1
|
Yi Q, Park MJ, Vo KTX, Jeon JS. Polyamines in Plant-Pathogen Interactions: Roles in Defense Mechanisms and Pathogenicity with Applications in Fungicide Development. Int J Mol Sci 2024; 25:10927. [PMID: 39456710 PMCID: PMC11506843 DOI: 10.3390/ijms252010927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Polyamines (PAs), which are aliphatic polycationic compounds with a low molecular weight, are found in all living organisms and play essential roles in plant-pathogen interactions. Putrescine, spermidine, and spermine, the most common PAs in nature, respond to and function differently in plants and pathogens during their interactions. While plants use certain PAs to enhance their immunity, pathogens exploit PAs to facilitate successful invasion. In this review, we compile recent studies on the roles of PAs in plant-pathogen interactions, providing a comprehensive overview of their roles in both plant defense and pathogen pathogenicity. A thorough understanding of the functions of PAs and conjugated PAs highlights their potential applications in fungicide development. The creation of new fungicides and compounds derived from PAs demonstrates their promising potential for further research and innovation in this field.
Collapse
Affiliation(s)
- Qi Yi
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea;
| | - Min-Jeong Park
- Department of Genetics and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea;
| | - Kieu Thi Xuan Vo
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea;
| | - Jong-Seong Jeon
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea;
- Department of Genetics and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea;
| |
Collapse
|
2
|
Rahman A, Kulik E, Majláth I, Khan I, Janda T, Pál M. Different reactions of wheat, maize, and rice plants to putrescine treatment. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:807-822. [PMID: 38846465 PMCID: PMC11150351 DOI: 10.1007/s12298-024-01462-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/25/2024] [Accepted: 05/15/2024] [Indexed: 06/09/2024]
Abstract
Polyamines play an important role in growth and differentiation by regulating numerous physiological and biochemical processes at the cellular level. In addition to their roborative effect, their essential role in plant stress responses has been also reported. However, the positive effect may depend on the fine-tuning of polyamine metabolism, which influences the production of free radicals and/or signalling molecules. In the present study, 0.3 mM hydroponic putrescine treatment was tested in wheat, maize, and rice in order to reveal differences in their answers and highlight the relation of these with polyamine metabolism. In the case of wheat, the chlorophyll content and the actual quantum yield increased after putrescine treatment, and no remarkable changes were detected in the stress markers, polyamine contents, or polyamine metabolism-related gene expression. Although, in maize, the actual quantum yield decreased, and the root hydrogen peroxide content increased, no other negative effect was observed after putrescine treatment due to activation of polyamine oxidases at enzyme and gene expression levels. The results also demonstrated that after putrescine treatment, rice with a higher initial polyamine content, the balance of polyamine metabolism was disrupted and a significant amount of putrescine was accumulated, accompanied by a detrimental decrease in the level of higher polyamines. These initial differences and the putrescine-induced shift in polyamine metabolism together with the terminal catabolism or back-conversion-induced release of a substantial quantity of hydrogen peroxide could contribute to oxidative stress observed in rice.
Collapse
Affiliation(s)
- Altafur Rahman
- Department of Plant Physiology and Metabolomics, Agricultural Institute, Centre for Agricultural Research, Hungarian Research Network, Brunszvik 2, Martonvásár, 2462 Hungary
- Department of Plant Physiology and Plant Ecology, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Budapest, 1118 Hungary
| | | | - Imre Majláth
- Department of Plant Physiology and Metabolomics, Agricultural Institute, Centre for Agricultural Research, Hungarian Research Network, Brunszvik 2, Martonvásár, 2462 Hungary
| | - Imran Khan
- Department of Plant Physiology and Plant Ecology, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Budapest, 1118 Hungary
| | - Tibor Janda
- Department of Plant Physiology and Metabolomics, Agricultural Institute, Centre for Agricultural Research, Hungarian Research Network, Brunszvik 2, Martonvásár, 2462 Hungary
| | - Magda Pál
- Department of Plant Physiology and Metabolomics, Agricultural Institute, Centre for Agricultural Research, Hungarian Research Network, Brunszvik 2, Martonvásár, 2462 Hungary
| |
Collapse
|
3
|
Peng D, Wang Z, Tian J, Wang W, Guo S, Dai X, Yin H, Li L. Phyllosphere bacterial community dynamics in response to bacterial wildfire disease: succession and interaction patterns. FRONTIERS IN PLANT SCIENCE 2024; 15:1331443. [PMID: 38533399 PMCID: PMC10963427 DOI: 10.3389/fpls.2024.1331443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/08/2024] [Indexed: 03/28/2024]
Abstract
Plants interact with complex microbial communities in which microorganisms play different roles in plant development and health. While certain microorganisms may cause disease, others promote nutrient uptake and resistance to stresses through a variety of mechanisms. Developing plant protection measures requires a deeper comprehension of the factors that influence multitrophic interactions and the organization of phyllospheric communities. High-throughput sequencing was used in this work to investigate the effects of climate variables and bacterial wildfire disease on the bacterial community's composition and assembly in the phyllosphere of tobacco (Nicotiana tabacum L.). The samples from June (M1), July (M2), August (M3), and September (M4) formed statistically separate clusters. The assembly of the whole bacterial population was mostly influenced by stochastic processes. PICRUSt2 predictions revealed genes enriched in the M3, a period when the plant wildfire disease index reached climax, were associated with the development of the wildfire disease (secretion of virulence factor), the enhanced metabolic capacity and environmental adaption. The M3 and M4 microbial communities have more intricate molecular ecological networks (MENs), bursting with interconnections within a densely networked bacterial population. The relative abundances of plant-beneficial and antagonistic microbes Clostridiales, Bacillales, Lactobacillales, and Sphingobacteriales, showed significant decrease in severally diseased sample (M3) compared to the pre-diseased samples (M1/M2). Following the results of MENs, we further test if the correlating bacterial pairs within the MEN have the possibility to share functional genes and we have unraveled 139 entries of such horizontal gene transfer (HGT) events, highlighting the significance of HGT in shaping the adaptive traits of plant-associated bacteria across the MENs, particularly in relation to host colonization and pathogenicity.
Collapse
Affiliation(s)
- Deyuan Peng
- Zhangjiajie Tobacco Company of Hunan Province, Zhangjiajie, China
| | - Zhenhua Wang
- Zhangjiajie Tobacco Company of Hunan Province, Zhangjiajie, China
| | - Jinyan Tian
- Zhangjiajie Tobacco Company of Hunan Province, Zhangjiajie, China
| | - Wei Wang
- Zhangjiajie Tobacco Company of Hunan Province, Zhangjiajie, China
| | - Shijie Guo
- Zhangjiajie Tobacco Company of Hunan Province, Zhangjiajie, China
| | - Xi Dai
- Zhangjiajie Tobacco Company of Hunan Province, Zhangjiajie, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Liangzhi Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| |
Collapse
|
4
|
Dumigan CR, Deyholos MK. Soil and seed both influence bacterial diversity in the microbiome of the Cannabis sativa seedling endosphere. FRONTIERS IN PLANT SCIENCE 2024; 15:1326294. [PMID: 38450399 PMCID: PMC10914941 DOI: 10.3389/fpls.2024.1326294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/02/2024] [Indexed: 03/08/2024]
Abstract
Introduction Phytobiomes have a significant impact on plant health. The microbiome of Cannabis sativa is particularly interesting both because of renewed interest in this crop and because it is commercially propagated in two different ways (i.e. clonally and by seed). Angiosperms obtain a founding population of seed-borne endophytes from their seed-bearing parent. This study examines the influence of both seed and soil-derived bacteria on the endospheres of cannabis seedlings of both hemp- and drug-types. Methods A multi-factorial metagenomic study was conducted with three cannabis genotypes and two soil sources, which were tested both before and after autoclave sterilization. Seedlings were grown on soil, then rinsed and surface-sterilized, and 16S rDNA amplicons from seedling endophytes were sequenced, taxonomically classified, and used to estimate alpha- and beta-diversity in Qiime2. The statistical significance of differences in seedling microbiomes across treatments was tested, and PiCRUST2 was used to infer the functional relevance of these differences. Results Soil was found to have a profound effect on the alpha-diversity, beta-diversity, relative abundance, and functional genes of endophytic bacteria in germinating cannabis seedlings. Additionally, there was a significant effect of cannabis genotype on beta diversity, especially when genotypes were grown in sterilized soil. Gammaproteobacteria and Bacilli were the two most abundant taxa and were found in all genotypes and soil types, including sterilized soil. Discussion The results indicated that a component of cannabis seedling endosphere microbiomes is seed-derived and conserved across the environments tested. Functional prediction of seedling endophytes using piCRUST suggested a number of important functions of seed-borne endophytes in cannabis including nutrient and amino acid cycling, hormone regulation, and as precursors to antibiotics. This study suggested both seed and soil play a critical role in shaping the microbiome of germinating cannabis seedlings.
Collapse
Affiliation(s)
| | - Michael K. Deyholos
- Department of Biology, Faculty of Science, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
5
|
Yu C, Qi J, Han H, Wang P, Liu C. Progress in pathogenesis research of Ustilago maydis, and the metabolites involved along with their biosynthesis. MOLECULAR PLANT PATHOLOGY 2023; 24:495-509. [PMID: 36808861 PMCID: PMC10098057 DOI: 10.1111/mpp.13307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/26/2022] [Accepted: 01/13/2023] [Indexed: 05/03/2023]
Abstract
Ustilago maydis is a pathogenic fungus that causes corn smut. Because of its easy cultivation and genetic transformation, U. maydis has become an important model organism for plant-pathogenic basidiomycetes. U. maydis is able to infect maize by producing effectors and secreted proteins as well as surfactant-like metabolites. In addition, the production of melanin and iron carriers is also associated with its pathogenicity. Here, advances in our understanding of the pathogenicity of U. maydis, the metabolites involved in the pathogenic process, and the biosynthesis of these metabolites, are reviewed and discussed. This summary will provide new insights into the pathogenicity of U. maydis and the functions of associated metabolites, as well as new clues for deciphering the biosynthesis of metabolites.
Collapse
Affiliation(s)
- Chunyan Yu
- Key Laboratory for Enzyme and Enzyme‐Like Material Engineering of Heilongjiang, College of Life ScienceNortheast Forestry UniversityHarbinChina
| | - Jianzhao Qi
- Key Laboratory for Enzyme and Enzyme‐Like Material Engineering of Heilongjiang, College of Life ScienceNortheast Forestry UniversityHarbinChina
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & PharmacyNorthwest A&F UniversityYanglingChina
| | - Haiyan Han
- Key Laboratory for Enzyme and Enzyme‐Like Material Engineering of Heilongjiang, College of Life ScienceNortheast Forestry UniversityHarbinChina
| | - Pengchao Wang
- Key Laboratory for Enzyme and Enzyme‐Like Material Engineering of Heilongjiang, College of Life ScienceNortheast Forestry UniversityHarbinChina
| | - Chengwei Liu
- Key Laboratory for Enzyme and Enzyme‐Like Material Engineering of Heilongjiang, College of Life ScienceNortheast Forestry UniversityHarbinChina
| |
Collapse
|
6
|
GAO X, LIU Y, LIU C, GUO C, ZHANG Y, MA C, DUAN X. Individual and combined effects of arbuscular mycorrhizal fungi and phytohormones on the growth and physiobiochemical characteristics of tea cutting seedlings. FRONTIERS IN PLANT SCIENCE 2023; 14:1140267. [PMID: 37056488 PMCID: PMC10086264 DOI: 10.3389/fpls.2023.1140267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Both arbuscular mycorrhizal fungi (AMF) and phytohormones collectively regulate plant growth and root development, but their individual and combined effects on tea [Camellia sinensis (L.) O. Kuntze] cutting seedings remain unclear. This study examined the individual and combined effects of two species of AMF (Rhizophagus intraradices, RI and Funneliformis mosseae, FM) and two types of palnt hormones (strigolactones, SLs; polyamines, PAs) on tea cutting seedings, by evaluating the growth and physiobiochemical characteristics of plants treated with the AMFs and/or hormones. The results showed that inoculation with either AMF individually or hormones treatment alone could significantly enhanced mycorrhizal colonization, growth target and physiobiochemical characteristics of tea cutting seedlings. Interestingly, the addition of a combination of AMFs and hormones showed superior effects, while SL and RI exhibited the most improvements to the colonization rate, plant growth, root-morphological traits, root DHA activity, photosynthesis, chlorophyll content, soluble sugar content in leaves, and the activities of antioxidant enzymes (SOD, POD, and CAT), compared to other treatment combinations (SL + FM, PA + RI, and PA + FM). Correlation analyses revealed a significantly (p < 0.05) positive correlation of root AMF colonization with root-related traits (e.g., DHA, root total length, surface area, and volume) and leaf-related traits (e.g., leaf area, shoot biomass, total chlorophyll, and antioxidant enzyme activities). This study demonstrated that while the apllication of individual AMF or plant hormones had a certain good effects on most growth and physiobiochemical characteristics parameters of tea cutting seedings, the additive effect was from specific combined of AMF and plant hormones. These results highlight the possibility for combined of AMF and plant hormones to improve the asexual reproduction of tea plants via cuttings.
Collapse
Affiliation(s)
- Xiubing GAO
- Guizhou Tea Research Institute, Guizhou Province Academy of Agricultural Science, Guiyang, Guizhou, China
- College of Horticalture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Yan LIU
- Guizhou Institutes of Biology, Guizhou Academy of Sciences, Guiyang, Guizhou, China
| | - Chunyan LIU
- College of Horticalture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Can GUO
- Guizhou Tea Research Institute, Guizhou Province Academy of Agricultural Science, Guiyang, Guizhou, China
| | - Yuan ZHANG
- Guizhou Tea Research Institute, Guizhou Province Academy of Agricultural Science, Guiyang, Guizhou, China
| | - Chiyu MA
- Guizhou Tea Research Institute, Guizhou Province Academy of Agricultural Science, Guiyang, Guizhou, China
| | - Xueyi DUAN
- Guizhou Tea Research Institute, Guizhou Province Academy of Agricultural Science, Guiyang, Guizhou, China
| |
Collapse
|
7
|
Polyamine Oxidase-Generated Reactive Oxygen Species in Plant Development and Adaptation: The Polyamine Oxidase-NADPH Oxidase Nexus. Antioxidants (Basel) 2022; 11:antiox11122488. [PMID: 36552696 PMCID: PMC9774701 DOI: 10.3390/antiox11122488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Metabolism and regulation of cellular polyamine levels are crucial for living cells to maintain their homeostasis and function. Polyamine oxidases (PAOs) terminally catabolize polyamines or catalyse the back-conversion reactions when spermine is converted to spermidine and Spd to putrescine. Hydrogen peroxide (H2O2) is a by-product of both the catabolic and back-conversion processes. Pharmacological and genetic approaches have started to uncover the roles of PAO-generated H2O2 in various plant developmental and adaptation processes such as cell differentiation, senescence, programmed cell death, and abiotic and biotic stress responses. Many of these studies have revealed that the superoxide-generating Respiratory Burst Oxidase Homolog (RBOH) NADPH oxidases control the same processes either upstream or downstream of PAO action. Therefore, it is reasonable to suppose that the two enzymes co-ordinately control the cellular homeostasis of reactive oxygen species. The intricate relationship between PAOs and RBOHs is also discussed, posing the hypothesis that these enzymes indirectly control each other's abundance/function via H2O2.
Collapse
|
8
|
Qi Y, Wang Q, Xie Q, Wu C, Xu M, Han S, Zhou T, Li J, Xia L, Li WC, Pan W. Safety evaluation of FAD2 RNAi transgenic Brassica napus L. based on microbial diversity and metabonomic analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:953476. [PMID: 36531340 PMCID: PMC9751890 DOI: 10.3389/fpls.2022.953476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/20/2022] [Indexed: 06/17/2023]
Abstract
Oleic acid desaturase (FAD2) is the key enzyme that produces polyunsaturated fatty acids in rapeseed (Brassica napus L), which is one of the main oil crops. RNA interference (RNAi) is an emerging technique that provides new opportunities for the generation of new traits in plants. To increase oleic acid content and reduce linoleic and linolenic acid content in rapeseed, we constructed an ihpRNA plant expression vector of the FAD2 gene and obtained transgenic plants for multiple generations by stable inheritance. In this study, third-generation transgenic plants (T3), seventh-generation transgenic plants (T7), and wild-type plants (WT) were used. The differences in microbial community diversity between transgenic plants and wild-type plants and the up- and downregulation of rhizosphere metabolite contents were investigated. In conclusion, the results showed that the soil microbial community structure was stable, the general microbial community structure was not changed by the transgenic rhizosphere exudates, and no significant harmful root exudate of transgenic rapeseed on the environment was found through the microbial community and metabolomics analysis. This work may provide an understanding of the impact of RNAi on plant metabolites and a safety evaluation method for transgenic plants and a reference for rapeseed breeding.
Collapse
Affiliation(s)
- Yanting Qi
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
- School of Metallurgy and Environment, Central South University, Changsha, China
| | - Qiming Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Qingxuan Xie
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Chuan Wu
- School of Metallurgy and Environment, Central South University, Changsha, China
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong SAR, China
| | - Minhui Xu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Shaofan Han
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Ting Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Juan Li
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Libing Xia
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Wai chin Li
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong SAR, China
| | - Weisong Pan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
9
|
Antoszewski M, Mierek-Adamska A, Dąbrowska GB. The Importance of Microorganisms for Sustainable Agriculture-A Review. Metabolites 2022; 12:1100. [PMID: 36422239 PMCID: PMC9694901 DOI: 10.3390/metabo12111100] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 08/27/2023] Open
Abstract
In the face of climate change, progressive degradation of the environment, including agricultural land negatively affecting plant growth and development, endangers plant productivity. Seeking efficient and sustainable agricultural techniques to replace agricultural chemicals is one of the most important challenges nowadays. The use of plant growth-promoting microorganisms is among the most promising approaches; however, molecular mechanisms underneath plant-microbe interactions are still poorly understood. In this review, we summarized the knowledge on plant-microbe interactions, highlighting the role of microbial and plant proteins and metabolites in the formation of symbiotic relationships. This review covers rhizosphere and phyllosphere microbiomes, the role of root exudates in plant-microorganism interactions, the functioning of the plant's immune system during the plant-microorganism interactions. We also emphasized the possible role of the stringent response and the evolutionarily conserved mechanism during the established interaction between plants and microorganisms. As a case study, we discussed fungi belonging to the genus Trichoderma. Our review aims to summarize the existing knowledge about plant-microorganism interactions and to highlight molecular pathways that need further investigation.
Collapse
Affiliation(s)
| | - Agnieszka Mierek-Adamska
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
| | | |
Collapse
|
10
|
Apriyanto A, Compart J, Zimmermann V, Alseekh S, Fernie AR, Fettke J. Indication that starch and sucrose are biomarkers for oil yield in oil palm (Elaeis guineensis Jacq.). Food Chem 2022; 393:133361. [DOI: 10.1016/j.foodchem.2022.133361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/02/2022] [Accepted: 05/29/2022] [Indexed: 11/04/2022]
|
11
|
Fischerová L, Gemperlová L, Cvikrová M, Matušíková I, Moravčíková J, Gerši Z, Malbeck J, Kuderna J, Pavlíčková J, Motyka V, Eliášová K, Vondráková Z. The humidity level matters during the desiccation of Norway spruce somatic embryos. FRONTIERS IN PLANT SCIENCE 2022; 13:968982. [PMID: 35968100 PMCID: PMC9372446 DOI: 10.3389/fpls.2022.968982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
In Norway spruce, as in many other conifers, the germination capacity of somatic embryos is strongly influenced by the desiccation phase inserted after maturation. The intensity of drying during desiccation eminently affected the formation of emblings (i.e., seedlings developed from somatic embryos). Compared to non-desiccated embryos, the germination capacity of embryos desiccated at 100% relative humidity was about three times higher, but the reduction of relative humidity to 95 and 90% had a negative effect on the subsequent embryo development. The water loss observed in these embryos did not lead to an increase in lipid peroxidation, as shown by malondialdehyde levels. Another metabolic pathway in plants that mediates a response to abiotic stresses is directed toward the biosynthesis of polyamines (PAs). The activities of PA biosynthetic enzymes increased steadily in embryos during desiccation at 100% relative humidity, whereas they decreased at lower humidity. The total content of free PAs in the embryos gradually decreased throughout desiccation. The increase in free putrescine (Put) and perchloric acid-insoluble Put conjugates was observed in embryos desiccated at lower humidity. These changes were accompanied to some extent by the transcription of the genes for the PA biosynthesis enzymes. Desiccation at 100% relative humidity increased the activity of the cell wall-modifying enzymes β-1,3-glucanases and chitinases; the activities of these enzymes were also significantly suppressed at reduced humidity. The same pattern was observed in the transcription of some β-1,3-glucanase and chitinase genes. Desiccation treatments triggered metabolic processes that responded to water availability, suggesting an active response of the embryo to the reduction in humidity. A positive effect was demonstrated only for desiccation at high relative humidity. Some of the physiological characteristics described can be used as markers of inappropriate relative humidity during somatic embryo desiccation.
Collapse
Affiliation(s)
- Lucie Fischerová
- Laboratory of Biologically Active Compounds, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Lenka Gemperlová
- Laboratory of Biologically Active Compounds, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Milena Cvikrová
- Laboratory of Biologically Active Compounds, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Ildiko Matušíková
- Department of Ecochemistry and Radioecology, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Jana Moravčíková
- Department of Biotechnologies, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Zuzana Gerši
- Department of Biology, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Jiří Malbeck
- Laboratory of Mass Spectroscopy, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Jan Kuderna
- Laboratory of Biologically Active Compounds, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Jana Pavlíčková
- Laboratory of Biologically Active Compounds, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Václav Motyka
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Kateřina Eliášová
- Laboratory of Biologically Active Compounds, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Zuzana Vondráková
- Laboratory of Biologically Active Compounds, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
12
|
Liang SM, Zheng FL, Wu QS. Elucidating the dialogue between arbuscular mycorrhizal fungi and polyamines in plants. World J Microbiol Biotechnol 2022; 38:159. [PMID: 35834138 DOI: 10.1007/s11274-022-03336-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/12/2022] [Indexed: 12/12/2022]
Abstract
The most dominant arbuscular mycorrhizal (AM) symbiont can be established on roots of most terrestrial plants by beneficial AM fungi. A type of polycationic and aliphatic compounds, polyamines (PAs), are involved in plant physiological activities including stress responses. Interestingly, small amounts of PAs such as putrescine (Put) and spermidine (Spd) were found in AM fungal spores, and they are considered to be a component involved in mycorrhizal development, including mycorrhizal colonization, appressoria formation, spore germination and mycelial growth. Thus, PAs are regulatory factors in plant-AM symbiosis. Inoculation of AM fungi also affects the metabolism of endogenous PAs in host plants, including PAs synthesis and catabolism, thus, regulating various physiological events of the host. As a result, there seems to be a dialogue between PAs and AM fungi. Existing knowledge makes us understand that endogenous or exogenous PAs are an important regulator factor in the growth of AM fungi, as well as a key substance to colonize roots, which further enhances mycorrhizal benefits in plant growth responses and root architecture. The presence of AM symbiosis in roots alters the dynamic balance of endogenous PAs, triggering osmotic adjustment and antioxidant defense systems, maintaining charge balance and acting as a stress signalling molecule, which affects various physiological activities, such as plant growth, nutrient acquisition, stress tolerance and improvement of root architecture. This review mainly elucidated (i) what is the role of fungal endogenous PAs in fungal growth and colonization of roots in host plants? (ii) how AM fungi and PAs interact with each other to alter the growth of fungi and plants and subsequent activities, providing the reference for the future combined use of AM fungi and PAs in agricultural production, although there are still many unknown events in the dialogue.
Collapse
Affiliation(s)
- Sheng-Min Liang
- College of Horticulture and Gardening, Yangtze University, 434025, Jingzhou, Hubei, China
| | - Feng-Ling Zheng
- College of Horticulture and Gardening, Yangtze University, 434025, Jingzhou, Hubei, China
| | - Qiang-Sheng Wu
- College of Horticulture and Gardening, Yangtze University, 434025, Jingzhou, Hubei, China.
| |
Collapse
|
13
|
Putrescine: A Key Metabolite Involved in Plant Development, Tolerance and Resistance Responses to Stress. Int J Mol Sci 2022; 23:ijms23062971. [PMID: 35328394 PMCID: PMC8955586 DOI: 10.3390/ijms23062971] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 02/06/2023] Open
Abstract
Putrescine (Put) is the starting point of the polyamines (PAs) pathway and the most common PA in higher plants. It is synthesized by two main pathways (from ornithine and arginine), but recently a third pathway from citrulline was reported in sesame plants. There is strong evidence that Put may play a crucial role not only in plant growth and development but also in the tolerance responses to the major stresses affecting crop production. The main strategies to investigate the involvement of PA in plant systems are based on the application of competitive inhibitors, exogenous PAs treatments, and the most efficient approaches based on mutant and transgenic plants. Thus, in this article, the recent advances in understanding the role of this metabolite in plant growth promotion and protection against abiotic and biotic stresses will be discussed to provide an overview for future research.
Collapse
|
14
|
Yazdanian E, Golkar P, Vahabi MR, Taghizadeh M. Elicitation Effects on Some Secondary Metabolites and Antioxidant Activity in Callus Cultures of Allium jesdianum Boiss. & Buhse.: Methyl Jasmonate and Putrescine. Appl Biochem Biotechnol 2022; 194:601-619. [PMID: 34410612 DOI: 10.1007/s12010-021-03643-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/10/2021] [Indexed: 11/28/2022]
Abstract
Allium jesdianum Boiss. & Buhse. is the most important species of the Amaryllidaceae family with various pharmacological properties. Three subsequent experiments (germination, callogenesis, and elicitation) were carried out as a completely randomized design with six replication. At the first study, the highest seed germination (78.33%) was achieved at chemical pre-treatment including the combination of α-naphthalene acetic acid (1 mg L-1) and benzylaminopurine (3 mg L-1) under in vitro condition. The highest callus induction (86.7%) was observed at MS/2 media, which was supplemented by NAA (1 mg L-1) and BAP (3 mg L-1) from hypocotyl explants. Then, two chemical elicitors including methyl jasmonate (MeJ) (0, 25, 50, and 100 µM) and putrescine (Pu) (0, 0.5, and 1 mM) were used to investigate their effects on different biochemical traits under callus culture. The results showed the superiority of MeJ over Pu for increasing the secondary metabolites and antioxidant activity in calluses of Allium jesdianum, compared to the control. The highest contents for total phenolics (6.02 mg GAE g-1 FW), total flavonoids (0.52 mg QE g-1 FW), and total flavonols (0.39 mg QE g-1 FW) were observed under 50 µM of MeJ. Meanwhile, the highest value for anthocyanin (8.99 µ mol g-1 FW) was achieved at 25 µM of MeJ. The highest 2,2-diphenyl-1-picrylhydrazyl activities were observed at 50 and 100 µM of MeJ. Putrescine (0.5 mM) elicitation showed only superiority for callus growth rate (0.53 mm day-1). Enhancement of desired secondary metabolites at 50 µM MeJ could be suitable for future studies in biotechnological aspects of this medicinal plant.
Collapse
Affiliation(s)
- Esmat Yazdanian
- Department of Natural Resources, Isfahan University of Technology, 8415683111, Isfahan, Iran
| | - Pooran Golkar
- Department of Natural Resources, Isfahan University of Technology, 8415683111, Isfahan, Iran.
- Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, 8415683111, Isfahan, Iran.
| | - Mohammad Reza Vahabi
- Department of Natural Resources, Isfahan University of Technology, 8415683111, Isfahan, Iran
| | - Marzieh Taghizadeh
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
15
|
Unravelling the multi-faceted regulatory role of polyamines in plant biotechnology, transgenics and secondary metabolomics. Appl Microbiol Biotechnol 2022; 106:905-929. [PMID: 35039927 DOI: 10.1007/s00253-021-11748-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 11/02/2022]
Abstract
Polyamines (PAs) are ubiquitous low-molecular-weight, aliphatic compounds with wide as well as complex application in fundamental areas of plant growth and development. PAs are mediator of basic metabolism of organisms which include cell division and differentiation, biotic and abiotic stress tolerance, reversal of oxidative damage, stabilization of nucleic acids, and protein and phospholipid binding. In plants, it attributes in direct and indirect organogenesis, endogenous phytohormone regulation, cellular compartmentalization, fruit and flower development, senescence, and secondary metabolite production which are highly tuned as first line of defense response. There are several aspects of polyamine-directed mechanism that regulate overall plant growth in vitro and in vivo. In the present review, we have critically discussed the role played by polyamine on the enhanced production of bioactive natural products and how the same polyamines are functioning against different environmental stress conditions, i.e., salinity, drought, high CO2 content, herbivory, and physical wounding. The role of polyamines on elicitation process has been highlighted previously, but it is important to note that its activity as growth regulator under in vitro condition is correlated with an array of intertwined mechanism and physiological tuning. Medicinal plants under different developmental stages of micropropagation are characterized with different functional aspects and regulatory changes during embryogenesis and organogenesis. The effect of precursor molecules as well as additives and biosynthetic inhibitors of polyamines in rhizogenesis, callogenesis, tuberization, embryogenesis, callus formation, and metabolite production has been discussed thoroughly. The beneficial effect of exogenous application of PAs in elicitation of secondary metabolite production, plant growth and morphogenesis and overall stress tolerance are summarized in this present work. KEY POINTS: • Polyamines (PAs) play crucial roles in in vitro organogenesis. • PAs elicitate bioactive secondary metabolites (SMs). • Transgenic studies elucidate and optimize PA biosynthetic genes coding SMs.
Collapse
|
16
|
Kang L, He D, Wang H, Han G, Lv H, Xiao W, Zhang Z, Yan Z, Huang L. "Breeding on Mountains" Resulted in the Reorganization of Endophytic Fungi in Asexually Propagated Plants ( Ligusticum chuanxiong Hort.). FRONTIERS IN PLANT SCIENCE 2021; 12:740456. [PMID: 34858448 PMCID: PMC8631752 DOI: 10.3389/fpls.2021.740456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/04/2021] [Indexed: 05/05/2023]
Abstract
"Breeding on mountains, cultivation in dam areas" is a unique propagation method for the vegetatively propagated plant Ligusticum chuanxiong, including two transplants between the mountain and the dam area. It is well known that the environment can influence the endophytic community structure of plants. However, the change of host endophytic flora caused by transplanting in different places and its influence on asexual reproduction are still poorly understood. We carried out three cycles of cultivation experiments on L. chuanxiong and collected stem nodes (LZ), immature rhizomes (PX), medicinal rhizomes (CX), and rhizosphere. High-throughput sequencing was performed to analyze the endophytic fungi in all samples. We observed that the diversity and richness of endophytic fungi in L. chuanxiong increased as a result of transplanting cultivation from dam areas to mountains. Local transplantation caused minor changes in the endophytic fungus structure of L. chuanxiong, while remote transplantation caused significant changes. Compared with LZ after breeding in the dam area, the LZ after breeding on mountains has more abundant Gibberella, Phoma, Pericona, Paraphoma, and Neocosmospora. The regular pattern of the relative abundance of endophytic fungi is consistent with that of the fungus in the soil, while there are also some cases that the relative abundance of endophytic fungi is the opposite of that of soil fungi. In addition, there is a significant correlation among certain kinds of endophytic fungi whether in the soil or the plants. We have isolated more gibberellin-producing and auxin-producing fungi in the LZ cultivated in the mountains than that in the LZ cultivated in the dam area. The results of pot experiments showed that the three fungi isolated from LZ cultivated in mountainous areas can promote the development of shoots, stem nodes, and internodes of LZ, and increase the activity of plant peroxidase, catalase, phenylalanine ammonia lyase, and other enzymes. We can conclude that transplantation leads to the recombination of the host endophytic fungus, the more significant the difference in the environment is, the greater the reorganization caused by transplanting. Reorganization is determined by the soil environment, hosts, and the interaction of microorganisms. Remote transplantation is a crucial opportunity to reshuffle the micro-ecological structure of the asexual reproduction of plants, and regulate the growth, development, and resistance of plants, and prevent germplasm degradation caused by asexual reproduction.
Collapse
Affiliation(s)
- Lei Kang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dongmei He
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory Breeding Base of Dao-di Herbs, Center for Post-doctoral Research, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hai Wang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guiqi Han
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongyang Lv
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wanting Xiao
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhanling Zhang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhuyun Yan
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, Center for Post-doctoral Research, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
17
|
Kamiab F, Tavassolian I, Hosseinifarahi M. Biologia futura: the role of polyamine in plant science. Biol Futur 2021; 71:183-194. [PMID: 34554509 DOI: 10.1007/s42977-020-00027-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 06/10/2020] [Indexed: 12/27/2022]
Abstract
Polyamines (PAs) are positively charged amines such as putrescine, spermidine and spermine that ubiquitously exist in all organisms. They have been considered as a new type of plant biostimulants, with pivotal roles in many physiological processes. Polyamine levels are controlled by intricate regulatory feedback mechanisms. PAs are directly or indirectly regulated through interaction with signaling metabolites (H202, NO), aminobutyric acid (GABA), phytohormones (abscisic acid, gibberellins, ethylene, cytokinins, auxin, jasmonic acid and brassinosteroids) and nitrogen metabolism (maintaining the balance of C:N in plants). Exogenous applications of PAs enhance the stress resistance, flowering and fruit set, synthesis of bioactive compounds and extension of agricultural crops shelf life. Up-regulation of PAs biosynthesis by genetic manipulation can be a novel strategy to increase the productivity of agricultural crops. Recently, the role of PAs in symbiosis relationships between plants and beneficial microorganisms has been confirmed. PA metabolism has also been targeted to design new harmless fungicides.
Collapse
Affiliation(s)
- Fereshteh Kamiab
- Department of Horticulture, Faculty of Agriculture, Rafsanjan Branch, Islamic Azad University, Rafsanjan, Iran.
| | - Iraj Tavassolian
- Research and Technology Institute of Plant Production, Shahid Bahonar University of Kerman, Kerman, Iran.,Department of Horticulture, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mehdi Hosseinifarahi
- Department of Horticultural Science, Yasooj Branch, Islamic Azad University, Yasooj, Iran
| |
Collapse
|
18
|
Noman M, Ahmed T, Ijaz U, Shahid M, Azizullah, Li D, Manzoor I, Song F. Plant-Microbiome Crosstalk: Dawning from Composition and Assembly of Microbial Community to Improvement of Disease Resilience in Plants. Int J Mol Sci 2021; 22:6852. [PMID: 34202205 PMCID: PMC8269294 DOI: 10.3390/ijms22136852] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
Plants host diverse but taxonomically structured communities of microorganisms, called microbiome, which colonize various parts of host plants. Plant-associated microbial communities have been shown to confer multiple beneficial advantages to their host plants, such as nutrient acquisition, growth promotion, pathogen resistance, and environmental stress tolerance. Systematic studies have provided new insights into the economically and ecologically important microbial communities as hubs of core microbiota and revealed their beneficial impacts on the host plants. Microbiome engineering, which can improve the functional capabilities of native microbial species under challenging agricultural ambiance, is an emerging biotechnological strategy to improve crop yield and resilience against variety of environmental constraints of both biotic and abiotic nature. This review highlights the importance of indigenous microbial communities in improving plant health under pathogen-induced stress. Moreover, the potential solutions leading towards commercialization of proficient bioformulations for sustainable and improved crop production are also described.
Collapse
Affiliation(s)
- Muhammad Noman
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.N.); (T.A.); (U.I.); (A.); (D.L.)
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.N.); (T.A.); (U.I.); (A.); (D.L.)
| | - Usman Ijaz
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.N.); (T.A.); (U.I.); (A.); (D.L.)
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan;
| | - Azizullah
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.N.); (T.A.); (U.I.); (A.); (D.L.)
| | - Dayong Li
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.N.); (T.A.); (U.I.); (A.); (D.L.)
| | - Irfan Manzoor
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; or
| | - Fengming Song
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.N.); (T.A.); (U.I.); (A.); (D.L.)
| |
Collapse
|
19
|
Expression Profiles of Alkaloid-Related Genes across the Organs of Narrow-Leafed Lupin ( Lupinus angustifolius L.) and in Response to Anthracnose Infection. Int J Mol Sci 2021; 22:ijms22052676. [PMID: 33800929 PMCID: PMC7962062 DOI: 10.3390/ijms22052676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/06/2021] [Accepted: 03/03/2021] [Indexed: 11/21/2022] Open
Abstract
The main restraint obstructing the wider adoption of lupins as protein crops is the presence of bitter and toxic quinolizidine alkaloids (QAs), whose contents might increase under exposure to stressful environmental conditions. A poor understanding of how QAs accumulate hinders the breeding of sweet varieties. Here, we characterize the expression profiles of QA-related genes, along with the alkaloid content, in various organs of sweet and bitter narrow-leafed lupin (NLL, Lupinus angustifolius L.). Special attention is paid to the RAP2-7 transcription factor, a candidate regulator of the QA pathway. We demonstrate the upregulation of RAP2-7 and other QA-related genes, across the aerial organs of a bitter cultivar and the significant correlations between their expression levels, thus supporting the role of RAP2-7 as an important regulatory gene in NLL. Moreover, we showed that the initial steps of QA synthesis might occur independently in all aerial plant organs sharing common regulatory mechanisms. Nonetheless, other regulatory steps might be involved in RAP2-7-triggered QA accumulation, given its expression pattern in leaves. Finally, the examination of QA-related gene expression in plants infected with Colletotrichum lupini evidenced no connection between QA synthesis and anthracnose resistance, in contrast to the important role of polyamines during plant–pathogen interactions.
Collapse
|
20
|
Zhu L, Qian N, Sun Y, Lu X, Duan H, Qian L. Pseudomonas fluorescens DN16 Enhances Cucumber Defense Responses Against the Necrotrophic Pathogen Botrytis cinerea by Regulating Thermospermine Catabolism. FRONTIERS IN PLANT SCIENCE 2021; 12:645338. [PMID: 33692821 PMCID: PMC7937916 DOI: 10.3389/fpls.2021.645338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Plants can naturally interact with beneficial rhizobacteria to mediate defense responses against foliar pathogen infection. However, the mechanisms of rhizobacteria-mediated defense enhancement remain rarely clear. In this study, beneficial rhizobacterial strain Pseudomonas fluorescens DN16 greatly increased the resistance of cucumber plants against Botrytis cinerea infection. RNA-sequencing analyses showed that several polyamine-associated genes including a thermospermine (TSpm) synthase gene (CsACL5) and polyamine catabolic genes (CsPAO1, CsPAO5, and CsCuAO1) were notably induced by DN16. The associations of TSpm metabolic pathways with the DN16-mediated cucumber defense responses were further investigated. The inoculated plants exhibited the increased leaf TSpm levels compared with the controls. Accordantly, overexpression of CsACL5 in cucumber plants markedly increased leaf TSpm levels and enhanced defense against B. cinerea infection. The functions of TSpm catabolism in the DN16-mediated defense responses of cucumber plants to B. cinerea were further investigated by pharmacological approaches. Upon exposure to pathogen infection, the changes of leaf TSpm levels were positively related to the enhanced activities of polyamine catabolic enzymes including polyamine oxidases (PAOs) and copper amine oxidases (CuAOs), which paralleled the transcription of several defense-related genes such as pathogenesis-related protein 1 (CsPR1) and defensin-like protein 1 (CsDLP1). However, the inhibited activities of polyamine catabolic enzymes abolished the DN16-induced cucumber defense against B. cinerea infection. This was in line with the impaired expression of defense-related genes in the inoculated plants challenged by B. cinerea. Collectively, our findings unraveled a pivotal role of TSpm catabolism in the regulation of the rhizobacteria-primed defense states by mediating the immune responses in cucumber plants after B. cinerea infection.
Collapse
Affiliation(s)
- Lin Zhu
- School of Life and Health Science, Anhui Science and Technology University, Bengbu, China
| | - Nana Qian
- School of Life and Health Science, Anhui Science and Technology University, Bengbu, China
| | - Yujun Sun
- School of Life and Health Science, Anhui Science and Technology University, Bengbu, China
- College of Life science, Anhui Agricultural University, Hefei, China
| | - Xiaoming Lu
- School of Life and Health Science, Anhui Science and Technology University, Bengbu, China
| | - Haiming Duan
- School of Life and Health Science, Anhui Science and Technology University, Bengbu, China
| | - Lisheng Qian
- School of Life and Health Science, Anhui Science and Technology University, Bengbu, China
- College of Life science, Anhui Agricultural University, Hefei, China
| |
Collapse
|
21
|
Janse van Rensburg HC, Limami AM, Van den Ende W. Spermine and Spermidine Priming against Botrytis cinerea Modulates ROS Dynamics and Metabolism in Arabidopsis. Biomolecules 2021; 11:223. [PMID: 33562549 PMCID: PMC7914871 DOI: 10.3390/biom11020223] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 12/31/2022] Open
Abstract
Polyamines (PAs) are ubiquitous small aliphatic polycations important for growth, development, and environmental stress responses in plants. Here, we demonstrate that exogenous application of spermine (Spm) and spermidine (Spd) induced cell death at high concentrations, but primed resistance against the necrotrophic fungus Botrytis cinerea in Arabidopsis. At low concentrations, Spm was more effective than Spd. Treatments with higher exogenous Spd and Spm concentrations resulted in a biphasic endogenous PA accumulation. Exogenous Spm induced the accumulation of H2O2 after treatment but also after infection with B. cinerea. Both Spm and Spd induced the activities of catalase, ascorbate peroxidase, and guaiacol peroxidase after treatment but also after infection with B. cinerea. The soluble sugars glucose, fructose, and sucrose accumulated after treatment with high concentrations of PAs, whereas only Spm induced sugar accumulation after infection. Total and active nitrate reductase (NR) activities were inhibited by Spm treatment, whereas Spd inhibited active NR at low concentrations but promoted active NR at high concentrations. Finally, γaminobutyric acid accumulated after treatment and infection in plants treated with high concentrations of Spm. Phenylalanine and asparagine also accumulated after infection in plants treated with a high concentration of Spm. Our data illustrate that Spm and Spd are effective in priming resistance against B. cinerea, opening the door for the development of sustainable alternatives for chemical pesticides.
Collapse
Affiliation(s)
| | - Anis M. Limami
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France;
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium;
| |
Collapse
|
22
|
Understanding salt tolerance mechanism using transcriptome profiling and de novo assembly of wild tomato Solanum chilense. Sci Rep 2020; 10:15835. [PMID: 32985535 PMCID: PMC7523002 DOI: 10.1038/s41598-020-72474-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 08/21/2020] [Indexed: 01/30/2023] Open
Abstract
Soil salinity affects the plant growth and productivity detrimentally, but Solanum chilense, a wild relative of cultivated tomato (Solanum lycopersicum L.), is known to have exceptional salt tolerance. It has precise adaptations against direct exposure to salt stress conditions. Hence, a better understanding of the mechanism to salinity stress tolerance by S. chilense can be accomplished by comprehensive gene expression studies. In this study 1-month-old seedlings of S. chilense and S. lycopersicum were subjected to salinity stress through application of sodium chloride (NaCl) solution. Through RNA-sequencing here we have studied the differences in the gene expression patterns. A total of 386 million clean reads were obtained through RNAseq analysis using the Illumina HiSeq 2000 platform. Clean reads were further assembled de novo into a transcriptome dataset comprising of 514,747 unigenes with N50 length of 578 bp and were further aligned to the public databases. Genebank non-redundant (Nr), Viridiplantae, Gene Ontology (GO), KOG, and KEGG databases classification suggested enrichment of these unigenes in 30 GO categories, 26 KOG, and 127 pathways, respectively. Out of 265,158 genes that were differentially expressed in response to salt treatment, 134,566 and 130,592 genes were significantly up and down-regulated, respectively. Upon placing all the differentially expressed genes (DEG) in known signaling pathways, it was evident that most of the DEGs involved in cytokinin, ethylene, auxin, abscisic acid, gibberellin, and Ca2+ mediated signaling pathways were up-regulated. Furthermore, GO enrichment analysis was performed using REVIGO and up-regulation of multiple genes involved in various biological processes in chilense under salinity were identified. Through pathway analysis of DEGs, “Wnt signaling pathway” was identified as a novel pathway for the response to the salinity stress. Moreover, key genes for salinity tolerance, such as genes encoding proline and arginine metabolism, ROS scavenging system, transporters, osmotic regulation, defense and stress response, homeostasis and transcription factors were not only salt-induced but also showed higher expression in S. chilense as compared to S. lycopersicum. Thus indicating that these genes may have an important role in salinity tolerance in S. chilense. Overall, the results of this study improve our understanding on possible molecular mechanisms underlying salt tolerance in plants in general and tomato in particular.
Collapse
|
23
|
Sidhu GK, Tuan PA, Renault S, Daayf F, Ayele BT. Polyamine-Mediated Transcriptional Regulation of Enzymatic Antioxidative Response to Excess Soil Moisture during Early Seedling Growth in Soybean. BIOLOGY 2020; 9:biology9080185. [PMID: 32708038 PMCID: PMC7465689 DOI: 10.3390/biology9080185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/02/2020] [Accepted: 07/20/2020] [Indexed: 01/24/2023]
Abstract
This study examined the expression patterns of antioxidative genes and the activity of the corresponding enzymes in the excess moisture-stressed seedlings of soybean in response to seed treatment with polyamines, spermine (Spm) and spermidine (Spd). At the 4 day after planting (DAP) stage, the excess moisture impaired the embryo axis growth, and this effect is associated with the downregulation of superoxide dismutase (GmSOD1) expression and SOD activity in the cotyledon. Seed treatment with Spm reversed the effects of excess moisture on embryo axis growth partly through enhancing glutathione reductase (GR) activity, in both the cotyledon and embryo axis, although no effect on the GmGR expression level was evident. Excess moisture inhibited the shoot and root growth in 7 DAP seedlings, and this is associated with decreased activities of GR in the shoot and SOD in the root. The effect of excess moisture on shoot and root growth was reversed by seed treatment with Spd, and this was mediated by the increased activities of ascorbate peroxidase (APX), catalase (CAT) and GR in the shoot, and APX in the root, however, only GR in the shoot appears to be regulated transcriptionally. Root growth was also reversed by seed treatment with Spm with no positive effect on gene expression and enzyme activity.
Collapse
Affiliation(s)
- Gagandip K. Sidhu
- Department of Plant Science, 222 Agriculture Building, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (G.K.S.); (P.A.T.); (F.D.)
| | - Pham Anh Tuan
- Department of Plant Science, 222 Agriculture Building, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (G.K.S.); (P.A.T.); (F.D.)
| | - Sylvie Renault
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Fouad Daayf
- Department of Plant Science, 222 Agriculture Building, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (G.K.S.); (P.A.T.); (F.D.)
| | - Belay T. Ayele
- Department of Plant Science, 222 Agriculture Building, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (G.K.S.); (P.A.T.); (F.D.)
- Correspondence: ; Tel.: +1-204-474-8227; Fax: +1-204-474-7528
| |
Collapse
|
24
|
Casarrubias-Castillo K, Montero-Vargas JM, Dabdoub-González N, Winkler R, Martinez-Gallardo NA, Zañudo-Hernández J, Avilés-Arnaut H, Délano-Frier JP. Distinct gene expression and secondary metabolite profiles in suppressor of prosystemin-mediated responses2 (spr2) tomato mutants having impaired mycorrhizal colonization. PeerJ 2020; 8:e8888. [PMID: 32337100 PMCID: PMC7167247 DOI: 10.7717/peerj.8888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/11/2020] [Indexed: 11/20/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) colonization, sampled at 32-50 days post-inoculation (dpi), was significantly reduced in suppressor of prosystemin-mediated responses2 (spr2) mutant tomato plants impaired in the ω-3 FATTY ACID DESATURASE7 (FAD7) gene that limits the generation of linolenic acid and, consequently, the wound-responsive jasmonic acid (JA) burst. Contrary to wild-type (WT) plants, JA levels in root and leaves of spr2 mutants remained unchanged in response to AMF colonization, further supporting its regulatory role in the AM symbiosis. Decreased AMF colonization in spr2 plants was also linked to alterations associated with a disrupted FAD7 function, such as enhanced salicylic acid (SA) levels and SA-related defense gene expression and a reduction in fatty acid content in both mycorrhizal spr2 roots and leaves. Transcriptomic data revealed that lower mycorrhizal colonization efficiency in spr2 mutants coincided with the modified expression of key genes controlling gibberellin and ethylene signaling, brassinosteroid, ethylene, apocarotenoid and phenylpropanoid synthesis, and the wound response. Targeted metabolomic analysis, performed at 45 dpi, revealed augmented contents of L-threonic acid and DL-malic acid in colonized spr2 roots which suggested unfavorable conditions for AMF colonization. Additionally, time- and genotype-dependent changes in root steroid glycoalkaloid levels, including tomatine, suggested that these metabolites might positively regulate the AM symbiosis in tomato. Untargeted metabolomic analysis demonstrated that the tomato root metabolomes were distinctly affected by genotype, mycorrhizal colonization and colonization time. In conclusion, reduced AMF colonization efficiency in spr2 mutants is probably caused by multiple and interconnected JA-dependent and independent gene expression and metabolomic alterations.
Collapse
Affiliation(s)
- Kena Casarrubias-Castillo
- Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Josaphat M. Montero-Vargas
- Departamento de Investigación en Inmunogenética y Alergia, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Nicole Dabdoub-González
- Instituto de Biotecnología de la Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Nicolas de los Garza, Nuevo Leon, Mexico
| | - Robert Winkler
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN-Unidad Irapuato, Irapuato, Guanajuato, México
| | - Norma A. Martinez-Gallardo
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN-Unidad Irapuato, Irapuato, Guanajuato, México
| | - Julia Zañudo-Hernández
- Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Hamlet Avilés-Arnaut
- Instituto de Biotecnología de la Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Nicolas de los Garza, Nuevo Leon, Mexico
| | - John P. Délano-Frier
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN-Unidad Irapuato, Irapuato, Guanajuato, México
| |
Collapse
|
25
|
Fraudentali I, Ghuge SA, Carucci A, Tavladoraki P, Angelini R, Rodrigues-Pousada RA, Cona A. Developmental, hormone- and stress-modulated expression profiles of four members of the Arabidopsis copper-amine oxidase gene family. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 147:141-160. [PMID: 31862580 DOI: 10.1016/j.plaphy.2019.11.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/22/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
Copper-containing amine oxidases (CuAOs) catalyze polyamines (PAs) terminal oxidation producing ammonium, an aminoaldehyde and hydrogen peroxide (H2O2). Plant CuAOs are induced by stress-related hormones, methyl-jasmonate (MeJA), abscisic acid (ABA) and salicylic acid (SA). In the Arabidopsis genome, eight genes encoding CuAOs have been identified. Here, a comprehensive investigation of the expression pattern of four genes encoding AtCuAOs from the α and γ phylogenetic subfamilies, the two peroxisomal AtCuAOα2 (At1g31690) and AtCuAOα3 (At1g31710) and the two apoplastic AtCuAOγ1 (At1g62810) and AtCuAOγ2 (At3g43670), has been carried out by RT-qPCR and promoter::green fluorescent protein-β-glucuronidase fusion (GFP-GUS). Expression in hydathodes of new emerging leaves (AtCuAOγ1 and AtCuAOγ2) and/or cotyledons (AtCuAOα2, AtCuAOγ1 and AtCuAOγ2) as well as in vascular tissues of new emerging leaves and in cortical root cells at the division/elongation transition zone (AtCuAOγ1), columella cells (AtCuAOγ2) or hypocotyl and root (AtCuAOα3) was identified. Quantitative and tissue-specific gene expression analysis performed by RT-qPCR and GUS-staining in 5- and 7-day-old seedlings under stress conditions or after treatments with hormones or PAs, revealed that all four AtCuAOs were induced during dehydration recovery, wounding, treatment with indoleacetic acid (IAA) and putrescine (Put). AtCuAOα2, AtCuAOα3, AtCuAOγ1 and AtCuAOγ2 expression in vascular tissues and hydathodes involved in water supply and/or loss, along with a dehydration-recovery dependent gene expression, would suggest a role in water balance homeostasis. Moreover, occurrence in zones where an auxin maximum has been observed along with an IAA-induced alteration of expression profiles, support a role in tissue maturation and xylem differentiation events.
Collapse
Affiliation(s)
| | - Sandip A Ghuge
- Institute of Plant Sciences, The Volcani Center, ARO, Bet Dagan, 50250, Israel.
| | - Andrea Carucci
- Department of Sciences, Università Roma Tre, Roma, 00146, Italy.
| | - Paraskevi Tavladoraki
- Department of Sciences, Università Roma Tre, Roma, 00146, Italy; Istituto Nazionale Biostrutture e Biosistemi (INBB), Rome, 00136, Italy.
| | - Riccardo Angelini
- Department of Sciences, Università Roma Tre, Roma, 00146, Italy; Istituto Nazionale Biostrutture e Biosistemi (INBB), Rome, 00136, Italy.
| | | | - Alessandra Cona
- Department of Sciences, Università Roma Tre, Roma, 00146, Italy; Istituto Nazionale Biostrutture e Biosistemi (INBB), Rome, 00136, Italy.
| |
Collapse
|
26
|
Garg N, Saroy K. Interactive effects of polyamines and arbuscular mycorrhiza in modulating plant biomass, N 2 fixation, ureide, and trehalose metabolism in Cajanus cajan (L.) Millsp. genotypes under nickel stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:3043-3064. [PMID: 31838702 DOI: 10.1007/s11356-019-07300-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/04/2019] [Indexed: 05/27/2023]
Abstract
Nickel (Ni) is an essential micronutrient but considered toxic for plant growth when present in excess in the soil. Polyamines (PAs) and arbuscular mycorrhiza (AM) play key roles in alleviating metal toxicity in plants. Present study compared the roles of AM and PAs in improving rhizobial symbiosis, ureide, and trehalose (Tre) metabolism under Ni stress in Cajanus cajan (pigeon pea) genotypes (Pusa 2001, AL 201). The results documented significant negative impacts of Ni on plant biomass, especially roots, more in AL 201 than Pusa 2001. Symbiotic efficiency with Rhizobium and AM declined under Ni stress, resulting in reduced AM colonization, N2 fixation, and ureide biosynthesis. This decline was proportionate to increased Ni uptake in roots and nodules. Put-reduced Ni uptake improved plant growth and functional efficiency of nodules and ureides synthesis, with higher positive effects than other PAs. However, AM inoculations were most effective in enhancing nodulation, nitrogen fixing potential, and Tre synthesis under Ni toxicity. Combined applications of AM with respective PAs, especially +Put+AM, were highly beneficial in alleviating Ni-induced nodule senescence by arresting leghemoglobin degradation and improving functional efficiency of nodules by boosting Tre metabolism, especially in Pusa 2001. The study suggested use of Put along with AM as a promising approach in imparting Ni tolerance to pigeon pea plants.
Collapse
Affiliation(s)
- Neera Garg
- Department of Botany, Panjab University, Chandigarh, 160014, India.
| | - Kiran Saroy
- Department of Botany, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
27
|
Menéndez AB, Calzadilla PI, Sansberro PA, Espasandin FD, Gazquez A, Bordenave CD, Maiale SJ, Rodríguez AA, Maguire VG, Campestre MP, Garriz A, Rossi FR, Romero FM, Solmi L, Salloum MS, Monteoliva MI, Debat JH, Ruiz OA. Polyamines and Legumes: Joint Stories of Stress, Nitrogen Fixation and Environment. FRONTIERS IN PLANT SCIENCE 2019; 10:1415. [PMID: 31749821 PMCID: PMC6844238 DOI: 10.3389/fpls.2019.01415] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 10/11/2019] [Indexed: 05/31/2023]
Abstract
Polyamines (PAs) are natural aliphatic amines involved in many physiological processes in almost all living organisms, including responses to abiotic stresses and microbial interactions. On other hand, the family Leguminosae constitutes an economically and ecologically key botanical group for humans, being also regarded as the most important protein source for livestock. This review presents the profuse evidence that relates changes in PAs levels during responses to biotic and abiotic stresses in model and cultivable species within Leguminosae and examines the unreviewed information regarding their potential roles in the functioning of symbiotic interactions with nitrogen-fixing bacteria and arbuscular mycorrhizae in this family. As linking plant physiological behavior with "big data" available in "omics" is an essential step to improve our understanding of legumes responses to global change, we also examined integrative MultiOmics approaches available to decrypt the interface legumes-PAs-abiotic and biotic stress interactions. These approaches are expected to accelerate the identification of stress tolerant phenotypes and the design of new biotechnological strategies to increase their yield and adaptation to marginal environments, making better use of available plant genetic resources.
Collapse
Affiliation(s)
- Ana Bernardina Menéndez
- Instituto Tecnológico de Chascomús (INTECH), UNSAM-CONICET, Chascomús, Argentina
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, UBA-CONICET, Buenos Aires, Argentina
| | | | | | | | - Ayelén Gazquez
- Instituto Tecnológico de Chascomús (INTECH), UNSAM-CONICET, Chascomús, Argentina
| | | | | | | | | | | | - Andrés Garriz
- Instituto Tecnológico de Chascomús (INTECH), UNSAM-CONICET, Chascomús, Argentina
| | - Franco Rubén Rossi
- Instituto Tecnológico de Chascomús (INTECH), UNSAM-CONICET, Chascomús, Argentina
| | | | - Leandro Solmi
- Instituto Tecnológico de Chascomús (INTECH), UNSAM-CONICET, Chascomús, Argentina
| | - Maria Soraya Salloum
- Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV) Ing “Victorio S Trippi,” Instituto Nacional de Tecnología Agropecuaria (INTA), Córdoba, Argentina
| | - Mariela Inés Monteoliva
- Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV) Ing “Victorio S Trippi,” Instituto Nacional de Tecnología Agropecuaria (INTA), Córdoba, Argentina
| | - Julio Humberto Debat
- Instituto de Patología Vegetal (IPAVE) Ing “Sergio Nome,” Instituto Nacional de Tecnología Agropecuaria (INTA), Córdoba, Argentina
| | - Oscar Adolfo Ruiz
- Instituto Tecnológico de Chascomús (INTECH), UNSAM-CONICET, Chascomús, Argentina
- Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV) Ing “Victorio S Trippi,” Instituto Nacional de Tecnología Agropecuaria (INTA), Córdoba, Argentina
| |
Collapse
|
28
|
Seo SY, Kim YJ, Park KY. Increasing Polyamine Contents Enhances the Stress Tolerance via Reinforcement of Antioxidative Properties. FRONTIERS IN PLANT SCIENCE 2019; 10:1331. [PMID: 31736992 PMCID: PMC6834694 DOI: 10.3389/fpls.2019.01331] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 09/25/2019] [Indexed: 05/08/2023]
Abstract
The diamine putrescine and the polyamines (PAs), spermidine (Spd) and spermine (Spm), are ubiquitously occurring polycations associated with several important cellular functions, especially antisenescence. Numerous studies have reported increased levels of PA in plant cells under conditions of abiotic and biotic stress such as drought, high salt concentrations, and pathogen attack. However, the physiological mechanism of elevated PA levels in response to abiotic and biotic stresses remains undetermined. Transgenic plants having overexpression of SAMDC complementary DNA and increased levels of putrescine (1.4-fold), Spd (2.3-fold), and Spm (1.8-fold) under unstressed conditions were compared to wild-type (WT) plants in the current study. The most abundant PA in transgenic plants was Spd. Under salt stress conditions, enhancement of endogenous PAs due to overexpression of the SAMDC gene and exogenous treatment with Spd considerably reduces the reactive oxygen species (ROS) accumulation in intra- and extracellular compartments. Conversely, as compared to the WT, PA oxidase transcription rapidly increases in the S16-S-4 transgenic strain subsequent to salt stress. Furthermore, transcription levels of ROS detoxifying enzymes are elevated in transgenic plants as compared to the WT. Our findings with OxyBlot analysis indicate that upregulated amounts of endogenous PAs in transgenic tobacco plants show antioxidative effects for protein homeostasis against stress-induced protein oxidation. These results imply that the increased PAs induce transcription of PA oxidases, which oxidize PAs, which in turn trigger signal antioxidative responses resulting to lower the ROS load. Furthermore, total proteins from leaves with exogenously supplemented Spd and Spm upregulate the chaperone activity. These effects of PAs for antioxidative properties and antiaggregation of proteins contribute towards maintaining the physiological cellular functions against abiotic stresses. It is suggested that these functions of PAs are beneficial for protein homeostasis during abiotic stresses. Taken together, these results indicate that PA molecules function as antisenescence regulators through inducing ROS detoxification, antioxidative properties, and molecular chaperone activity under stress conditions, thereby providing broad-spectrum tolerance against a variety of stresses.
Collapse
Affiliation(s)
| | | | - Ky Young Park
- Department of Biology, Sunchon National University, Suncheon, South Korea
| |
Collapse
|
29
|
Fortes AM, Agudelo-Romero P, Pimentel D, Alkan N. Transcriptional Modulation of Polyamine Metabolism in Fruit Species Under Abiotic and Biotic Stress. FRONTIERS IN PLANT SCIENCE 2019; 10:816. [PMID: 31333688 PMCID: PMC6614878 DOI: 10.3389/fpls.2019.00816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/06/2019] [Indexed: 05/29/2023]
Abstract
Polyamines are growth regulators that have been widely implicated in abiotic and biotic stresses. They are also associated with fruit set, ripening, and regulation of fruit quality-related traits. Modulation of their content confers fruit resilience, with polyamine application generally inhibiting postharvest decay. Changes in the content of free and conjugated polyamines in response to stress are highly dependent on the type of abiotic stress applied or the lifestyle of the pathogen. Recent studies suggest that exogenous application of polyamines or modulation of polyamine content by gene editing can confer tolerance to multiple abiotic and biotic stresses simultaneously. In this review, we explore data on polyamine synthesis and catabolism in fruit related to pre- and postharvest stresses. Studies of mutant plants, priming of stress responses, and treatments with polyamines and polyamine inhibitors indicate that these growth regulators can be manipulated to increase fruit productivity with reduced use of pesticides and therefore, under more sustainable conditions.
Collapse
Affiliation(s)
- Ana Margarida Fortes
- Faculdade de Ciências de Lisboa, Department of Plant Biology, Biosystems and Integrative Sciences Institute, Universidade de Lisboa, Lisbon, Portugal
| | - Patricia Agudelo-Romero
- School of Molecular Science, The University of Western Australia, Perth, WA, Australia
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA, Australia
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Diana Pimentel
- Faculdade de Ciências de Lisboa, Department of Plant Biology, Biosystems and Integrative Sciences Institute, Universidade de Lisboa, Lisbon, Portugal
| | - Noam Alkan
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
30
|
Kang K, Yue L, Xia X, Liu K, Zhang W. Comparative metabolomics analysis of different resistant rice varieties in response to the brown planthopper Nilaparvata lugens Hemiptera: Delphacidae. Metabolomics 2019; 15:62. [PMID: 30976994 PMCID: PMC6459800 DOI: 10.1007/s11306-019-1523-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/01/2019] [Indexed: 12/21/2022]
Abstract
INTRODUCTION The brown planthopper (BPH, Nilaparvata lugens Stål, Hemiptera: Delphacidae) is one of the most devastating insect pests of the crucially important cereal crop, rice (Oryza sativa L.). Currently, multiple BPH-resistant rice varieties have been cultivated and generalized to control BPH. However, the defence metabolic responses and their modes of action against BPH in different rice cultivars remain uncharacterized. OBJECTIVE We used a non-biased metabolomics approach to explore the differences in metabolite profiles in response to BPH infestation in the susceptible TN1 rice cultivar and two resistant cultivars (IR36 and IR56). METHODS The metabolomic detection based on gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) was performed to investigate the content changes of identified metabolites in TN1, IR36 and IR56 rice varieties at various time points (0 h, 24 h, 48 h and 96 h) post BPH feeding. The differentially expressed metabolites were screened and the corresponding metabolic pathways were further enriched. RESULTS The results showed that compared to that in TN1, the content changes of most primary metabolites were more stable, but the concentration alterations of some defence-related metabolites were more acute and persistent in IR36 and IR56. Furthermore, the differentially expressed pathways analysis revealed that cyanoamino acids and lipids metabolism was persistently induced in IR36, but changes in thiamine, taurine and hypotaurine metabolism were more significant in IR56 during BPH infestation. Besides, the contents of quercetin and spermidine which were harmful to BPH fitness, were significantly elevated by BPH in TN1 and IR36, and the quercetin level was significantly decreased during BPH feeding in IR56. CONCLUSION The results of the differences in metabolite profiles in response to BPH infestation in different rice cultivars were useful to clarify the metabolic mechanism of rice plants during BPH infestation and to provide new resources to control this insect pest.
Collapse
Affiliation(s)
- Kui Kang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Lei Yue
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Xin Xia
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Kai Liu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Wenqing Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.
| |
Collapse
|
31
|
Sekula B, Dauter Z. Structural Study of Agmatine Iminohydrolase From Medicago truncatula, the Second Enzyme of the Agmatine Route of Putrescine Biosynthesis in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:320. [PMID: 30984210 PMCID: PMC6447857 DOI: 10.3389/fpls.2019.00320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 02/27/2019] [Indexed: 05/27/2023]
Abstract
Plants are unique eukaryotes that can produce putrescine (PUT), a basic diamine, from arginine via a three-step pathway. This process starts with arginine decarboxylase that converts arginine to agmatine. Then, the consecutive action of two hydrolytic enzymes, agmatine iminohydrolase (AIH) and N-carbamoylputrescine amidohydrolase, ultimately produces PUT. An alternative route of PUT biosynthesis requires ornithine decarboxylase that catalyzes direct putrescine biosynthesis. However, some plant species lack this enzyme and rely only on agmatine pathway. The scope of this manuscript concerns the structural characterization of AIH from the model legume plant, Medicago truncatula. MtAIH is a homodimer built of two subunits with a characteristic propeller fold, where five αββαβ repeated units are arranged around the fivefold pseudosymmetry axis. Dimeric assembly of this plant AIH, formed by interactions of conserved structural elements from one repeat, is drastically different from that observed in dimeric bacterial AIHs. Additionally, the structural snapshot of MtAIH in complex with 6-aminohexanamide, the reaction product analog, presents the conformation of the enzyme during catalysis. Our structural results show that MtAIH undergoes significant structural rearrangements of the long loop, which closes a tunnel-shaped active site over the course of the catalytic event. This conformational change is also observed in AIH from Arabidopsis thaliana, indicating the importance of the closed conformation of the gate-keeping loop for the catalysis of plant AIHs.
Collapse
Affiliation(s)
- Bartosz Sekula
- Synchrotron Radiation Research Section of Macromolecular Crystallography Laboratory, National Cancer Institute, Argonne, IL, United States
| | | |
Collapse
|
32
|
Seifi HS, Shelp BJ. Spermine Differentially Refines Plant Defense Responses Against Biotic and Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2019; 10:117. [PMID: 30800140 PMCID: PMC6376314 DOI: 10.3389/fpls.2019.00117] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 01/23/2019] [Indexed: 05/05/2023]
Abstract
Roles of the major polyamines (mPA), putrescine, spermidine, and spermine (Spm), in various developmental and physiological processes in plants have been well documented. Recently, there has been increasing focus on the link between mPA metabolism and defense response during plant-stress interactions. Empirical evidence is available for a unique role of Spm, distinct from the other mPA, in eliciting an effective defense response to (a)biotic stresses. Our understanding of the precise molecular mechanism(s) by which Spm modulates these defense mechanisms is limited. Further analysis of recent studies indicates that plant Spm functions differently during biotic and abiotic interactions in the regulation of oxidative homeostasis and phytohormone signaling. Here, we summarize and integrate current knowledge about Spm-mediated modulation of plant defense responses to (a)biotic stresses, highlighting the importance of Spm as a potent plant defense activator with broad-spectrum protective effects. A model is proposed to explain how Spm refines defense mechanisms to tailor an optimal resistance response.
Collapse
Affiliation(s)
| | - Barry J. Shelp
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
33
|
Bordenave CD, Granados Mendoza C, Jiménez Bremont JF, Gárriz A, Rodríguez AA. Defining novel plant polyamine oxidase subfamilies through molecular modeling and sequence analysis. BMC Evol Biol 2019; 19:28. [PMID: 30665356 PMCID: PMC6341606 DOI: 10.1186/s12862-019-1361-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/14/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The polyamine oxidases (PAOs) catabolize the oxidative deamination of the polyamines (PAs) spermine (Spm) and spermidine (Spd). Most of the phylogenetic studies performed to analyze the plant PAO family took into account only a limited number and/or taxonomic representation of plant PAOs sequences. RESULTS Here, we constructed a plant PAO protein sequence database and identified four subfamilies. Subfamily PAO back conversion 1 (PAObc1) was present on every lineage included in these analyses, suggesting that BC-type PAOs might play an important role in plants, despite its precise function is unknown. Subfamily PAObc2 was exclusively present in vascular plants, suggesting that t-Spm oxidase activity might play an important role in the development of the vascular system. The only terminal catabolism (TC) PAO subfamily (subfamily PAOtc) was lost in Superasterids but it was present in all other land plants. This indicated that the TC-type reactions are fundamental for land plants and that their function could being taken over by other enzymes in Superasterids. Subfamily PAObc3 was the result of a gene duplication event preceding Angiosperm diversification, followed by a gene extinction in Monocots. Differential conserved protein motifs were found for each subfamily of plant PAOs. The automatic assignment using these motifs was found to be comparable to the assignment by rough clustering performed on this work. CONCLUSIONS The results presented in this work revealed that plant PAO family is bigger than previously conceived. Also, they delineate important background information for future specific structure-function and evolutionary investigations and lay a foundation for the deeper characterization of each plant PAO subfamily.
Collapse
Affiliation(s)
- Cesar Daniel Bordenave
- Laboratorio de Fisiología de Estrés Abiótico en Plantas, Unidad de Biotecnología, INTECH - CONICET - UNSAM, Intendente Marino KM 8.2 - B7130IWA Chascomús, Buenos Aires, Argentina
| | - Carolina Granados Mendoza
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado Postal 70-367, Coyoacán, 04510, México City, Mexico
| | - Juan Francisco Jiménez Bremont
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico
| | - Andrés Gárriz
- Laboratorio de Fisiología de Estrés Abiótico en Plantas, Unidad de Biotecnología, INTECH - CONICET - UNSAM, Intendente Marino KM 8.2 - B7130IWA Chascomús, Buenos Aires, Argentina
| | - Andrés Alberto Rodríguez
- Laboratorio de Fisiología de Estrés Abiótico en Plantas, Unidad de Biotecnología, INTECH - CONICET - UNSAM, Intendente Marino KM 8.2 - B7130IWA Chascomús, Buenos Aires, Argentina.
| |
Collapse
|
34
|
Sekula B, Dauter Z. Spermidine Synthase (SPDS) Undergoes Concerted Structural Rearrangements Upon Ligand Binding - A Case Study of the Two SPDS Isoforms From Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2019; 10:555. [PMID: 31134111 PMCID: PMC6514230 DOI: 10.3389/fpls.2019.00555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/11/2019] [Indexed: 05/14/2023]
Abstract
Spermidine synthases (SPDSs) catalyze the production of the linear triamine, spermidine, from putrescine. They utilize decarboxylated S-adenosylmethionine (dc-SAM), a universal cofactor of aminopropyltransferases, as a donor of the aminopropyl moiety. In this work, we describe crystal structures of two SPDS isoforms from Arabidopsis thaliana (AtSPDS1 and AtSPDS2). AtSPDS1 and AtSPDS2 are dimeric enzymes that share the fold of the polyamine biosynthesis proteins. Subunits of both isoforms present the characteristic two-domain structure. Smaller, N-terminal domain is built of the two β-sheets, while the C-terminal domain has a Rossmann fold-like topology. The catalytic cleft composed of two main compartments, the dc-SAM binding site and the polyamine groove, is created independently in each AtSPDS subunits at the domain interface. We also provide the structural details about the dc-SAM binding mode and the inhibition of SPDS by a potent competitive inhibitor, cyclohexylamine (CHA). CHA occupies the polyamine binding site of AtSPDS where it is bound at the bottom of the active site with the amine group placed analogously to the substrate. The crystallographic snapshots show in detail the structural rearrangements of AtSPDS1 and AtSPDS2 that are required to stabilize ligands within the active site. The concerted movements are observed in both compartments of the catalytic cleft, where three major parts significantly change their conformation. These are (i) the neighborhood of the glycine-rich region where aminopropyl moiety of dc-SAM is bound, (ii) the very flexible gate region with helix η6, which interacts with both, the adenine moiety of dc-SAM and the bound polyamine or inhibitor, and (iii) the N-terminal β-hairpin, that limits the putrescine binding grove at the bottom of the catalytic site.
Collapse
|
35
|
Majumdar R, Minocha R, Lebar MD, Rajasekaran K, Long S, Carter-Wientjes C, Minocha S, Cary JW. Contribution of Maize Polyamine and Amino Acid Metabolism Toward Resistance Against Aspergillus flavus Infection and Aflatoxin Production. FRONTIERS IN PLANT SCIENCE 2019; 10:692. [PMID: 31178889 PMCID: PMC6543017 DOI: 10.3389/fpls.2019.00692] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/08/2019] [Indexed: 05/05/2023]
Abstract
Polyamines (PAs) are ubiquitous polycations found in plants and other organisms that are essential for growth, development, and resistance against abiotic and biotic stresses. The role of PAs in plant disease resistance depends on the relative abundance of higher PAs [spermidine (Spd), spermine (Spm)] vs. the diamine putrescine (Put) and PA catabolism. With respect to the pathogen, PAs are required to achieve successful pathogenesis of the host. Maize is an important food and feed crop, which is highly susceptible to Aspergillus flavus infection. Upon infection, the fungus produces carcinogenic aflatoxins and numerous other toxic secondary metabolites that adversely affect human health and crop value worldwide. To evaluate the role of PAs in aflatoxin resistance in maize, in vitro kernel infection assays were performed using maize lines that are susceptible (SC212) or resistant (TZAR102, MI82) to aflatoxin production. Results indicated significant induction of both PA biosynthetic and catabolic genes upon A. flavus infection. As compared to the susceptible line, the resistant maize lines showed higher basal expression of PA metabolism genes in mock-inoculated kernels that increased upon fungal infection. In general, increased biosynthesis and conversion of Put to Spd and Spm along with their increased catabolism was evident in the resistant lines vs. the susceptible line SC212. There were higher concentrations of amino acids such as glutamate (Glu), glutamine (Gln) and γ-aminobutyric acid (GABA) in SC212. The resistant lines were significantly lower in fungal load and aflatoxin production as compared to the susceptible line. The data presented here demonstrate an important role of PA metabolism in the resistance of maize to A. flavus colonization and aflatoxin contamination. These results provide future direction for the manipulation of PA metabolism in susceptible maize genotypes to improve aflatoxin resistance and overall stress tolerance.
Collapse
Affiliation(s)
- Rajtilak Majumdar
- Food and Feed Safety Research Unit, Southern Regional Research Center, United States Department of Agriculture, Agricultural Research Service, New Orleans, LA, United States
| | - Rakesh Minocha
- United States Department of Agriculture Forest Service, Northern Research Station, Durham, NH, United States
| | - Matthew D. Lebar
- Food and Feed Safety Research Unit, Southern Regional Research Center, United States Department of Agriculture, Agricultural Research Service, New Orleans, LA, United States
| | - Kanniah Rajasekaran
- Food and Feed Safety Research Unit, Southern Regional Research Center, United States Department of Agriculture, Agricultural Research Service, New Orleans, LA, United States
| | - Stephanie Long
- United States Department of Agriculture Forest Service, Northern Research Station, Durham, NH, United States
| | - Carol Carter-Wientjes
- Food and Feed Safety Research Unit, Southern Regional Research Center, United States Department of Agriculture, Agricultural Research Service, New Orleans, LA, United States
| | - Subhash Minocha
- Department of Biological Sciences, University of New Hampshire, Durham, NH, United States
| | - Jeffrey W. Cary
- Food and Feed Safety Research Unit, Southern Regional Research Center, United States Department of Agriculture, Agricultural Research Service, New Orleans, LA, United States
- *Correspondence: Jeffrey W. Cary,
| |
Collapse
|
36
|
Abstract
Bacterial pathogens cause plant diseases that threaten the global food supply. To control diseases, it is important to understand how pathogenic bacteria evade plant defense and promote infection. We identify from the phytopathogen Pseudomonas syringae a small-molecule virulence factor—phevamine A. Both the chemical structure and mode of action of phevamine A are different from known bacterial phytotoxins. Phevamine A promotes bacterial growth by suppressing plant immune responses, including both early (the generation of reactive oxygen species) and late (the deposition of cell wall reinforcing callose in leaves and leaf cell death) markers. This work uncovers a widely distributed, small-molecule virulence factor and shows the power of a multidisciplinary approach to identify small molecules important for plant infection. Bacterial plant pathogens cause significant crop damage worldwide. They invade plant cells by producing a variety of virulence factors, including small-molecule toxins and phytohormone mimics. Virulence of the model pathogen Pseudomonas syringae pv. tomato DC3000 (Pto) is regulated in part by the sigma factor HrpL. Our study of the HrpL regulon identified an uncharacterized, three-gene operon in Pto that is controlled by HrpL and related to the Erwinia hrp-associated systemic virulence (hsv) operon. Here, we demonstrate that the hsv operon contributes to the virulence of Pto on Arabidopsis thaliana and suppresses bacteria-induced immune responses. We show that the hsv-encoded enzymes in Pto synthesize a small molecule, phevamine A. This molecule consists of l-phenylalanine, l-valine, and a modified spermidine, and is different from known small molecules produced by phytopathogens. We show that phevamine A suppresses a potentiation effect of spermidine and l-arginine on the reactive oxygen species burst generated upon recognition of bacterial flagellin. The hsv operon is found in the genomes of divergent bacterial genera, including ∼37% of P. syringae genomes, suggesting that phevamine A is a widely distributed virulence factor in phytopathogens. Our work identifies a small-molecule virulence factor and reveals a mechanism by which bacterial pathogens overcome plant defense. This work highlights the power of omics approaches in identifying important small molecules in bacteria–host interactions.
Collapse
|
37
|
Crystal structure of thermospermine synthase from Medicago truncatula and substrate discriminatory features of plant aminopropyltransferases. Biochem J 2018; 475:787-802. [PMID: 29367265 DOI: 10.1042/bcj20170900] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/19/2018] [Accepted: 01/24/2018] [Indexed: 01/06/2023]
Abstract
Polyamines are linear polycationic compounds that play a crucial role in the growth and development of higher plants. One triamine (spermidine, SPD) and two tetraamine isomers (spermine, SPM, and thermospermine, TSPM) are obtained by the transfer of the aminopropyl group from decarboxylated S-adenosylmethionine to putrescine and SPD. These reactions are catalyzed by the specialized aminopropyltransferases. In that respect, plants are unique eukaryotes that have independently evolved two enzymes, thermospermine synthase (TSPS), encoded by the gene ACAULIS5, and spermine synthase, which produce TSPM and SPM, respectively. In this work, we structurally characterize the ACAULIS5 gene product, TSPS, from the model legume plant Medicago truncatula (Mt). Six crystal structures of MtTSPS - one without ligands and five in complexes with either reaction substrate (SPD), reaction product (TSPM), or one of three cofactor analogs (5'-methylthioadenosine, S-adenosylthiopropylamine, and adenosine) - give detailed insights into the biosynthesis of TSPM. Combined with small-angle X-ray scattering data, the crystal structures show that MtTSPS is a symmetric homotetramer with an interdomain eight-stranded β-barrel. Such an assembly and the presence of a hinge-like feature between N-terminal and C-terminal domains give the protein additional flexibility which potentially improves loading substrates and discarding products after the catalytic event. We also discuss the sequence and structural features around the active site of the plant aminopropyltransferases that distinguish them from each other and determine their characteristic substrate discrimination.
Collapse
|
38
|
De S, Chavez‐Calvillo G, Wahlsten M, Mäkinen K. Disruption of the methionine cycle and reduced cellular gluthathione levels underlie potex-potyvirus synergism in Nicotiana benthamiana. MOLECULAR PLANT PATHOLOGY 2018; 19:1820-1835. [PMID: 29363853 PMCID: PMC6638099 DOI: 10.1111/mpp.12661] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/15/2018] [Accepted: 01/22/2018] [Indexed: 05/21/2023]
Abstract
Infection caused by the synergistic interaction of two plant viruses is typically manifested by severe symptoms and increased accumulation of either virus. In potex-potyviral synergism, the potyviral RNA silencing suppressor helper component proteinase (HCPro) is known to enhance the pathogenicity of the potexvirus counterpart. In line with this, Potato virus X (PVX; genus Potexvirus) genomic RNA (gRNA) accumulation and gene expression from subgenomic RNA (sgRNA) are increased in Nicotiana benthamiana by Potato virus A (PVA; genus Potyvirus) HCPro expression. Recently, we have demonstrated that PVA HCPro interferes with the host cell methionine cycle by interacting with its key enzymes S-adenosyl-l-methionine synthetase (SAMS) and S-adenosyl-l-homocysteine hydrolase (SAHH). To study the involvement of methionine cycle enzymes in PVX infection, we knocked down SAMS and SAHH. Increased PVX sgRNA expression between 3 and 9 days post-infiltration (dpi) and upregulation of (-)-strand gRNA accumulation at 9 dpi were observed in the SAHH-silenced background. We found that SAMS and SAHH silencing also caused a significant reduction in glutathione (GSH) concentration, specifically in PVX-infected plants between 2 and 9 dpi. Interestingly, HCPro expression in PVX-infected plants caused an even stronger reduction in GSH levels than did SAMS + SAHH silencing and a similar level of reduction was also achieved by knocking down GSH synthetase. PVX sgRNA expression was increased in the GSH synthetase-silenced background. GSH is a major antioxidant of plant cells and therefore GSH shortage may explain the strong oxidative stress and severe symptoms observed during potex-potyvirus mixed infection.
Collapse
Affiliation(s)
- Swarnalok De
- Department of Food and Environmental Sciences, Viikki Plant Sciences CentreUniversity of HelsinkiHelsinki 00014Finland
| | - Gabriela Chavez‐Calvillo
- Department of Food and Environmental Sciences, Viikki Plant Sciences CentreUniversity of HelsinkiHelsinki 00014Finland
- Present address:
Department of Entomology and Plant PathologyAuburn UniversityAuburn36849, ALUSA
| | - Matti Wahlsten
- Department of Food and Environmental Sciences, Viikki Plant Sciences CentreUniversity of HelsinkiHelsinki 00014Finland
| | - Kristiina Mäkinen
- Department of Food and Environmental Sciences, Viikki Plant Sciences CentreUniversity of HelsinkiHelsinki 00014Finland
| |
Collapse
|
39
|
Shanker S, Schaefer GK, Barnhart BK, Wallace-Kneale VL, Chang D, Coyle TJ, Metzler DA, Huang J, Lawton JA. The virulence-associated protein HsvA from the fire blight pathogen Erwinia amylovora is a polyamine amidinotransferase. J Biol Chem 2017; 292:21366-21380. [PMID: 29123034 PMCID: PMC5766935 DOI: 10.1074/jbc.m117.815951] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/27/2017] [Indexed: 12/16/2022] Open
Abstract
Studies of virulence determinants in the bacterial phytopathogen Erwinia amylovora, the cause of devastating fire blight disease in apple and pear, have shown that HsvA, a putative amidinotransferase enzyme located in the Hrp pathogenicity island, is required for systemic infection in apple. However, the mechanism by which HsvA contributes to virulence is unclear. To investigate the role of HsvA in virulence, we carried out a series of biochemical and structural studies to characterize the amidinotransferase activity of HsvA. We found that HsvA displays a preference for linear aliphatic polyamines as the amidino acceptor substrate, especially for spermidine and putrescine (Km values of 33 μm and 3.9 mm, respectively). The three-dimensional structure, determined at 2.30 Å resolution using X-ray crystallography, revealed that the overall architecture of HsvA is similar to that of the human arginine-glycine amidinotransferase in the creatine biosynthesis pathway. The active site is located in the core of the protein at the base of a long, narrow substrate access channel. Specific amino acids near the entrance of the channel may serve as major determinants of the substrate specificity, including a glutamate residue at the rim of the channel entrance that appears to be positioned to interact with the distal primary amine in the putrescine substrate as well as the internal and distal amines in the spermidine substrate. These results suggest potential in vivo functions for HsvA as a virulence factor in fire blight and may also provide a basis for strategies to control fire blight by inhibiting HsvA activity.
Collapse
Affiliation(s)
- Sreejesh Shanker
- From the Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030 and
| | - Grace K Schaefer
- the Department of Chemistry, Eastern University, St. Davids, Pennsylvania 19087
| | - Benjamin K Barnhart
- the Department of Chemistry, Eastern University, St. Davids, Pennsylvania 19087
| | | | - Dorsin Chang
- the Department of Chemistry, Eastern University, St. Davids, Pennsylvania 19087
| | - Thomas J Coyle
- the Department of Chemistry, Eastern University, St. Davids, Pennsylvania 19087
| | - David A Metzler
- the Department of Chemistry, Eastern University, St. Davids, Pennsylvania 19087
| | - Jeffrey Huang
- the Department of Chemistry, Eastern University, St. Davids, Pennsylvania 19087
| | - Jeffrey A Lawton
- the Department of Chemistry, Eastern University, St. Davids, Pennsylvania 19087
| |
Collapse
|
40
|
Lowe-Power TM, Hendrich CG, von Roepenack-Lahaye E, Li B, Wu D, Mitra R, Dalsing BL, Ricca P, Naidoo J, Cook D, Jancewicz A, Masson P, Thomma B, Lahaye T, Michael AJ, Allen C. Metabolomics of tomato xylem sap during bacterial wilt reveals Ralstonia solanacearum produces abundant putrescine, a metabolite that accelerates wilt disease. Environ Microbiol 2017; 20:1330-1349. [PMID: 29215193 DOI: 10.1111/1462-2920.14020] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/29/2017] [Accepted: 12/03/2017] [Indexed: 12/20/2022]
Abstract
Ralstonia solanacearum thrives in plant xylem vessels and causes bacterial wilt disease despite the low nutrient content of xylem sap. We found that R. solanacearum manipulates its host to increase nutrients in tomato xylem sap, enabling it to grow better in sap from infected plants than in sap from healthy plants. Untargeted GC/MS metabolomics identified 22 metabolites enriched in R. solanacearum-infected sap. Eight of these could serve as sole carbon or nitrogen sources for R. solanacearum. Putrescine, a polyamine that is not a sole carbon or nitrogen source for R. solanacearum, was enriched 76-fold to 37 µM in R. solanacearum-infected sap. R. solanacearum synthesized putrescine via a SpeC ornithine decarboxylase. A ΔspeC mutant required ≥ 15 µM exogenous putrescine to grow and could not grow alone in xylem even when plants were treated with putrescine. However, co-inoculation with wildtype rescued ΔspeC growth, indicating R. solanacearum produced and exported putrescine to xylem sap. Intriguingly, treating plants with putrescine before inoculation accelerated wilt symptom development and R. solanacearum growth and systemic spread. Xylem putrescine concentration was unchanged in putrescine-treated plants, so the exogenous putrescine likely accelerated disease indirectly by affecting host physiology. These results indicate that putrescine is a pathogen-produced virulence metabolite.
Collapse
Affiliation(s)
- Tiffany M Lowe-Power
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Connor G Hendrich
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Edda von Roepenack-Lahaye
- Leibniz Institute of Plant Biochemistry, Zentrum für Molekularbiologie der Pflanzen (ZMBP), Universität Tübingen, Tübingen, Germany
| | - Bin Li
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dousheng Wu
- Leibniz Institute of Plant Biochemistry, Zentrum für Molekularbiologie der Pflanzen (ZMBP), Universität Tübingen, Tübingen, Germany
| | - Raka Mitra
- Department of Biology, Carleton College, Northfield, MN 55057, USA
| | - Beth L Dalsing
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Patrizia Ricca
- Leibniz Institute of Plant Biochemistry, Zentrum für Molekularbiologie der Pflanzen (ZMBP), Universität Tübingen, Tübingen, Germany
| | - Jacinth Naidoo
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David Cook
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Amy Jancewicz
- Department of Genetics, University of Wisconsin, Madison, Madison, WI 53706, USA
| | - Patrick Masson
- Department of Genetics, University of Wisconsin, Madison, Madison, WI 53706, USA
| | - Bart Thomma
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Thomas Lahaye
- Leibniz Institute of Plant Biochemistry, Zentrum für Molekularbiologie der Pflanzen (ZMBP), Universität Tübingen, Tübingen, Germany
| | - Anthony J Michael
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Caitilyn Allen
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, WI 53706, USA
| |
Collapse
|
41
|
Xiong H, Guo H, Xie Y, Zhao L, Gu J, Zhao S, Li J, Liu L. RNAseq analysis reveals pathways and candidate genes associated with salinity tolerance in a spaceflight-induced wheat mutant. Sci Rep 2017. [PMID: 28578401 DOI: 10.1038/s41598-41017-03024-41590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Salinity stress has become an increasing threat to food security worldwide and elucidation of the mechanism for salinity tolerance is of great significance. Induced mutation, especially spaceflight mutagenesis, is one important method for crop breeding. In this study, we show that a spaceflight-induced wheat mutant, named salinity tolerance 1 (st1), is a salinity-tolerant line. We report the characteristics of transcriptomic sequence variation induced by spaceflight, and show that mutations in genes associated with sodium ion transport may directly contribute to salinity tolerance in st1. Furthermore, GO and KEGG enrichment analysis of differentially expressed genes (DEGs) between salinity-treated st1 and wild type suggested that the homeostasis of oxidation-reduction process is important for salt tolerance in st1. Through KEGG pathway analysis, "Butanoate metabolism" was identified as a new pathway for salinity responses. Additionally, key genes for salinity tolerance, such as genes encoding arginine decarboxylase, polyamine oxidase, hormones-related, were not only salt-induced in st1 but also showed higher expression in salt-treated st1 compared with salt-treated WT, indicating that these genes may play important roles in salinity tolerance in st1. This study presents valuable genetic resources for studies on transcriptome variation caused by induced mutation and the identification of salt tolerance genes in crops.
Collapse
Affiliation(s)
- Hongchun Xiong
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, National Center of Space Mutagenesis for Crop Improvement, Beijing, 100081, China
| | - Huijun Guo
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, National Center of Space Mutagenesis for Crop Improvement, Beijing, 100081, China
| | - Yongdun Xie
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, National Center of Space Mutagenesis for Crop Improvement, Beijing, 100081, China
| | - Linshu Zhao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, National Center of Space Mutagenesis for Crop Improvement, Beijing, 100081, China
| | - Jiayu Gu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, National Center of Space Mutagenesis for Crop Improvement, Beijing, 100081, China
| | - Shirong Zhao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, National Center of Space Mutagenesis for Crop Improvement, Beijing, 100081, China
| | - Junhui Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, National Center of Space Mutagenesis for Crop Improvement, Beijing, 100081, China
| | - Luxiang Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, National Center of Space Mutagenesis for Crop Improvement, Beijing, 100081, China.
| |
Collapse
|
42
|
RNAseq analysis reveals pathways and candidate genes associated with salinity tolerance in a spaceflight-induced wheat mutant. Sci Rep 2017; 7:2731. [PMID: 28578401 PMCID: PMC5457441 DOI: 10.1038/s41598-017-03024-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 04/20/2017] [Indexed: 12/23/2022] Open
Abstract
Salinity stress has become an increasing threat to food security worldwide and elucidation of the mechanism for salinity tolerance is of great significance. Induced mutation, especially spaceflight mutagenesis, is one important method for crop breeding. In this study, we show that a spaceflight-induced wheat mutant, named salinity tolerance 1 (st1), is a salinity-tolerant line. We report the characteristics of transcriptomic sequence variation induced by spaceflight, and show that mutations in genes associated with sodium ion transport may directly contribute to salinity tolerance in st1. Furthermore, GO and KEGG enrichment analysis of differentially expressed genes (DEGs) between salinity-treated st1 and wild type suggested that the homeostasis of oxidation-reduction process is important for salt tolerance in st1. Through KEGG pathway analysis, "Butanoate metabolism" was identified as a new pathway for salinity responses. Additionally, key genes for salinity tolerance, such as genes encoding arginine decarboxylase, polyamine oxidase, hormones-related, were not only salt-induced in st1 but also showed higher expression in salt-treated st1 compared with salt-treated WT, indicating that these genes may play important roles in salinity tolerance in st1. This study presents valuable genetic resources for studies on transcriptome variation caused by induced mutation and the identification of salt tolerance genes in crops.
Collapse
|
43
|
|
44
|
Bittner N, Trauer-Kizilelma U, Hilker M. Early plant defence against insect attack: involvement of reactive oxygen species in plant responses to insect egg deposition. PLANTA 2017; 245:993-1007. [PMID: 28175992 DOI: 10.1007/s00425-017-2654-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/20/2017] [Indexed: 05/17/2023]
Abstract
Pinus sylvestris responds to insect egg deposition by ROS accumulation linked with reduced activity of the ROS scavenger catalase. Egg mortality in needles with hypersensitive response (HR)-like symptoms is enhanced. Aggressive reactive oxygen species (ROS) play an important role in plant defence against biotic stressors, including herbivorous insects. Plants may even generate ROS in response to insect eggs, thus effectively fighting against future larval herbivory. However, so far nothing is known on how ROS-mediated plant defence against insect eggs is enzymatically regulated. Neither do we know how insects cope with egg-induced plant ROS. We addressed these gaps of knowledge by studying the activities of ROS-related enzymes in Pinus sylvestris deposited with eggs of the herbivorous sawfly Diprion pini. This species cuts a slit into pine needles and inserts its eggs into the needle tissue. About a quarter of egg-deposited needles show chlorotic tissue at the oviposition sites, indicating hypersensitive response-like direct defence responses resulting in reduced larval hatching from eggs. Hydrogen peroxide and peroxidase sensitive staining of sections of egg-deposited pine needles revealed the presence of hydrogen peroxide and peroxidase activity in needle tissue close to the eggs. Activity of ROS-producing NADPH-oxidase did not increase after egg deposition. However, the activity of the ROS-detoxifying enzyme catalase decreased after egg deposition and ovipositional wounding of needles. These results show that local ROS accumulation at the oviposition site is not caused by increased NADPH-oxidase activity, but reduced activity of pine needle catalase may contribute to it. However, our data suggest that pine sawflies can counteract the egg deposition-induced hydrogen peroxide accumulation in pine needles by high catalase activity in their oviduct secretion which is released with the eggs into pine tissue.
Collapse
Affiliation(s)
- Norbert Bittner
- Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany
| | - Ute Trauer-Kizilelma
- Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany
- Federal Environment Agency, Corrensplatz 1, 14195, Berlin, Germany
| | - Monika Hilker
- Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany.
| |
Collapse
|
45
|
Krysenko S, Okoniewski N, Kulik A, Matthews A, Grimpo J, Wohlleben W, Bera A. Gamma-Glutamylpolyamine Synthetase GlnA3 Is Involved in the First Step of Polyamine Degradation Pathway in Streptomyces coelicolor M145. Front Microbiol 2017; 8:726. [PMID: 28487688 PMCID: PMC5403932 DOI: 10.3389/fmicb.2017.00726] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/07/2017] [Indexed: 12/26/2022] Open
Abstract
Streptomyces coelicolor M145 was shown to be able to grow in the presence of high concentrations of polyamines, such as putrescine, cadaverine, spermidine, or spermine, as a sole nitrogen source. However, hardly anything is known about polyamine utilization and its regulation in streptomycetes. In this study, we demonstrated that only one of the three proteins annotated as glutamine synthetase-like protein, GlnA3 (SCO6962), was involved in the catabolism of polyamines. Transcriptional analysis revealed that the expression of glnA3 was strongly induced by exogenous polyamines and repressed in the presence of ammonium. The ΔglnA3 mutant was shown to be unable to grow on defined Evans agar supplemented with putrescine, cadaverine, spermidine, and spermine as sole nitrogen source. HPLC analysis demonstrated that the ΔglnA3 mutant accumulated polyamines intracellularly, but was unable to degrade them. In a rich complex medium supplemented with a mixture of the four different polyamines, the ΔglnA3 mutant grew poorly showing abnormal mycelium morphology and decreased life span in comparison to the parental strain. These observations indicated that the accumulation of polyamines was toxic for the cell. An in silico analysis of the GlnA3 protein model suggested that it might act as a gamma-glutamylpolyamine synthetase catalyzing the first step of polyamine degradation. GlnA3-catalyzed glutamylation of putrescine was confirmed in an enzymatic in vitro assay and the GlnA3 reaction product, gamma-glutamylputrescine, was detected by HPLC/ESI-MS. In this work, the first step of polyamine utilization in S. coelicolor has been elucidated and the putative polyamine utilization pathway has been deduced based on the sequence similarity and transcriptional analysis of homologous genes expressed in the presence of polyamines.
Collapse
Affiliation(s)
- Sergii Krysenko
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Microbiology and Biotechnology, University of TübingenTübingen, Germany
| | - Nicole Okoniewski
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Microbiology and Biotechnology, University of TübingenTübingen, Germany
| | - Andreas Kulik
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Microbiology and Biotechnology, University of TübingenTübingen, Germany
| | - Arne Matthews
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Microbiology and Biotechnology, University of TübingenTübingen, Germany
| | - Jan Grimpo
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Microbiology and Biotechnology, University of TübingenTübingen, Germany
| | - Wolfgang Wohlleben
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Microbiology and Biotechnology, University of TübingenTübingen, Germany
| | - Agnieszka Bera
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Microbiology and Biotechnology, University of TübingenTübingen, Germany
| |
Collapse
|
46
|
Han SW, Hwang BK. Molecular functions of Xanthomonas type III effector AvrBsT and its plant interactors in cell death and defense signaling. PLANTA 2017; 245:237-253. [PMID: 27928637 DOI: 10.1007/s00425-016-2628-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 11/30/2016] [Indexed: 05/20/2023]
Abstract
Xanthomonas effector AvrBsT interacts with plant defense proteins and triggers cell death and defense response. This review highlights our current understanding of the molecular functions of AvrBsT and its host interactor proteins. The AvrBsT protein is a member of a growing family of effector proteins in both plant and animal pathogens. Xanthomonas type III effector AvrBsT, a member of the YopJ/AvrRxv family, suppresses plant defense responses in susceptible hosts, but triggers cell death signaling leading to hypersensitive response (HR) and defense responses in resistant plants. AvrBsT interacts with host defense-related proteins to trigger the HR cell death and defense responses in plants. Here, we review and discuss recent progress in understanding the molecular functions of AvrBsT and its host interactor proteins in pepper (Capsicum annuum). Pepper arginine decarboxylase1 (CaADC1), pepper aldehyde dehydrogenase1 (CaALDH1), pepper heat shock protein 70a (CaHSP70a), pepper suppressor of the G2 allele of skp1 (CaSGT1), pepper SNF1-related kinase1 (SnRK1), and Arabidopsis acetylated interacting protein1 (ACIP1) have been identified as AvrBsT interactors in pepper and Arabidopsis. Gene expression profiling, virus-induced gene silencing, and transient transgenic overexpression approaches have advanced the functional characterization of AvrBsT-interacting proteins in plants. AvrBsT is localized in the cytoplasm and forms protein-protein complexes with host interactors. All identified AvrBsT interactors regulate HR cell death and defense responses in plants. Notably, CaSGT1 physically binds to both AvrBsT and pepper receptor-like cytoplasmic kinase1 (CaPIK1) in the cytoplasm. During infection with Xanthomonas campestris pv. vesicatoria strain Ds1 (avrBsT), AvrBsT is phosphorylated by CaPIK1 and forms the active AvrBsT-CaSGT1-CaPIK1 complex, which ultimately triggers HR cell death and defense responses. Collectively, the AvrBsT interactor proteins are involved in plant cell death and immunity signaling.
Collapse
Affiliation(s)
- Sang Wook Han
- Department of Integrative Plant Science, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Byung Kook Hwang
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul, 02841, Republic of Korea.
| |
Collapse
|
47
|
Zierer W, Hajirezaei MR, Eggert K, Sauer N, von Wirén N, Pommerrenig B. Phloem-Specific Methionine Recycling Fuels Polyamine Biosynthesis in a Sulfur-Dependent Manner and Promotes Flower and Seed Development. PLANT PHYSIOLOGY 2016; 170:790-806. [PMID: 26662272 PMCID: PMC4734553 DOI: 10.1104/pp.15.00786] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 12/06/2015] [Indexed: 05/17/2023]
Abstract
The Yang or Met Cycle is a series of reactions catalyzing the recycling of the sulfur (S) compound 5'-methylthioadenosine (MTA) to Met. MTA is produced as a by-product in ethylene, nicotianamine, and polyamine biosynthesis. Whether the Met Cycle preferentially fuels one of these pathways in a S-dependent manner remained unclear so far. We analyzed Arabidopsis (Arabidopsis thaliana) mutants with defects in the Met Cycle enzymes 5-METHYLTHIORIBOSE-1-PHOSPHATE-ISOMERASE1 (MTI1) and DEHYDRATASE-ENOLASE-PHOSPHATASE-COMPLEX1 (DEP1) under different S conditions and assayed the contribution of the Met Cycle to the regeneration of S for these pathways. Neither mti1 nor dep1 mutants could recycle MTA but showed S-dependent reproductive failure, which was accompanied by reduced levels of the polyamines putrescine, spermidine, and spermine in mutant inflorescences. Complementation experiments with external application of these three polyamines showed that only the triamine spermine could specifically rescue the S-dependent reproductive defects of the mutant plants. Furthermore, expressing gene-reporter fusions in Arabidopsis showed that MTI1 and DEP1 were mainly expressed in the vasculature of all plant parts. Phloem-specific reconstitution of Met Cycle activity in mti1 and dep1 mutant plants was sufficient to rescue their S-dependent mutant phenotypes. We conclude from these analyses that phloem-specific S recycling during periods of S starvation is essential for the biosynthesis of polyamines required for flowering and seed development.
Collapse
Affiliation(s)
- Wolfgang Zierer
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Molecular Plant Physiology, 91058 Erlangen, Germany (W.Z., N.S.); andMolecular Plant Nutrition (M.R.H., K.E., N.v.W.) and Metalloid Transport (B.P.), Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Mohammad R Hajirezaei
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Molecular Plant Physiology, 91058 Erlangen, Germany (W.Z., N.S.); andMolecular Plant Nutrition (M.R.H., K.E., N.v.W.) and Metalloid Transport (B.P.), Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Kai Eggert
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Molecular Plant Physiology, 91058 Erlangen, Germany (W.Z., N.S.); andMolecular Plant Nutrition (M.R.H., K.E., N.v.W.) and Metalloid Transport (B.P.), Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Norbert Sauer
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Molecular Plant Physiology, 91058 Erlangen, Germany (W.Z., N.S.); andMolecular Plant Nutrition (M.R.H., K.E., N.v.W.) and Metalloid Transport (B.P.), Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Nicolaus von Wirén
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Molecular Plant Physiology, 91058 Erlangen, Germany (W.Z., N.S.); andMolecular Plant Nutrition (M.R.H., K.E., N.v.W.) and Metalloid Transport (B.P.), Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Benjamin Pommerrenig
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Molecular Plant Physiology, 91058 Erlangen, Germany (W.Z., N.S.); andMolecular Plant Nutrition (M.R.H., K.E., N.v.W.) and Metalloid Transport (B.P.), Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| |
Collapse
|
48
|
Sekula B, Ruszkowski M, Malinska M, Dauter Z. Structural Investigations of N-carbamoylputrescine Amidohydrolase from Medicago truncatula: Insights into the Ultimate Step of Putrescine Biosynthesis in Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:350. [PMID: 27066023 PMCID: PMC4812014 DOI: 10.3389/fpls.2016.00350] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/07/2016] [Indexed: 05/17/2023]
Abstract
Putrescine, 1,4-diaminobutane, is an intermediate in the biosynthesis of more complexed polyamines, spermidine and spermine. Unlike other eukaryotes, plants have evolved a multistep pathway for putrescine biosynthesis that utilizes arginine. In the final reaction, N-carbamoylputrescine is hydrolyzed to putrescine by N-carbamoylputrescine amidohydrolase (CPA, EC 3.5.1.53). During the hydrolysis, consecutive nucleophilic attacks on the substrate by Cys158 and water lead to formation of putrescine and two by-products, ammonia and carbon dioxide. CPA from the model legume plant, Medicago truncatula (MtCPA), was investigated in this work. Four crystal structures were determined: the wild-type MtCPA in complex with the reaction intermediate, N-(dihydroxymethyl)putrescine as well as with cadaverine, which is a longer analog of putrescine; and also structures of MtCPA-C158S mutant unliganded and with putrescine. MtCPA assembles into octamers, which resemble an incomplete left-handed helical twist. The active site of MtCPA is funnel-like shaped, and its entrance is walled with a contribution of the neighboring protein subunits. Deep inside the catalytic cavity, Glu48, Lys121, and Cys158 form the catalytic triad. In this studies, we have highlighted the key residues, highly conserved among the plant kingdom, responsible for the activity and selectivity of MtCPA toward N-carbamoylputrescine. Moreover, since, according to previous reports, a close MtCPA relative from Arabidopsis thaliana, along with several other nitrilase-like proteins, are subjected to allosteric regulation by substrates, we have used the structural information to indicate a putative secondary binding site. Based on the docking experiment, we postulate that this site is adjacent to the entrance to the catalytic pocket.
Collapse
Affiliation(s)
- Bartosz Sekula
- Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Lodz University of TechnologyLodz, Poland
| | - Milosz Ruszkowski
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute, ArgonneIL, USA
- *Correspondence: Milosz Ruszkowski,
| | - Maura Malinska
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute, ArgonneIL, USA
- Faculty of Chemistry, University of WarsawWarsaw, Poland
| | - Zbigniew Dauter
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute, ArgonneIL, USA
| |
Collapse
|
49
|
Tavladoraki P, Cona A, Angelini R. Copper-Containing Amine Oxidases and FAD-Dependent Polyamine Oxidases Are Key Players in Plant Tissue Differentiation and Organ Development. FRONTIERS IN PLANT SCIENCE 2016; 7:824. [PMID: 27446096 PMCID: PMC4923165 DOI: 10.3389/fpls.2016.00824] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/26/2016] [Indexed: 05/18/2023]
Abstract
Plant polyamines are catabolized by two classes of amine oxidases, the copper amine oxidases (CuAOs) and the flavin adenine dinucleotide (FAD)-dependent polyamine oxidases (PAOs). These enzymes differ to each other in substrate specificity, catalytic mechanism and subcellular localization. CuAOs and PAOs contribute to several physiological processes both through the control of polyamine homeostasis and as sources of biologically-active reaction products. CuAOs and PAOs have been found at high level in the cell-wall of several species belonging to Fabaceae and Poaceae families, respectively, especially in tissues fated to undertake extensive wall loosening/stiffening events and/or in cells undergoing programmed cell death (PCD). Apoplastic CuAOs and PAOs have been shown to play a key role as a source of H2O2 in light- or developmentally-regulated differentiation events, thus influencing cell-wall architecture and maturation as well as PCD. Moreover, growing evidence suggests a key role of intracellular CuAOs and PAOs in several facets of plant development. Here, we discuss recent advances in understanding the contribution of different CuAOs/PAOs, as well as their cross-talk with different intracellular and apoplastic metabolic pathways, in tissue differentiation and organ development.
Collapse
|
50
|
Affiliation(s)
- Yoshihiro TAKAHASHI
- Department of Applied Chemistry and Biochemistry, Faculty of Engineering, Kyushu Sangyo University
| |
Collapse
|