collapse
Affiliation(s)
- Daria M Shcherbakova
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Olesya V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russian Federation
| | - Konstantin K Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russian Federation; Department of Biophysics, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russian Federation
| | - Vladislav V Verkhusha
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland.
| |
Collapse
|
37
|
Periasamy J, Kurdekar V, Jasti S, Nijaguna MB, Boggaram S, Hurakadli MA, Raina D, Kurup LM, Chintha C, Manjunath K, Goyal A, Sadasivam G, Bharatham K, Padigaru M, Potluri V, Venkitaraman AR. Targeting Phosphopeptide Recognition by the Human BRCA1 Tandem BRCT Domain to Interrupt BRCA1-Dependent Signaling. Cell Chem Biol 2018; 25:677-690.e12. [PMID: 29606576 PMCID: PMC6015222 DOI: 10.1016/j.chembiol.2018.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/24/2017] [Accepted: 02/22/2018] [Indexed: 02/06/2023]
Abstract
Intracellular signals triggered by DNA breakage flow through proteins containing BRCT (BRCA1 C-terminal) domains. This family, comprising 23 conserved phosphopeptide-binding modules in man, is inaccessible to small-molecule chemical inhibitors. Here, we develop Bractoppin, a drug-like inhibitor of phosphopeptide recognition by the human BRCA1 tandem (t)BRCT domain, which selectively inhibits substrate binding with nanomolar potency in vitro. Structure-activity exploration suggests that Bractoppin engages BRCA1 tBRCT residues recognizing pSer in the consensus motif, pSer-Pro-Thr-Phe, plus an abutting hydrophobic pocket that is distinct in structurally related BRCT domains, conferring selectivity. In cells, Bractoppin inhibits substrate recognition detected by Förster resonance energy transfer, and diminishes BRCA1 recruitment to DNA breaks, in turn suppressing damage-induced G2 arrest and assembly of the recombinase, RAD51. But damage-induced MDC1 recruitment, single-stranded DNA (ssDNA) generation, and TOPBP1 recruitment remain unaffected. Thus, an inhibitor of phosphopeptide recognition selectively interrupts BRCA1 tBRCT-dependent signals evoked by DNA damage. Bractoppin selectively blocks phosphopeptide recognition by the BRCA1 tBRCT domain Bractoppin engages tBRCT residues recognizing pSer, plus an adjacent pocket Bractoppin interrupts BRCA1 tBRCT-dependent cellular signals evoked by DNA damage This work opens avenues to inhibit intracellular signaling by the tBRCT domain family
Collapse
Affiliation(s)
- Jayaprakash Periasamy
- Center for Chemical Biology & Therapeutics, InSTEM, Bellary Road, Bangalore, Karnataka 560065, India
| | - Vadiraj Kurdekar
- Center for Chemical Biology & Therapeutics, InSTEM, Bellary Road, Bangalore, Karnataka 560065, India
| | - Subbarao Jasti
- Center for Chemical Biology & Therapeutics, InSTEM, Bellary Road, Bangalore, Karnataka 560065, India
| | - Mamatha B Nijaguna
- Center for Chemical Biology & Therapeutics, InSTEM, Bellary Road, Bangalore, Karnataka 560065, India
| | - Sanjana Boggaram
- Center for Chemical Biology & Therapeutics, InSTEM, Bellary Road, Bangalore, Karnataka 560065, India
| | - Manjunath A Hurakadli
- Center for Chemical Biology & Therapeutics, InSTEM, Bellary Road, Bangalore, Karnataka 560065, India
| | - Dhruv Raina
- Center for Chemical Biology & Therapeutics, InSTEM, Bellary Road, Bangalore, Karnataka 560065, India
| | - Lokavya Meenakshi Kurup
- Center for Chemical Biology & Therapeutics, InSTEM, Bellary Road, Bangalore, Karnataka 560065, India
| | - Chetan Chintha
- Center for Chemical Biology & Therapeutics, InSTEM, Bellary Road, Bangalore, Karnataka 560065, India
| | - Kavyashree Manjunath
- Center for Chemical Biology & Therapeutics, InSTEM, Bellary Road, Bangalore, Karnataka 560065, India
| | - Aneesh Goyal
- Center for Chemical Biology & Therapeutics, InSTEM, Bellary Road, Bangalore, Karnataka 560065, India
| | - Gayathri Sadasivam
- Center for Chemical Biology & Therapeutics, InSTEM, Bellary Road, Bangalore, Karnataka 560065, India
| | - Kavitha Bharatham
- Center for Chemical Biology & Therapeutics, InSTEM, Bellary Road, Bangalore, Karnataka 560065, India
| | - Muralidhara Padigaru
- Center for Chemical Biology & Therapeutics, InSTEM, Bellary Road, Bangalore, Karnataka 560065, India
| | - Vijay Potluri
- Center for Chemical Biology & Therapeutics, InSTEM, Bellary Road, Bangalore, Karnataka 560065, India
| | - Ashok R Venkitaraman
- Center for Chemical Biology & Therapeutics, InSTEM, Bellary Road, Bangalore, Karnataka 560065, India; Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK.
| |
Collapse
|
38
|
Shcherbakova DM, Cox Cammer N, Huisman TM, Verkhusha VV, Hodgson L. Direct multiplex imaging and optogenetics of Rho GTPases enabled by near-infrared FRET. Nat Chem Biol 2018; 14:591-600. [PMID: 29686359 PMCID: PMC5964015 DOI: 10.1038/s41589-018-0044-1] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 03/01/2018] [Indexed: 12/31/2022]
Abstract
Direct visualization and light control of several cellular processes is a challenge, owing to the spectral overlap of available genetically encoded probes. Here we report the most red-shifted monomeric near-infrared (NIR) fluorescent protein, miRFP720, and the fully NIR Förster resonance energy transfer (FRET) pair miRFP670-miRFP720, which together enabled design of biosensors compatible with CFP-YFP imaging and blue-green optogenetic tools. We developed a NIR biosensor for Rac1 GTPase and demonstrated its use in multiplexed imaging and light control of Rho GTPase signaling pathways. Specifically, we combined the Rac1 biosensor with CFP-YFP FRET biosensors for RhoA and for Rac1-GDI binding, and concurrently used the LOV-TRAP tool for upstream Rac1 activation. We directly observed and quantified antagonism between RhoA and Rac1 dependent on the RhoA-downstream effector ROCK; showed that Rac1 activity and GDI binding closely depend on the spatiotemporal coordination between these two molecules; and simultaneously observed Rac1 activity during optogenetic manipulation of Rac1.
Collapse
Affiliation(s)
- Daria M Shcherbakova
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Natasha Cox Cammer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Tsipora M Huisman
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Vladislav V Verkhusha
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Louis Hodgson
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
39
|
Wang L, Xue Y, Xing J, Song K, Lin J. Exploring the Spatiotemporal Organization of Membrane Proteins in Living Plant Cells. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:525-551. [PMID: 29489393 DOI: 10.1146/annurev-arplant-042817-040233] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plasma membrane proteins have important roles in transport and signal transduction. Deciphering the spatiotemporal organization of these proteins provides crucial information for elucidating the links between the behaviors of different molecules. However, monitoring membrane proteins without disrupting their membrane environment remains difficult. Over the past decade, many studies have developed single-molecule techniques, opening avenues for probing the stoichiometry and interactions of membrane proteins in their native environment by providing nanometer-scale spatial information and nanosecond-scale temporal information. In this review, we assess recent progress in the development of labeling and imaging technology for membrane protein analysis. We focus in particular on several single-molecule techniques for quantifying the dynamics and assembly of membrane proteins. Finally, we provide examples of how these new techniques are advancing our understanding of the complex biological functions of membrane proteins.
Collapse
Affiliation(s)
- Li Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China;
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Yiqun Xue
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jingjing Xing
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Kai Song
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China;
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
40
|
Mirabello V, Cortezon-Tamarit F, Pascu SI. Oxygen Sensing, Hypoxia Tracing and in Vivo Imaging with Functional Metalloprobes for the Early Detection of Non-communicable Diseases. Front Chem 2018; 6:27. [PMID: 29527524 PMCID: PMC5829448 DOI: 10.3389/fchem.2018.00027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/02/2018] [Indexed: 01/10/2023] Open
Abstract
Hypoxia has been identified as one of the hallmarks of tumor environments and a prognosis factor in many cancers. The development of ideal chemical probes for imaging and sensing of hypoxia remains elusive. Crucial characteristics would include a measurable response to subtle variations of pO2 in living systems and an ability to accumulate only in the areas of interest (e.g., targeting hypoxia tissues) whilst exhibiting kinetic stabilities in vitro and in vivo. A sensitive probe would comprise platforms for applications in imaging and therapy for non-communicable diseases (NCDs) relying on sensitive detection of pO2. Just a handful of probes for the in vivo imaging of hypoxia [mainly using positron emission tomography (PET)] have reached the clinical research stage. Many chemical compounds, whilst presenting promising in vitro results as oxygen-sensing probes, are facing considerable disadvantages regarding their general application in vivo. The mechanisms of action of many hypoxia tracers have not been entirely rationalized, especially in the case of metallo-probes. An insight into the hypoxia selectivity mechanisms can allow an optimization of current imaging probes candidates and this will be explored hereby. The mechanistic understanding of the modes of action of coordination compounds under oxygen concentration gradients in living cells allows an expansion of the scope of compounds toward in vivo applications which, in turn, would help translate these into clinical applications. We summarize hereby some of the recent research efforts made toward the discovery of new oxygen sensing molecules having a metal-ligand core. We discuss their applications in vitro and/or in vivo, with an appreciation of a plethora of molecular imaging techniques (mainly reliant on nuclear medicine techniques) currently applied in the detection and tracing of hypoxia in the preclinical and clinical setups. The design of imaging/sensing probe for early-stage diagnosis would longer term avoid invasive procedures providing platforms for therapy monitoring in a variety of NCDs and, particularly, in cancers.
Collapse
|
41
|
Gutsche N, Holtmannspötter M, Maß L, O'Donoghue M, Busch A, Lauri A, Schubert V, Zachgo S. Conserved redox-dependent DNA binding of ROXY glutaredoxins with TGA transcription factors. PLANT DIRECT 2017; 1:e00030. [PMID: 31245678 PMCID: PMC6508501 DOI: 10.1002/pld3.30] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/21/2017] [Accepted: 11/21/2017] [Indexed: 05/03/2023]
Abstract
The Arabidopsis thaliana CC-type glutaredoxin (GRX) ROXY1 and the bZIP TGA transcription factor (TF) PERIANTHIA (PAN) interact in the nucleus and together regulate petal development. The CC-type GRXs exist exclusively in land plants, and in contrast to the ubiquitously occurring CPYC and CGFS GRX classes, only the CC-type GRXs expanded strongly during land plant evolution. Phylogenetic analyses show that TGA TFs evolved before the CC-type GRXs in charophycean algae. MpROXY1/2 and MpTGA were isolated from the liverwort Marchantia polymorpha to analyze regulatory ROXY/TGA interactions in a basal land plant. Homologous and heterologous protein interaction studies demonstrate that nuclear ROXY/TGA interactions are conserved since the occurrence of CC-type GRXs in bryophytes and mediated by a conserved ROXY C-terminus. Redox EMSA analyses show a redox-sensitive binding of MpTGA to the cis-regulatory as-1-like element. Furthermore, we demonstrate that MpTGA binds together with MpROXY1/2 to this motif under reducing conditions, whereas this interaction is not observed under oxidizing conditions. Remarkably, heterologous complementation studies reveal a strongly conserved land plant ROXY activity, suggesting an ancestral role for CC-type GRXs in modulating the activities of TGA TFs. Super-resolution microscopy experiments detected a strong colocalization of ROXY1 with the active form of the RNA polymerase II in the nucleus. Together, these data shed new light on the function of ROXYs and TGA TFs and the evolution of redox-sensitive transcription regulation processes, which likely contributed to adapt land plants to novel terrestrial habitats.
Collapse
Affiliation(s)
- Nora Gutsche
- Botany DepartmentSchool of Biology and ChemistryOsnabrück UniversityOsnabrückGermany
| | | | - Lucia Maß
- Botany DepartmentSchool of Biology and ChemistryOsnabrück UniversityOsnabrückGermany
| | | | - Andrea Busch
- Botany DepartmentSchool of Biology and ChemistryOsnabrück UniversityOsnabrückGermany
| | | | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Stadt SeelandGermany
| | - Sabine Zachgo
- Botany DepartmentSchool of Biology and ChemistryOsnabrück UniversityOsnabrückGermany
| |
Collapse
|
42
|
Samodelov SL, Zurbriggen MD. Quantitatively Understanding Plant Signaling: Novel Theoretical-Experimental Approaches. TRENDS IN PLANT SCIENCE 2017; 22:685-704. [PMID: 28668509 DOI: 10.1016/j.tplants.2017.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 06/07/2023]
Abstract
With the need to respond to and integrate a multitude of external and internal stimuli, plant signaling is highly complex, exhibiting signaling component redundancy and high interconnectedness between individual pathways. We review here novel theoretical-experimental approaches in manipulating plant signaling towards the goal of a comprehensive understanding and targeted quantitative control of plant processes. We highlight approaches taken in the field of synthetic biology used in other systems and discuss their applicability in plants. Finally, we introduce existing tools for the quantitative analysis and monitoring of plant signaling and the integration of experimentally obtained quantitative data into mathematical models. Incorporating principles of synthetic biology into plant sciences more widely will lead this field forward in both fundamental and applied research.
Collapse
Affiliation(s)
- Sophia L Samodelov
- Institute of Synthetic Biology and Cluster of Excellence on Plant Sciences (CEPLAS), University of Düsseldorf, Düsseldorf, Germany; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Matias D Zurbriggen
- Institute of Synthetic Biology and Cluster of Excellence on Plant Sciences (CEPLAS), University of Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
43
|
Rapid Estimation of Astaxanthin and the Carotenoid-to-Chlorophyll Ratio in the Green Microalga Chromochloris zofingiensis Using Flow Cytometry. Mar Drugs 2017; 15:md15070231. [PMID: 28753934 PMCID: PMC5532673 DOI: 10.3390/md15070231] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/03/2017] [Accepted: 07/11/2017] [Indexed: 12/19/2022] Open
Abstract
The green microalga Chromochloris zofingiensis can accumulate significant amounts of valuable carotenoids, mainly natural astaxanthin, a product with applications in functional food, cosmetics, nutraceuticals, and with potential therapeutic value in cardiovascular and neurological diseases. To optimize the production of astaxanthin, it is essential to monitor the content of astaxanthin in algal cells during cultivation. The widely used HPLC (high-performance liquid chromatography) method for quantitative astaxanthin determination is time-consuming and laborious. In the present work, we present a method using flow cytometry (FCM) for in vivo determination of the astaxanthin content and the carotenoid-to-chlorophyll ratio (Car/Chl) in mixotrophic C. zofingiensis. The method is based on the assessment of fluorescent characteristics of cellular pigments. The mean fluorescence intensity (MFI) of living cells was determined by FCM to monitor pigment formation based on the correlation between MFI detected in particular channels (FL1: 533 ± 15 nm; FL2: 585 ± 20 nm; FL3: >670 nm) and pigment content in algal cells. Through correlation and regression analysis, a linear relationship was observed between MFI in FL2 (band-pass filter, emission at 585 nm in FCM) and astaxanthin content (in HPLC) and applied for predicting astaxanthin content. With similar procedures, the relationships between MFI in different channels and Car/Chl ratio in mixotrophic C. zofingiensis were also determined. Car/Chl ratios could be estimated by the ratios of MFI (FL1/FL3, FL2/FL3). FCM is thus a highly efficient and feasible method for rapid estimation of astaxanthin content in the green microalga C. zofingiensis. The rapid FCM method is complementary to the current HPLC method, especially for rapid evaluation and prediction of astaxanthin formation as it is required during the high-throughput culture in the laboratory and mass cultivation in industry.
Collapse
|
44
|
FRET-Mediated Long-Range Wavelength Transformation by Photoconvertible Fluorescent Proteins as an Efficient Mechanism to Generate Orange-Red Light in Symbiotic Deep Water Corals. Int J Mol Sci 2017; 18:ijms18071174. [PMID: 28677653 PMCID: PMC5535822 DOI: 10.3390/ijms18071174] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 11/16/2022] Open
Abstract
Photoconvertible fluorescent proteins (pcRFPs) are a group of fluorophores that undergo an irreversible green-to-red shift in emission colour upon irradiation with near-ultraviolet (near-UV) light. Despite their wide application in biotechnology, the high-level expression of pcRFPs in mesophotic and depth-generalist coral species currently lacks a biological explanation. Additionally, reduced penetration of near-UV wavelengths in water poses the question whether light-driven photoconversion is relevant in the mesophotic zone, or whether a different mechanism is involved in the post-translational pigment modification in vivo. Here, we show in a long-term mesocosm experiment that photoconversion in vivo is entirely dependent on near-UV wavelengths. However, a near-UV intensity equivalent to the mesophotic underwater light field at 80 m depth is sufficient to drive the process in vitro, suggesting that photoconversion can occur near the lower distribution limits of these corals. Furthermore, live coral colonies showed evidence of efficient Förster Resonance Energy Transfer (FRET). Our simulated mesophotic light field maintained the pcRFP pool in a partially photoconverted state in vivo, maximising intra-tetrameric FRET and creating a long-range wavelength conversion system with higher quantum yield than other native RFPs. We hypothesise that efficient conversion of blue wavelengths, abundant at depth, into orange-red light could constitute an adaptation of corals to life in light-limited environments.
Collapse
|
45
|
Currie M, Leopold H, Schwarz J, Boersma AJ, Sheets ED, Heikal AA. Fluorescence Dynamics of a FRET Probe Designed for Crowding Studies. J Phys Chem B 2017; 121:5688-5698. [DOI: 10.1021/acs.jpcb.7b01306] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Megan Currie
- Department
of Chemistry and Biochemistry, Swenson College of Science and Engineering, University of Minnesota Duluth, Duluth, Minnesota 55812, United States
| | - Hannah Leopold
- Department
of Chemistry and Biochemistry, Swenson College of Science and Engineering, University of Minnesota Duluth, Duluth, Minnesota 55812, United States
| | - Jacob Schwarz
- Department
of Chemistry and Biochemistry, Swenson College of Science and Engineering, University of Minnesota Duluth, Duluth, Minnesota 55812, United States
| | - Arnold J. Boersma
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Erin D. Sheets
- Department
of Chemistry and Biochemistry, Swenson College of Science and Engineering, University of Minnesota Duluth, Duluth, Minnesota 55812, United States
| | - Ahmed A. Heikal
- Department
of Chemistry and Biochemistry, Swenson College of Science and Engineering, University of Minnesota Duluth, Duluth, Minnesota 55812, United States
| |
Collapse
|
46
|
Kasai S, Kajimoto S, Ito Y, Saito T, Yasumoto KI, Tokunaga M, Sakata-Sogawa K, Fukumura H, Sogawa K. Conformational changes in inhibitory PAS domain protein associated with binding of HIF-1α and Bcl-xL in living cells. J Biochem 2017; 161:291-296. [PMID: 28003430 DOI: 10.1093/jb/mvw068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 09/29/2016] [Indexed: 11/14/2022] Open
Abstract
Inhibitory PAS domain protein (IPAS) is a dual function protein acting as a transcriptional repressor and as a pro-apoptotic protein. Simultaneous dual-color single-molecule imaging of EGFP-IPAS coexpressed with Mit-TagRFP-T in living HeLa cells revealed that fraction of EGFP-IPAS was arrested in the nucleus and on mitochondria. Transiently expressed Cerulean-IPAS in HEK293T cells was present in nuclear speckles when coexpressed with Citrine-HIF-1α or Citrine-HLF. Fluorescence lifetime imaging microscopy (FLIM) analysis of Citrine-IPAS-Cerulean in living CHO-K1 cells clarified the presence of intramolecular FRET. Reduced lifetimes of the donor were partially restored by coexpression of HIF-1α or Bcl-xL, binding proteins of IPAS in the nucleus and mitochondria, respectively. This alteration in lifetimes demonstrates that conformational changes occurred in IPAS by their binding.
Collapse
Affiliation(s)
- Shuya Kasai
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku 980-8578, Sendai, Japan
| | - Shinji Kajimoto
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku 980-8578, Sendai, Japan
| | - Yuma Ito
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku 226-8501, Yokohama, Japan
| | - Tomo Saito
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku 980-8578, Sendai, Japan
| | - Ken-Ichi Yasumoto
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku 980-8578, Sendai, Japan
| | - Makio Tokunaga
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku 226-8501, Yokohama, Japan
| | - Kumiko Sakata-Sogawa
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku 226-8501, Yokohama, Japan
| | - Hiroshi Fukumura
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku 980-8578, Sendai, Japan
| | - Kazuhiro Sogawa
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku 980-8578, Sendai, Japan
| |
Collapse
|
47
|
Lüddecke J, Francois L, Spät P, Watzer B, Chilczuk T, Poschet G, Hell R, Radlwimmer B, Forchhammer K. P II Protein-Derived FRET Sensors for Quantification and Live-Cell Imaging of 2-Oxoglutarate. Sci Rep 2017; 7:1437. [PMID: 28469248 PMCID: PMC5431102 DOI: 10.1038/s41598-017-01440-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/30/2017] [Indexed: 12/21/2022] Open
Abstract
The citric acid cycle intermediate 2-oxoglutarate (2-OG, a.k.a. alpha-ketoglutarate) links the carbon and nitrogen metabolic pathways and can provide information on the metabolic status of cells. In recent years, it has become exceedingly clear that 2-OG also acts as a master regulator of diverse biologic processes in all domains of life. Consequently, there is a great demand for time-resolved data on 2-OG fluctuations that can’t be adequately addressed using established methods like mass spectrometry-based metabolomics analysis. Therefore, we set out to develop a novel intramolecular 2-OG FRET sensor based on the signal transduction protein PII from Synechococcus elongatus PCC 7942. We created two variants of the sensor, with a dynamic range for 2-OG from 0.1 µM to 0.1 mM or from 10 µM to 10 mM. As proof of concept, we applied the sensors to determine in situ glutamine:2-oxoglutarate aminotransferase (GOGAT) activity in Synechococcus elongatus PCC 7942 cells and measured 2-OG concentrations in cell extracts from Escherichia coli in vitro. Finally, we could show the sensors’ functionality in living human cell lines, demonstrating their potential in the context of mechanistic studies and drug screening.
Collapse
Affiliation(s)
- Jan Lüddecke
- Interfaculty Institute for Microbiology and Infection Medicine, Division Organismic Interactions, University of Tübingen, Tübingen, Germany
| | - Liliana Francois
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Philipp Spät
- Interfaculty Institute for Microbiology and Infection Medicine, Division Organismic Interactions, University of Tübingen, Tübingen, Germany
| | - Björn Watzer
- Interfaculty Institute for Microbiology and Infection Medicine, Division Organismic Interactions, University of Tübingen, Tübingen, Germany
| | - Tomasz Chilczuk
- Interfaculty Institute for Microbiology and Infection Medicine, Division Organismic Interactions, University of Tübingen, Tübingen, Germany
| | - Gernot Poschet
- Centre for Organismal Studies Heidelberg, Rupprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Rüdiger Hell
- Centre for Organismal Studies Heidelberg, Rupprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Bernhard Radlwimmer
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karl Forchhammer
- Interfaculty Institute for Microbiology and Infection Medicine, Division Organismic Interactions, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
48
|
Nagaki K, Yamaji N, Murata M. ePro-ClearSee: a simple immunohistochemical method that does not require sectioning of plant samples. Sci Rep 2017; 7:42203. [PMID: 28176832 PMCID: PMC5297246 DOI: 10.1038/srep42203] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/06/2017] [Indexed: 01/05/2023] Open
Abstract
Investigations into the epigenetic status of individual cells within tissues can produce both epigenetic data for different cell types and positional information of the cells. Thus, these investigations are important for understanding the intra- and inter-cellular control systems of developmental and environmental responses in plants. However, a simple method to detect epigenetic modifications of individual cells in plant tissues is not yet available because detection of the modifications requires immunohistochemistry using specific antibodies. In this study, we developed a simple immunohistochemical method that does not require sectioning to investigate epigenetic modifications. This method uses a clearing system to detect methylated histones, acetylated histones, methylated DNA and/or centromeric histone H3 variants. Analyses of four dicots and five monocots indicated that this method provides a universal technique to investigate epigenetic modifications in diverse plant species.
Collapse
Affiliation(s)
- Kiyotaka Nagaki
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Minoru Murata
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| |
Collapse
|
49
|
Myers ZA, Kumimoto RW, Siriwardana CL, Gayler KK, Risinger JR, Pezzetta D, Holt III BF. NUCLEAR FACTOR Y, Subunit C (NF-YC) Transcription Factors Are Positive Regulators of Photomorphogenesis in Arabidopsis thaliana. PLoS Genet 2016; 12:e1006333. [PMID: 27685091 PMCID: PMC5042435 DOI: 10.1371/journal.pgen.1006333] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/30/2016] [Indexed: 01/10/2023] Open
Abstract
Recent reports suggest that NF-Y transcription factors are positive regulators of skotomorphogenesis in Arabidopsis thaliana. Three NF-YC genes (NF-YC3, NF-YC4, and NF-YC9) are known to have overlapping functions in photoperiod dependent flowering and previous studies demonstrated that they interact with basic leucine zipper (bZIP) transcription factors. This included ELONGATED HYPOCOTYL 5 (HY5), which has well-demonstrated roles in photomorphogenesis. Similar to hy5 mutants, we report that nf-yc3 nf-yc4 nf-yc9 triple mutants failed to inhibit hypocotyl elongation in all tested light wavelengths. Surprisingly, nf-yc3 nf-yc4 nf-yc9 hy5 mutants had synergistic defects in light perception, suggesting that NF-Ys represent a parallel light signaling pathway. As with other photomorphogenic transcription factors, nf-yc3 nf-yc4 nf-yc9 triple mutants also partially suppressed the short hypocotyl and dwarf rosette phenotypes of CONSTITUTIVE PHOTOMORPHOGENIC 1 (cop1) mutants. Thus, our data strongly suggest that NF-Y transcription factors have important roles as positive regulators of photomorphogenesis, and in conjunction with other recent reports, implies that the NF-Y are multifaceted regulators of early seedling development. Light perception is critically important for the fitness of plants in both natural and agricultural settings. Plants not only use light for photosynthesis, but also as a cue for proper development. As a seedling emerges from soil it must determine the light environment and adopt an appropriate growth habit. When blue and red wavelengths are the dominant sources of light, plants will undergo photomorphogenesis. Photomorphogenesis describes a number of developmental responses initiated by light in a seedling, and includes shortened stems and establishing the ability to photosynthesize. The genes regulating photomorphogenesis have been studied extensively, but a complete picture remains elusive. Here we describe the finding that NUCLEAR FACTOR-Y (NF-Y) genes are positive regulators of photomorphogenesis—i.e., in plants where NF-Y genes are mutated, they display some characteristics of dark grown plants, even though they are in the light. Our data suggests that the roles of NF-Y genes in light perception do not fit in easily with those of other described pathways. Thus, studying these genes promises to help develop a more complete picture of how light drives plant development.
Collapse
Affiliation(s)
- Zachary A. Myers
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Roderick W. Kumimoto
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Chamindika L. Siriwardana
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Krystal K. Gayler
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, United States of America
| | | | - Daniela Pezzetta
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Ben F. Holt III
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
50
|
Zettl T, Mathew RS, Seifert S, Doniach S, Harbury PAB, Lipfert J. Absolute Intramolecular Distance Measurements with Angstrom-Resolution Using Anomalous Small-Angle X-ray Scattering. NANO LETTERS 2016; 16:5353-5357. [PMID: 27244097 DOI: 10.1021/acs.nanolett.6b01160] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Accurate determination of molecular distances is fundamental to understanding the structure, dynamics, and conformational ensembles of biological macromolecules. Here we present a method to determine the full distance distribution between small (∼7 Å radius) gold labels attached to macromolecules with very high-precision (≤1 Å) and on an absolute distance scale. Our method uses anomalous small-angle X-ray scattering close to a gold absorption edge to separate the gold-gold interference pattern from other scattering contributions. Results for 10-30 bp DNA constructs achieve excellent signal-to-noise and are in good agreement with previous results obtained by single-energy SAXS measurements without requiring the preparation and measurement of single labeled and unlabeled samples. The use of small gold labels in combination with ASAXS read out provides an attractive approach to determining molecular distance distributions that will be applicable to a broad range of macromolecular systems.
Collapse
Affiliation(s)
- Thomas Zettl
- Department of Physics, Nanosystems Initiative Munich, and Center for Nanoscience, LMU Munich , Amalienstrasse 54, 80799 Munich, Germany
| | - Rebecca S Mathew
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Sönke Seifert
- X-ray Science Division, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | | | | | - Jan Lipfert
- Department of Physics, Nanosystems Initiative Munich, and Center for Nanoscience, LMU Munich , Amalienstrasse 54, 80799 Munich, Germany
| |
Collapse
|