1
|
Zuo DD, Sun HT, Yang L, Shang FHZ, Guo DL. Identification of grape H3K27 methyltransferase genes and their expression profiles during grape fruit ripening. Mol Biol Rep 2024; 52:21. [PMID: 39601900 DOI: 10.1007/s11033-024-10117-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND H2O2 treatment can accelerate grape ripening and mediate changes in histone methylation levels. Histone methylation, as an epigenetic modification, is involved in regulating the expression of genes related to fruit ripening, including H3K27ac, H3K4me1, H3K27me3 and H3K4me3. Among them, H3K27me3 methylation is generally negatively regulated in development, and H3K27 methyltransferase can participate in the development process of fruit by regulate the level of H3K27me3. The H3K27 methyltransferase members in grapes are not yet clear, and a better understanding of their functions contributes to regulating fruit development. METHODS AND RESULTS By analyzing the conserved domains of the grape genome, three H3K27 methyltransferases were identified and named as VvH3K27-1, VvH3K27-2 and VvH3K27-3, respectively. Further analysis included their conserved domains, gene structure, phylogenetic relationship, protein physicochemical properties, chromosome localization, subcellular localization, and cis-acting elements in the promoter region. It is worth noting that all H3K27 methyltransferase genes have a highly conserved SET domain. VvH3K27-2 was localized in the nucleus and H2O2 treatment resulted in a decrease in the expression of these genes. CONCLUSION Three H3K27 methyltransferase genes were identified in grape, which are down-regulated during berry development, and their expression is inhibited by H2O2 treatment. Thus, H3K27 methyltransferase genes are involved in the regulation of fruit development.
Collapse
Affiliation(s)
- Ding-Ding Zuo
- College of Agronomy/College of Tree Peony, Henan University of Science and Technology, Luoyang, Henan, 471023, China
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
- Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Hao-Ting Sun
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
- Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Lu Yang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
- Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Fang-Hui-Zi Shang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
- Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Da-Long Guo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China.
- Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China.
| |
Collapse
|
2
|
Song W, Zhang J, Lu W, Liang S, Cai H, Guo Y, Chen S, Wang J, Guo T, Liu H, Rao D. A Cyclin Gene OsCYCB1;5 Regulates Seed Callus Induction in Rice Revealed by Genome Wide Association Study. RICE (NEW YORK, N.Y.) 2024; 17:64. [PMID: 39402219 PMCID: PMC11473481 DOI: 10.1186/s12284-024-00742-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
Plant tissue culture is extensively employed in plant functional genomics research and crop genetic improvement breeding. The callus induction ability is critical for utilizing Agrobacterium-mediated genetic transformation. In this study, we conducted a genome-wide association study (GWAS) utilizing 368 rice accessions to identify traits associated with callus induction rate (CIR), resulting in the identification of a total of 104 significant SNP loci. Integrated with gene function annotation and transcriptome analysis, 13 high-confidence candidate genes involved in auxin-related, CYC cyclins, and histone H3K9-specific methyltransferase were identified in significant loci. Furthermore, we also verified a candidate gene, Os05g0493500 (OsCycB1;5), and employed the CRISPR/Cas9 system to generate OsCycB1;5 knockout mutants in rice (Oryza sativa L.). The OscycB1;5 mutant displays significantly reduced callus induction and proliferation capacity, this result indicating OsCycB1;5 is required for the callus formation in rice. Overall, this study provides several reliable loci and high-confidence candidate genes that may significantly affect callus formation in rice. This information will offer valuable insights into the mechanisms underlying callus formation not only in rice but also in other plants.
Collapse
Affiliation(s)
- Wenjing Song
- National Engineering Research Center of Plant Aerospace-Mutation Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Jian Zhang
- National Engineering Research Center of Plant Aerospace-Mutation Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Wenyu Lu
- National Engineering Research Center of Plant Aerospace-Mutation Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Siyi Liang
- National Engineering Research Center of Plant Aerospace-Mutation Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Hairong Cai
- National Engineering Research Center of Plant Aerospace-Mutation Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Yuanyuan Guo
- National Engineering Research Center of Plant Aerospace-Mutation Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Shiyi Chen
- National Engineering Research Center of Plant Aerospace-Mutation Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Jiafeng Wang
- National Engineering Research Center of Plant Aerospace-Mutation Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Tao Guo
- National Engineering Research Center of Plant Aerospace-Mutation Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Hong Liu
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China.
| | - Dehua Rao
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Gao G, Zhou L, Liu J, Wang P, Gong P, Tian S, Qin G, Wang W, Wang Y. E3 ligase SlCOP1-1 stabilizes transcription factor SlOpaque2 and enhances fruit resistance to Botrytis cinerea in tomato. PLANT PHYSIOLOGY 2024; 196:1196-1213. [PMID: 39077783 PMCID: PMC11444291 DOI: 10.1093/plphys/kiae404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/31/2024]
Abstract
CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), a pivotal repressor in plant photomorphogenesis, has been extensively studied in various plant processes. However, the specific roles of COP1 in fruit remain poorly understood. Here, we functionally characterized SlCOP1-1 (also known as LeCOP1), an Arabidopsis (Arabidopsis thaliana) COP1 ortholog, in tomato (Solanum lycopersicum) fruit ripening and disease resistance. Despite the clear upregulation of SlCOP1-1 during fruit ripening, knockout or overexpression (OE) of SlCOP1-1 in tomatoes only minimally affected ripening. Intriguingly, these genetic manipulations substantially altered fruit resistance to the fungal pathogen Botrytis cinerea. Proteomic analysis revealed differential accumulation of proteins associated with fruit disease resistance upon SlCOP1-1 knockout or OE. To unravel the mechanism of SlCOP1-1 in disease resistance, we conducted a screen for SlCOP1-1-interacting proteins and identified the stress-related bZIP transcription factor SlOpaque2. We provide evidence that SlOpaque2 functions in tomato resistance to B. cinerea, and SlCOP1-1-mediated mono-ubiquitination and stabilization of SlOpaque2 contributes to fruit resistance against B. cinerea. Our findings uncover a regulatory role of COP1 in controlling fruit disease resistance, enriching our understanding of the regulatory network orchestrating fruit responses to disease.
Collapse
Affiliation(s)
- Guangtong Gao
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
- China National Botanical Garden, 100093 Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Leilei Zhou
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
- China National Botanical Garden, 100093 Beijing, China
| | - Jinying Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
- China National Botanical Garden, 100093 Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Peiwen Wang
- China National Botanical Garden, 100093 Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Pichang Gong
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
- China National Botanical Garden, 100093 Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Shiping Tian
- China National Botanical Garden, 100093 Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Guozheng Qin
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
- China National Botanical Garden, 100093 Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Weihao Wang
- China National Botanical Garden, 100093 Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yuying Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
- China National Botanical Garden, 100093 Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China
| |
Collapse
|
4
|
Zou JJ, Zhang J, Wang X, Xia H, Zeng X, Cai X, Yang J, Zeng J, Li Z, Zhang G, Chen H. Comprehensive transcriptome analysis of AP2/ERFs in Osmanthus fragrans reveals the role of OfERF017-mediated organic acid metabolism pathway in flower senescence. FRONTIERS IN PLANT SCIENCE 2024; 15:1467232. [PMID: 39391780 PMCID: PMC11464312 DOI: 10.3389/fpls.2024.1467232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/26/2024] [Indexed: 10/12/2024]
Abstract
Osmanthus fragrans is an ethylene-sensitive flower, and flower senescence was mediated by ethylene-responsive transcription factors (OfERFs). A total of 227 OfERFs were identified from O. fragrans, which were classified into five subfamilies: AP2 (35), DREB (57), ERF (125), RAV (6), and Soloist (4). Gene composition and structural analysis indicate that members of different subfamilies have different gene structures and conserved domains. Their gene promoter contains various functional responsive elements, including auxin, jasmonic acid, and other responsive elements. Among them, 124 OfAP2/ERF genes have expressed at any stage of flowering, and 10 of them may play roles in flowering or senescence. By comparative transcriptome analysis, OfAP2/ERFs affected by ethephon (ETH) and 5'-azacytidine (Aza) treatment were divided into three categories, which have various target gene sets. Importantly, these target gene sets participate in similar or different biological processes and metabolic pathways, suggesting that ethylene and DNA hypomethylation have crosstalk and a unique mechanism in regulating the flower senescence of O. fragrans. Co-expression analysis revealed that several key OfAP2/ERFs played a central role in organic acid metabolism and biosynthesis of branched-chain amino acids (BcAAs), among which OfERF017 was selected for further functional analysis. Overexpression of OfERF017 leads to significant enrichment of genes in organic acid metabolism pathways, which leads to a decrease in organic acid levels and promoting the flower senescence of O. fragrans. Together, these results give insights into the characteristics and functional analysis of OfAP2/ERF genes in O. fragrans.
Collapse
Affiliation(s)
- Jing-Jing Zou
- National Forestry and Grassland Administration Engineering Research Center for Osmanthus fragrans, Hubei University of Science and Technology, Xianning, China
- Osmanthus Innovation Center of National Engineering Research Center for Floriculture, Hubei University of Science and Technology, Xianning, China
- Research Center for Osmanthus fragrans, Xianning Research Academy of Industrial Technology of Osmanthus fragrans, Xianning, China
| | - Jun Zhang
- Science Division, IGENEBOOK Biotechnology Co., Ltd., Wuhan, China
| | - Xiaoqian Wang
- National Forestry and Grassland Administration Engineering Research Center for Osmanthus fragrans, Hubei University of Science and Technology, Xianning, China
- Osmanthus Innovation Center of National Engineering Research Center for Floriculture, Hubei University of Science and Technology, Xianning, China
- College of Pharmacy, Hubei Universily of Science and Technology, Xianning, China
| | - Hui Xia
- National Forestry and Grassland Administration Engineering Research Center for Osmanthus fragrans, Hubei University of Science and Technology, Xianning, China
- Osmanthus Innovation Center of National Engineering Research Center for Floriculture, Hubei University of Science and Technology, Xianning, China
| | - Xiangling Zeng
- National Forestry and Grassland Administration Engineering Research Center for Osmanthus fragrans, Hubei University of Science and Technology, Xianning, China
- Osmanthus Innovation Center of National Engineering Research Center for Floriculture, Hubei University of Science and Technology, Xianning, China
- Research Center for Osmanthus fragrans, Xianning Research Academy of Industrial Technology of Osmanthus fragrans, Xianning, China
| | - Xuan Cai
- National Forestry and Grassland Administration Engineering Research Center for Osmanthus fragrans, Hubei University of Science and Technology, Xianning, China
- Osmanthus Innovation Center of National Engineering Research Center for Floriculture, Hubei University of Science and Technology, Xianning, China
- Research Center for Osmanthus fragrans, Xianning Research Academy of Industrial Technology of Osmanthus fragrans, Xianning, China
| | - Jie Yang
- National Forestry and Grassland Administration Engineering Research Center for Osmanthus fragrans, Hubei University of Science and Technology, Xianning, China
- Osmanthus Innovation Center of National Engineering Research Center for Floriculture, Hubei University of Science and Technology, Xianning, China
- Research Center for Osmanthus fragrans, Xianning Research Academy of Industrial Technology of Osmanthus fragrans, Xianning, China
| | - Jin Zeng
- National Forestry and Grassland Administration Engineering Research Center for Osmanthus fragrans, Hubei University of Science and Technology, Xianning, China
- Osmanthus Innovation Center of National Engineering Research Center for Floriculture, Hubei University of Science and Technology, Xianning, China
| | - Zeqing Li
- National Forestry and Grassland Administration Engineering Research Center for Osmanthus fragrans, Hubei University of Science and Technology, Xianning, China
- Osmanthus Innovation Center of National Engineering Research Center for Floriculture, Hubei University of Science and Technology, Xianning, China
- Science Division, IGENEBOOK Biotechnology Co., Ltd., Wuhan, China
| | - Guifu Zhang
- National Forestry and Grassland Administration Engineering Research Center for Osmanthus fragrans, Hubei University of Science and Technology, Xianning, China
- Osmanthus Innovation Center of National Engineering Research Center for Floriculture, Hubei University of Science and Technology, Xianning, China
| | - Hongguo Chen
- National Forestry and Grassland Administration Engineering Research Center for Osmanthus fragrans, Hubei University of Science and Technology, Xianning, China
- Osmanthus Innovation Center of National Engineering Research Center for Floriculture, Hubei University of Science and Technology, Xianning, China
- Research Center for Osmanthus fragrans, Xianning Research Academy of Industrial Technology of Osmanthus fragrans, Xianning, China
| |
Collapse
|
5
|
Huang Y, Liu J, Cheng L, Xu D, Liu S, Hu H, Ling Y, Yang R, Zhang Y. Genome-Wide Analysis of the Histone Modification Gene ( HM) Family and Expression Investigation during Anther Development in Rice ( Oryza sativa L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:2496. [PMID: 39273980 PMCID: PMC11396841 DOI: 10.3390/plants13172496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Histone modification plays a crucial role in chromatin remodeling and regulating gene expression, and participates in various biological processes, including plant development and responses to stress. Several gene families related to histone modification have been reported in various plant species. However, the identification of members and their functions in the rice (Oryza sativa L.) histone modification gene family (OsHM) at the whole-genome level remains unclear. In this study, a total of 130 OsHMs were identified through a genome-wide analysis. The OsHM gene family can be classified into 11 subfamilies based on a phylogenetic analysis. An analysis of the genes structures and conserved motifs indicates that members of each subfamily share specific conserved protein structures, suggesting their potential conserved functions. Molecular evolutionary analysis reveals that a significant number of OsHMs proteins originated from gene duplication events, particularly segmental duplications. Additionally, transcriptome analysis demonstrates that OsHMs are widely expressed in various tissues of rice and are responsive to multiple abiotic stresses. Fourteen OsHMs exhibit high expression in rice anthers and peaked at different pollen developmental stages. RT-qPCR results further elucidate the expression patterns of these 14 OsHMs during different developmental stages of anthers, highlighting their high expression during the meiosis and tetrad stages, as well as in the late stage of pollen development. Remarkably, OsSDG713 and OsSDG727 were further identified to be nucleus-localized. This study provides a fundamental framework for further exploring the gene functions of HMs in plants, particularly for researching their functions and potential applications in rice anthers' development and male sterility.
Collapse
Affiliation(s)
- Yongxiang Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jiawei Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Long Cheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Duo Xu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Sijia Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hanqiao Hu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yu Ling
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Rongchao Yang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yueqin Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
6
|
Han T, Khan MA, Wang Y, Tan W, Li C, Ai P, Zhao W, Li Z, Wang Z. Identification of SDG gene family members and exploration of flowering related genes in different cultivars of chrysanthemums and their wild ancestors. BMC PLANT BIOLOGY 2024; 24:813. [PMID: 39210253 PMCID: PMC11360836 DOI: 10.1186/s12870-024-05465-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
The SET domain genes (SDGs) are significant contributors to various aspects of plant growth and development, mainly includes flowering, pollen development, root growth, regulation of the biological clock and branching patterns. To clarify the biological functions of the chrysanthemum SDG family, the SDG family members of four chrysanthemum cultivars and three related wild species were identified; their physical and chemical properties, protein domains and conserved motifs were predicted and analyzed. The results showed that 59, 67, 67, 102, 106, 114, and 123 SDGs were identified from Chrysanthemum nankingense, Chrysanthemum lavandulifolium, Chrysanthemum seticuspe, Chrysanthemum × morifolium cv. 'Hechengxinghuo', 'Zhongshanzigui', 'Quanxiangshuichang' and 'Jinbeidahong', respectively. The SDGs were divided into 5-7 subfamilies by cluster analysis; different conserved motifs were observed in particular families. The SDGs of C. lavandulifolium and C. seticuspe were distributed unevenly on 9 chromosomes. SDG promoters of different species include growth and development, photo-response, stress response and hormone responsive elements, among them, the cis-acting elements related to MeJA response had the largest proportion. The expression of chrysanthemum SDG genes was observed for most variable selected genes which has close association with important Arabidopsis thaliana genes related to flowering regulation. The qPCR results showed that the expression trend of SDG genes varied in different tissues at different growth stages with high expression in the flowering period. The ClSDG29 showed higher expression in the flower and bud tissues, which indicate that ClSDG29 might be associated with flowering regulation in chrysanthemum. In summary, the results of this study can provide a basis for subsequent research on chrysanthemum flowering time regulation.
Collapse
Affiliation(s)
- Ting Han
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, Henan, 475004, China
| | - Muhammad Ayoub Khan
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, Henan, 475004, China
| | - Yiming Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, Henan, 475004, China
| | - Wenchao Tan
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, Henan, 475004, China
| | - Chenran Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, Henan, 475004, China
| | - Penghui Ai
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, Henan, 475004, China
| | - Wenqian Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, Henan, 475004, China
| | - Zhongai Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, Henan, 475004, China
| | - Zicheng Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, Henan, 475004, China.
| |
Collapse
|
7
|
Wang Z, Fu W, Zhang X, Liusui Y, Saimi G, Zhao H, Zhang J, Guo Y. Identification of the Gossypium hirsutum SDG Gene Family and Functional Study of GhSDG59 in Response to Drought Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:1257. [PMID: 38732472 PMCID: PMC11085088 DOI: 10.3390/plants13091257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
SET-domain group histone methyltransferases (SDGs) are known to play crucial roles in plant responses to abiotic stress. However, their specific function in cotton's response to drought stress has not been well understood. This study conducted a comprehensive analysis of the SDG gene family in Gossypium hirsutum, identifying a total of 82 SDG genes. An evolutionary analysis revealed that the SDG gene family can be divided into eight subgroups. The expression analysis shows that some GhSDG genes are preferentially expressed in specific tissues, indicating their involvement in cotton growth and development. The transcription level of some GhSDG genes is induced by PEG, with GhSDG59 showing significant upregulation upon polyethylene glycol (PEG) treatment. Quantitative polymerase chain reaction (qPCR) analysis showed that the accumulation of transcripts of the GhSDG59 gene was significantly upregulated under drought stress. Further functional studies using virus-induced gene silencing (VIGS) revealed that silencing GhSDG59 reduced cotton tolerance to drought stress. Under drought conditions, the proline content, superoxide dismutase (SOD) and peroxidase (POD) enzyme activities in the GhSDG59-silenced plants were significantly lower than in the control plants, while the malondialdehyde (MDA) content was significantly higher. Transcriptome sequencing showed that silencing the GhSDG59 gene led to significant changes in the expression levels of 1156 genes. The KEGG enrichment analysis revealed that these differentially expressed genes (DEGs) were mainly enriched in the carbon metabolism and the starch and sucrose metabolism pathways. The functional annotation analysis identified known drought-responsive genes, such as ERF, CIPK, and WRKY, among these DEGs. This indicates that GhSDG59 is involved in the drought-stress response in cotton by affecting the expression of genes related to the carbon metabolism and the starch and sucrose metabolism pathways, as well as known drought-responsive genes. This analysis provides valuable information for the functional genomic study of SDGs and highlights potential beneficial genes for genetic improvement and breeding in cotton.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jingbo Zhang
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, XinjiangNormal University, Urumqi 830017, China; (Z.W.); (W.F.); (X.Z.); (Y.L.); (G.S.); (H.Z.)
| | - Yanjun Guo
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, XinjiangNormal University, Urumqi 830017, China; (Z.W.); (W.F.); (X.Z.); (Y.L.); (G.S.); (H.Z.)
| |
Collapse
|
8
|
Mali S, Zinta G. Genome-wide identification and expression analysis reveal the role of histone methyltransferase and demethylase genes in heat stress response in potato (Solanum tuberosum L.). Biochim Biophys Acta Gen Subj 2024; 1868:130507. [PMID: 37925032 DOI: 10.1016/j.bbagen.2023.130507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/05/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Potato (Solanum tuberosum L.), the third most important non-cereal crop, is sensitive to high temperature. Histone modifications have been known to regulate various abiotic stress responses. However, the role of histone methyltransferases and demethylases remain unexplored in potato under heat stress. METHODS Potato genome database was used for genome-wide analysis of StPRMT and StHDMA gene families, which were further characterized by analyzing gene structure, conserved motif, domain organization, sub-cellular localization, promoter region and phylogenetic relationships. Additionally, expression profiling under high-temperature stress in leaf and stolon tissue of heat contrasting potato genotypes was done to study their role in response to high temperature stress. RESULTS The genome-wide analysis led to identification of nine StPRMT and eleven StHDMA genes. Structural analysis, including conserved motifs, exon/intron structure and phylogenetic relationships classified StPRMT and StHDMA gene families into two classes viz. Class I and Class II. A variety of cis-regulatory elements were explored in the promoter region associated with light, developmental, hormonal and stress responses. Prediction of sub-cellular localization of StPRMT proteins revealed their occurrence in nucleus and cytoplasm, whereas StHDMA proteins were observed in different sub-cellular compartments. Furthermore, expression profiling of StPRMT and StHDMA gene family members revealed genes responding to heat stress. Heat-inducible expression of StPRMT1, StPRMT3, StPRMT4 and StPRMT5 in leaf and stolon tissues of HS and HT cultivar indicated them as probable candidates for enhancing thermotolerance in potato. However, StHDMAs responded dynamically in leaf and stolon tissue of heat contrasting genotypes under high temperature. CONCLUSION The current study presents a detailed analysis of histone modifiers in potato and indicates their role as an important epigenetic regulators modulating heat tolerance. GENERAL SIGNIFICANCE Understanding epigenetic mechanisms underlying heat tolerance in potato will contribute towards breeding of thermotolerant potato varieties.
Collapse
Affiliation(s)
- Surbhi Mali
- Integrative Plant AdaptOmics Lab (iPAL), Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Gaurav Zinta
- Integrative Plant AdaptOmics Lab (iPAL), Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
9
|
Jin W, Yan W, Ma M, Hasi A, Che G. Genome-wide identification and expression analysis of the JMJ-C gene family in melon (Cucumis melo L.) reveals their potential role in fruit development. BMC Genomics 2023; 24:771. [PMID: 38093236 PMCID: PMC10720240 DOI: 10.1186/s12864-023-09868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Proteins with the jumonji (JMJ)-C domain belong to the histone demethylase family and contribute to reverse histone methylation. Although JMJ-C family genes have an essential role in regulating plant growth and development, the characterization of the JMJ-C family genes in melon has not been uncovered. RESULTS In this study, a total of 17 JMJ-C proteins were identified in melon (Cucumis melo L.). CmJMJs were categorized into five subfamilies based on the specific conserved domain: KDM4/JHDM3, KDM5/JARID1, JMJD6, KDM3/JHDM2, and JMJ-C domain-only. The chromosome localization analyses showed that 17 CmJMJs were distributed on nine chromosomes. Cis-acting element analyses of the 17 CmJMJ genes showed numerous hormone, light, and stress response elements distributed in the promoter region. Covariance analysis revealed one pair of replicated fragments (CmJMJ3a and CmJMJ3b) in 17 CmJMJ genes. We investigated the expression profile of 17 CmJMJ genes in different lateral organs and four developmental stages of fruit by RNA-seq transcriptome analysis and RT-qPCR. The results revealed that most CmJMJ genes were prominently expressed in female flowers, ovaries, and developing fruits, suggesting their active role in melon fruit development. Subcellular localization showed that the fruit-related CmJMJ5a protein is specifically localized in the cell nucleus. CONCLUSIONS This study provides a comprehensive understanding of the gene structure, classification, and evolution of JMJ-C in melon and supports the clarification of the JMJ-C functions in further research.
Collapse
Affiliation(s)
- Wuyun Jin
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Wei Yan
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Ming Ma
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Agula Hasi
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| | - Gen Che
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| |
Collapse
|
10
|
Qiao Y, Li YG, Wei TL, Liu HN, Pei MS, Zhu XJ, Zhu ZH, Guo DL. Identification of watermelon H3K4 and H3K27 genes and their expression profiles during watermelon fruit development. Mol Biol Rep 2023; 50:8259-8270. [PMID: 37572210 DOI: 10.1007/s11033-023-08727-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/31/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND The ClaH3K4s and ClaH3K27s gene families are subfamilies of the SET family, each with a highly conserved SET structure domain and a PHD structural domain. Both participate in histone protein methylation, which affects the chromosome structure and gene expression, and is essential for fruit growth and development. METHODS AND RESULTS In order to demonstrate the structure and expression characteristics of ClaH3K4s and ClaH3K27s in watermelon, members of the watermelon H3K4 and H3K27 gene families were identified, and their chromosomal localization, gene structure, and protein structural domains were analyzed. The phylogeny and covariance of the gene families with other species were subsequently determined, and the expression profiles were obtained by performing RNA-Seq and qRT-PCR. The watermelon genome had five H3K4 genes with 3207-8043 bp nucleotide sequence lengths and four H3K27 genes with a 1107-5499 bp nucleotide sequence. Synteny analysis revealed the close relationship between watermelon and cucumber, with the majority of members displaying a one-to-one covariance. Approximately half of the 'Hua-Jing 13 watermelon' ClaH3K4s and ClaH3K27s genes were expressed more in the late fruit development stages, while the changes were minimal for the remaining half. H3K4-2 expression was observed to be slightly greater on day 21 compared to other periods. Moreover, ClaH3K27-1 and ClaH3K27-2 were hardly expressed throughout the developing period, and ClaH3K27-4 exhibited the highest expression. CONCLUSION These results serve as a basis for further functional characterization of the H3K4 and H3K27 genes in the fruit development of watermelon.
Collapse
Affiliation(s)
- Yang Qiao
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, China
| | - Yan-Ge Li
- Luoyang Nongfa Agricultural Biotechnology Co. Ltd, Luoyang, 471100, Henan Province, China
| | - Tong-Lu Wei
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, China
| | - Hai-Nan Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, China
| | - Mao-Song Pei
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, China
| | - Xue-Jie Zhu
- Luoyang Nongfa Agricultural Biotechnology Co. Ltd, Luoyang, 471100, Henan Province, China
| | - Zhong-Hou Zhu
- Luoyang Nongfa Agricultural Biotechnology Co. Ltd, Luoyang, 471100, Henan Province, China
| | - Da-Long Guo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China.
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, China.
| |
Collapse
|
11
|
Prusky D, Romanazzi G. Induced Resistance in Fruit and Vegetables: A Host Physiological Response Limiting Postharvest Disease Development. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:279-300. [PMID: 37201920 DOI: 10.1146/annurev-phyto-021722-035135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Harvested fruit and vegetables are perishable, subject to desiccation, show increased respiration during ripening, and are colonized by postharvest fungal pathogens. Induced resistance is a strategy to control diseases by eliciting biochemical processes in fruits and vegetables. This is accomplished by modulating the progress of ripening and senescence, which maintains the produce in a state of heightened resistance to decay-causing fungi. Utilization of induced resistance to protect produce has been improved by scientific tools that better characterize physiological changes in plants. Induced resistance slows the decline of innate immunity after harvest and increases the production of defensive responses that directly inhibit plant pathogens. This increase in defense response in fruits and vegetables contributes to higher amounts of phenols and antioxidant compounds, improving both the quality and appearance of the produce. This review summarizes mechanisms and treatments that induce resistance in harvested fruits and vegetables to suppress fungal colonization. Moreover, it highlights the importance of host maturity and stage of ripening as limiting conditions for the improved expression of induced-resistance processes.
Collapse
Affiliation(s)
- Dov Prusky
- Department of Postharvest Science, Agricultural Research Organization, The Volcani Institute, Rishon LeZion, Israel;
| | - Gianfranco Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy;
| |
Collapse
|
12
|
Seni S, Singh RK, Prasad M. Dynamics of epigenetic control in plants via SET domain containing proteins: Structural and functional insights. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194966. [PMID: 37532097 DOI: 10.1016/j.bbagrm.2023.194966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023]
Abstract
Plants control expression of their genes in a way that involves manipulating the chromatin structural dynamics in order to adapt to environmental changes and carry out developmental processes. Histone modifications like histone methylation are significant epigenetic marks which profoundly and globally modify chromatin, potentially affecting the expression of several genes. Methylation of histones is catalyzed by histone lysine methyltransferases (HKMTs), that features an evolutionary conserved domain known as SET [Su(var)3-9, E(Z), Trithorax]. This methylation is directed at particular lysine (K) residues on H3 or H4 histone. Plant SET domain group (SDG) proteins are categorized into different classes that have been conserved through evolution, and each class have specificity that influences how the chromatin structure operates. The domains discovered in plant SET domain proteins have typically been linked to protein-protein interactions, suggesting that majority of the SDGs function in complexes. Additionally, SDG-mediated histone mark deposition also affects alternative splicing events. In present review, we discussed the diversity of SDGs in plants including their structural properties. Additionally, we have provided comprehensive summary of the functions of the SDG-domain containing proteins in plant developmental processes and response to environmental stimuli have also been highlighted.
Collapse
Affiliation(s)
- Sushmita Seni
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Roshan Kumar Singh
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India; Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India.
| |
Collapse
|
13
|
Hu LL, Zheng LW, Zhu XL, Ma SJ, Zhang KY, Hua YP, Huang JY. Genome-wide identification of Brassicaceae histone modification genes and their responses to abiotic stresses in allotetraploid rapeseed. BMC PLANT BIOLOGY 2023; 23:248. [PMID: 37170202 PMCID: PMC10173674 DOI: 10.1186/s12870-023-04256-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 04/27/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Histone modification is an important epigenetic regulatory mechanism and essential for stress adaptation in plants. However, systematic analysis of histone modification genes (HMs) in Brassicaceae species is lacking, and their roles in response to abiotic stress have not yet been identified. RESULTS In this study, we identified 102 AtHMs, 280 BnaHMs, 251 BcHMs, 251 BjHMs, 144 BnHMs, 155 BoHMs, 137 BrHMs, 122 CrHMs, and 356 CsHMs in nine Brassicaceae species, respectively. Their chromosomal locations, protein/gene structures, phylogenetic trees, and syntenies were determined. Specific domains were identified in several Brassicaceae HMs, indicating an association with diverse functions. Syntenic analysis showed that the expansion of Brassicaceae HMs may be due to segmental and whole-genome duplications. Nine key BnaHMs in allotetraploid rapeseed may be responsible for ammonium, salt, boron, cadmium, nitrate, and potassium stress based on co-expression network analysis. According to weighted gene co-expression network analysis (WGCNA), 12 BnaHMs were associated with stress adaptation. Among the above genes, BnaPRMT11 simultaneously responded to four different stresses based on differential expression analysis, while BnaSDG46, BnaHDT10, and BnaHDA1 participated in five stresses. BnaSDG46 was also involved in four different stresses based on WGCNA, while BnaSDG10 and BnaJMJ58 were differentially expressed in response to six different stresses. In summary, six candidate genes for stress resistance (BnaPRMT11, BnaSDG46, BnaSDG10, BnaJMJ58, BnaHDT10, and BnaHDA1) were identified. CONCLUSIONS Taken together, these findings help clarify the biological roles of Brassicaceae HMs. The identified candidate genes provide an important reference for the potential development of stress-tolerant oilseed plants.
Collapse
Affiliation(s)
- Lin-Lin Hu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Zhengzhou Key Laboratory of Quality Improvement and Efficient Nutrient Use for Main Economic Crops, Henan, China
| | - Li-Wei Zheng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Zhengzhou Key Laboratory of Quality Improvement and Efficient Nutrient Use for Main Economic Crops, Henan, China
| | - Xin-Lei Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Sheng-Jie Ma
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Zhengzhou Key Laboratory of Quality Improvement and Efficient Nutrient Use for Main Economic Crops, Henan, China
| | - Kai-Yan Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Zhengzhou Key Laboratory of Quality Improvement and Efficient Nutrient Use for Main Economic Crops, Henan, China
| | - Ying-Peng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Zhengzhou Key Laboratory of Quality Improvement and Efficient Nutrient Use for Main Economic Crops, Henan, China
| | - Jin-Yong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Zhengzhou Key Laboratory of Quality Improvement and Efficient Nutrient Use for Main Economic Crops, Henan, China.
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
14
|
Song L, Zhan H, Wang Y, Lin Z, Li B, Shen L, Jiao Y, Li Y, Wang F, Yang J. Cross-Talk of Protein Expression and Lysine Acetylation in Response to TMV Infection in Nicotiana benthamiana. ACS OMEGA 2022; 7:32496-32511. [PMID: 36120045 PMCID: PMC9475610 DOI: 10.1021/acsomega.2c03917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Lysine acetylation (Kac), a reversible PTM, plays an essential role in various biological processes, including those involving metabolic pathways, pathogen resistance, and transcription, in both prokaryotes and eukaryotes. TMV, the major factor that causes the poor quality of Solanaceae crops worldwide, directly alters many metabolic processes in tobacco. However, the extent and function of Kac during TMV infection have not been determined. The validation test to detect Kac level and viral expression after TMV infection and Nicotinamide (NAM) treatment clarified that acetylation was involved in TMV infection. Furthermore, we comprehensively analyzed the changes in the proteome and acetylome of TMV-infected tobacco (Nicotiana benthamiana) seedlings via LC-MS/MS in conjunction with highly sensitive immune-affinity purification. In total, 2082 lysine-acetylated sites on 1319 proteins differentially expressed in response to TMV infection were identified. Extensive bioinformatic studies disclosed changes in acetylation of proteins engaged in cellular metabolism and biological processes. The vital influence of Kac in fatty acid degradation and alpha-linolenic acid metabolism was also revealed in TMV-infected seedlings. This study first revealed Kac information in N. benthamiana under TMV infection and expanded upon the existing landscape of acetylation in pathogen infection.
Collapse
Affiliation(s)
- Liyun Song
- Key
Laboratory of Tobacco Pest Monitoring, Controlling & Integrated
Management, Tobacco Research Institute of
the Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Huaixu Zhan
- Key
Laboratory of Tobacco Pest Monitoring, Controlling & Integrated
Management, Tobacco Research Institute of
the Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- Graduate
School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yujie Wang
- Luoyang
Branch of Henan Tobacco Company, Luoyang 471000, China
| | - Zhonglong Lin
- Yunnan
Tobacco Company of the China National Tobacco Corporation, Kunming 650011, China
| | - Bin Li
- Sichuan
Tobacco Company, Chengdu 610017, China
| | - Lili Shen
- Key
Laboratory of Tobacco Pest Monitoring, Controlling & Integrated
Management, Tobacco Research Institute of
the Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yubing Jiao
- Key
Laboratory of Tobacco Pest Monitoring, Controlling & Integrated
Management, Tobacco Research Institute of
the Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Ying Li
- Key
Laboratory of Tobacco Pest Monitoring, Controlling & Integrated
Management, Tobacco Research Institute of
the Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Fenglong Wang
- Key
Laboratory of Tobacco Pest Monitoring, Controlling & Integrated
Management, Tobacco Research Institute of
the Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Jinguang Yang
- Key
Laboratory of Tobacco Pest Monitoring, Controlling & Integrated
Management, Tobacco Research Institute of
the Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| |
Collapse
|
15
|
Cai Y, Xu M, Liu J, Zeng H, Song J, Sun B, Chen S, Deng Q, Lei J, Cao B, Chen C, Chen M, Chen K, Chen G, Zhu Z. Genome-wide analysis of histone acetyltransferase and histone deacetylase families and their expression in fruit development and ripening stage of pepper ( Capsicum annuum). FRONTIERS IN PLANT SCIENCE 2022; 13:971230. [PMID: 36161016 PMCID: PMC9490122 DOI: 10.3389/fpls.2022.971230] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/09/2022] [Indexed: 06/16/2023]
Abstract
The fruit development and ripening process involve a series of changes regulated by fine-tune gene expression at the transcriptional level. Acetylation levels of histones on lysine residues are dynamically regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), which play an essential role in the control of gene expression. However, their role in regulating fruit development and ripening process, especially in pepper (Capsicum annuum), a typical non-climacteric fruit, remains to understand. Herein, we performed genome-wide analyses of the HDAC and HAT family in the pepper, including phylogenetic analysis, gene structure, encoding protein conserved domain, and expression assays. A total of 30 HAT and 15 HDAC were identified from the pepper genome and the number of gene differentiation among species. The sequence and phylogenetic analysis of CaHDACs and CaHATs compared with other plant HDAC and HAT proteins revealed gene conserved and potential genus-specialized genes. Furthermore, fruit developmental trajectory expression profiles showed that CaHDAC and CaHAT genes were differentially expressed, suggesting that some are functionally divergent. The integrative analysis allowed us to propose CaHDAC and CaHAT candidates to be regulating fruit development and ripening-related phytohormone metabolism and signaling, which also accompanied capsaicinoid and carotenoid biosynthesis. This study provides new insights into the role of histone modification mediate development and ripening in non-climacteric fruits.
Collapse
Affiliation(s)
- Yutong Cai
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Mengwei Xu
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jiarong Liu
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Haiyue Zeng
- Peking University Institute of Advanced Agricultural Sciences, Weifang, China
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Jiali Song
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Binmei Sun
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Siqi Chen
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Qihui Deng
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jianjun Lei
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Bihao Cao
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Changming Chen
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Muxi Chen
- Guangdong Helinong Seeds Co., Ltd., Shantou, China
| | - Kunhao Chen
- Guangdong Helinong Seeds Co., Ltd., Shantou, China
| | - Guoju Chen
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Zhangsheng Zhu
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
16
|
Genome-Wide Identification and Spatial Expression Analysis of Histone Modification Gene Families in the Rubber Dandelion Taraxacum kok-saghyz. PLANTS 2022; 11:plants11162077. [PMID: 36015381 PMCID: PMC9415798 DOI: 10.3390/plants11162077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/29/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022]
Abstract
Taraxacum kok-saghyz (Tks), also known as the Russian dandelion, is a recognized alternative source of natural rubber quite comparable, for quality and use, to the one obtained from the so-called rubber tree, Hevea brasiliensis. In addition to that, Tks roots produce several other compounds, including inulin, whose use in pharmaceutical and dietary products is quite extensive. Histone-modifying genes (HMGs) catalyze a series of post-translational modifications that affect chromatin organization and conformation, which, in turn, regulate many downstream processes, including gene expression. In this study, we present the first analysis of HMGs in Tks. Altogether, we identified 154 putative Tks homologs: 60 HMTs, 34 HDMs, 42 HATs, and 18 HDACs. Interestingly, whilst most of the classes showed similar numbers in other plant species, including M. truncatula and A. thaliana, HATs and HMT-PRMTs were indeed more abundant in Tks. Composition and structure analysis of Tks HMG proteins showed, for some classes, the presence of novel domains, suggesting a divergence from the canonical HMG model. The analysis of publicly available transcriptome datasets, combined with spatial expression of different developmental tissues, allowed us to identify several HMGs with a putative role in metabolite biosynthesis. Overall, our work describes HMG genomic organization and sets the premises for the functional characterization of epigenetic modifications in rubber-producing plants.
Collapse
|
17
|
Sun R, Gong J, Liu Y, Chen Z, Zhang F, Gao J, Cao J, Chen X, Zhang S, Zhao C, Gao S. Comprehensive molecular evaluation of the histone methyltransferase gene family and their important roles in two-line hybrid wheat. BMC PLANT BIOLOGY 2022; 22:290. [PMID: 35698040 PMCID: PMC9190116 DOI: 10.1186/s12870-022-03639-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Histone methylation usually plays important roles in plant development through post-translational regulation and may provide a new visual field for heterosis. The histone methyltransferase gene family has been identified in various plants, but its members and functions in hybrid wheat related in heterosis is poorly studied. RESULTS In this study, 175 histone methyltransferase (HMT) genes were identified in wheat, including 152 histone lysine methyltransferase (HKMT) genes and 23 protein arginine methyltransferase (PRMT) genes. Gene structure analysis, physicochemical properties and subcellular localization predictions of the proteins, exhibited the adequate complexity of this gene family. As an allohexaploid species, the number of the genes (seven HKMTs orthologous groups and four PRMTs orthologous groups) in wheat were about three times than those in diploids and showed certain degrees of conservation, while only a small number of subfamilies such as ASH-like and Su-(var) subfamilies have expanded their members. Transcriptome analysis showed that HMT genes were mainly expressed in the reproductive organs. Expression analysis showed that some TaHMT genes with different trends in various hybrid combinations may be regulated by lncRNAs with similar expression trends. Pearson correlation analysis of the expression of TaHMT genes and two yield traits indicated that four DEGs may participate in the yield heterosis of two-line hybrid wheat. ChIP-qPCR results showed that the histone modifications (H3K4me3, H3K36me3 and H3K9ac) enriched in promoter regions of three TaCCA1 genes which are homologous to Arabidopsis heterosis-related CCA1/LHY genes. The higher expression levels of TaCCA1 in F1 than its parents are positive with these histone modifications. These results showed that histone modifications may play important roles in wheat heterosis. CONCLUSIONS Our study identified characteristics of the histone methyltransferase gene family and enhances the understanding of the evolution and function of these members in allohexaploid wheat. The causes of heterosis of two-line hybrid wheat were partially explained from the perspective of histone modifications.
Collapse
Affiliation(s)
- Renwei Sun
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097, China
| | - Jie Gong
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097, China
| | - Yongjie Liu
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097, China
| | - Zhaobo Chen
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China
| | - Fengting Zhang
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China
| | - Jiangang Gao
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China
| | - Junmei Cao
- Institute of Grain Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Xianchao Chen
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China
| | - Shengquan Zhang
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China.
| | - Changping Zhao
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China.
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097, China.
| | - Shiqing Gao
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China.
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097, China.
| |
Collapse
|
18
|
Li X, Wang X, Zhang Y, Zhang A, You CX. Regulation of fleshy fruit ripening: From transcription factors to epigenetic modifications. HORTICULTURE RESEARCH 2022; 9:uhac013. [PMID: 35147185 PMCID: PMC9035223 DOI: 10.1093/hr/uhac013] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/01/2021] [Indexed: 05/24/2023]
Abstract
Fleshy fruits undergo a complex ripening process, developing organoleptic fruit traits that attract herbivores and maximize seed dispersal. Ripening is the terminal stage of fruit development and involves a series of physiological and biochemical changes. In fleshy fruits, ripening always involves a drastic color change triggered by the accumulation of pigments and degradation of chlorophyll, softening caused by cell wall remodeling, and flavor formation as acids and sugars accumulate alongside volatile compounds. The mechanisms underlying fruit ripening rely on the orchestration of ripening-related transcription factors, plant hormones, and epigenetic modifications. In this review, we discuss current knowledge of the transcription factors that regulate ripening in conjunction with ethylene and environmental signals (light and temperature) in the model plant tomato (Solanum lycopersicum) and other fleshy fruits. We emphasize the critical roles of epigenetic regulation, including DNA methylation and histone modification as well as RNA m6A modification, which has been studied intensively. This detailed review was compiled to provide a comprehensive description of the regulatory mechanisms of fruit ripening and guide new strategies for its effective manipulation.
Collapse
Affiliation(s)
- Xiuming Li
- National Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Xuemei Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yi Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai-An, 271018, China
| | - Aihong Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai-An, 271018, China
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| |
Collapse
|
19
|
Sehrish S, Sumbal W, Xie M, Zhao C, Zuo R, Gao F, Liu S. Genome-Wide Identification and Characterization of SET Domain Family Genes in Brassica napus L. Int J Mol Sci 2022; 23:ijms23041936. [PMID: 35216050 PMCID: PMC8879272 DOI: 10.3390/ijms23041936] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/23/2022] Open
Abstract
SET domain group encoding proteins function as histone lysine methyltransferases. These proteins are involved in various biological processes, including plant development and adaption to the environment by modifying the chromatin structures. So far, the SET domain genes (SDGs) have not been systematically investigated in Brassica napus (B. napus). In the current study, through genome-wide analysis, a total of 122 SDGs were identified in the B. napus genome. These BnSDGs were subdivided into seven (I-VII) classes based on phylogeny analysis, domain configurations, and motif distribution. Segmental duplication was involved in the evolution of this family, and the duplicated genes were under strong purifying selection. The promoter sequence of BnSDGs consisted of various growth, hormones, and stress-related cis-acting elements along with transcription factor binding sites (TFBSs) for 20 TF families in 59 of the 122 BnSDGs. The gene ontology (GO) analysis revealed that BnSDGs were closely associated with histone and non-histone methylation and metal binding capacity localized mostly in the nucleus. The in silico expression analysis at four developmental stages in leaf, stem root, floral organ, silique, and seed tissues showed a broad range of tissue and stage-specific expression pattern. The expression analysis under four abiotic stresses (dehydration, cold, ABA, and salinity) also provided evidence for the importance of BnSDGs in stress environments. Based on expression analysis, we performed reverse transcription-quantitative PCR for 15 target BnSDGs in eight tissues (young leaf, mature leaf, root, stem, carpel, stamen, sepal, and petals). Our results were in accordance with the in silico expression data, suggesting the importance of these genes in plant development. In conclusion, this study lays a foundation for future functional studies on SDGs in B. napus.
Collapse
|
20
|
Margaritopoulou T, Kizis D, Kotopoulis D, Papadakis IE, Anagnostopoulos C, Baira E, Termentzi A, Vichou AE, Leifert C, Markellou E. Enriched HeK4me3 marks at Pm-0 resistance-related genes prime courgette against Podosphaera xanthii. PLANT PHYSIOLOGY 2022; 188:576-592. [PMID: 34597395 PMCID: PMC8774738 DOI: 10.1093/plphys/kiab453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Powdery mildew (PM) disease, caused by the obligate biotrophic fungal pathogen Podosphaera xanthii, is the most reported and destructive disease on cultivated Cucurbita species all over the world. Recently, the appearance of highly aggressive P. xanthii isolates has led to PM outbreaks even in resistant crops, making disease management a very difficult task. To challenge this, breeders rely on genetic characteristics for PM control. Analysis of commercially available intermediate resistance courgette (Cucurbita pepo L. var. cylindrica) varieties using cytological, molecular, and biochemical approaches showed that the plants were under a primed state and induced systemic acquired resistance (SAR) responses, exhibiting enhanced callose production, upregulation of salicylic acid (SA) defense signaling pathway genes, and accumulation of SA and defense metabolites. Additionally, the intermediate resistant varieties showed an altered epigenetic landscape in histone marks that affect transcriptional activation. We demonstrated that courgette plants had enriched H3K4me3 marks on SA-BINDING PROTEIN 2 and YODA (YDA) genes of the Pm-0 interval introgression, a genomic region that confers resistant to Cucurbits against P. xanthii. The open chromatin of SA-BINDING PROTEIN 2 and YDA genes was consistent with genes' differential expression, induced SA pathway, altered stomata characteristics, and activated SAR responses. These findings demonstrate that the altered epigenetic landscape of the intermediate resistant varieties modulates the activation of SA-BINDING PROTEIN 2 and YDA genes leading to induced gene transcription that primes courgette plants.
Collapse
Affiliation(s)
- Theoni Margaritopoulou
- Scientific Directorate of Phytopathology, Benaki Phytopathological Institute, Athens 14561, Greece
| | - Dimosthenis Kizis
- Scientific Directorate of Phytopathology, Benaki Phytopathological Institute, Athens 14561, Greece
| | - Dimitris Kotopoulis
- Scientific Directorate of Phytopathology, Benaki Phytopathological Institute, Athens 14561, Greece
| | - Ioannis E Papadakis
- Faculty of Crop Science, Agricultural University of Athens, Athens 11855, Greece
| | - Christos Anagnostopoulos
- Scientific Directorate of Pesticides' Assessment & Phytopharmacy, Benaki Phytopathological Institute, Athens 14561, Greece
| | - Eirini Baira
- Scientific Directorate of Pesticides' Assessment & Phytopharmacy, Benaki Phytopathological Institute, Athens 14561, Greece
| | - Aikaterini Termentzi
- Scientific Directorate of Pesticides' Assessment & Phytopharmacy, Benaki Phytopathological Institute, Athens 14561, Greece
| | - Aikaterini-Eleni Vichou
- Scientific Directorate of Phytopathology, Benaki Phytopathological Institute, Athens 14561, Greece
| | - Carlo Leifert
- SCU Plant Science, Southern Cross University, Lismore, Australia
- Department of Nutrition, IMB, University of Oslo, Oslo 0372, Norway
| | - Emilia Markellou
- Scientific Directorate of Phytopathology, Benaki Phytopathological Institute, Athens 14561, Greece
| |
Collapse
|
21
|
Xia L, Kong X, Song H, Han Q, Zhang S. Advances in proteome-wide analysis of plant lysine acetylation. PLANT COMMUNICATIONS 2022; 3:100266. [PMID: 35059632 PMCID: PMC8760137 DOI: 10.1016/j.xplc.2021.100266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/21/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Lysine acetylation (LysAc) is a conserved and important post-translational modification (PTM) that plays a key role in plant physiological and metabolic processes. Based on advances in Lys-acetylated protein immunoenrichment and mass-spectrometric technology, LysAc proteomics studies have been performed in many species. Such studies have made substantial contributions to our understanding of plant LysAc, revealing that Lys-acetylated histones and nonhistones are involved in a broad spectrum of plant cellular processes. Here, we present an extensive overview of recent research on plant Lys-acetylproteomes. We provide in-depth insights into the characteristics of plant LysAc modifications and the mechanisms by which LysAc participates in cellular processes and regulates metabolism and physiology during plant growth and development. First, we summarize the characteristics of LysAc, including the properties of Lys-acetylated sites, the motifs that flank Lys-acetylated lysines, and the dynamic alterations in LysAc among different tissues and developmental stages. We also outline a map of Lys-acetylated proteins in the Calvin-Benson cycle and central carbon metabolism-related pathways. We then introduce some examples of the regulation of plant growth, development, and biotic and abiotic stress responses by LysAc. We discuss the interaction between LysAc and Nα-terminal acetylation and the crosstalk between LysAc and other PTMs, including phosphorylation and succinylation. Finally, we propose recommendations for future studies in the field. We conclude that LysAc of proteins plays an important role in the regulation of the plant life cycle.
Collapse
Affiliation(s)
- Linchao Xia
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xiangge Kong
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Haifeng Song
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Qingquan Han
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Sheng Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
22
|
Zhou L, Yarra R, Jin L, Yang Y, Cao H, Zhao Z. Identification and expression analysis of histone modification gene (HM) family during somatic embryogenesis of oil palm. BMC Genomics 2022; 23:11. [PMID: 34983381 PMCID: PMC8729141 DOI: 10.1186/s12864-021-08245-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/07/2021] [Indexed: 11/23/2022] Open
Abstract
Background Oil palm (Elaeis guineensis, Jacq.) is an important vegetable oil-yielding plant. Somatic embryogenesis is a promising method to produce large-scale elite clones to meet the demand for palm oil. The epigenetic mechanisms such as histone modifications have emerged as critical factors during somatic embryogenesis. These histone modifications are associated with the regulation of various genes controlling somatic embryogenesis. To date, none of the information is available on the histone modification gene (HM) family in oil palm. Results We reported the identification of 109 HM gene family members including 48 HMTs, 27 HDMs, 13 HATs, and 21 HDACs in the oil palm genome. Gene structural and motif analysis of EgHMs showed varied exon–intron organization and with conserved motifs among them. The identified 109 EgHMs were distributed unevenly across 16 chromosomes and displayed tandem duplication in oil palm genome. Furthermore, relative expression analysis showed the differential expressional pattern of 99 candidate EgHM genes at different stages (non-embryogenic, embryogenic, somatic embryo) of somatic embryogenesis process in oil palm, suggesting the EgHMs play vital roles in somatic embryogenesis. Our study laid a foundation to understand the regulatory roles of several EgHM genes during somatic embryogenesis. Conclusions A total of 109 histone modification gene family members were identified in the oil palm genome via genome-wide analysis. The present study provides insightful information regarding HM gene’s structure, their distribution, duplication in oil palm genome, and also their evolutionary relationship with other HM gene family members in Arabidopsis and rice. Finally, our study provided an essential role of oil palm HM genes during somatic embryogenesis process. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08245-2.
Collapse
Affiliation(s)
- Lixia Zhou
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/ Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, 571339, P. R. China.
| | - Rajesh Yarra
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/ Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, 571339, P. R. China
| | - Longfei Jin
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/ Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, 571339, P. R. China
| | - Yaodong Yang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/ Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, 571339, P. R. China
| | - Hongxing Cao
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/ Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, 571339, P. R. China
| | - Zhihao Zhao
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/ Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, 571339, P. R. China
| |
Collapse
|
23
|
Zhai Y, Fan Z, Cui Y, Gu X, Chen S, Ma H. APETALA2/ethylene responsive factor in fruit ripening: Roles, interactions and expression regulation. FRONTIERS IN PLANT SCIENCE 2022; 13:979348. [PMID: 36061806 PMCID: PMC9434019 DOI: 10.3389/fpls.2022.979348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/29/2022] [Indexed: 05/08/2023]
Abstract
Insects and animals are attracted to, and feed on ripe fruit, thereby promoting seed dispersal. As a vital vitamin and nutrient source, fruit make up an indispensable and enjoyable component of the human diet. Fruit ripening involves a series of physiological and biochemical changes in, among others, pigmentation, chlorophyll (Chl) degradation, texture, sugar accumulation, and flavor. Growing evidence indicates that the coordinated and ordered trait changes during fruit ripening depend on a complex regulatory network consisting of transcription factors, co-regulators, hormonal signals, and epigenetic modifications. As one of the predominant transcription factor families in plants and a downstream component of ethylene signaling, more and more studies are showing that APETALA2/ethylene responsive factor (AP2/ERF) family transcription factors act as critical regulators in fruit ripening. In this review, we focus on the regulatory mechanisms of AP2/ERFs in fruit ripening, and in particular the recent results on their target genes and co-regulators. We summarize and discuss the role of AP2/ERFs in the formation of key fruit-ripening attributes, the enactment of their regulatory mechanisms by interaction with other proteins, their role in the orchestration of phytohormone-signaling networks, and the epigenetic modifications associated with their gene expression. Our aim is to provide a multidimensional perspective on the regulatory mechanisms of AP2/ERFs in fruit ripening, and a reference for understanding and furthering research on the roles of AP2/ERF in fruit ripening.
Collapse
Affiliation(s)
- Yanlei Zhai
- College of Horticulture, China Agricultural University, Beijing, China
| | - Zhiyi Fan
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yuanyuan Cui
- College of Horticulture, China Agricultural University, Beijing, China
| | - Xiaojiao Gu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Shangwu Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Huiqin Ma
- College of Horticulture, China Agricultural University, Beijing, China
- *Correspondence: Huiqin Ma,
| |
Collapse
|
24
|
Comprehensive Analysis of Jumonji Domain C Family from Citrus grandis and Expression Profilings in the Exocarps of “Huajuhong” (Citrus grandis “Tomentosa”) during Various Development Stages. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7120592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Citrus grandis “Tomentosa” (“Huajuhong”) is a famous Traditional Chinese Medicine. In this study, a total of 18 jumonji C (JMJC) domain-containing proteins were identified from C. grandis. The 18 CgJMJCs were unevenly located on six chromosomes of C. grandis. Phylogenetic analysis revealed that they could be classified into five groups, namely KDM3, KDM4, KDM5, JMJC, and JMJD6. The domain structures and motif architectures in the five groups were diversified. Cis-acting elements on the promoters of 18 CgJMJC genes were also investigated, and the abscisic acid-responsive element (ABRE) was distributed on 15 CgJMJC genes. Furthermore, the expression profiles of 18 CgJMJCs members in the exocarps of three varieties of “Huajuhong”, for different developmental stages, were examined. The results were validated by quantitative real-time PCR (qRT-PCR). The present study provides a comprehensive characterization of JMJC domain-containing proteins in C. grandis and their expression patterns in the exocarps of C. grandis “Tomentosa” for three varieties with various development stages.
Collapse
|
25
|
Zheng L, Ma S, Shen D, Fu H, Wang Y, Liu Y, Shah K, Yue C, Huang J. Genome-wide identification of Gramineae histone modification genes and their potential roles in regulating wheat and maize growth and stress responses. BMC PLANT BIOLOGY 2021; 21:543. [PMID: 34800975 PMCID: PMC8605605 DOI: 10.1186/s12870-021-03332-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/10/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND In plants, histone modification (HM) genes participate in various developmental and defense processes. Gramineae plants (e.g., Triticum aestivum, Hordeum vulgare, Sorghum bicolor, Setaria italica, Setaria viridis, and Zea mays) are important crop species worldwide. However, little information on HM genes is in Gramineae species. RESULTS Here, we identified 245 TaHMs, 72 HvHMs, 84 SbHMs, 93 SvHMs, 90 SiHMs, and 90 ZmHMs in the above six Gramineae species, respectively. Detailed information on their chromosome locations, conserved domains, phylogenetic trees, synteny, promoter elements, and gene structures were determined. Among the HMs, most motifs were conserved, but several unique motifs were also identified. Our results also suggested that gene and genome duplications potentially impacted the evolution and expansion of HMs in wheat. The number of orthologous gene pairs between rice (Oryza sativa) and each Gramineae species was much greater than that between Arabidopsis and each Gramineae species, indicating that the dicotyledons shared common ancestors. Moreover, all identified HM gene pairs likely underwent purifying selection based on to their non-synonymous (Ka)/synonymous (Ks) nucleotide substitutions. Using published transcriptome data, changes in TaHM gene expression in developing wheat grains treated with brassinosteroid, brassinazole, or activated charcoal were investigated. In addition, the transcription models of ZmHMs in developing maize seeds and after gibberellin treatment were also identified. We also examined plant stress responses and found that heat, drought, salt, insect feeding, nitrogen, and cadmium stress influenced many TaHMs, and drought altered the expression of several ZmHMs. Thus, these findings indicate their important functions in plant growth and stress adaptations. CONCLUSIONS Based on a comprehensive analysis of Gramineae HMs, we found that TaHMs play potential roles in grain development, brassinosteroid- and brassinazole-mediated root growth, activated charcoal-mediated root and leaf growth, and biotic and abiotic adaptations. Furthermore, ZmHMs likely participate in seed development, gibberellin-mediated leaf growth, and drought adaptation.
Collapse
Affiliation(s)
- Liwei Zheng
- School of Agricultural Sciences, Zhengzhou University, Henan, 450001, China
| | - Shengjie Ma
- School of Agricultural Sciences, Zhengzhou University, Henan, 450001, China
| | - Dandan Shen
- School of Agricultural Sciences, Zhengzhou University, Henan, 450001, China
| | - Hong Fu
- School of Agricultural Sciences, Zhengzhou University, Henan, 450001, China
| | - Yue Wang
- School of Agricultural Sciences, Zhengzhou University, Henan, 450001, China
| | - Ying Liu
- School of Agricultural Sciences, Zhengzhou University, Henan, 450001, China
| | - Kamran Shah
- College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Caipeng Yue
- School of Agricultural Sciences, Zhengzhou University, Henan, 450001, China
| | - Jinyong Huang
- School of Agricultural Sciences, Zhengzhou University, Henan, 450001, China.
| |
Collapse
|
26
|
Li S, He X, Gao Y, Zhou C, Chiang VL, Li W. Histone Acetylation Changes in Plant Response to Drought Stress. Genes (Basel) 2021; 12:genes12091409. [PMID: 34573391 PMCID: PMC8468061 DOI: 10.3390/genes12091409] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023] Open
Abstract
Drought stress causes recurrent damage to a healthy ecosystem because it has major adverse effects on the growth and productivity of plants. However, plants have developed drought avoidance and resilience for survival through many strategies, such as increasing water absorption and conduction, reducing water loss and conversing growth stages. Understanding how plants respond and regulate drought stress would be important for creating and breeding better plants to help maintain a sound ecosystem. Epigenetic marks are a group of regulators affecting drought response and resilience in plants through modification of chromatin structure to control the transcription of pertinent genes. Histone acetylation is an ubiquitous epigenetic mark. The level of histone acetylation, which is regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), determines whether the chromatin is open or closed, thereby controlling access of DNA-binding proteins for transcriptional activation. In this review, we summarize histone acetylation changes in plant response to drought stress, and review the functions of HATs and HDACs in drought response and resistance.
Collapse
Affiliation(s)
- Shuang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.H.); (Y.G.); (C.Z.); (V.L.C.); (W.L.)
- Correspondence: ; Tel.: +86-15114585206
| | - Xu He
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.H.); (Y.G.); (C.Z.); (V.L.C.); (W.L.)
| | - Yuan Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.H.); (Y.G.); (C.Z.); (V.L.C.); (W.L.)
| | - Chenguang Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.H.); (Y.G.); (C.Z.); (V.L.C.); (W.L.)
| | - Vincent L. Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.H.); (Y.G.); (C.Z.); (V.L.C.); (W.L.)
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.H.); (Y.G.); (C.Z.); (V.L.C.); (W.L.)
| |
Collapse
|
27
|
Li W, Yan J, Wang S, Wang Q, Wang C, Li Z, Zhang D, Ma F, Guan Q, Xu J. Genome-wide analysis of SET-domain group histone methyltransferases in apple reveals their role in development and stress responses. BMC Genomics 2021; 22:283. [PMID: 33874904 PMCID: PMC8054418 DOI: 10.1186/s12864-021-07596-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
Background Histone lysine methylation plays an important role in plant development and stress responses by activating or repressing gene expression. Histone lysine methylation is catalyzed by a class of SET-domain group proteins (SDGs). Although an increasing number of studies have shown that SDGs play important regulatory roles in development and stress responses, the functions of SDGs in apple remain unclear. Results A total of 67 SDG members were identified in the Malus×domestica genome. Syntenic analysis revealed that most of the MdSDG duplicated gene pairs were associated with a recent genome-wide duplication event of the apple genome. These 67 MdSDG members were grouped into six classes based on sequence similarity and the findings of previous studies. The domain organization of each MdSDG class was characterized by specific patterns, which was consistent with the classification results. The tissue-specific expression patterns of MdSDGs among the 72 apple tissues in the different apple developmental stages were characterized to provide insight into their potential functions in development. The expression profiles of MdSDGs were also investigated in fruit development, the breaking of bud dormancy, and responses to abiotic and biotic stress; the results indicated that MdSDGs might play a regulatory role in development and stress responses. The subcellular localization and putative interaction network of MdSDG proteins were also analyzed. Conclusions This work presents a fundamental comprehensive analysis of SDG histone methyltransferases in apple and provides a basis for future studies of MdSDGs involved in apple development and stress responses. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07596-0.
Collapse
Affiliation(s)
- Wenjie Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jinjiao Yan
- College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shicong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qianying Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Caixia Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhongxing Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Dehui Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jidi Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
28
|
Sun Z, Wang X, Qiao K, Fan S, Ma Q. Genome-wide analysis of JMJ-C histone demethylase family involved in salt-tolerance in Gossypium hirsutum L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:420-433. [PMID: 33257231 DOI: 10.1016/j.plaphy.2020.11.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
The jumonji C (JMJ-C) domain-containing protein is a histone demethylase and is involved in plant stress. However, the function of the JMJ-C gene family in cotton is still not confirmed. Herein, 25, 26, 52, and 53 members belonging to the JMJ-C gene family were identified in Gossypium raimondii, Gossypium arboreum, Gossypium hirsutum, and Gossypium barbadense, respectively. Based on phylogenetic relationships and conserved domains, the JMJ-C genes were categorized into five subfamilies, KDM3, KDM4, KDM5, JMJC, and JMJD6. The chromosomal location, gene structure, motif compositions, and cis-elements have been displayed. The collinear investigation showed that whole-genome duplication event is the mainly power to drive JMJ-C gene family expansion. Transcriptome and qRT-PCR analysis revealed that eight GhJMJs were induced by salt and PEG treatment. Further assays confirmed that GhJMJ34/40 greatly improved salt and osmotic tolerance in Saccharomyces cerevisiae. These results help clarify JMJ-C protein functions in preparation for further study.
Collapse
Affiliation(s)
- Zhimao Sun
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Xiaoyan Wang
- Anyang Institute of Technology, College of Biology and Food Engineering, Anyang, Henan, 455000, China.
| | - Kaikai Qiao
- State Key Laboratory of Cotton State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, Henan, 455000, China.
| | - Shuli Fan
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China; State Key Laboratory of Cotton State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, Henan, 455000, China.
| | - Qifeng Ma
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China; State Key Laboratory of Cotton State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, Henan, 455000, China.
| |
Collapse
|
29
|
Wang L, Ahmad B, Liang C, Shi X, Sun R, Zhang S, Du G. Bioinformatics and expression analysis of histone modification genes in grapevine predict their involvement in seed development, powdery mildew resistance, and hormonal signaling. BMC PLANT BIOLOGY 2020; 20:412. [PMID: 32887552 PMCID: PMC7473812 DOI: 10.1186/s12870-020-02618-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/23/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Histone modification genes (HMs) play potential roles in plant growth and development via influencing gene expression and chromatin structure. However, limited information is available about HMs genes in grapes (Vitis vinifera L.). RESULTS Here, we described detailed genome-wide identification of HMs gene families in grapevine. We identified 117 HMs genes in grapevine and classified these genes into 11 subfamilies based on conserved domains and phylogenetic relationships with Arabidopsis. We described the genes in terms of their chromosomal locations and exon-intron distribution. Further, we investigated the evolutionary history, gene ontology (GO) analysis, and syntenic relationships between grapes and Arabidopsis. According to results 21% HMs genes are the result of duplication (tandem and segmental) events and all the duplicated genes have negative mode of selection. GO analysis predicted the presence of HMs proteins in cytoplasm, nucleus, and intracellular organelles. According to seed development expression profiling, many HMs grapevine genes were differentially expressed in seeded and seedless cultivars, suggesting their roles in seed development. Moreover, we checked the response of HMs genes against powdery mildew infection at different time points. Results have suggested the involvement of some genes in disease resistance regulation mechanism. Furthermore, the expression profiles of HMs genes were analyzed in response to different plant hormones (Abscisic acid, Jasmonic acid, Salicylic acid, and Ethylene) at different time points. All of the genes showed differential expression against one or more hormones. CONCLUSION VvHMs genes might have potential roles in grapevine including seed development, disease resistance, and hormonal signaling pathways. Our study provides first detailed genome-wide identification and expression profiling of HMs genes in grapevine.
Collapse
Affiliation(s)
- Li Wang
- College of Horticulture, Hebei Agricultural University, Baoding, 071000 Hebei China
| | - Bilal Ahmad
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Chen Liang
- College of Horticulture, Hebei Agricultural University, Baoding, 071000 Hebei China
| | - Xiaoxin Shi
- College of Horticulture, Hebei Agricultural University, Baoding, 071000 Hebei China
| | - Ruyi Sun
- College of Horticulture, Hebei Agricultural University, Baoding, 071000 Hebei China
| | - Songlin Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Guoqiang Du
- College of Horticulture, Hebei Agricultural University, Baoding, 071000 Hebei China
| |
Collapse
|
30
|
The assessment of epigenetic diversity, differentiation, and structure in the 'Fuji' mutation line implicates roles of epigenetic modification in the occurrence of different mutant groups as well as spontaneous mutants. PLoS One 2020; 15:e0235073. [PMID: 32584862 PMCID: PMC7316255 DOI: 10.1371/journal.pone.0235073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/07/2020] [Indexed: 01/01/2023] Open
Abstract
The ‘Fuji’ line includes many varieties with a similar genetic background and consistent inducement factors with epigenetic occurrence, thus it may be considered an ideal candidate for epigenetic research. In this study, 91 bud mutations of ‘Fuji’ apple were used as the test materials. Using the genetic variation within ‘Fuji’ as the control, the characteristics of epigenetic variation at different levels in both varieties and mutant groups were examined. The results showed that: (1) the global genomic DNA methylation level of the 91 bud mutants of ‘Fuji’ ranged from 29.120%-45.084%, with an average of 35.910%. Internal cytosine methylation was the main DNA methylation pattern. Regarding the variation of methylation patterns of ‘Fuji’ mutants, the vast majority of loci maintained the original methylation pattern existed in ‘Fuji’. CHG methylation variation was the main type of variation; (2) the variation in methylation patterns between the mutant groups was greater than that of methylation levels. Among these patterns, the variation in CHG methylation patterns (including CHG hypermethylation and CHG demethylation) was expected to be dominant. The observed variation in methylation levels was more important in the Color mutant group; however, the variation in methylation patterns was more obvious in both the early maturation and Spur mutant groups. Moreover, the range of variation in the Early-maturation group was much wider than that in the Spur mutant group; (3) epigenetic diversity and genetic diversity were both low between the mutant groups. In the ‘Fuji’ mutant groups, there was few correlation between genetic and epigenetic variation, and epigenetic differentiation resulted in more loci with moderate or greater differentiation; (4) the purifying selection seemed to play a major role in the differentiation of different groups of ‘Fuji’ mutants (65.618%), but epigenetic diversity selection still occurred at nearly 35% of loci. Sixteen epigenetic outlier loci were detected.
Collapse
|
31
|
Xing L, Qi S, Zhou H, Zhang W, Zhang C, Ma W, Zhang Q, Shah K, Han M, Zhao J. Epigenomic Regulatory Mechanism in Vegetative Phase Transition of Malus hupehensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4812-4829. [PMID: 32227940 DOI: 10.1021/acs.jafc.0c00478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In woody plants, phase transitions substantially affect growth and development. Although there has been considerable interest in the regulatory mechanisms underlying phase changes, the associated epigenetic modifications remain relatively uncharacterized. We examined the DNA methylation changes and the transcriptional responses in adult and juvenile Malus hupehensis leaves. The DNA methylations were 66.61% and 68.3% in the CG context, 49.12% and 52.44% in the CHG context, and 7.02% and 8.22% in the CHH context for the adult and juvenile leaves, respectively. The number of differentially methylated regions in all contexts distributed in the genic regions varied. Additionally, inhibited DNA methylation in adult leaves activated the transcription of indole-3-acetic acid related genes in the signaling, response, and transport pathways. Moreover, the opposite methylation and expression patterns were observed for the SPL and AP2 family genes between the adult and juvenile leaves. Both gene families contribute to the M. hupehensis vegetative phase transition. Furthermore, the hyper-/hypomethylation of the gene body or promoter of transcription factor genes may lead to up-/downregulated gene expression. The methylation levels of the WRKY (22), NAC (21), ERF (8), WOX (2), KNAT (6), EIN3 (2), SCL (7), ZAT (7), and HSF (4) genes were higher in the adult leaves than in the juvenile leaves, whereas the opposite pattern was observed for the TCP (2), MADS-box (11), and DOF (3) genes. An analysis of the correlation between methylation and transcription indicated the methylation of the gene body in all contexts and the methylation of the promoter in the CG and CHG contexts are negatively correlated with gene expression. However, the methylation of the promoter in the CHH context is positively correlated with gene expression. These findings reflect the diversity in the epigenetic regulation of gene expression and may be useful for elucidating the epigenetic regulatory mechanism underlying the M. hupehensis vegetative phase transition.
Collapse
Affiliation(s)
- Libo Xing
- College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture Rural Affairs, 712100 Yangling, Shaanxi, People's Republic of China
- Shaanxi Key Laboratory of Agriculture Information Perception and Intelligent Service, 712100 Yangling, Shaanxi, People's Republic of China
| | - Siyan Qi
- College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Hua Zhou
- College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Wei Zhang
- College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Chenguang Zhang
- College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Wenchun Ma
- College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Qingwei Zhang
- College of Life Science, Southwest University, Chongqing, People's Republic of China
| | - Kamran Shah
- College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Mingyu Han
- College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Juan Zhao
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture Rural Affairs, 712100 Yangling, Shaanxi, People's Republic of China
- Shaanxi Key Laboratory of Agriculture Information Perception and Intelligent Service, 712100 Yangling, Shaanxi, People's Republic of China
- College of Mechanical and Electronic Engineering, Northwest A & F University, 712100 Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
32
|
Chen DH, Qiu HL, Huang Y, Zhang L, Si JP. Genome-wide identification and expression profiling of SET DOMAIN GROUP family in Dendrobium catenatum. BMC PLANT BIOLOGY 2020; 20:40. [PMID: 31992218 PMCID: PMC6986063 DOI: 10.1186/s12870-020-2244-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/13/2020] [Indexed: 05/14/2023]
Abstract
BACKGROUND Dendrobium catenatum, as a precious Chinese herbal medicine, is an epiphytic orchid plant, which grows on the trunks and cliffs and often faces up to diverse environmental stresses. SET DOMAIN GROUP (SDG) proteins act as histone lysine methyltransferases, which are involved in pleiotropic developmental events and stress responses through modifying chromatin structure and regulating gene transcription, but their roles in D. catenatum are unknown. RESULTS In this study, we identified 44 SDG proteins from D. catenatum genome. Subsequently, comprehensive analyses related to gene structure, protein domain organization, and phylogenetic relationship were performed to evaluate these D. catenatum SDG (DcSDG) proteins, along with the well-investigated homologs from the model plants Arabidopsis thaliana and Oryza sativa as well as the newly characterized 42 SDG proteins from a closely related orchid plant Phalaenopsis equestris. We showed DcSDG proteins can be grouped into eight distinct classes (I~VII and M), mostly consistent with the previous description. Based on the catalytic substrates of the reported SDG members mainly in Arabidopsis, Class I (E(z)-Like) is predicted to account for the deposition of H3K27me2/3, Class II (Ash-like) for H3K36me, Class III (Trx/ATX-like) for H3K4me2/3, Class M (ATXR3/7) for H3K4me, Class IV (Su (var)-like) for H3K27me1, Class V (Suv-like) for H3K9me, as well as class VI (S-ET) and class VII (RBCMT) for methylation of both histone and non-histone proteins. RNA-seq derived expression profiling showed that DcSDG proteins usually displayed wide but distinguished expressions in different tissues and organs. Finally, environmental stresses examination showed the expressions of DcASHR3, DcSUVR3, DcATXR4, DcATXR5b, and DcSDG49 are closely associated with drought-recovery treatment, the expression of DcSUVH5a, DcATXR5a and DcSUVR14a are significantly influenced by low temperature, and even 61% DcSDG genes are in response to heat shock. CONCLUSIONS This study systematically identifies and classifies SDG genes in orchid plant D. catenatum, indicates their functional divergence during the evolution, and discovers their broad roles in the developmental programs and stress responses. These results provide constructive clues for further functional investigation and epigenetic mechanism dissection of SET-containing proteins in orchids.
Collapse
Affiliation(s)
- Dong-Hong Chen
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China.
| | - Han-Lin Qiu
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Yong Huang
- Key Laboratory of Education Department of Hunan Province on Plant Genetics and Molecular Biology, Hunan Agricultural University, Changsha, 410128, China
| | - Lei Zhang
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Jin-Ping Si
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
33
|
Identification, Evolution, and Expression Profiling of Histone Lysine Methylation Moderators in Brassica rapa. PLANTS 2019; 8:plants8120526. [PMID: 31756989 PMCID: PMC6963287 DOI: 10.3390/plants8120526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 02/08/2023]
Abstract
Histone modifications, such as methylation and demethylation, are vital for regulating chromatin structure, thus affecting its expression patterns. The objective of this study is to understand the phylogenetic relationships, genomic organization, diversification of motif modules, gene duplications, co-regulatory network analysis, and expression dynamics of histone lysine methyltransferases and histone demethylase in Brassica rapa. We identified 60 SET (HKMTases), 53 JmjC, and 4 LSD (HDMases) genes in B. rapa. The domain composition analysis subcategorized them into seven and nine subgroups, respectively. Duplication analysis for paralogous pairs of SET and JmjC (eight and nine pairs, respectively) exhibited variation. Interestingly, three pairs of SET exhibited Ka/Ks > 1.00 values, signifying positive selection, whereas the remaining underwent purifying selection with values less than 1.00. Furthermore, RT-PCR validation analysis and RNA-sequence data acquired on six different tissues (i.e., leaf, stem, callus, silique, flower, and root) revealed dynamic expression patterns. This comprehensive study on the abundance, classification, co-regulatory network analysis, gene duplication, and responses to heat and cold stress of SET and JmjC provides insights into the structure and diversification of these family members in B. rapa. This study will be helpful to reveal functions of these putative SET and JmjC genes in B. rapa.
Collapse
|
34
|
Comparative Genome-wide Analysis and Expression Profiling of Histone Acetyltransferase (HAT) Gene Family in Response to Hormonal Applications, Metal and Abiotic Stresses in Cotton. Int J Mol Sci 2019; 20:ijms20215311. [PMID: 31731441 PMCID: PMC6862461 DOI: 10.3390/ijms20215311] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 12/16/2022] Open
Abstract
Post-translational modifications are involved in regulating diverse developmental processes. Histone acetyltransferases (HATs) play vital roles in the regulation of chromation structure and activate the gene transcription implicated in various cellular processes. However, HATs in cotton, as well as their regulation in response to developmental and environmental cues, remain unidentified. In this study, 9 HATs were identified from Gossypium raimondi and Gossypium arboretum, while 18 HATs were identified from Gossypium hirsutum. Based on their amino acid sequences, Gossypium HATs were divided into three groups: CPB, GNAT, and TAFII250. Almost all the HATs within each subgroup share similar gene structure and conserved motifs. Gossypium HATs are unevenly distributed on the chromosomes, and duplication analysis suggests that Gossypium HATs are under strong purifying selection. Gene expression analysis showed that Gossypium HATs were differentially expressed in various vegetative tissues and at different stages of fiber development. Furthermore, all the HATs were differentially regulated in response to various stresses (salt, drought, cold, heavy metal and DNA damage) and hormones (abscisic acid (ABA) and auxin (NAA)). Finally, co-localization of HAT genes with reported quantitative trait loci (QTL) of fiber development were reported. Altogether, these results highlight the functional diversification of HATs in cotton growth and fiber development, as well as in response to different environmental cues. This study enhances our understanding of function of histone acetylation in cotton growth, fiber development, and stress adaptation, which will eventually lead to the long-term improvement of stress tolerance and fiber quality in cotton.
Collapse
|
35
|
do Amaral M, Barbosa de Paula MF, Ollitrault F, Rivallan R, de Andrade Silva EM, da Silva Gesteira A, Luro F, Garcia D, Ollitrault P, Micheli F. Phylogenetic Origin of Primary and Secondary Metabolic Pathway Genes Revealed by C. maxima and C. reticulata Diagnostic SNPs. FRONTIERS IN PLANT SCIENCE 2019; 10:1128. [PMID: 31608086 PMCID: PMC6771394 DOI: 10.3389/fpls.2019.01128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/15/2019] [Indexed: 06/10/2023]
Abstract
Modern cultivated Citrus species and varieties result from interspecific hybridization between four ancestral taxa. Among them, Citrus maxima and Citrus reticulata, closely associated with the pummelo and mandarin horticultural groups, respectively, were particularly important as the progenitors of sour and sweet oranges (Citrus aurantium and Citrus sinensis), grapefruits (Citrus paradisi), and hybrid types resulting from modern breeding programs (tangors, tangelos, and orangelos). The differentiation between the four ancestral taxa and the phylogenomic structure of modern varieties widely drive the phenotypic diversity's organization. In particular, strong phenotypic differences exist in the coloration and sweetness and represent important criteria for breeders. In this context, focusing on the genes of the sugar, carotenoid, and chlorophyll biosynthesis pathways, the aim of this work was to develop a set of diagnostic single-nucleotide polymorphism (SNP) markers to distinguish the ancestral haplotypes of C. maxima and C. reticulata and to provide information at the intraspecific diversity level (within C. reticulata or C. maxima). In silico analysis allowed the identification of 3,347 SNPs from selected genes. Among them, 1,024 were detected as potential differentiation markers between C. reticulata and C. maxima. A total of 115 SNPs were successfully developed using a competitive PCR technology. Their transferability among all Citrus species and the true citrus genera was very good, with only 0.87% of missing data. The ancestral alleles of the SNPs were identified, and we validated the usefulness of the developed markers for tracing the ancestral haplotype in large germplasm collections and sexually recombined progeny issued from the C. reticulata/C. maxima admixture gene pool. These markers will pave the way for targeted association studies based on ancestral haplotypes.
Collapse
Affiliation(s)
- Milena do Amaral
- Centro de Biotecnologia e Genética (CBG), Departamento de Ciências Biológicas (DCB), Universidade Estadual de Santa Cruz (UESC), Ilhéus, Brazil
| | - Marcia Fabiana Barbosa de Paula
- Centro de Biotecnologia e Genética (CBG), Departamento de Ciências Biológicas (DCB), Universidade Estadual de Santa Cruz (UESC), Ilhéus, Brazil
| | | | | | - Edson Mario de Andrade Silva
- Centro de Biotecnologia e Genética (CBG), Departamento de Ciências Biológicas (DCB), Universidade Estadual de Santa Cruz (UESC), Ilhéus, Brazil
| | | | | | | | | | - Fabienne Micheli
- Centro de Biotecnologia e Genética (CBG), Departamento de Ciências Biológicas (DCB), Universidade Estadual de Santa Cruz (UESC), Ilhéus, Brazil
- CIRAD, UMR AGAP, Montpellier, France
| |
Collapse
|
36
|
Li HL, Guo D, Zhu JH, Wang Y, Peng SQ. Identification of histone methylation modifiers and their expression patterns during somatic embryogenesis in Hevea brasiliensis. Genet Mol Biol 2019; 43:e20180141. [PMID: 31441928 PMCID: PMC7229888 DOI: 10.1590/1678-4685-gmb-2018-0141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 03/10/2019] [Indexed: 12/17/2022] Open
Abstract
Histone methylation plays a crucial role in various biological processes, from heterochromatin formation to transcriptional regulation. Currently, no information is available regarding histone methylation modifiers in the important rubber-producing plant Hevea brasiliensis. Here, we identified 47 histone methyltransferase (HMT) genes and 25 histone demethylase (HDM) genes as possible members of the histone methylation modifiers in the rubber tree genome. According to the structural features of HMT and HDM, the HbHMTs were classified into two groups (HbPRMs and HbSDGs), the HbHDMs have two groups (HbLSDs and HbJMJs). Expression patterns were analyzed in five different tissues and at different phases of somatic embryogenesis. HbSDG10, 21, 25, 33, HbJMJ2, 18, 20 were with high expression at different phases of somatic embryogenesis. HbSDG10,14, 20, 21, 33 and HbPRMT4 were expressed highly in anther, HbSDG14, 20, 21, 22, 23, 33, 35 and HbPRMT1 HbJMJ7 and HbLSD1, 2, 3, 4 showed high expression levels in callus. HbSDG1, 7, 10, 13, 14, 18, 19, 21, 22, 23, 35, HbPRMT1, 8, HbJMJ5, 7, 11, 16, 20 and HbLSD2, 3, 4 were expressed highly in somatic embryo. HbSDG10, 21, 25, 33, HbLSD2, 3 were expressed highly in bud of regenerated plant. The analyses reveal that HbHMTs and HbHDMs exhibit different expression patterns at different phases during somatic embryogenesis, implying that some HbHMTs and HbHDMs play important roles during somatic embryogenesis. This study provide fundamental information for further studies on histone methylation in Hevea brasiliensis.
Collapse
Affiliation(s)
- Hui-Liang Li
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Dong Guo
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jia-Hong Zhu
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Ying Wang
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Shi-Qing Peng
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
37
|
Xing L, Li Y, Qi S, Zhang C, Ma W, Zuo X, Liang J, Gao C, Jia P, Shah K, Zhang D, An N, Zhao C, Han M, Zhao J. Comparative RNA-Sequencing and DNA Methylation Analyses of Apple (Malus domestica Borkh.) Buds with Diverse Flowering Capabilities Reveal Novel Insights into the Regulatory Mechanisms of Flower Bud Formation. PLANT & CELL PHYSIOLOGY 2019; 60:1702-1721. [PMID: 31077318 DOI: 10.1093/pcp/pcz080] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
In plants, DNA methylation (i.e. chromatin modification) is important for various biological processes, including growth, development and flowering. Because 'Fuji' apple trees are alternate bearing and have a long ripening period and poor-quality flower buds, we used bud types with diverse flowering capabilities to investigate the epigenetic regulatory mechanisms influencing flower bud formation. We examined the DNA methylation changes and the transcriptional responses in the selected apple bud types. We observed that in the apple genome, approximately 79.5%, 67.4% and 23.7% of the CG, CHG and CHH sequences are methylated, respectively. For each sequence context, differentially methylated regions exhibited distinct methylation patterns among the analyzed apple bud types. Global methylation and transcriptional analyses revealed that nonexpressed genes or genes expressed at low levels were highly methylated in the gene-body regions, suggesting that gene-body methylation is negatively correlated with gene expression. Moreover, genes with methylated promoters were more highly expressed than genes with unmethylated promoters, implying promoter methylation and gene expression are positively correlated. Additionally, flowering-related genes (e.g. SOC1, AP1 and SPLs) and some transcription factor genes (e.g. GATA, bHLH, bZIP and WOX) were highly expressed in spur buds (highest flowering rate), but were associated with low methylation levels in the gene-body regions. Our findings indicate a potential correlation between DNA methylation and gene expression in apple buds with diverse flowering capabilities, suggesting an epigenetic regulatory mechanism influences apple flower bud formation.
Collapse
Affiliation(s)
- Libo Xing
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
- Ministry of Agriculture Rural Affairs, Key Laboratory of Agricultural Internet of Things, Yangling, Shaanxi, P. R. China
- Shaanxi Key Laboratory of Agriculture Information Perception and Intelligent Service, Yangling, Shaanxi, P. R. China
| | - Youmei Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Siyan Qi
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Chenguang Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Wenchun Ma
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Xiya Zuo
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Jiayan Liang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Cai Gao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Pen Jia
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Kamran Shah
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Dong Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Na An
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Caiping Zhao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Mingyu Han
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Juan Zhao
- Ministry of Agriculture Rural Affairs, Key Laboratory of Agricultural Internet of Things, Yangling, Shaanxi, P. R. China
- Shaanxi Key Laboratory of Agriculture Information Perception and Intelligent Service, Yangling, Shaanxi, P. R. China
- College of Mechanical and Electronic Engineering, Northwest A & F University, Yangling, Shaanxi, P. R. China
| |
Collapse
|
38
|
Martignago D, Bernardini B, Polticelli F, Salvi D, Cona A, Angelini R, Tavladoraki P. The Four FAD-Dependent Histone Demethylases of Arabidopsis Are Differently Involved in the Control of Flowering Time. FRONTIERS IN PLANT SCIENCE 2019; 10:669. [PMID: 31214214 PMCID: PMC6558185 DOI: 10.3389/fpls.2019.00669] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/02/2019] [Indexed: 05/18/2023]
Abstract
In Arabidopsis thaliana, four FAD-dependent lysine-specific histone demethylases (LDL1, LDL2, LDL3, and FLD) are present, bearing both a SWIRM and an amine oxidase domain. In this study, a comparative analysis of gene structure, evolutionary relationships, tissue- and organ-specific expression patterns, physiological roles and target genes for the four Arabidopsis LDL/FLDs is reported. Phylogenetic analysis evidences a different evolutionary history for the four LDL/FLDs, while promoter activity data show that LDL/FLDs are strongly expressed during plant development and embryogenesis, with some gene-specific expression patterns. Furthermore, phenotypical analysis of loss-of-function mutants indicates a role of all four Arabidopsis LDL/FLD genes in the control of flowering time, though for some of them with opposing effects. This study contributes toward a better understanding of the LDL/FLD physiological roles and may provide biotechnological strategies for crop improvement.
Collapse
Affiliation(s)
- Damiano Martignago
- Department of Science, Roma Tre University, Rome, Italy
- Centre for Research in Agricultural Genomics, Spanish National Research Council–Institute for Food and Agricultural Research and Technology–Autonomous University of Barcelona–University of Barcelona, Barcelona, Spain
| | | | - Fabio Polticelli
- Department of Science, Roma Tre University, Rome, Italy
- ‘Roma Tre’ Section, National Institute of Nuclear Physics, Rome, Italy
| | - Daniele Salvi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | | | | | - Paraskevi Tavladoraki
- Department of Science, Roma Tre University, Rome, Italy
- *Correspondence: Paraskevi Tavladoraki,
| |
Collapse
|
39
|
Fan D, Wang X, Tang X, Ye X, Ren S, Wang D, Luo K. Histone H3K9 demethylase JMJ25 epigenetically modulates anthocyanin biosynthesis in poplar. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:1121-1136. [PMID: 30218582 DOI: 10.1111/tpj.14092] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/26/2018] [Accepted: 09/06/2018] [Indexed: 05/20/2023]
Abstract
Anthocyanins are involved in several aspects of development and defence in poplar (Populus spp.). Although, over the past decades, significant progress has been made in uncovering these anthocyanin biosynthetic and regulatory mechanisms, the fundamental understanding of the epigenetic regulation in this pathway is still largely unclear. Here, we isolated a histone H3K9 demethylase gene JMJ25 from Populus and characterized its role in anthocyanin biosynthesis by genetic and biochemical approaches. JMJ25 was induced by continuous dark treatment. Overexpression of JMJ25 led to downregulated expression of anthocyanin biosynthetic genes in transgenic poplar, resulting in a significant reduction in anthocyanin content. ChIP-qPCR assays showed that JMJ25 could directly associate with MYB182 chromatin and dynamically demethylate at H3K9me2. Furthermore, JMJ25 also affected the DNA methylation levels of MYB182. By contrast, knockout of JMJ25 by CRISPR/Cas9 resulted in ectopic anthocyanin accumulation under dark condition and increased expression of anthocyanin biosynthetic genes. Our results support a model in which JMJ25 directly affects MYB182 expression by altering the histone methylation status of its chromatin and DNA methylation, resulting in repression of anthocyanin accumulation. This study uncovered an epigenetic mechanism that modulates anthocyanin biosynthesis in poplar.
Collapse
Affiliation(s)
- Di Fan
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Xianqiang Wang
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Xiaofeng Tang
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Xiao Ye
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Sha Ren
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Denghui Wang
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Keming Luo
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
40
|
Pétriacq P, López A, Luna E. Fruit Decay to Diseases: Can Induced Resistance and Priming Help? PLANTS (BASEL, SWITZERLAND) 2018; 7:E77. [PMID: 30248893 PMCID: PMC6314081 DOI: 10.3390/plants7040077] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/18/2018] [Accepted: 09/20/2018] [Indexed: 11/16/2022]
Abstract
Humanity faces the challenge of having to increase food production to feed an exponentially growing world population, while crop diseases reduce yields to levels that we can no longer afford. Besides, a significant amount of waste is produced after fruit harvest. Fruit decay due to diseases at a post-harvest level can claim up to 50% of the total production worldwide. Currently, the most effective means of disease control is the use of pesticides. However, their use post-harvest is extremely limited due to toxicity. The last few decades have witnessed the development of safer methods of disease control post-harvest. They have all been included in programs with the aim of achieving integrated pest (and disease) management (IPM) to reduce pesticide use to a minimum. Unfortunately, these approaches have failed to provide robust solutions. Therefore, it is necessary to develop alternative strategies that would result in effective control. Exploiting the immune capacity of plants has been described as a plausible route to prevent diseases post-harvest. Post-harvest-induced resistance (IR) through the use of safer chemicals from biological origin, biocontrol, and physical means has also been reported. In this review, we summarize the successful activity of these different strategies and explore the mechanisms behind. We further explore the concept of priming, and how its long-lasting and broad-spectrum nature could contribute to fruit resistance.
Collapse
Affiliation(s)
- Pierre Pétriacq
- UMR 1332 Biologie du Fruit et Pathologie, Université de Bordeaux et INRA de Bordeaux, F-33883 Villenave d'Ornon, France.
- Plateforme Métabolome Bordeaux-MetaboHUB, Centre de Génomique Fonctionnelle Bordeaux, IBVM, Centre INRA Bordeaux, F-33140 Villenave d'Ornon, France.
| | - Ana López
- Department of Plant Molecular Genetics, Spanish National Centre for Biotechnology, 28049 Madrid, Spain.
| | - Estrella Luna
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
41
|
Chowrasia S, Panda AK, Rawal HC, Kaur H, Mondal TK. Identification of jumonjiC domain containing gene family among the Oryza species and their expression analysis in FL478, a salt tolerant rice genotype. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:43-53. [PMID: 29960182 DOI: 10.1016/j.plaphy.2018.06.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 05/26/2023]
Abstract
The jumonji (JMJ)-C domain containing proteins belong to histone demethylases family with the ability to demethylate the tri-methylated histone residues. They act as chromatin regulators to regulate many physiological functions in plants. The present study deals with the characterization of JMJ-C gene family members in wild as well as cultivated rice species and their expression analysis in salt tolerant rice genotype, FL478. The genome wide study identified 151 members belonging to JMJ-C gene family in 11 different Oryza species. We also studied their structure, genomic location, gene duplication events, phylogenetic relationship, in silico expression analysis and identified cis elements in their promoters. We also found a few JMJ-C gene family members in rice which underwent duplication before the whole genome duplication event of the rice. The qRT-PCR based expression profiling revealed that out of the total 15 rice JMJ-C members, two were highly expressed in the flag leaf stage of FL478 under salt treatment. These two candidate JMJ-C members were also found to render salinity tolerance when over-expressed in yeast cells. Thus, the present study helps in further structural as well as functional characterization of JMJ-C genes under salinity stress in Oryza species.
Collapse
Affiliation(s)
- Soni Chowrasia
- ICAR-National Research Centre on Plant Biotechnology, Lal-Bahadur Shastri Centre, IARI, Pusa, New Delhi, 110012, India
| | - Alok Kumar Panda
- ICAR-National Research Centre on Plant Biotechnology, Lal-Bahadur Shastri Centre, IARI, Pusa, New Delhi, 110012, India
| | - Hukam C Rawal
- ICAR-National Research Centre on Plant Biotechnology, Lal-Bahadur Shastri Centre, IARI, Pusa, New Delhi, 110012, India
| | - Harmeet Kaur
- ICAR-National Research Centre on Plant Biotechnology, Lal-Bahadur Shastri Centre, IARI, Pusa, New Delhi, 110012, India
| | - Tapan Kumar Mondal
- ICAR-National Research Centre on Plant Biotechnology, Lal-Bahadur Shastri Centre, IARI, Pusa, New Delhi, 110012, India.
| |
Collapse
|
42
|
Fan S, Wang J, Lei C, Gao C, Yang Y, Li Y, An N, Zhang D, Han M. Identification and characterization of histone modification gene family reveal their critical responses to flower induction in apple. BMC PLANT BIOLOGY 2018; 18:173. [PMID: 30126363 DOI: 10.1186/s12870-018-1388-1380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/14/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Histone methylation and acetylation regulate biological processes in plants through various histone modifications (HMs) gene families. However, knowledge of HMs genes is limited in horticultural deciduous trees, including apple (Malus domestica). RESULTS Here, a comprehensive study of identifying and investigating HMs genes was performed using the recently published apple genome. In total, 198 MdHMs were identified, including 71 histone methyltransferases, 44 histone demethylases, 57 histone acetylases, and 26 histone deacetylases. Detailed analysis of the MdHMs, including chromosomes locations, gene structures, protein motif and protein-protein interactions were performed, and their orthologous genes were also predicted against nine plant species. Meanwhile, a syntenic analysis revealed that tandem, segmental, and whole genome duplications were involved in the evolution and expansion of the MdHMs gene family. Most MdHMs underwent purifying selection. The expression profiles of 198 MdHMs were investigated in response to 6-BA treatment and different flowering varieties (easy-flowering 'Yanfu No.6' and difficult-flowering 'Nagafu No.2') using transcriptome sequencing data, and most MdHMs were involved in flower induction processes. Subsequent quantitative real-time PCR was then performed to confirm the expression levels of candidate MdHMs under different flowering-related circumstances. CONCLUSION MdHMs were involved in, and responsive to, flower induction in apple. This study established an MdHMs platform that provided valuable information and presented enriched biological theories on flower induction in apple. The data could also be used to study the evolutionary history and functional prospects of MdHMs genes, as well as other trees.
Collapse
Affiliation(s)
- Sheng Fan
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jue Wang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chao Lei
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Cai Gao
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yang Yang
- Innovation Experimental College, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Youmei Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Na An
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Dong Zhang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mingyu Han
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
43
|
Fan S, Wang J, Lei C, Gao C, Yang Y, Li Y, An N, Zhang D, Han M. Identification and characterization of histone modification gene family reveal their critical responses to flower induction in apple. BMC PLANT BIOLOGY 2018; 18:173. [PMID: 30126363 PMCID: PMC6102887 DOI: 10.1186/s12870-018-1388-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/14/2018] [Indexed: 05/17/2023]
Abstract
BACKGROUND Histone methylation and acetylation regulate biological processes in plants through various histone modifications (HMs) gene families. However, knowledge of HMs genes is limited in horticultural deciduous trees, including apple (Malus domestica). RESULTS Here, a comprehensive study of identifying and investigating HMs genes was performed using the recently published apple genome. In total, 198 MdHMs were identified, including 71 histone methyltransferases, 44 histone demethylases, 57 histone acetylases, and 26 histone deacetylases. Detailed analysis of the MdHMs, including chromosomes locations, gene structures, protein motif and protein-protein interactions were performed, and their orthologous genes were also predicted against nine plant species. Meanwhile, a syntenic analysis revealed that tandem, segmental, and whole genome duplications were involved in the evolution and expansion of the MdHMs gene family. Most MdHMs underwent purifying selection. The expression profiles of 198 MdHMs were investigated in response to 6-BA treatment and different flowering varieties (easy-flowering 'Yanfu No.6' and difficult-flowering 'Nagafu No.2') using transcriptome sequencing data, and most MdHMs were involved in flower induction processes. Subsequent quantitative real-time PCR was then performed to confirm the expression levels of candidate MdHMs under different flowering-related circumstances. CONCLUSION MdHMs were involved in, and responsive to, flower induction in apple. This study established an MdHMs platform that provided valuable information and presented enriched biological theories on flower induction in apple. The data could also be used to study the evolutionary history and functional prospects of MdHMs genes, as well as other trees.
Collapse
Affiliation(s)
- Sheng Fan
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jue Wang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chao Lei
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Cai Gao
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yang Yang
- Innovation Experimental College, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Youmei Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Na An
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Dong Zhang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mingyu Han
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
44
|
Farinati S, Rasori A, Varotto S, Bonghi C. Rosaceae Fruit Development, Ripening and Post-harvest: An Epigenetic Perspective. FRONTIERS IN PLANT SCIENCE 2017; 8:1247. [PMID: 28769956 PMCID: PMC5511831 DOI: 10.3389/fpls.2017.01247] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/30/2017] [Indexed: 05/06/2023]
Abstract
Rosaceae is a family with an extraordinary spectrum of fruit types, including fleshy peach, apple, and strawberry that provide unique contributions to a healthy diet for consumers, and represent an excellent model for studying fruit patterning and development. In recent years, many efforts have been made to unravel regulatory mechanism underlying the hormonal, transcriptomic, proteomic and metabolomic changes occurring during Rosaceae fruit development. More recently, several studies on fleshy (tomato) and dry (Arabidopsis) fruit model have contributed to a better understanding of epigenetic mechanisms underlying important heritable crop traits, such as ripening and stress response. In this context and summing up the results obtained so far, this review aims to collect the available information on epigenetic mechanisms that may provide an additional level in gene transcription regulation, thus influencing and driving the entire Rosaceae fruit developmental process. The whole body of information suggests that Rosaceae fruit could become also a model for studying the epigenetic basis of economically important phenotypes, allowing for their more efficient exploitation in plant breeding.
Collapse
Affiliation(s)
- Silvia Farinati
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova AgripolisLegnaro, Italy
| | - Angela Rasori
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova AgripolisLegnaro, Italy
| | - Serena Varotto
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova AgripolisLegnaro, Italy
- Centro Interdipartimentale per la Ricerca in Viticoltura e Enologia, University of PadovaConegliano, Italy
| | - Claudio Bonghi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova AgripolisLegnaro, Italy
- Centro Interdipartimentale per la Ricerca in Viticoltura e Enologia, University of PadovaConegliano, Italy
- *Correspondence: Claudio Bonghi,
| |
Collapse
|
45
|
Song G, Walley JW. Dynamic Protein Acetylation in Plant-Pathogen Interactions. FRONTIERS IN PLANT SCIENCE 2016; 7:421. [PMID: 27066055 PMCID: PMC4811901 DOI: 10.3389/fpls.2016.00421] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/18/2016] [Indexed: 05/04/2023]
Abstract
Pathogen infection triggers complex molecular perturbations within host cells that results in either resistance or susceptibility. Protein acetylation is an emerging biochemical modification that appears to play central roles during host-pathogen interactions. To date, research in this area has focused on two main themes linking protein acetylation to plant immune signaling. Firstly, it has been established that proper gene expression during defense responses requires modulation of histone acetylation within target gene promoter regions. Second, some pathogens can deliver effector molecules that encode acetyltransferases directly within the host cell to modify acetylation of specific host proteins. Collectively these findings suggest that the acetylation level for a range of host proteins may be modulated to alter the outcome of pathogen infection. This review will focus on summarizing our current understanding of the roles of protein acetylation in plant defense and highlight the utility of proteomics approaches to uncover the complete repertoire of acetylation changes triggered by pathogen infection.
Collapse
|
46
|
Gallusci P, Hodgman C, Teyssier E, Seymour GB. DNA Methylation and Chromatin Regulation during Fleshy Fruit Development and Ripening. FRONTIERS IN PLANT SCIENCE 2016; 7:807. [PMID: 27379113 PMCID: PMC4905957 DOI: 10.3389/fpls.2016.00807] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/23/2016] [Indexed: 05/19/2023]
Abstract
Fruit ripening is a developmental process that results in the leaf-like carpel organ of the flower becoming a mature ovary primed for dispersal of the seeds. Ripening in fleshy fruits involves a profound metabolic phase change that is under strict hormonal and genetic control. This work reviews recent developments in our understanding of the epigenetic regulation of fruit ripening. We start by describing the current state of the art about processes involved in histone post-translational modifications and the remodeling of chromatin structure and their impact on fruit development and ripening. However, the focus of the review is the consequences of changes in DNA methylation levels on the expression of ripening-related genes. This includes those changes that result in heritable phenotypic variation in the absence of DNA sequence alterations, and the mechanisms for their initiation and maintenance. The majority of the studies described in the literature involve work on tomato, but evidence is emerging that ripening in other fruit species may also be under epigenetic control. We discuss how epigenetic differences may provide new targets for breeding and crop improvement.
Collapse
Affiliation(s)
- Philippe Gallusci
- EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux Villenave d’Ornon, France
- *Correspondence: Philippe Gallusci,
| | - Charlie Hodgman
- School of Biosciences, University of Nottingham Sutton Bonington, UK
| | - Emeline Teyssier
- EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux Villenave d’Ornon, France
| | - Graham B. Seymour
- School of Biosciences, University of Nottingham Sutton Bonington, UK
| |
Collapse
|