1
|
Jung JB, Kim ES, Lim JH, Choi WI. Host-specific growth responses of Larix kaempferi and Quercus acutissima to Asian gypsy moth defoliation in central Korea. Sci Rep 2024; 14:1477. [PMID: 38233543 PMCID: PMC10794211 DOI: 10.1038/s41598-024-51907-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/11/2024] [Indexed: 01/19/2024] Open
Abstract
As the risk of gypsy moth outbreaks that have detrimental effects on forest ecosystem in the Northern Hemisphere increase due to climate change, a quantitative evaluation of the impact of gypsy moth defoliation is needed to support the adaptive forest management. To evaluate the host-specific impact of gypsy moth defoliation, radial growth and annual carbon accumulation were compared for one severely defoliated (Larix kaempferi (Lamb.) Carrière) and one moderate defoliated (Quercus acutissima Carruth.) host, in defoliated and non-defoliated site using tree-ring analysis. Finally, the resilience indices of radial growth variables were calculated to assess the ability of sampled trees to withstand defoliation. Gypsy moth defoliation mainly decreased latewood width and caused reduction in annual carbon absorption more than 40% for both tree species. However, L. kaempferi, showed the reduced growth until the year following defoliation, while Q. acutissima, showed no lagged growth depression and rapid growth recover. The findings show how each species reacts differently to gypsy moth defoliation and highlight the need of managing forests in a way that takes resilient tree species into account.
Collapse
Affiliation(s)
- Jong Bin Jung
- Forest Ecology Division, National Institute of Forest Science, 57 Hoegi-Ro, Dongdaemun-Gu, Seoul, 02455, Republic of Korea
| | - Eun-Sook Kim
- Forest Ecology Division, National Institute of Forest Science, 57 Hoegi-Ro, Dongdaemun-Gu, Seoul, 02455, Republic of Korea
| | - Jong-Hwan Lim
- Forest Ecology Division, National Institute of Forest Science, 57 Hoegi-Ro, Dongdaemun-Gu, Seoul, 02455, Republic of Korea
| | - Won Il Choi
- Forest Ecology Division, National Institute of Forest Science, 57 Hoegi-Ro, Dongdaemun-Gu, Seoul, 02455, Republic of Korea.
| |
Collapse
|
2
|
Park C, Garland SM, Close DC. The Effect of the Height of Coppicing and Harvest Season on the Yield and Quality of the Essential Oil of Kunzea ambigua. PLANTS (BASEL, SWITZERLAND) 2022; 12:20. [PMID: 36616149 PMCID: PMC9824379 DOI: 10.3390/plants12010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Kunzea ambigua is a small shrub belonging to the Myrtaceae family and the leaves are steam-distilled to produce a therapeutically active essential oil. With production moving from wild-harvested to orchardised stands, there is a need for harvest management of kunzea oil. This study compared the regrowth, essential oil content and composition of kunzea plants after harvesting vegetative material to a depth of 0.2 m above ground level (shallow-cut), relative to plants cut to a depth of 0.1 m above ground level (deep-cut) over the 2018/2019 growing season. Increased vegetative biomass accounted for the increased oil yield and was caused by consistently higher growth rates of 50 to 60% across all seasons in shallow-cut crops relative to those subject to deep-cut. Total soluble sugar concentrations were higher in the leaves and lower in the roots of deep-cut treated plants compared to the other treatments, indicating defoliated K. ambigua responds by mobilising sugars into above-ground biomass. The overall essential oil content of leaves was constant regardless of season, though the oil yield for shallow-cut was 1.9-fold higher at 11.79 ± 0.23 g/m2 compared to deep-cut (6.24 ± 0.18 g/m2). An interactive effect of harvest intensity with season was recorded for all major components except for a non-significant effect of season on terpinen-4-ol. Bicyclogermacrene and α-pinene were elevated in both shallow- and deep-cut treatments relative to control (un-cut) in spring, possibly due to the plant defense response after de-foliation. The highest percentage of bioactive compounds (1,8-cineole and viridiflorol) were present in autumn. Therefore, the recovery of biomass post-harvest is optimised by shallow-cut harvests, and the profile of kunzea oil can be manipulated to elevate levels of specific bioactive components by selecting to crop in autumn/spring.
Collapse
|
3
|
Rademacher T, Fonti P, LeMoine JM, Fonti MV, Bowles F, Chen Y, Eckes-Shephard AH, Friend AD, Richardson AD. Insights into source/sink controls on wood formation and photosynthesis from a stem chilling experiment in mature red maple. THE NEW PHYTOLOGIST 2022; 236:1296-1309. [PMID: 35927942 DOI: 10.1111/nph.18421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Whether sources or sinks control wood growth remains debated with a paucity of evidence from mature trees in natural settings. Here, we altered carbon supply rate in stems of mature red maples (Acer rubrum) within the growing season by restricting phloem transport using stem chilling; thereby increasing carbon supply above and decreasing carbon supply below the restrictions, respectively. Chilling successfully altered nonstructural carbon (NSC) concentrations in the phloem without detectable repercussions on bulk NSC in stems and roots. Ring width responded strongly to local variations in carbon supply with up to seven-fold differences along the stem of chilled trees; however, concurrent changes in the structural carbon were inconclusive at high carbon supply due to large local variability of wood growth. Above chilling-induced bottlenecks, we also observed higher leaf NSC concentrations, reduced photosynthetic capacity, and earlier leaf coloration and fall. Our results indicate that the cambial sink is affected by carbon supply, but within-tree feedbacks can downregulate source activity, when carbon supply exceeds demand. Such feedbacks have only been hypothesized in mature trees. Consequently, these findings constitute an important advance in understanding source-sink dynamics, suggesting that mature red maples operate close to both source- and sink-limitation in the early growing season.
Collapse
Affiliation(s)
- Tim Rademacher
- Harvard Forest, Harvard University, Petersham, MA, 01366, USA
- School of Informatics, Computing and Cyber Systems and Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
- Institut des Sciences de la Forêt Tempérée, Université du Québec en Outaouais, Ripon, J0V 1V0, QC, Canada
| | - Patrick Fonti
- Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - James M LeMoine
- School of Informatics, Computing and Cyber Systems and Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Marina V Fonti
- Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
- Institute of Ecology and Geography, Siberian Federal University, Krasnoyarsk, 660041, Russia
| | | | - Yizhao Chen
- Department of Geography, University of Cambridge, Cambridge, CB2 1BY, UK
| | - Annemarie H Eckes-Shephard
- Department of Geography, University of Cambridge, Cambridge, CB2 1BY, UK
- Department of Physical Geography and Ecosystem Science, Lund University, Lund, 223 62, Sweden
| | - Andrew D Friend
- Department of Geography, University of Cambridge, Cambridge, CB2 1BY, UK
| | - Andrew D Richardson
- School of Informatics, Computing and Cyber Systems and Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
| |
Collapse
|
4
|
Song GC, Jeon JS, Sim HJ, Lee S, Jung J, Kim SG, Moon SY, Ryu CM. Dual functionality of natural mixtures of bacterial volatile compounds on plant growth. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:571-583. [PMID: 34679179 DOI: 10.1093/jxb/erab466] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Bacteria emit volatile compounds that modulate plant growth. Previous studies reported the impacts of bacterial volatile compounds on plant growth; however, the results varied depending on bacterial nutrient availability. We investigated whether the effects of plant growth-inhibiting volatiles (PGIVs) and plant growth-promoting volatiles (PGPVs) depended on the perceived dose by evaluating the growth of Arabidopsis thaliana seedlings placed at 7, 14, and 21 cm away from Bacillus amyloliquefaciens GB03 colonies growing in rich medium. A large bacterial colony (500 μl inoculum) inhibited plant growth at 7 cm and promoted growth at 21 cm, whereas a small bacterial colony (100 μl inoculum) induced the opposite pattern of response. We identified pyrazine and 2,5-dimethylpyrazine as candidate PGIVs that significantly reduced plant growth at a distance of 7 cm. PGIV effects were validated by exposing plants to synthetic 2,5-dimethylpyrazine and bacteria emitting PGPVs, which showed that PGIVs overwhelm PGPVs to rapidly increase salicylic acid content and related gene expression. This is referred to as the defence-growth trade-off. Our results indicate that high PGIV concentrations suppress plant growth and promote immunity, whereas low PGPV concentrations promote growth. This study provides novel insights into the complex effects of bacterial volatile mixtures and fine-tuning of bacteria-plant interactions.
Collapse
Affiliation(s)
- Geun Cheol Song
- Molecular Phytobacteriology Laboratory, KRIBB, Daejeon 34141, S. Korea
| | - Je-Seung Jeon
- Molecular Phytobacteriology Laboratory, KRIBB, Daejeon 34141, S. Korea
| | - Hee-Jung Sim
- Center for Genome Engineering, Institute for Basic Science (IBS), Daejeon 34126, S. Korea
- Environmental Safety Assessment Center, Korea Institute of Toxicology (KIT), 17 Jegok-gil, Munsan-eup, Jinju 52834, South Korea
| | - Soohyun Lee
- Molecular Phytobacteriology Laboratory, KRIBB, Daejeon 34141, S. Korea
| | - Jihye Jung
- Molecular Phytobacteriology Laboratory, KRIBB, Daejeon 34141, S. Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Sang-Gyu Kim
- Center for Genome Engineering, Institute for Basic Science (IBS), Daejeon 34126, S. Korea
| | - Sun Young Moon
- Center for Genome Engineering, Institute for Basic Science (IBS), Daejeon 34126, S. Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, KRIBB, Daejeon 34141, S. Korea
- Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 34113, S. Korea
| |
Collapse
|
5
|
Additive genetic variation in Pinus radiata bark chemistry and the chemical traits associated with variation in mammalian bark stripping. Heredity (Edinb) 2021; 127:498-509. [PMID: 34663917 PMCID: PMC8626423 DOI: 10.1038/s41437-021-00476-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 12/23/2022] Open
Abstract
Secondary metabolites are suggested as a major mechanism explaining genetic variation in herbivory levels in Pinus radiata. The potential to incorporate these chemical traits into breeding/deployment programmes partly depends on the presence of additive genetic variation for the relevant chemical traits. In this study, near-infrared spectroscopy was used to quantify the constitutive and induced levels of 54 compounds in the bark of trees from 74 P. radiata full-sib families. The trees sampled for chemistry were protected from browsing and induced levels were obtained by subjecting half of the trees to artificial bark stripping. The treatment effect on bark chemistry was assessed along with narrow-sense heritability, the significance of non-additive genetic effects and the additive genetic correlations of compounds with bark stripping by mammalian herbivores that was observed in unprotected replicates of the field trial. The results indicated: (i) significant additive genetic variation, with low-moderate narrow-sense heritability estimates for most compounds; (ii) while significant induced effects were detected for some chemicals, no significant genetic variation in inducibility was detected; and (iii) sugars, fatty acids and a diterpenoid positively genetically correlated while a sesquiterpenoid negatively genetically correlated with bark stripping by the mammalian herbivore, the Bennett's wallaby (Macropus rufogriseus). At the onset of browsing, a trade-off with height was detected for selecting higher amounts of this sesquiterpenoid. However, overall, results showed potential to incorporate chemical traits into breeding/deployment programmes. The quantitative genetic analyses of the near infrared predicted chemical traits produced associations with mammalian bark stripping that mostly conform with those obtained using standard wet chemistry.
Collapse
|
6
|
Ramirez JA, Vitali V, Martínez-Vilalta J, Handa IT, Messier C. Reserve Accumulation Is Prioritized Over Growth Following Single or Combined Injuries in Three Common North American Urban Tree Species. FRONTIERS IN PLANT SCIENCE 2021; 12:715399. [PMID: 34421968 PMCID: PMC8378402 DOI: 10.3389/fpls.2021.715399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Trees that grow in urban areas are confronted with a wide variety of stresses that undermine their long-term survival. These include mechanical damage to the crown, root reduction and stem injury, all of which remove significant parts of plant tissues. The single or combined effects of these stresses generate a complex array of growth and ecophysiological responses that are hard to predict. Here we evaluated the effects of different individual and combined damage on the dynamics of non-structural carbohydrates (NSC, low weight sugars plus starch) concentration and new tissue growth (diameter increment) in young trees. We hypothesized that (i) tissue damage will induce larger reductions in diameter growth than in NSC concentrations and (ii) combinations of stress treatments that minimally alter the "functional equilibrium" (e.g., similar reductions of leaf and root area) would have the least impact on NSC concentrations (although not on growth) helping to maintain tree health and integrity. To test these hypotheses, we set up a manipulative field experiment with 10-year-old trees of common urban species (Celtis occidentalis, Fraxinus pennsylvanica, and Tilia cordata). These trees were treated with a complete array of mechanical damage combinations at different levels of intensity (i.e., three levels of defoliation and root reduction, and two levels of stem damage). We found that tree growth declined in relation to the total amount of stress inflicted on the trees, i.e., when the combined highest level of stress was applied, but NSC concentrations were either not affected or, in some cases, increased with an increasing level of stress. We did not find a consistent response in concentration of reserves in relation to the combined stress treatments. Therefore, trees appear to reach a new "functional equilibrium" that allows them to adjust their levels of carbohydrate reserves, especially in stems and roots, to meet their metabolic demand under stressful situations. Our results provide a unique insight into the carbon economy of trees facing multiple urban stress conditions in order to better predict long-term tree performance and vitality.
Collapse
Affiliation(s)
- Jorge Andres Ramirez
- Facultad de Ciencias Agrarias, Universidad del Cauca, Popayán, Colombia
- Centre d’Étude de la Forêt (CEF), Université du Québec à Montréal, Montreal, QC, Canada
| | - Valentina Vitali
- Centre d’Étude de la Forêt (CEF), Université du Québec à Montréal, Montreal, QC, Canada
- WSL Research Unit Forest Dynamics, Research Group Ecosystem-Ecology Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | | | - I. Tanya Handa
- Centre d’Étude de la Forêt (CEF), Université du Québec à Montréal, Montreal, QC, Canada
- Faculté des Sciences, Département des Sciences Biologiques, Université du Québec à Montréal, Montreal, QC, Canada
| | - Christian Messier
- Centre d’Étude de la Forêt (CEF), Université du Québec à Montréal, Montreal, QC, Canada
- Faculté des Sciences, Département des Sciences Biologiques, Université du Québec à Montréal, Montreal, QC, Canada
- Institut des Sciences de la Foret Tempérée, Université du Québec en Outaouais, Ripon, QC, Canada
| |
Collapse
|
7
|
Rademacher T, Fonti P, LeMoine JM, Fonti MV, Basler D, Chen Y, Friend AD, Seyednasrollah B, Eckes-Shephard AH, Richardson AD. Manipulating phloem transport affects wood formation but not local nonstructural carbon reserves in an evergreen conifer. PLANT, CELL & ENVIRONMENT 2021; 44:2506-2521. [PMID: 34043242 DOI: 10.1111/pce.14117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
How variations in carbon supply affect wood formation remains poorly understood in particular in mature forest trees. To elucidate how carbon supply affects carbon allocation and wood formation, we attempted to manipulate carbon supply to the cambial region by phloem girdling and compression during the mid- and late-growing season and measured effects on structural development, CO2 efflux and nonstructural carbon reserves in stems of mature white pines. Wood formation and stem CO2 efflux varied with a location relative to treatment (i.e., above or below the restriction). We observed up to twice as many tracheids formed above versus below the treatment after the phloem transport manipulation, whereas the cell-wall area decreased only slightly below the treatments, and cell size did not change relative to the control. Nonstructural carbon reserves in the xylem, needles and roots were largely unaffected by the treatments. Our results suggest that low and high carbon supply affects wood formation, primarily through a strong effect on cell proliferation, and respiration, but local nonstructural carbon concentrations appear to be maintained homeostatically. This contrasts with reports of decoupling of source activity and wood formation at the whole-tree or ecosystem level, highlighting the need to better understand organ-specific responses, within-tree feedbacks, as well as phenological and ontogenetic effects on sink-source dynamics.
Collapse
Affiliation(s)
- Tim Rademacher
- School of Informatics, Computing, and Cyber Security, Northern Arizona University, Flagstaff, Arizona, USA
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Patrick Fonti
- Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - James M LeMoine
- School of Informatics, Computing, and Cyber Security, Northern Arizona University, Flagstaff, Arizona, USA
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
| | - Marina V Fonti
- Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Institute of Ecology and Geography, Siberian Federal University, Krasnoyarsk, Russian Federation
| | - David Basler
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Yizhao Chen
- Department of Geography, University of Cambridge, Cambridge, UK
| | - Andrew D Friend
- Department of Geography, University of Cambridge, Cambridge, UK
| | - Bijan Seyednasrollah
- School of Informatics, Computing, and Cyber Security, Northern Arizona University, Flagstaff, Arizona, USA
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
| | | | - Andrew D Richardson
- School of Informatics, Computing, and Cyber Security, Northern Arizona University, Flagstaff, Arizona, USA
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
8
|
Zhou Q, Shi H, He R, Liu H, Zhu W, Yu D, Zhang Q, Dang H. Prioritized carbon allocation to storage of different functional types of species at the upper range limits is driven by different environmental drivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145581. [PMID: 33582346 DOI: 10.1016/j.scitotenv.2021.145581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
The upper elevational range limit of tree species (including treeline and non-treeline species) is generally considered to result from either carbon limitation or sink limitation. Some evidence also suggests that tree line might reflect preferential carbon allocation to NSC storage at the expense of growth. How might the importance of these potential mechanisms be determined? We used an elevational gradient to examine light-saturated photosynthesis (Asat) and NSC concentrations in plant tissues of three different functional types of tree species. We also examined the effects of consecutive 4 years of in situ defoliation on growth and NSCs at the upper elevational range limit. Declining temperature with increasing elevation did not reduce Asat in any of the species. We found NSC increased with elevation in major storage tissues (e.g., roots and twigs) but not in leaves. The defoliation showed that C storage took priority over growth. Such preferential carbon allocation, directly caused by growth decline, always existed in the deciduous tree species. In the evergreen tree species, however, growth decline resulted from preferential carbon allocation to storage was only detected in 2017 and then disappeared as the intensity of defoliation increased. Our results showed that trees prioritized sustaining stores of C more highly than allocation of growth, regardless of the trees' C or sink limitations. At the cold range limits, the prioritized carbon allocation to storage in deciduous tree species was in response to low temperature stress, while in evergreen tree species, the prioritization of carbon allocation was only a transient physiological response to defoliation disturbances.
Collapse
Affiliation(s)
- Quan Zhou
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan 430074, PR China; Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, PR China; The University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hang Shi
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan 430074, PR China; Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, PR China; The University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Rui He
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan 430074, PR China; Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, PR China; The University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Haikun Liu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan 430074, PR China; Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, PR China; The University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Wenting Zhu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan 430074, PR China; Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, PR China; College of Science, Tibet University, Lhasa 850000, PR China
| | - Dongyue Yu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan 430074, PR China; Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, PR China; The University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Quanfa Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan 430074, PR China; Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, PR China
| | - Haishan Dang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan 430074, PR China; Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, PR China.
| |
Collapse
|
9
|
Buttò V, Rozenberg P, Deslauriers A, Rossi S, Morin H. Environmental and developmental factors driving xylem anatomy and micro-density in black spruce. THE NEW PHYTOLOGIST 2021; 230:957-971. [PMID: 33480027 DOI: 10.1111/nph.17223] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Wood density is the product of carbon allocation for structural growth and reflects the trade-off between mechanical support and water conductivity. We tested a conceptual framework based on the assumption that micro-density depends on direct and indirect relationships with endogenous and exogenous factors. The dynamics of wood formation, including timings and rates of cell division, cell enlargement, and secondary wall deposition, were assessed from microcores collected weekly between 2002 and 2016 from five black spruce stands located along a latitudinal gradient in Quebec, Canada. Cell anatomy and micro-density were recorded by anatomical analyses and X-ray measurements. Our structural equation model explained 80% of micro-density variation within the tree-ring with direct effects of wall thickness (σ = 0.61), cell diameter (σ = -0.51), and photoperiod (σ = -0.26). Wood formation dynamics had an indirect effect on micro-density. Micro-density increased under longer periods of cell-wall deposition and shorter durations of enlargement. Our results fill a critical gap in understanding the relationships underlying micro-density variation in conifers. We demonstrated that short-term responses to environmental variations could be overridden by plastic responses that modulate cell differentiation. Our results point to wood formation dynamics as a reliable predictor of carbon allocation in trees.
Collapse
Affiliation(s)
- Valentina Buttò
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555, Boulevard de l'Université, Chicoutimi (Québec), Chicoutimi, QC G7H 2B1, Canada
| | - Philippe Rozenberg
- Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), UMR 0588 BIOFORA, Ardon CS 40001, 45075, Orléans Cedex 2, France
| | - Annie Deslauriers
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555, Boulevard de l'Université, Chicoutimi (Québec), Chicoutimi, QC G7H 2B1, Canada
| | - Sergio Rossi
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555, Boulevard de l'Université, Chicoutimi (Québec), Chicoutimi, QC G7H 2B1, Canada
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Hubert Morin
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555, Boulevard de l'Université, Chicoutimi (Québec), Chicoutimi, QC G7H 2B1, Canada
| |
Collapse
|
10
|
Chen YD, Moles A, Bu ZJ, Zhang MM, Wang ZC, Zhao HY. Induced defense and its cost in two bryophyte species. AMERICAN JOURNAL OF BOTANY 2021; 108:777-787. [PMID: 33948954 DOI: 10.1002/ajb2.1654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
PREMISE Current knowledge about defense strategies in plants under herbivore pressure is predominantly based on vascular plants. Bryophytes are rarely consumed by herbivores since they have ample secondary metabolites. However, it is unknown whether bryophytes have induced defenses against herbivory and whether there is a trade-off between growth and defense in bryophytes. METHODS In an experiment with two peatland bryophytes, Sphagnum magellanicum Brid. and S. fuscum (Schimp.) H. Klinggr., two kinds of herbivory, clipping with scissors and grazing by mealworms (Tenebrio molitor L.) were simulated. At the end of the experiment, we measured growth traits, carbon-based defense compounds (total phenolics and cellulose) and storage compounds (total nonstructural carbohydrates) of these two Sphagnum species. RESULTS Grazing but not clipping increased total phenolics and C:N ratio and reduced biomass production and height increment. A negative relationship between biomass production and total phenolics was found in S. magellanicum but not in S. fuscum, indicating a growth-defense trade-off that is species-specific. Grazing reduced the sugar starch content of S. magellanicum and the sugar of S. fuscum. Either clipping or grazing had no effect on chlorophyll fluorescence (including actual and maximum photochemical efficiency of photosystem II) except that a significant effect of clipping on actual photochemical efficiency in S. fuscum was observed. CONCLUSIONS Our results suggest that Sphagnum can have induced defense against herbivory and that this defense can come at a cost of growth. These findings advance our knowledge about induced defense in bryophytes, the earliest land plants.
Collapse
Affiliation(s)
- Yong-Da Chen
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Renmin 5268, Changchun, 130024, China
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Institute for Peat and Mire Research, Northeast Normal University, Renmin 5268, Changchun, 130024, China
- Jilin Provincial Key Laboratory for Wetland Ecological Processes and Environmental Change in the Changbai Mountains, Renmin 5268, Changchun, 130024, China
| | - Angela Moles
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Zhao-Jun Bu
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Renmin 5268, Changchun, 130024, China
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Institute for Peat and Mire Research, Northeast Normal University, Renmin 5268, Changchun, 130024, China
- Jilin Provincial Key Laboratory for Wetland Ecological Processes and Environmental Change in the Changbai Mountains, Renmin 5268, Changchun, 130024, China
| | - Ming-Ming Zhang
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Renmin 5268, Changchun, 130024, China
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Institute for Peat and Mire Research, Northeast Normal University, Renmin 5268, Changchun, 130024, China
- Jilin Provincial Key Laboratory for Wetland Ecological Processes and Environmental Change in the Changbai Mountains, Renmin 5268, Changchun, 130024, China
| | - Zu-Cheng Wang
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Renmin 5268, Changchun, 130024, China
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Institute for Peat and Mire Research, Northeast Normal University, Renmin 5268, Changchun, 130024, China
- Jilin Provincial Key Laboratory for Wetland Ecological Processes and Environmental Change in the Changbai Mountains, Renmin 5268, Changchun, 130024, China
| | - Hong-Yan Zhao
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Renmin 5268, Changchun, 130024, China
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Institute for Peat and Mire Research, Northeast Normal University, Renmin 5268, Changchun, 130024, China
- Jilin Provincial Key Laboratory for Wetland Ecological Processes and Environmental Change in the Changbai Mountains, Renmin 5268, Changchun, 130024, China
| |
Collapse
|
11
|
Prendin AL, Carrer M, Bjerregaard Pedersen N, Normand S, Hollesen J, Treier UA, Pividori M, Garbrecht Thygesen L. Chemical signature of Eurois occulta L. outbreaks in the xylem cell wall of Salix glauca L. in Greenland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:144607. [PMID: 33387770 DOI: 10.1016/j.scitotenv.2020.144607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 11/29/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Insect defoliations are a major natural disturbance in high-latitude ecosystems and are expected to increase in frequency and severity due to current climatic change. Defoliations cause severe reductions in biomass and carbon investments that affect the functioning and productivity of tundra ecosystems. Here we combined dendro-anatomical analysis with chemical imaging to investigate the direct and lagged effects of insect outbreaks on carbon investment. We analysed the content of lignin vs. holocellulose, i.e. unspecified carbohydrates in xylem samples of Salix glauca L. collected at Iffiartarfik, Nuuk fjord, Greenland, featuring two outbreak events of the moth Eurois occulta L. Cross sections of the growth rings corresponding to both outbreaks ±3 years were analysed using confocal Raman imaging to identify possible chemical signatures related to insect defoliation on fibres, vessels, and ray parenchyma cells and to get insight into species-specific defence responses. Outbreak years with narrower rings and thinner fibre cell walls are accompanied by a change in the content of cell-wall polymers but not their underlying chemistry. Indeed, during the outbreaks the ratio between lignin and carbohydrates significantly increased in fibre but not vessel cell walls due to an increase in lignin content coupled with a reduced content of carbohydrates. Parenchyma cell walls and cell corners did not show any significant changes in the cell-wall biopolymer content. The selective adjustment of the cell-wall composition of fibres but not vessels under stressful conditions could be related to the plants priority to maintain an efficient hydraulic system rather than mechanical support. However, the higher lignin content of fibre cell walls formed during the outbreak events could increase mechanical stiffness to the thin walls by optimizing the available resources. Chemical analysis of xylem traits with Raman imaging is a promising approach to highlight hidden effects of defoliation otherwise overlooked with classical dendroecological methods.
Collapse
Affiliation(s)
- Angela Luisa Prendin
- University of Padova, TeSAF Department, Agripolis, Viale dell'Università, 16, 35020 Legnaro, PD, Italy; Aarhus University, Department of Biology, Ecoinformatics and Biodiversity, Ny Munkegade 116, building 1540, 8000 Aarhus C, Denmark.
| | - Marco Carrer
- University of Padova, TeSAF Department, Agripolis, Viale dell'Università, 16, 35020 Legnaro, PD, Italy.
| | | | - Signe Normand
- Aarhus University, Department of Biology, Ecoinformatics and Biodiversity, Ny Munkegade 116, building 1540, 8000 Aarhus C, Denmark; Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Ny Munkegade 116, building 1540, 8000 Aarhus C, Denmark.
| | - Jørgen Hollesen
- The National Museum of Denmark, Environmental Archaeology and Material Science, IC Modewegsvej, Brede, 2800 Kgs. Lyngby, Denmark.
| | - Urs Albert Treier
- Aarhus University, Department of Biology, Ecoinformatics and Biodiversity, Ny Munkegade 116, building 1540, 8000 Aarhus C, Denmark; Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Ny Munkegade 116, building 1540, 8000 Aarhus C, Denmark.
| | - Mario Pividori
- University of Padova, TeSAF Department, Agripolis, Viale dell'Università, 16, 35020 Legnaro, PD, Italy.
| | - Lisbeth Garbrecht Thygesen
- University of Copenhagen, Faculty of Science, Department of Geosciences and Natural Resource Management, Rolighedsvej 23, 1958 Frederiksberg C, Denmark.
| |
Collapse
|
12
|
Gričar J, Hafner P, Lavrič M, Ferlan M, Ogrinc N, Krajnc B, Eler K, Vodnik D. Post-fire effects on development of leaves and secondary vascular tissues in Quercus pubescens. TREE PHYSIOLOGY 2020; 40:796-809. [PMID: 32175576 DOI: 10.1093/treephys/tpaa030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/22/2020] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
An increased frequency of fire events on the Slovenian Karst is in line with future climate change scenarios for drought-prone environments worldwide. It is therefore of the utmost importance to better understand tree-fire-climate interactions for predicting the impact of changing environment on tree functioning. To this purpose, we studied the post-fire effects on leaf development, leaf carbon isotope composition (δ13C), radial growth patterns and the xylem and phloem anatomy in undamaged (H-trees) and fire-damaged trees (F-trees) of Quercus pubescens Willd. with good resprouting ability in spring 2017, the growing season after a rangeland fire in August 2016. We found that the fully developed canopy of F-trees reached only half of the leaf area index values measured in H-trees. Throughout the season, F-trees were characterized by higher water potential and stomatal conductivity and achieved higher photosynthetic rates compared to unburnt H-trees. The foliage of F-trees had more negative δ13C values than those of H-trees. This reflects that F-trees less frequently meet stomatal limitations due to reduced transpirational area and more favourable leaf-to-root ratio. In addition, the growth of leaves in F-trees relied more on the recent photosynthates than on reserves due to the fire disturbed starch accumulation in the previous season. Cambial production stopped 3 weeks later in F-trees, resulting in 60 and 22% wider xylem and phloem increments, respectively. A novel approach by including phloem anatomy in the analyses revealed that fire caused changes in conduit dimensions in the early phloem but not in the earlywood. However, premature formation of the tyloses in the earlywood vessels of the youngest two xylem increments in F-trees implies that xylem hydraulic integrity was also affected by heat. Analyses of secondary tissues showed that although xylem and phloem tissues are interlinked changes in their transport systems due to heat damage are not necessarily coordinated.
Collapse
Affiliation(s)
- Jožica Gričar
- Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, SI-1000 Ljubljana, Slovenia
| | - Polona Hafner
- Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, SI-1000 Ljubljana, Slovenia
| | - Martina Lavrič
- Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, SI-1000 Ljubljana, Slovenia
| | - Mitja Ferlan
- Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, SI-1000 Ljubljana, Slovenia
| | - Nives Ogrinc
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Bor Krajnc
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Klemen Eler
- Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, SI-1000 Ljubljana, Slovenia
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Dominik Vodnik
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
13
|
Gomez-Gallego M, Williams N, Leuzinger S, Scott PM, Bader MKF. No carbon limitation after lower crown loss in Pinus radiata. ANNALS OF BOTANY 2020; 125:955-967. [PMID: 31990290 PMCID: PMC7218809 DOI: 10.1093/aob/mcaa013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND AIMS Biotic and abiotic stressors can cause different defoliation patterns within trees. Foliar pathogens of conifers commonly prefer older needles and infection with defoliation that progresses from the bottom crown to the top. The functional role of the lower crown of trees is a key question to address the impact of defoliation caused by foliar pathogens. METHODS A 2 year artificial defoliation experiment was performed using two genotypes of grafted Pinus radiata to investigate the effects of lower-crown defoliation on carbon (C) assimilation and allocation. Grafts received one of the following treatments in consecutive years: control-control, control-defoliated, defoliated-control and defoliated-defoliated. RESULTS No upregulation of photosynthesis either biochemically or through stomatal control was observed in response to defoliation. The root:shoot ratio and leaf mass were not affected by any treatment, suggesting prioritization of crown regrowth following defoliation. In genotype B, defoliation appeared to impose C shortage and caused reduced above-ground growth and sugar storage in roots, while in genotype A, neither growth nor storage was altered. Root C storage in genotype B decreased only transiently and recovered over the second growing season. CONCLUSIONS In genotype A, the contribution of the lower crown to the whole-tree C uptake appears to be negligible, presumably conferring resilience to foliar pathogens affecting the lower crown. Our results suggest that there is no C limitation after lower-crown defoliation in P. radiata grafts. Further, our findings imply genotype-specific defoliation tolerance in P. radiata.
Collapse
Affiliation(s)
- Mireia Gomez-Gallego
- New Zealand Forest Research Institute (Scion), 49 Sala Street, Te Papa Tipu Innovation Park, Private Bag 3020, Rotorua, New Zealand
- Institute for Applied Ecology New Zealand, School of Sciences, Auckland University of Technology, 31–33 Symonds Street, Auckland, New Zealand
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Nari Williams
- New Zealand Forest Research Institute (Scion), 49 Sala Street, Te Papa Tipu Innovation Park, Private Bag 3020, Rotorua, New Zealand
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 1401, Havelock North, New Zealand
| | - Sebastian Leuzinger
- Institute for Applied Ecology New Zealand, School of Sciences, Auckland University of Technology, 31–33 Symonds Street, Auckland, New Zealand
| | - Peter Matthew Scott
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 1401, Havelock North, New Zealand
| | - Martin Karl-Friedrich Bader
- Institute for Applied Ecology New Zealand, School of Sciences, Auckland University of Technology, 31–33 Symonds Street, Auckland, New Zealand
| |
Collapse
|
14
|
Wang K, Zhong S, Sun W. Clipping defoliation and nitrogen addition shift competition between a C 3 grass (Leymus chinensis) and a C 4 grass (Hemarthria altissima). PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:221-232. [PMID: 31671249 DOI: 10.1111/plb.13064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Human-induced disturbances, including grazing and clipping, that cause defoliation are common in natural grasslands. Plant functional type differences in the ability to compensate for this tissue loss may influence interspecific competition. To explore the effects of different intensities of clipping and nitrogen (N) addition on compensatory growth and interspecific competition, we measured accumulated aboveground biomass (AGB), belowground biomass (BGB), tiller number, non-structural carbohydrates concentrations and leaf gas exchange parameters in two locally co-occurring species (the C3 grass Leymus chinensis and the C4 grass Hemarthria altissima) growing in monoculture and in mixture. For both grasses, the clipping treatment had significant impacts on the accumulated AGB, and the 40% clipping treatment had the largest effect. BGB gradually decreased with increasing defoliation intensity. Severe defoliation caused a significant increase in tiller number. Stored carbohydrates in the belowground biomass were mobilised and transported aboveground for the growth of new leaves to compensate for clipping-induced injury. The net CO2 assimilation rate (A) of the remaining leaves increased with clipping intensity and peaked under clipping intensities of 20% or 40%. Nitrogen addition, at a rate of 10 g·N·m-2 ·year-1 , enhanced A of the remaining leaves and non-structural carbohydrate concentrations, which benefited plant compensatory growth, especially for the C3 grass. Under the mixed planting conditions, the clipping and N addition treatments lowered the competitive advantage of the C4 grass. The results suggest that a combination of defoliation and N deposition have the potential to benefit the coexistence of C3 and C4 grasses.
Collapse
Affiliation(s)
- K Wang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, Jilin Province, China
| | - S Zhong
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, Jilin Province, China
| | - W Sun
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, Jilin Province, China
| |
Collapse
|
15
|
Castagneri D, Prendin AL, Peters RL, Carrer M, von Arx G, Fonti P. Long-Term Impacts of Defoliator Outbreaks on Larch Xylem Structure and Tree-Ring Biomass. FRONTIERS IN PLANT SCIENCE 2020; 11:1078. [PMID: 32765561 PMCID: PMC7378862 DOI: 10.3389/fpls.2020.01078] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 06/30/2020] [Indexed: 05/19/2023]
Abstract
Defoliator insects are a major disturbance agent in many forests worldwide. During outbreaks, they can strongly reduce photosynthetic carbon uptake and impact tree growth. In the Alps, larch budmoth (Zeiraphera diniana) outbreaks affect European larch (Larix decidua) radial growth over several years. However, immediate and legacy effects on xylem formation, structure, and functionality are still largely unknown. In this study, we aimed at assessing the impact of budmoth defoliations on larch xylem anatomical features and tree-ring structure. Analyses were performed in the Lötschental (Swiss Alps) within (1,900 m a.s.l.) and above (2,200 m a.s.l.) the optimum elevational range of larch budmoth. We investigated variability of xylem anatomical traits along century-long tree-ring series of larch (host) and Norway spruce (non-host) trees. We identified eight outbreaks affecting larch xylem anatomy during the 20th century, particularly at 1,900 m a.s.l. Tracheid number always showed a higher percent reduction than properties of individual cells. Cell lumen size was slightly reduced in the first 2-3 years of outbreaks, especially in the early part of the ring. The more carbon-demanding cell wall was thinned along the entire ring, but more evidently in the last part. Theoretical tree-ring hydraulic conductivity was reduced for several years (up to 6), mostly due to cell number decrease. Reduced cell wall area and cell number resulted in a strong reduction of the tree-ring biomass, especially in the first year of outbreak. Our study shows that, under carbon source limitations caused by natural defoliation, cell division is more impacted than wall thickening and cell enlargement (the least affected process). Consequences on both xylem hydraulic properties and tree-ring biomass should be considered when assessing long-term defoliator effects on xylem functioning, forest dynamics, and terrestrial carbon cycle.
Collapse
Affiliation(s)
- Daniele Castagneri
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- *Correspondence: Daniele Castagneri,
| | | | - Richard L. Peters
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Laboratory of Plant Ecology, Ghent University, Ghent, Belgium
| | - Marco Carrer
- Department TeSAF, Università degli Studi di Padova, Padova, Italy
| | - Georg von Arx
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Patrick Fonti
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
16
|
The Effect of Insect Defoliations and Seed Production on the Dynamics of Radial Growth Synchrony among Scots Pine Pinus sylvestris L. Provenances. FORESTS 2019. [DOI: 10.3390/f10100934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The intraspecific variation of climate–growth relationships observed on provenance trials results from among–provenance differences in phenotypic plasticity. Temporal variation in radial growth synchrony among provenances may be modified by adverse climatic/biotic conditions such as drought or insect defoliation. However, these factors can potentially diminish provenance–specific growth reactions and, consequently, prevent the identification of provenances with the highest adaptive potential. Thus, understanding the influence of major biotic conditions on provenance–specific climate–growth relationships seems to be important to anticipate climate change. To determine provenance–specific growth patterns in relation to climate conditions (drought), seed production (reproductive effort), and insect defoliation in a common garden of Scots pine (Pinus sylvestris L.), we applied dendroecological techniques to time–series of tree–ring widths and basal area increments. The long–term records of seed production and insect outbreaks from the local Scots pine stands were used to explain the potential effect of biotic factors on the temporal dynamics of radial growth synchrony. During a period of favorable growth conditions, Scots pine provenances showed a decline in inter–provenance synchronicity in growth patterns, while during years affected by severe soil water deficit and insect defoliation, they manifested high uniformity in growth dynamics. The long–term trend in growth synchrony among P. sylvestris provenances depend on both abiotic and biotic environmental factors. This gains significance following an introduction of the appropriate selection of tree provenances for climate–smart forestry.
Collapse
|
17
|
Deslauriers A, Fournier MP, Cartenì F, Mackay J. Phenological shifts in conifer species stressed by spruce budworm defoliation. TREE PHYSIOLOGY 2019; 39:590-605. [PMID: 30597102 DOI: 10.1093/treephys/tpy135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/31/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
Synchrony between host budburst and insect emergence greatly influences the time window for insect development and survival. A few alterations of bud phenology have been reported under defoliation without clear consensus regarding the direction of effects, i.e., advance or delay. Here, we compared budburst phenology between conifers in defoliation and control treatments, and measured carbon allocation as a potential mechanistic explanation of changes in phenology. In a 2-year greenhouse experiment, saplings of balsam fir, black spruce and white spruce of two different provenances (north and south) were subjected to either control (no larvae) or natural defoliation treatment (larvae added) by spruce budworm. Bud and instar phenology, primary and secondary growth, defoliation and non-structural carbohydrates were studied during the growing season. No differences were observed in bud phenology during the first year of defoliation. After 1 year of defoliation, bud phenology advanced by 6-7 days in black spruce and balsam fir and by 3.5 days in white spruce compared with the control. Because of this earlier bud break, apical and shoot growth exceeded 50% of its final length before mature instar defoliation occurred, which decreased the overall level of damage. A sugar-mediated response, via earlier starch breakdown, and higher sugar availability to buds explains the advanced budburst in defoliated saplings. The advanced phenological response to defoliation was consistent across the conifer species and provenances except for one species × provenance combination. Allocation of carbon to buds and shoots growth at the expense of wood growth in the stem and reserve accumulation represents a shift in the physiological resources priorities to ensure tree survival. This advancement in bud phenology could be considered as a physiological response to defoliation based on carbohydrate needs for primary growth, rather than a resistance trait to spruce budworm.
Collapse
Affiliation(s)
- Annie Deslauriers
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Chicoutimi, QC, Canada
| | - Marie-Pier Fournier
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Chicoutimi, QC, Canada
| | - Fabrizio Cartenì
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Portici (NA), Italy
| | - John Mackay
- Centre d'Étude de la Forêt, Département des Sciences du Bois et de la Forêt, Université Laval, Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
- Department of Plant Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
18
|
Méndez-Espinoza C, Parent GJ, Lenz P, Rainville A, Tremblay L, Adams G, McCartney A, Bauce É, MacKay J. Genetic control and evolutionary potential of a constitutive resistance mechanism against the spruce budworm (Choristoneura fumiferana) in white spruce (Picea glauca). Heredity (Edinb) 2018; 121:142-154. [PMID: 29453424 PMCID: PMC6039516 DOI: 10.1038/s41437-018-0061-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 12/05/2017] [Accepted: 12/11/2017] [Indexed: 11/09/2022] Open
Abstract
Insect herbivory may drive evolution by selecting for trees with heritable resistance against defoliation. The spruce budworm (Choristoneura fumiferana, SBW) is a highly damaging forest insect pest that can affect population structure of white spruce (Picea glauca) in North America. Resistance against SBW was recently described in white spruce and was linked to three constitutive resistance biomarkers: the phenolic compounds piceol and pungenol, and expression of a beta-glucosidase encoding gene (Pgβglu-1). We investigated the phenotypic variability and heritability of these resistance biomarkers and of picein, the precursor of piceol, in the foliage of 874 trees belonging to 33 full-sib families and 71 clonal lines under evaluation in seven field locations in Eastern Canada. We aimed to (i) determine their genetic control, (ii) estimate the genetic and phenotypic correlations among defense biomarkers, and (iii) determine whether their constitutive levels are associated with detrimental trade-offs on growth. Quantitative genetics analyses indicated that all four traits are moderately to highly heritable. The full-sib and clonal analyses showed that additive and non-additive genetic effects play major and minor roles, respectively. Positive genetic and phenotypic correlations between resistance biomarkers and primary growth indicated that there is no trade-off between total height and height increment and resistance traits, contradicting the GDBH (Growth Differentiation Balance Hypothesis). Our findings about the predominant additive genetic basis of the resistance biomarkers show that adaptive evolution of white spruce natural populations to resist to SBW is possible and that potentially important gains could also be expected from artificial selection.
Collapse
Affiliation(s)
- Claudia Méndez-Espinoza
- Centre d'étude de la forêt, Département des sciences du bois et de la forêt, Université Laval, Québec, QC, G1V 0A6, Canada.
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, G1V 0A6, Canada.
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Centro Nacional de Investigación Disciplinaria en Conservación y Mejoramiento de Ecosistemas Forestales, Av. Progreso 5, Barrio de Santa Catarina, 04010, Ciudad de México, CDMX, Mexico.
| | - Geneviève J Parent
- Centre d'étude de la forêt, Département des sciences du bois et de la forêt, Université Laval, Québec, QC, G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, G1V 0A6, Canada
- Department of Plant Sciences, University of Oxford, Oxford, 0X1 3RB, UK
| | - Patrick Lenz
- Canadian Wood Fibre Center, Natural Resources Canada, Québec, QC, G1V 4C7, Canada
- Canada Research Chair in Forest Genomics, Université Laval, Québec, QC, G1V 0A6, Canada
| | - André Rainville
- Ministère des Forêts, de la Faune et des Parcs, Québec, QC, G2K 0G9, Canada
| | - Laurence Tremblay
- Ministère des Forêts, de la Faune et des Parcs, Québec, QC, G2K 0G9, Canada
| | - Greg Adams
- J.D. Irving, Limited, Saint John, NB, E4G 2V5, Canada
| | | | - Éric Bauce
- Centre d'étude de la forêt, Département des sciences du bois et de la forêt, Université Laval, Québec, QC, G1V 0A6, Canada
| | - John MacKay
- Centre d'étude de la forêt, Département des sciences du bois et de la forêt, Université Laval, Québec, QC, G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, G1V 0A6, Canada
- Department of Plant Sciences, University of Oxford, Oxford, 0X1 3RB, UK
| |
Collapse
|
19
|
Chen L, Huang JG, Dawson A, Zhai L, Stadt KJ, Comeau PG, Whitehouse C. Contributions of insects and droughts to growth decline of trembling aspen mixed boreal forest of western Canada. GLOBAL CHANGE BIOLOGY 2018; 24:655-667. [PMID: 28762590 DOI: 10.1111/gcb.13855] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/24/2017] [Indexed: 05/25/2023]
Abstract
Insects, diseases, fire and drought and other disturbances associated with global climate change contribute to forest decline and mortality in many parts of the world. Forest decline and mortality related to drought or insect outbreaks have been observed in North American aspen forests. However, little research has been done to partition and estimate their relative contributions to growth declines. In this study, we combined tree-ring width and basal area increment series from 40 trembling aspen (Populus tremuloides Michx.) sites along a latitudinal gradient (from 52° to 58°N) in western Canada and attempted to investigate the effect of drought and insect outbreaks on growth decline, and simultaneously partition and quantify their relative contributions. Results indicated that the influence of drought on forest decline was stronger than insect outbreaks, although both had significant effects. Furthermore, the influence of drought and insect outbreaks showed spatiotemporal variability. In addition, our data suggest that insect outbreaks could be triggered by warmer early spring temperature instead of drought, implicating that potentially increased insect outbreaks are expected with continued warming springs, which may further exacerbate growth decline and death in North America aspen mixed forests.
Collapse
Affiliation(s)
- Lei Chen
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Jian-Guo Huang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Andria Dawson
- Department of Geosciences, University of Arizona, Tucson, AZ, USA
| | - Lihong Zhai
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Kenneth J Stadt
- Forest Management Branch, Alberta Agriculture and Forestry, Edmonton, AB, Canada
| | - Philip G Comeau
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | - Caroline Whitehouse
- Forest Management Branch, Alberta Agriculture and Forestry, Edmonton, AB, Canada
| |
Collapse
|
20
|
Grüning MM, Simon J, Rennenberg H, l-M-Arnold A. Defoliating Insect Mass Outbreak Affects Soil N Fluxes and Tree N Nutrition in Scots Pine Forests. FRONTIERS IN PLANT SCIENCE 2017; 8:954. [PMID: 28638396 PMCID: PMC5461291 DOI: 10.3389/fpls.2017.00954] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/22/2017] [Indexed: 03/27/2024]
Abstract
Biotic stress by mass outbreaks of defoliating pest insects does not only affect tree performance by reducing its photosynthetic capacity, but also changes N cycling in the soil of forest ecosystems. However, how insect induced defoliation affects soil N fluxes and, in turn, tree N nutrition is not well-studied. In the present study, we quantified N input and output fluxes via dry matter input, throughfall, and soil leachates. Furthermore, we investigated the effects of mass insect herbivory on tree N acquisition (i.e., organic and inorganic 15N net uptake capacity of fine roots) as well as N pools in fine roots and needles in a Scots pine (Pinus sylvestris L.) forest over an entire vegetation period. Plots were either infested by the nun moth (Lymantria monacha L.) or served as controls. Our results show an increased N input by insect feces, litter, and throughfall at the infested plots compared to controls, as well as increased leaching of nitrate. However, the additional N input into the soil did not increase, but reduce inorganic and organic net N uptake capacity of Scots pine roots. N pools in the fine roots and needles of infested trees showed an accumulation of total N, amino acid-N, protein-N, and structural N in the roots and the remaining needles as a compensatory response triggered by defoliation. Thus, although soil N availability was increased via surplus N input, trees did not respond with an increased N acquisition, but rather invested resources into defense by accumulation of amino acid-N and protein-N as a survival strategy.
Collapse
Affiliation(s)
- Maren M. Grüning
- Department of Soil Science of Temperate Ecosystems, Georg-August Universität GöttingenGöttingen, Germany
| | - Judy Simon
- Ecology, Department of Biology, University of KonstanzKonstanz, Germany
| | - Heinz Rennenberg
- Chair of Tree Physiology, Institute of Forest Sciences, University of FreiburgFreiburg, Germany
- King Saud UniversityRiyadh, Saudi Arabia
| | - Anne l-M-Arnold
- Department of Soil Science of Temperate Ecosystems, Georg-August Universität GöttingenGöttingen, Germany
| |
Collapse
|