1
|
Gao G, Zhou L, Liu J, Wang P, Gong P, Tian S, Qin G, Wang W, Wang Y. E3 ligase SlCOP1-1 stabilizes transcription factor SlOpaque2 and enhances fruit resistance to Botrytis cinerea in tomato. PLANT PHYSIOLOGY 2024; 196:1196-1213. [PMID: 39077783 PMCID: PMC11444291 DOI: 10.1093/plphys/kiae404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/31/2024]
Abstract
CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), a pivotal repressor in plant photomorphogenesis, has been extensively studied in various plant processes. However, the specific roles of COP1 in fruit remain poorly understood. Here, we functionally characterized SlCOP1-1 (also known as LeCOP1), an Arabidopsis (Arabidopsis thaliana) COP1 ortholog, in tomato (Solanum lycopersicum) fruit ripening and disease resistance. Despite the clear upregulation of SlCOP1-1 during fruit ripening, knockout or overexpression (OE) of SlCOP1-1 in tomatoes only minimally affected ripening. Intriguingly, these genetic manipulations substantially altered fruit resistance to the fungal pathogen Botrytis cinerea. Proteomic analysis revealed differential accumulation of proteins associated with fruit disease resistance upon SlCOP1-1 knockout or OE. To unravel the mechanism of SlCOP1-1 in disease resistance, we conducted a screen for SlCOP1-1-interacting proteins and identified the stress-related bZIP transcription factor SlOpaque2. We provide evidence that SlOpaque2 functions in tomato resistance to B. cinerea, and SlCOP1-1-mediated mono-ubiquitination and stabilization of SlOpaque2 contributes to fruit resistance against B. cinerea. Our findings uncover a regulatory role of COP1 in controlling fruit disease resistance, enriching our understanding of the regulatory network orchestrating fruit responses to disease.
Collapse
Affiliation(s)
- Guangtong Gao
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
- China National Botanical Garden, 100093 Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Leilei Zhou
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
- China National Botanical Garden, 100093 Beijing, China
| | - Jinying Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
- China National Botanical Garden, 100093 Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Peiwen Wang
- China National Botanical Garden, 100093 Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Pichang Gong
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
- China National Botanical Garden, 100093 Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Shiping Tian
- China National Botanical Garden, 100093 Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Guozheng Qin
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
- China National Botanical Garden, 100093 Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Weihao Wang
- China National Botanical Garden, 100093 Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yuying Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
- China National Botanical Garden, 100093 Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China
| |
Collapse
|
2
|
Burin T, Grohar MC, Jakopic J, Veberic R, Stajner N, Cesar T, Kunej U, Hudina M. Changes in the anthocyanin pathway related to phenolic compounds and gene expression in skin and pulp of cv. 'Istrska belica' (Olea europaea L.) during ripening. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154364. [PMID: 39366099 DOI: 10.1016/j.jplph.2024.154364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024]
Abstract
The purpose of research was to study in detail the dynamics of the anthocyanin pathway during the ripening of olives, comprising the relative gene expression of nine enzymes and the contents of twelve phenolic compounds. The analyses were conducted on cv. 'Istrska belica' at seven maturity stages, separately in the pulp and the skin. Most phenolic compounds showed a higher content in the skin than in the pulp. Results showed that the accumulation of dihidroquercetin and dihydromyricetin started at the latest maturity stages. The most abundant phenolics evaluated in the current study present in both tissues were cyanidin-3-O-rutinoside and delphinidin-3-O-glucoside, both presented at all maturity stages, even when colour was not yet visible in the skin or pulp. Gene expression of enzymes revealed tissue-specific regulation during ripening. Genes expressions for phenylalanine ammonia lyase, chalcone synthase, chalcone isomerase, flavonoid 3-hydroxylase and flavonoid 3'-hydroxylase showed higher levels in the skin than in the pulp, and an upregulation during ripening in both tissues. Anthocyanidin synthase was the only gene with the highest expression at the beginning of ripening, with extreme decrease between second and third maturity stage, which suggests that the enzyme is mainly synthesized at the beginning of ripening and that enzyme activation starts at latest maturity stages. Our research contributes to a better understanding of the dynamics of phenolic accumulation and the relative gene expression of enzymes involved in the anthocyanin pathway in reveals tissue-specific changes during olive fruit ripening. The previous results are also supported by physical changes, which are reflected in a statistical increase in fruit weight, a decrease in fruit firmness and also by changes in appearance observed during ripening. Understanding the accumulation of anthocyanins could, through further study, help to improve the quality of the fruit and therefore the quality of olive products.
Collapse
Affiliation(s)
- Tea Burin
- University of Ljubljana, Biotechnical Faculty, Department of Agronomy, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia.
| | - Mariana Cecilia Grohar
- University of Ljubljana, Biotechnical Faculty, Department of Agronomy, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia.
| | - Jerneja Jakopic
- University of Ljubljana, Biotechnical Faculty, Department of Agronomy, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia.
| | - Robert Veberic
- University of Ljubljana, Biotechnical Faculty, Department of Agronomy, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia.
| | - Natasa Stajner
- University of Ljubljana, Biotechnical Faculty, Department of Agronomy, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia.
| | - Tjasa Cesar
- University of Ljubljana, Biotechnical Faculty, Department of Agronomy, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia.
| | - Urban Kunej
- University of Ljubljana, Biotechnical Faculty, Department of Agronomy, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia.
| | - Metka Hudina
- University of Ljubljana, Biotechnical Faculty, Department of Agronomy, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
3
|
Li S, Zhao Y, Wu P, Grierson D, Gao L. Ripening and rot: How ripening processes influence disease susceptibility in fleshy fruits. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1831-1863. [PMID: 39016673 DOI: 10.1111/jipb.13739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/24/2024] [Indexed: 07/18/2024]
Abstract
Fleshy fruits become more susceptible to pathogen infection when they ripen; for example, changes in cell wall properties related to softening make it easier for pathogens to infect fruits. The need for high-quality fruit has driven extensive research on improving pathogen resistance in important fruit crops such as tomato (Solanum lycopersicum). In this review, we summarize current progress in understanding how changes in fruit properties during ripening affect infection by pathogens. These changes affect physical barriers that limit pathogen entry, such as the fruit epidermis and its cuticle, along with other defenses that limit pathogen growth, such as preformed and induced defense compounds. The plant immune system also protects ripening fruit by recognizing pathogens and initiating defense responses involving reactive oxygen species production, mitogen-activated protein kinase signaling cascades, and jasmonic acid, salicylic acid, ethylene, and abscisic acid signaling. These phytohormones regulate an intricate web of transcription factors (TFs) that activate resistance mechanisms, including the expression of pathogenesis-related genes. In tomato, ripening regulators, such as RIPENING INHIBITOR and NON_RIPENING, not only regulate ripening but also influence fruit defenses against pathogens. Moreover, members of the ETHYLENE RESPONSE FACTOR (ERF) family play pivotal and distinct roles in ripening and defense, with different members being regulated by different phytohormones. We also discuss the interaction of ripening-related and defense-related TFs with the Mediator transcription complex. As the ripening processes in climacteric and non-climacteric fruits share many similarities, these processes have broad applications across fruiting crops. Further research on the individual contributions of ERFs and other TFs will inform efforts to diminish disease susceptibility in ripe fruit, satisfy the growing demand for high-quality fruit and decrease food waste and related economic losses.
Collapse
Affiliation(s)
- Shan Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Yu Zhao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pan Wu
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Donald Grierson
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Lei Gao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
4
|
Rodríguez-Rodríguez E, Herrero-Lodares C, Sánchez-Prieto M, Olmedilla-Alonso B, Sánchez-Moreno C, de Ancos B. Sustainable extraction methods of carotenoids from mango (Mangifera indica L. 'Kent') pulp: Ultrasound assisted extraction and green solvents. Food Chem 2024; 450:139253. [PMID: 38653056 DOI: 10.1016/j.foodchem.2024.139253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/14/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024]
Abstract
Mango is a good source of carotenoids for use in food, cosmetic, and pharmaceutical products because of their organoleptic and health-promoting properties. Safe and sustainable methods for their extraction is required. The present investigation was aimed to study concentration and carotenoid profile of 'Kent' mango pulp through a conventional extraction (CE) and ultrasound-assisted extraction (UAE) using traditional solvents (tetrahydrofuran-THF and diethyl ether: petroleum ether-DE:PE) and green solvents (GS) (2-metiltetrahydrofuran, 2 m-THF; cyclopentyl methyl ether, CPME). Mango showed (μg/g d.w.) β-carotene (29.4), zeaxanthin (1.28), β-cryptoxanthin (2.8), phytoene (18.68) and phytofluene (7.45) in a CE using DE:PE. Similar results were obtained applying DE:PE in UAE and GS in a CE, so CPME and 2-mTHF seem suitable solvents to replace DE:PE in CE. The yield of total carotenes, xanthophylls and carotenoids using GS combined with UAE was lower than with CE, but important enough to be used as a sustainable procedure for obtaining carotenoids from mango pulp.
Collapse
Affiliation(s)
- Elena Rodríguez-Rodríguez
- Department of Chemistry in Pharmaceutical Sciences, Analytical Chemistry, Pharmacy School, Universidad Complutense de Madrid (UCM), Avenida Complutense, ES-28040 Madrid, Spain..
| | - Clara Herrero-Lodares
- Department of Chemistry in Pharmaceutical Sciences, Analytical Chemistry, Pharmacy School, Universidad Complutense de Madrid (UCM), Avenida Complutense, ES-28040 Madrid, Spain.; Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC). José Antonio Novais 6, ES-28040 Madrid, Spain
| | - Milagros Sánchez-Prieto
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC). José Antonio Novais 6, ES-28040 Madrid, Spain
| | - Begoña Olmedilla-Alonso
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC). José Antonio Novais 6, ES-28040 Madrid, Spain
| | - Concepción Sánchez-Moreno
- Department of Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC). José Antonio Novais 6, ES-28040 Madrid, Spain
| | - Begoña de Ancos
- Department of Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC). José Antonio Novais 6, ES-28040 Madrid, Spain
| |
Collapse
|
5
|
Albornoz K, Zhou J, Zakharov F, Grove J, Wang M, Beckles DM. Ectopic overexpression of ShCBF1 and SlCBF1 in tomato suggests an alternative view of fruit responses to chilling stress postharvest. FRONTIERS IN PLANT SCIENCE 2024; 15:1429321. [PMID: 39161954 PMCID: PMC11331401 DOI: 10.3389/fpls.2024.1429321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/09/2024] [Indexed: 08/21/2024]
Abstract
Postharvest chilling injury (PCI) is a physiological disorder that often impairs tomato fruit ripening; this reduces fruit quality and shelf-life, and even accelerates spoilage at low temperatures. The CBF gene family confers cold tolerance in Arabidopsis thaliana, and constitutive overexpression of CBF in tomato increases vegetative chilling tolerance, in part by retarding growth, but, whether CBF increases PCI tolerance in fruit is unknown. We hypothesized that CBF1 overexpression (OE) would be induced in the cold and increase resistance to PCI. We induced high levels of CBF1 in fruit undergoing postharvest chilling by cloning it from S. lycopersicum and S. habrochaites, using the stress-inducible RD29A promoter. Harvested fruit were cold-stored (2.5°C) for up to three weeks, then rewarmed at 20°C for three days. Transgene upregulation was triggered during cold storage from 8.6- to 28.6-fold in SlCBF1-OE, and between 3.1- to 8.3-fold in ShCBF1-OE fruit, but developmental abnormalities in the absence of cold induction were visible. Remarkably, transgenic fruit displayed worsening of PCI symptoms, i.e., failure to ripen after rewarming, comparatively higher susceptibility to decay relative to wild-type (WT) fruit, lower total soluble solids, and the accumulation of volatile compounds responsible for off-odors. These symptoms correlated with CBF1 overexpression levels. Transcriptomic analysis revealed that the ripening and biotic and abiotic stress responses were altered in the cold-stored transgenic fruit. Seedlings grown from 'chilled' and 'non-chilled' WT fruit, in addition to 'non-chilled' transgenic fruit were also exposed to 0°C to test their photosynthetic response to chilling injury. Chilled WT seedlings adjusted their photosynthetic rates to reduce oxidative damage; 'non-chilled' WT seedlings did not. Photosynthetic parameters between transgenic seedlings were similar at 0°C, but SlCBF1-OE showed more severe photoinhibition than ShCBF1-OE, mirroring phenotypic observations. These results suggest that 1) CBF1 overexpression accelerated fruit deterioration in response to cold storage, and 2) Chilling acclimation in fructus can increase chilling tolerance in seedling progeny of WT tomato.
Collapse
Affiliation(s)
| | | | | | | | | | - Diane M. Beckles
- Department of Plant Sciences, University of California Davis, Davis, CA, United States
| |
Collapse
|
6
|
Malacarne G, Lagreze J, Rojas San Martin B, Malnoy M, Moretto M, Moser C, Dalla Costa L. Insights into the cell-wall dynamics in grapevine berries during ripening and in response to biotic and abiotic stresses. PLANT MOLECULAR BIOLOGY 2024; 114:38. [PMID: 38605193 PMCID: PMC11009762 DOI: 10.1007/s11103-024-01437-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/26/2024] [Indexed: 04/13/2024]
Abstract
The cell wall (CW) is the dynamic structure of a plant cell, acting as a barrier against biotic and abiotic stresses. In grape berries, the modifications of pulp and skin CW during softening ensure flexibility during cell expansion and determine the final berry texture. In addition, the CW of grape berry skin is of fundamental importance for winemaking, controlling secondary metabolite extractability. Grapevine varieties with contrasting CW characteristics generally respond differently to biotic and abiotic stresses. In the context of climate change, it is important to investigate the CW dynamics occurring upon different stresses, to define new adaptation strategies. This review summarizes the molecular mechanisms underlying CW modifications during grapevine berry fruit ripening, plant-pathogen interaction, or in response to environmental stresses, also considering the most recently published transcriptomic data. Furthermore, perspectives of new biotechnological approaches aiming at modifying the CW properties based on other crops' examples are also presented.
Collapse
Affiliation(s)
- Giulia Malacarne
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, 38098, Trento, Italy.
| | - Jorge Lagreze
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, 38098, Trento, Italy
- Centre Agriculture Food Environment (C3A), University of Trento, San Michele all'Adige, 38098, Trento, Italy
| | - Barbara Rojas San Martin
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, 38098, Trento, Italy
- Centre Agriculture Food Environment (C3A), University of Trento, San Michele all'Adige, 38098, Trento, Italy
| | - Mickael Malnoy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, 38098, Trento, Italy
| | - Marco Moretto
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, 38098, Trento, Italy
| | - Claudio Moser
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, 38098, Trento, Italy
| | - Lorenza Dalla Costa
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, 38098, Trento, Italy
| |
Collapse
|
7
|
Orsi B, Sestari I, Preczenhak AP, de Abreu Vieira AP, Tessmer MA, da Silva Souza MA, Hassimotto NMA, Kluge RA. Fruits from tomato carotenoid mutants have altered susceptibility to grey mold. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108100. [PMID: 37864928 DOI: 10.1016/j.plaphy.2023.108100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/23/2023]
Abstract
The necrotrophic fungus Botritys cinerea takes advantage of the oxidative burst to facilitate tissue infection, leading to substantial losses during tomato postharvest. Tomato fruit is a source of carotenoids, pigments with a wide variety of isomeric configurations that determine their antioxidant capacity. Here, fruit susceptibility to B. cinerea was assessed in Micro-Tom Near Isogenic lines harboring mutations that alter the profile of carotenoids. Wound-inoculated fruit of the mutants Delta carotene (Del) and tangerine (t), which show large variety of carotenoids rather than the major accumulation of trans-lycopene, were less susceptible to the pathogen. Differences in susceptibility between the mutants were only observed in ripe fruit, after the formation of carotenoids, and they were associated with attenuation of damage caused by reactive oxygen species. The greater variety of carotenoid isomers, which in turn contributed to the greater lipophilic antioxidant capacity of fruit, was associated with the less susceptible mutants, Del and t. Together, our data reveals a potential activity of carotenoids in fruit defense, in addition to the well-known and widespread ecological role as attractors of seed dispersers.
Collapse
Affiliation(s)
- Bruna Orsi
- University of São Paulo, Department of Biological Sciences, Piracicaba, SP, Brazil.
| | - Ivan Sestari
- Federal University of Santa Catarina, Department of Biological and Agronomical Sciences, Curitibanos, SC, Brazil.
| | - Ana Paula Preczenhak
- University of São Paulo, Department of Biological Sciences, Piracicaba, SP, Brazil
| | | | | | | | | | | |
Collapse
|
8
|
Qiao Y, Li YG, Wei TL, Liu HN, Pei MS, Zhu XJ, Zhu ZH, Guo DL. Identification of watermelon H3K4 and H3K27 genes and their expression profiles during watermelon fruit development. Mol Biol Rep 2023; 50:8259-8270. [PMID: 37572210 DOI: 10.1007/s11033-023-08727-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/31/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND The ClaH3K4s and ClaH3K27s gene families are subfamilies of the SET family, each with a highly conserved SET structure domain and a PHD structural domain. Both participate in histone protein methylation, which affects the chromosome structure and gene expression, and is essential for fruit growth and development. METHODS AND RESULTS In order to demonstrate the structure and expression characteristics of ClaH3K4s and ClaH3K27s in watermelon, members of the watermelon H3K4 and H3K27 gene families were identified, and their chromosomal localization, gene structure, and protein structural domains were analyzed. The phylogeny and covariance of the gene families with other species were subsequently determined, and the expression profiles were obtained by performing RNA-Seq and qRT-PCR. The watermelon genome had five H3K4 genes with 3207-8043 bp nucleotide sequence lengths and four H3K27 genes with a 1107-5499 bp nucleotide sequence. Synteny analysis revealed the close relationship between watermelon and cucumber, with the majority of members displaying a one-to-one covariance. Approximately half of the 'Hua-Jing 13 watermelon' ClaH3K4s and ClaH3K27s genes were expressed more in the late fruit development stages, while the changes were minimal for the remaining half. H3K4-2 expression was observed to be slightly greater on day 21 compared to other periods. Moreover, ClaH3K27-1 and ClaH3K27-2 were hardly expressed throughout the developing period, and ClaH3K27-4 exhibited the highest expression. CONCLUSION These results serve as a basis for further functional characterization of the H3K4 and H3K27 genes in the fruit development of watermelon.
Collapse
Affiliation(s)
- Yang Qiao
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, China
| | - Yan-Ge Li
- Luoyang Nongfa Agricultural Biotechnology Co. Ltd, Luoyang, 471100, Henan Province, China
| | - Tong-Lu Wei
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, China
| | - Hai-Nan Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, China
| | - Mao-Song Pei
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, China
| | - Xue-Jie Zhu
- Luoyang Nongfa Agricultural Biotechnology Co. Ltd, Luoyang, 471100, Henan Province, China
| | - Zhong-Hou Zhu
- Luoyang Nongfa Agricultural Biotechnology Co. Ltd, Luoyang, 471100, Henan Province, China
| | - Da-Long Guo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China.
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, China.
| |
Collapse
|
9
|
Prusky D, Romanazzi G. Induced Resistance in Fruit and Vegetables: A Host Physiological Response Limiting Postharvest Disease Development. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:279-300. [PMID: 37201920 DOI: 10.1146/annurev-phyto-021722-035135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Harvested fruit and vegetables are perishable, subject to desiccation, show increased respiration during ripening, and are colonized by postharvest fungal pathogens. Induced resistance is a strategy to control diseases by eliciting biochemical processes in fruits and vegetables. This is accomplished by modulating the progress of ripening and senescence, which maintains the produce in a state of heightened resistance to decay-causing fungi. Utilization of induced resistance to protect produce has been improved by scientific tools that better characterize physiological changes in plants. Induced resistance slows the decline of innate immunity after harvest and increases the production of defensive responses that directly inhibit plant pathogens. This increase in defense response in fruits and vegetables contributes to higher amounts of phenols and antioxidant compounds, improving both the quality and appearance of the produce. This review summarizes mechanisms and treatments that induce resistance in harvested fruits and vegetables to suppress fungal colonization. Moreover, it highlights the importance of host maturity and stage of ripening as limiting conditions for the improved expression of induced-resistance processes.
Collapse
Affiliation(s)
- Dov Prusky
- Department of Postharvest Science, Agricultural Research Organization, The Volcani Institute, Rishon LeZion, Israel;
| | - Gianfranco Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy;
| |
Collapse
|
10
|
Gunny AAN, Leem SJ, Makhtar MMZ, Zainuddin N, Mohd Roslim MH, Raja Hashim RH, Pusphanathan K, Siddiqui MR, Alam M, Rafatullah M. The Use of Essential Oil Embedded in Polylactic Acid/Chitosan-Based Film for Mango Post-Harvest Application against Pathogenic Fungi. Polymers (Basel) 2023; 15:2722. [PMID: 37376369 DOI: 10.3390/polym15122722] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Mango has a high global demand. Fruit fungal disease causes post-harvest mango and fruit losses. Conventional chemical fungicides and plastic prevent fungal diseases but they are hazardous to humans and the environment. Direct application of essential oil for post-harvest fruit control is not a cost-effective approach. The current work offers an eco-friendly alternative to controlling the post-harvest disease of fruit using a film amalgamated with oil derived from Melaleuca alternifolia. Further, this research also aimed to assess the mechanical, antioxidant, and antifungal properties of the film infused with essential oil. ASTM D882 was performed to determine the tensile strength of the film. The antioxidant reaction of the film was assessed using the DPPH assay. In vitro and in vivo tests were used to evaluate the inhibitory development of the film against pathogenic fungi, by comparing the film with different levels of essential oil together with the treatment of the control and chemical fungicide. Disk diffusion was used to evaluate mycelial growth inhibition, where the film incorporated with 1.2 wt% essential oil yielded the best results. For in vivo testing of wounded mango, the disease incidence was successfully reduced. For in vivo testing of unwounded mango to which the film incorporated with essential oil was applied, although some quality parameters such as the color index were not significantly affected, weight loss was reduced, soluble solid content was increased, and firmness was increased, compared to the control. Thus, the film incorporated with essential oil (EO) from M. alternifolia can be an environmentally friendly alternative to the conventional approach and the direct application of essential oil to control post-harvest disease in mango.
Collapse
Affiliation(s)
- Ahmad Anas Nagoor Gunny
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Kompleks Pusat Pengajian Jejawi 3, Arau 02600, Perlis, Malaysia
- Centre of Excellence for Biomass Utilization (CoEBU), Universiti Malaysia Perlis (UniMAP), Arau 02600, Perlis, Malaysia
| | - Siew Juan Leem
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Kompleks Pusat Pengajian Jejawi 3, Arau 02600, Perlis, Malaysia
| | - Muaz Mohd Zaini Makhtar
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia
| | - Nor'Izzah Zainuddin
- Indah Water Konsortium, Lorong Perda Utama 13, Bukit Mertajam 14000, Penang, Malaysia
| | - Muhammad Huzaifah Mohd Roslim
- Department of Crop Science, Faculty of Agricultural and Forestry Sciences, Universiti Putra Malaysia Bintulu Campus, Bintulu 97008, Sarawak, Malaysia
| | - Raja Hasnida Raja Hashim
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Kompleks Pusat Pengajian Jejawi 3, Arau 02600, Perlis, Malaysia
| | - Kavita Pusphanathan
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia
| | - Masoom Raza Siddiqui
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mahboob Alam
- Division of Chemistry and Biotechnology, Dongguk University, 123 Dongdaero, Gyeongju-si 780714, Republic of Korea
| | - Mohd Rafatullah
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia
| |
Collapse
|
11
|
Lombardi A, Campo M, Vignolini P, Papalini M, Pizzetti M, Bernini R. Phenolic-Rich Extracts from Circular Economy: Chemical Profile and Activity against Filamentous Fungi and Dermatophytes. Molecules 2023; 28:molecules28114374. [PMID: 37298850 DOI: 10.3390/molecules28114374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Fungal infections represent a relevant issue in agri-food and biomedical fields because they could compromise quality of food and humans' health. Natural extracts represent a safe alternative to synthetic fungicides and in the green chemistry and circular economy scenario, agro-industrial wastes and by-products offer an eco-friendly source of bioactive natural compounds. In this paper, phenolic-rich extracts from Olea europaea L. de-oiled pomace, Castanea sativa Mill. wood, Punica granatum L. peel, and Vitis vinifera L. pomace and seeds were characterized by HPLC-MS-DAD analysis. Finally, these extracts were tested as antimicrobial agents against pathogenic filamentous fungi and dermatophytes such as Aspergillus brasiliensis, Alternaria sp., Rhizopus stolonifer, and Trichophyton interdigitale. The experimental results evidenced that all extracts exhibited a significant growth inhibition for Trichophyton interdigitale. Punica granatum L., Castanea sativa Mill., and Vitis vinifera L. extracts showed a high activity against Alternaria sp. and Rhizopus stolonifer. These data are promising for the potential applications of some of these extracts as antifungal agents in the food and biomedical fields.
Collapse
Affiliation(s)
- Andrea Lombardi
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| | - Margherita Campo
- Phytolab, Department of Statistics, Informatics, Applications "G. Parenti", DiSIA, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Pamela Vignolini
- Phytolab, Department of Statistics, Informatics, Applications "G. Parenti", DiSIA, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Marco Papalini
- Bioricerche S.r.l., Loc. Ferro di Cavallo, 58034 Castell'Azzara, Italy
| | - Mirco Pizzetti
- Bioricerche S.r.l., Loc. Ferro di Cavallo, 58034 Castell'Azzara, Italy
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| |
Collapse
|
12
|
Fenta L, Mekonnen H, Kabtimer N. The Exploitation of Microbial Antagonists against Postharvest Plant Pathogens. Microorganisms 2023; 11:microorganisms11041044. [PMID: 37110467 PMCID: PMC10143894 DOI: 10.3390/microorganisms11041044] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/10/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Postharvest disease management is vital to increase the quality and productivity of crops. As part of crop disease protection, people used different agrochemicals and agricultural practices to manage postharvest diseases. However, the widespread use of agrochemicals in pest and disease control has detrimental effects on consumer health, the environment, and fruit quality. To date, different approaches are being used to manage postharvest diseases. The use of microorganisms to control postharvest disease is becoming an eco-friendly and environmentally sounds approach. There are many known and reported biocontrol agents, including bacteria, fungi, and actinomycetes. Nevertheless, despite the abundance of publications on biocontrol agents, the use of biocontrol in sustainable agriculture requires substantial research, effective adoption, and comprehension of the interactions between plants, pathogens, and the environment. To accomplish this, this review made an effort to locate and summarize earlier publications on the function of microbial biocontrol agents against postharvest crop diseases. Additionally, this review aims to investigate biocontrol mechanisms, their modes of operation, potential future applications for bioagents, as well as difficulties encountered during the commercialization process.
Collapse
Affiliation(s)
- Lamenew Fenta
- Department of Biology, Debre Markos University, Debre Markos P.O. Box 269, Ethiopia
| | - Habtamu Mekonnen
- Department of Biology, Bahir Dar University, Bahir Dar P.O. Box 79, Ethiopia
| | - Negash Kabtimer
- Department of Biology, Bahir Dar University, Bahir Dar P.O. Box 79, Ethiopia
| |
Collapse
|
13
|
Rapid and simple colorimetric detection of quiescent Colletotrichum in harvested fruit using reverse transcriptional loop-mediated isothermal amplification (RT-LAMP) technology. Talanta 2023; 255:124251. [PMID: 36630787 DOI: 10.1016/j.talanta.2023.124251] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/27/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023]
Abstract
Anthracnose, caused by the fungus Colletotrichum gloeosporioides, is one of the major causes of postharvest decay of fruits and vegetables. Detection of the pathogen at an early stage of infection is crucial to developing a disease management strategy. In this work, a loop-mediated isothermal amplification (LAMP) assay was developed for the rapid detection of C. gloeosporioides targeting the transcript enoyl-CoA hydratase (ECH) that significantly upregulates only during C. gloeosporioides quiescent stage. The assay enabled a naked-eye detection of C. gloeosporioides RNA within 23 min based on a color change of LAMP products from pink to yellow. The detection limit of the LAMP assay was 1 pg of total RNA extracted from fruit peel in a 25 μL reaction. Positive results were obtained only in samples carrying the ECH gene, whereas no cross-reaction was observed for a different quiescent marker (histone deacetylase (HDAC)) or an appressorium marker (scytalone dehydratase, (SD)), indicating the high specificity of the method. Hence, the results indicate that the developed LAMP assay is a rapid, highly sensitive, and specific tool for the early detection of quiescent C. gloeosporioides and could be employed to manage postharvest diseases.
Collapse
|
14
|
Zeng Y, Song H, Xia L, Yang L, Zhang S. The responses of poplars to fungal pathogens: A review of the defensive pathway. FRONTIERS IN PLANT SCIENCE 2023; 14:1107583. [PMID: 36875570 PMCID: PMC9978395 DOI: 10.3389/fpls.2023.1107583] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Long-lived tree species need to cope with changing environments and pathogens during their lifetime. Fungal diseases cause damage to trees growth and forest nurseries. As model system for woody plants, poplars are also hosts of a large variety of fungus. The defense strategies to fungus are generally associated with the type of fungus, therefore, the defense strategies of poplar against necrotrophic and biotrophic fungus are different. Poplars initiate constitutive defenses and induced defenses based on recognition of the fungus, hormone signaling network cascades, activation of defense-related genes and transcription factors and production of phytochemicals. The means of sensing fungus invasion in poplars are similar with herbs, both of which are mediated by receptor proteins and resistance (R) proteins, leading to pattern-triggered immunity (PTI) and effector-triggered immunity (ETI), but poplars have evolved some unique defense mechanisms compared with Arabidopsis due to their longevity. In this paper, current researches on poplar defensive responses to necrotrophic and biotrophic fungus, which mainly include the physiological and genetic aspects, and the role of noncoding RNA (ncRNA) in fungal resistance are reviewed. This review also provides strategies to enhance poplar disease resistance and some new insights into future research directions.
Collapse
Affiliation(s)
- Yi Zeng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Haifeng Song
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Linchao Xia
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Le Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Sheng Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Balsells-Llauradó M, Vall-Llaura N, Usall J, Silva CJ, Blanco-Ulate B, Teixidó N, Caballol M, Torres R. Transcriptional profiling of the terpenoid biosynthesis pathway and in vitro tests reveal putative roles of linalool and farnesal in nectarine resistance against brown rot. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 327:111558. [PMID: 36493930 DOI: 10.1016/j.plantsci.2022.111558] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/18/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
The most devastating fungal disease of peaches and nectarines is brown rot, caused by Monilinia spp. Among the many plant responses against biotic stress, plant terpenoids play essential protective functions, including antioxidant activities and inhibition of pathogen growth. Herein, we aimed to characterize the expression of terpenoid biosynthetic genes in fruit tissues that presented different susceptibility to brown rot. For that, we performed artificial inoculations with Monilinia laxa at two developmental stages (immature and mature fruit) of two nectarine cultivars ('Venus' -mid-early season cultivar - and 'Albared' -late season cultivar-) and in vitro tests of the key compounds observed in the transcriptional results. All fruit were susceptible to M. laxa except for immature 'Venus' nectarines. In response to the pathogen, the mevalonic acid (MVA) pathway of the 'Venus' cultivar was highly induced in both stages rather than the methylerythritol phosphate (MEP) pathway, being the expression of some MEP-related biosynthetic genes [e.g., PROTEIN FARNESYLTRANSFERASE (PpPFT), and 3S-LINALOOL SYNTHASE (PpLIS)] different between stages. In 'Albared', both stages presented similar responses to M. laxa for both pathways. Comparisons between cultivars showed that HYDROXYMETHYLGLUTARYL-CoA REDUCTASE (PpHMGR1) expression levels were common in susceptible tissues. Within all the terpenoid biosynthetic pathway, linalool- and farnesal-related pathways stood out for being upregulated only in resistant tissues, which suggest their role in mediating the resistance to M. laxa. The in vitro antifungal activity of linalool and farnesol (precursor of farnesal) revealed fungicidal and fungistatic activities against M. laxa, respectively, depending on the concentration tested. Understanding the different responses between resistant and susceptible tissues could be further considered for breeding or developing new strategies to control brown rot in stone fruit.
Collapse
Affiliation(s)
- Marta Balsells-Llauradó
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003 Lleida, Catalonia, Spain.
| | - Núria Vall-Llaura
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003 Lleida, Catalonia, Spain.
| | - Josep Usall
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003 Lleida, Catalonia, Spain.
| | - Christian J Silva
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, United States.
| | - Barbara Blanco-Ulate
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, United States.
| | - Neus Teixidó
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003 Lleida, Catalonia, Spain.
| | - Maria Caballol
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003 Lleida, Catalonia, Spain.
| | - Rosario Torres
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003 Lleida, Catalonia, Spain.
| |
Collapse
|
16
|
Elicitation of Fruit Fungi Infection and Its Protective Response to Improve the Postharvest Quality of Fruits. STRESSES 2023. [DOI: 10.3390/stresses3010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Fruit diseases brought on by fungus infestation leads to postharvest losses of fresh fruit. Approximately 30% of harvested fruits do not reach consumers’ plates due to postharvest losses. Fungal pathogens play a substantial part in those losses, as they cause the majority of fruit rots and consumer complaints. Understanding fungal pathogenic processes and control measures is crucial for developing disease prevention and treatment strategies. In this review, we covered the presented pathogen entry, environmental conditions for pathogenesis, fruit’s response to pathogen attack, molecular mechanisms by which fungi infect fruits in the postharvest phase, production of mycotoxin, virulence factors, fungal genes involved in pathogenesis, and recent strategies for protecting fruit from fungal attack. Then, in order to investigate new avenues for ensuring fruit production, existing fungal management strategies were then assessed based on their mechanisms for altering the infection process. The goal of this review is to bridge the knowledge gap between the mechanisms of fungal disease progression and numerous disease control strategies being developed for fruit farming.
Collapse
|
17
|
Cesarino I. Killing me softly: A pathogen accelerates fruit ripening and softening to cause disease. PLANT PHYSIOLOGY 2023; 191:21-23. [PMID: 36219041 PMCID: PMC9806583 DOI: 10.1093/plphys/kiac469] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Igor Cesarino
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, 05508-090 São Paulo, Brazil
- Synthetic and Systems Biology Center, InovaUSP, Avenida Professor Lucio Martins Rodrigues, 370, 05508-020 São Paulo, Brazil
| |
Collapse
|
18
|
Silva CJ, Adaskaveg JA, Mesquida-Pesci SD, Ortega-Salazar IB, Pattathil S, Zhang L, Hahn MG, van Kan JAL, Cantu D, Powell ALT, Blanco-Ulate B. Botrytis cinerea infection accelerates ripening and cell wall disassembly to promote disease in tomato fruit. PLANT PHYSIOLOGY 2023; 191:575-590. [PMID: 36053186 PMCID: PMC9806607 DOI: 10.1093/plphys/kiac408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Postharvest fungal pathogens benefit from the increased host susceptibility that occurs during fruit ripening. In unripe fruit, pathogens often remain quiescent and unable to cause disease until ripening begins, emerging at this point into destructive necrotrophic lifestyles that quickly result in fruit decay. Here, we demonstrate that one such pathogen, Botrytis cinerea, actively induces ripening processes to facilitate infections and promote disease in tomato (Solanum lycopersicum). Assessments of ripening progression revealed that B. cinerea accelerated external coloration, ethylene production, and softening in unripe fruit, while mRNA sequencing of inoculated unripe fruit confirmed the corresponding upregulation of host genes involved in ripening processes, such as ethylene biosynthesis and cell wall degradation. Furthermore, an enzyme-linked immunosorbent assay (ELISA)-based glycomics technique used to assess fruit cell wall polysaccharides revealed remarkable similarities in the cell wall polysaccharide changes caused by both infections of unripe fruit and ripening of healthy fruit, particularly in the increased accessibility of pectic polysaccharides. Virulence and additional ripening assessment experiments with B. cinerea knockout mutants showed that induction of ripening depends on the ability to infect the host and break down pectin. The B. cinerea double knockout Δbc polygalacturonase1 Δbc polygalacturonase2 lacking two critical pectin degrading enzymes was incapable of emerging from quiescence even long after the fruit had ripened at its own pace, suggesting that the failure to accelerate ripening severely inhibits fungal survival on unripe fruit. These findings demonstrate that active induction of ripening in unripe tomato fruit is an important infection strategy for B. cinerea.
Collapse
Affiliation(s)
- Christian J Silva
- Department of Plant Sciences, University of California, Davis, California, USA
| | - Jaclyn A Adaskaveg
- Department of Plant Sciences, University of California, Davis, California, USA
| | | | | | - Sivakumar Pattathil
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
- Mascoma LLC (Lallemand, Inc.), Lebanon, New Hampshire 03766, USA
| | - Lisha Zhang
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
- Center of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Michael G Hahn
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Jan A L van Kan
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Dario Cantu
- Department of Viticulture and Enology, University of California, Davis, California, USA
| | - Ann L T Powell
- Department of Plant Sciences, University of California, Davis, California, USA
| | | |
Collapse
|
19
|
Lafuente MT, González-Candelas L. The Role of ABA in the Interaction between Citrus Fruit and Penicillium digitatum. Int J Mol Sci 2022; 23:ijms232415796. [PMID: 36555436 PMCID: PMC9779756 DOI: 10.3390/ijms232415796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Abscisic acid (ABA) protects citrus fruit against Penicillium digitatum infection. The global mechanisms involved in the role of ABA in the P. digitatum-citrus fruit interaction are unknown. Here, we determine the transcriptome differences between the Navelate (Citrus sinensis (L.) Osbeck) orange and its ABA-deficient mutant Pinalate, which is less resistant to infection. Low ABA levels may affect both the constitutive mechanisms that protect citrus fruit against P. digitatum and early responses to infection. The repression of terpenoid, phenylpropanoid and glutation metabolism; of oxidation-reduction processes; and of processes related to the defense response to fungus and plant hormone signal transduction may be one part of the constitutive defense reduced in the mutant against P. digitatum. Our results also provide potential targets for developing P. digitatum-citrus fruit-resistant varieties. Of those up-regulated by ABA, a thaumatin protein and a bifunctional inhibitor/LTP, which are relevant in plant immunity, were particularly remarkable. It is also worth highlighting chlorophyllase 1 (CLH1), induced by infection in Pinalate, and the OXS3 gene, which was down-regulated by ABA, because the absence of OXS3 activates ABA-responsive genes in plants.
Collapse
|
20
|
Valle-Sotelo EG, Troncoso-Rojas R, Tiznado-Hernández ME, Carvajal-Millán E, Sánchez-Estrada A, Henry García Y. Bioefficacy of fungal chitin oligomers in the control of postharvest decay in tomato fruit. INTERNATIONAL FOOD RESEARCH JOURNAL 2022. [DOI: 10.47836/ifrj.29.5.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Tomato is one of the most commercialised and consumed fruits worldwide. However, tomatoes are highly susceptible to Alternaria rot. Among the safe strategies proposed to control Alternaria rot is the induction of defence mechanisms through biological elicitors, such as chitin. Chitin and its oligosaccharides are an activate plant defence mechanisms, but studies of fruits exposed to fungal chitin fragments are scarce. Therefore, the present work aimed to obtain and partially characterise chitin oligomers of Alternaria alternata, and evaluate their effect on the defence mechanism of tomato fruits and their tolerance to Alternaria rot. The chitin oligomers obtained had a molecular weight of ≤ 1 kDa, 12% N-acetyl-glucosamine, 0.2% residual protein, and were 94% acetylated. These oligomers markedly increased the enzymatic activity of chitinase and β-1,3-glucanase in tomato fruits, and the development of Alternaria rot was inhibited by 78%. Chitin oligomers of A. alternata represent a promising alternative to attenuate Alternaria rot in tomato fruits through an enzymatic defence mechanism.
Collapse
|
21
|
Soares F, Pimentel D, Erban A, Neves C, Reis P, Pereira M, Rego C, Gama-Carvalho M, Kopka J, Fortes AM. Virulence-related metabolism is activated in Botrytis cinerea mostly in the interaction with tolerant green grapes that remain largely unaffected in contrast with susceptible green grapes. HORTICULTURE RESEARCH 2022; 9:uhac217. [PMID: 36479580 PMCID: PMC9720446 DOI: 10.1093/hr/uhac217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/15/2022] [Indexed: 06/17/2023]
Abstract
Botrytis cinerea is responsible for the gray mold disease, severely affecting Vitis vinifera grapevine and hundreds of other economically important crops. However, many mechanisms of this fruit-pathogen interaction remain unknown. The combined analysis of the transcriptome and metabolome of green fruits infected with B. cinerea from susceptible and tolerant genotypes was never performed in any fleshy fruit, mostly because green fruits are widely accepted to be resistant to this fungus. In this work, peppercorn-sized fruits were infected in the field or mock-treated, and berries were collected at green (EL32) stage from a susceptible (Trincadeira) and a tolerant (Syrah) variety. RNAseq and GC-MS data suggested that Syrah exhibited a pre-activated/basal defense relying on specific signaling pathways, hormonal regulation, namely jasmonate and ethylene metabolisms, and linked to phenylpropanoid metabolism. In addition, putative defensive metabolites such as shikimic, ursolic/ oleanolic, and trans-4-hydroxy cinnamic acids, and epigallocatechin were more abundant in Syrah than Trincadeira before infection. On the other hand, Trincadeira underwent relevant metabolic reprogramming upon infection but was unable to contain disease progression. RNA-seq analysis of the fungus in planta revealed an opposite scenario with higher gene expression activity within B. cinerea during infection of the tolerant cultivar and less activity in infected Trincadeira berries. The results suggested an activated virulence state during interaction with the tolerant cultivar without visible disease symptoms. Together, this study brings novel insights related to early infection strategies of B. cinerea and the green berry defense against necrotrophic fungi.
Collapse
Affiliation(s)
- Flávio Soares
- BioISI - Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Diana Pimentel
- BioISI - Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Alexander Erban
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| | - Catarina Neves
- BioISI - Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Pedro Reis
- LEAF—Linking Landscape, Environment, Agriculture and Food-Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - Marcelo Pereira
- BioISI - Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Cecilia Rego
- LEAF—Linking Landscape, Environment, Agriculture and Food-Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - Margarida Gama-Carvalho
- BioISI - Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Joachim Kopka
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| | | |
Collapse
|
22
|
Plant-Endophyte Interaction during Biotic Stress Management. PLANTS 2022; 11:plants11172203. [PMID: 36079585 PMCID: PMC9459794 DOI: 10.3390/plants11172203] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 01/19/2023]
Abstract
Plants interact with diverse microbial communities and share complex relationships with each other. The intimate association between microbes and their host mutually benefit each other and provide stability against various biotic and abiotic stresses to plants. Endophytes are heterogeneous groups of microbes that live inside the host tissue without showing any apparent sign of infection. However, their functional attributes such as nutrient acquisition, phytohormone modulation, synthesis of bioactive compounds, and antioxidant enzymes of endophytes are similar to the other rhizospheric microorganisms. Nevertheless, their higher colonization efficacy and stability against abiotic stress make them superior to other microorganisms. In recent studies, the potential role of endophytes in bioprospecting has been broadly reported. However, the molecular aspect of host–endophyte interactions is still unclear. In this study, we have briefly discussed the endophyte biology, colonization efficacy and diversity pattern of endophytes. In addition, it also summarizes the molecular aspect of plant–endophyte interaction in biotic stress management.
Collapse
|
23
|
Dynamics of bacterial and fungal communities of mango: From the tree to ready-to-Eat products. Food Microbiol 2022; 108:104095. [DOI: 10.1016/j.fm.2022.104095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 11/24/2022]
|
24
|
Arabia A, Munné-Bosch S, Muñoz P. Melatonin triggers tissue-specific changes in anthocyanin and hormonal contents during postharvest decay of Angeleno plums. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 320:111287. [PMID: 35643621 DOI: 10.1016/j.plantsci.2022.111287] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/07/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
Plum is a stone fruit that stands out for having a short shelf-life because of its high susceptibility to rapid deterioration. Part of this deterioration is explained by fruit overripening. Recently, the role of melatonin in delaying postharvest decay has been investigated but its regulatory function during overripening is still under extensive debate. In this study, to understand physiological events taking place in plums overripening and elucidate the role of melatonin on the postharvest quality of these fruits and its relationship to other plant hormones, Angeleno plums were sprayed with 10-4 M of melatonin solution immediately after harvest. We carried out tissue-specific (mesocarp and exocarp) analysis of total phenols and anthocyanin quantification, as well as the evaluation of different phytohormones by LC-MS/MS and fruit quality parameters. Results showed that during postharvest, endogenous melatonin contents decreased both in the mesocarp and the exocarp of Angeleno plums. Likewise, plum firmness also decreased and a strong correlation was found for this parameter with jasmonic acid (JA) and cytokinins. Conversely, after exogenous melatonin application, endogenous melatonin content increased both in mesocarp and exocarp but it had a differential effect depending on the plum tissue. Indeed, total phenol and anthocyanin contents arose by 21% and 58%, respectively, in the mesocarp after melatonin treatment but no variations were found in the exocarp of Angeleno plums. Hormonal analysis of Angeleno mesocarp also revealed an increase in the JA and its precursor, 12-oxo-phytodienoic acid (OPDA), on the fourth day after melatonin application as well as a positive correlation between melatonin and gibberellin 1 (GA1). These results suggest that melatonin may be acting as a signal molecule increasing phenolic compounds contents through direct regulation and by signaling with other phytohormones. Therefore, this research provides valuable information for understanding the regulatory role of melatonin and its relationship with plant hormones during overripening to contribute to improve the postharvest quality of plums.
Collapse
Affiliation(s)
- Alba Arabia
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain; Research Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain; Research Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
| | - Paula Muñoz
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain; Research Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
25
|
Optimization of silk fibroin coating during storage using response surface methodology and its effect on the physicochemical properties of Solanum ferox (S. ferox). JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01448-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Leng J, Yu L, Dai Y, Leng Y, Wang C, Chen Z, Wisniewski M, Wu X, Liu J, Sui Y. Recent advances in research on biocontrol of postharvest fungal decay in apples. Crit Rev Food Sci Nutr 2022; 63:10607-10620. [PMID: 35608023 DOI: 10.1080/10408398.2022.2080638] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Apple is the largest fruit crop produced in temperate regions and is a popular fruit worldwide. It is, however, susceptible to a variety of postharvest fungal pathogens, including Penicillium expansum, Botrytis cinerea, Botryosphaeria dothidea, Monilia spp., and Alternaria spp. Decays resulting from fungal infections severely reduce apple quality and marketable yield. Biological control utilizing bacterial and fungal antagonists is an eco-friendly and effective method of managing postharvest decay in horticultural crops. In the current review, research on the pathogenesis of major decay fungi and isolation of antagonists used to manage postharvest decay in apple is presented. The mode of action of postharvest biocontrol agents (BCAs), including recent molecular and genomic studies, is also discussed. Recent research on the apple microbiome and its relationship to disease management is highlighted, and the use of additives and physical treatments to enhance biocontrol efficacy of BCAs is reviewed. Biological control is a critical component of an integrated management system for the sustainable approaches to apple production. Additional research will be required to explore the feasibility of developing beneficial microbial consortia and novel antimicrobial compounds derived from BCAs for postharvest disease management, as well as genetic approaches, such as the use of CRISPR/Cas9 technology.
Collapse
Affiliation(s)
- Jinsong Leng
- Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| | - Longfeng Yu
- School of Biotechnology and Bioengineering, West Yunnan University, Lincang, Yunan, China
| | - Yuan Dai
- Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| | - Yan Leng
- School of Biotechnology and Bioengineering, West Yunnan University, Lincang, Yunan, China
| | - Chaowen Wang
- School of Biotechnology and Bioengineering, West Yunnan University, Lincang, Yunan, China
| | - Zhuo Chen
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
| | - Michael Wisniewski
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Xuehong Wu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jia Liu
- Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| | - Yuan Sui
- Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| |
Collapse
|
27
|
Rhamnogalacturonan Endolyase Family 4 Enzymes: An Update on Their Importance in the Fruit Ripening Process. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Fruit ripening is a process that produces fruit with top sensory qualities that are ideal for consumption. For the plant, the final objective is seed dispersal. One of the fruit characteristics observed by consumers is texture, which is related to the ripening and softening of the fruit. Controlled and orchestrated events occur to regulate the expression of genes involved in disassembling and solubilizing the cell wall. Studies have shown that changes in pectins are closely related to the loss of firmness and fruit softening. For this reason, studying the mechanisms and enzymes that act on pectins could help to elucidate the molecular events that occur in the fruit. This paper provides a review of the enzyme rhamnogalacturonan endolyase (RGL; EC 4.2.2.23), which is responsible for cleavage of the pectin rhamnogalacturonan I (RGL-I) between rhamnose (Rha) and galacturonic acid (GalA) through the mechanism of β-elimination during fruit ripening. RGL promotes the loosening and weakening of the cell wall and exposes the backbone of the polysaccharide to the action of other enzymes. Investigations into RGL and its relationship with fruit ripening have reliably demonstrated that this enzyme has an important role in this process.
Collapse
|
28
|
Fruit Fly Larval Survival in Picked and Unpicked Tomato Fruit of Differing Ripeness and Associated Gene Expression Patterns. INSECTS 2022; 13:insects13050451. [PMID: 35621786 PMCID: PMC9146954 DOI: 10.3390/insects13050451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022]
Abstract
The larvae of frugivorous tephritid fruit flies feed within fruit and are global pests of horticulture. With the reduced use of pesticides, alternative control methods are needed, of which fruit resistance is one. In the current study, we explicitly tested for phenotypic evidence of induced fruit defences by running concurrent larval survival experiments with fruit on or off the plant, assuming that defence induction would be stopped or reduced by fruit picking. This was accompanied by RT-qPCR analysis of fruit defence and insect detoxification gene expression. Our fruit treatments were picking status (unpicked vs. picked) and ripening stage (colour break vs. fully ripe), our fruit fly was the polyphagous Bactrocera tryoni, and larval survival was assessed through destructive fruit sampling at 48 and 120 h, respectively. The gene expression study targeted larval and fruit tissue samples collected at 48 h and 120 h from picked and unpicked colour-break fruit. At 120 h in colour-break fruit, larval survival was significantly higher in the picked versus unpicked fruit. The gene expression patterns in larval and plant tissue were not affected by picking status, but many putative plant defence and insect detoxification genes were upregulated across the treatments. The larval survival results strongly infer an induced defence mechanism in colour-break tomato fruit that is stronger/faster in unpicked fruits; however, the gene expression patterns failed to provide the same clear-cut treatment effect. The lack of conformity between these results could be related to expression changes in unsampled candidate genes, or due to critical changes in gene expression that occurred during the unsampled periods.
Collapse
|
29
|
Ranjith FH, Muhialdin BJ, Arroo R, Yusof NL, Mohammed NK, Meor Hussin AS. Lacto-fermented polypeptides integrated with edible coatings for mango (Mangifera indica L.) bio-preservation. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Xu X, Chen Y, Li B, Zhang Z, Qin G, Chen T, Tian S. Molecular mechanisms underlying multi-level defense responses of horticultural crops to fungal pathogens. HORTICULTURE RESEARCH 2022; 9:uhac066. [PMID: 35591926 PMCID: PMC9113409 DOI: 10.1093/hr/uhac066] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/07/2022] [Indexed: 05/21/2023]
Abstract
The horticultural industry helps to enrich and improve the human diet while contributing to growth of the agricultural economy. However, fungal diseases of horticultural crops frequently occur during pre- and postharvest periods, reducing yields and crop quality and causing huge economic losses and wasted food. Outcomes of fungal diseases depend on both horticultural plant defense responses and fungal pathogenicity. Plant defense responses are highly sophisticated and are generally divided into preformed and induced defense responses. Preformed defense responses include both physical barriers and phytochemicals, which are the first line of protection. Induced defense responses, which include innate immunity (pattern-triggered immunity and effector-triggered immunity), local defense responses, and systemic defense signaling, are triggered to counterstrike fungal pathogens. Therefore, to develop regulatory strategies for horticultural plant resistance, a comprehensive understanding of defense responses and their underlying mechanisms is critical. Recently, integrated multi-omics analyses, CRISPR-Cas9-based gene editing, high-throughput sequencing, and data mining have greatly contributed to identification and functional determination of novel phytochemicals, regulatory factors, and signaling molecules and their signaling pathways in plant resistance. In this review, research progress on defense responses of horticultural crops to fungal pathogens and novel regulatory strategies to regulate induction of plant resistance are summarized, and then the problems, challenges, and future research directions are examined.
Collapse
Affiliation(s)
- Xiaodi Xu
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
| | - Guozheng Qin
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
31
|
He W, Zhu Y, Chen Y, Shen Q, Hua Z, Wang X, Xue P. Inhibitory Effect and Mechanism of Chitosan-Ag Complex Hydrogel on Fungal Disease in Grape. Molecules 2022; 27:1688. [PMID: 35268789 PMCID: PMC8911985 DOI: 10.3390/molecules27051688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/23/2022] [Accepted: 03/02/2022] [Indexed: 01/27/2023] Open
Abstract
Hydrogel antibacterial agent is an ideal antibacterial material because of its ability to diffuse antibacterial molecules into the decayed area by providing a suitable microenvironment and acting as a protective barrier on the decay interface. The biocompatibility and biodegradation make the removal process easy and it is already widely used in medical fields. However, there have been few reports on its application for controlling postharvest diseases in fruit. In this study, the Chitosan-silver (CS-Ag) complex hydrogels were prepared using the physical crosslinking method, which is used for controlling postharvest diseases in grape. The prepared hydrogels were stable for a long period at room temperature. The structure and surface morphology of CS-Ag composite hydrogels were characterized by UV-Vis, FTIR, SEM, and XRD. The inhibitory effects of CS-Ag hydrogel on disease in grape caused by P. expansum, A. niger, and B. cinerea were investigated both in vivo and in vitro. The remarkable antibacterial activity of CS-Ag hydrogels was mainly due to the combined antibacterial and antioxidant effects of CS and Ag. Preservation tests showed that the CS-Ag hydrogel had positive fresh-keeping effect. This revealed that CS-Ag hydrogels can play a critical role in controlling fungal disease in grapes.
Collapse
Affiliation(s)
- Weizhong He
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (W.H.); (Q.S.); (Z.H.); (X.W.)
- Key Laboratory of Agro-Product Quality and Safety of Xinjiang, Laboratory of Quality and Safety Risk Assessment for Agro-Products, Ministry of Agriculture and Rural Affairs, Urumqi 830091, China
| | - Yajuan Zhu
- The Center for Disease Control and Prevention of Xinjiang Production and Construction Crops, Urumqi 830002, China
| | - Yan Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China;
| | - Qi Shen
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (W.H.); (Q.S.); (Z.H.); (X.W.)
- Key Laboratory of Agro-Product Quality and Safety of Xinjiang, Laboratory of Quality and Safety Risk Assessment for Agro-Products, Ministry of Agriculture and Rural Affairs, Urumqi 830091, China
| | - Zhenyu Hua
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (W.H.); (Q.S.); (Z.H.); (X.W.)
- Key Laboratory of Agro-Product Quality and Safety of Xinjiang, Laboratory of Quality and Safety Risk Assessment for Agro-Products, Ministry of Agriculture and Rural Affairs, Urumqi 830091, China
| | - Xian Wang
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (W.H.); (Q.S.); (Z.H.); (X.W.)
- Key Laboratory of Agro-Product Quality and Safety of Xinjiang, Laboratory of Quality and Safety Risk Assessment for Agro-Products, Ministry of Agriculture and Rural Affairs, Urumqi 830091, China
| | - Peng Xue
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (W.H.); (Q.S.); (Z.H.); (X.W.)
- Key Laboratory of Agro-Product Quality and Safety of Xinjiang, Laboratory of Quality and Safety Risk Assessment for Agro-Products, Ministry of Agriculture and Rural Affairs, Urumqi 830091, China
| |
Collapse
|
32
|
Raorane CJ, Raj V, Lee JH, Lee J. Antifungal activities of fluoroindoles against the postharvest pathogen Botrytis cinerea: In vitro and in silico approaches. Int J Food Microbiol 2022; 362:109492. [PMID: 34861563 DOI: 10.1016/j.ijfoodmicro.2021.109492] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 11/07/2021] [Accepted: 11/20/2021] [Indexed: 11/29/2022]
Abstract
Botrytis cinerea is a common necrotrophic fungal pathogen, leading cause of gray mold diseases in plants and fruit. Several benzimidazoles are used for controlling B. cinerea-associated infection in fruit and vegetables, but benzimidazoles resistance restricts its further uses. Therefore, it is a need for alternative drugs that control B. cinerea. Indoles are multi-faceted compounds and their structural similarities with antifungal benzimidazoles make them a choice for further investigation. Thus, the main objective of the study was to investigate the antifungal potencies of indoles against B. cinerea and to decipher the molecular mechanism involved. We conducted in vitro antifungal assays, fruit assays, and computational studies of interactions between indoles and fungal microtubule polymerase. Of the 16 halogenated indoles examined, 4-fluoroindole, 5-fluoroindole, and 7-fluoroindole (MIC range 2-5 mg/L) were found to be more potent than the fungicides fluconazole and natamycin. Fluoroindoles inhibited or eradicated B. cinerea infections in tangerines and strawberries. Molecular dynamic simulation and density functional theory showed that these fluoroindoles stably interacted with microtubule polymerase. Quantitative structure-activity relationship analyses of halogenated indoles revealed that the presence of a fluoro group in the indole moiety is essential for anti-Botrytis activity. The plausibility of the underlying antifungal mechanism was confirmed by in vitro tubulin polymerization. Collective outcomes of this study indicates that fluoroindoles could be used as alternative fungicidal agents against B. cinerea.
Collapse
Affiliation(s)
| | - Vinit Raj
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
33
|
Colletotrichum species associated with sugarcane red rot in Brazil. Fungal Biol 2022; 126:290-299. [DOI: 10.1016/j.funbio.2022.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/15/2021] [Accepted: 02/14/2022] [Indexed: 11/19/2022]
|
34
|
Mango Endophyte and Epiphyte Microbiome Composition during Fruit Development and Post-Harvest Stages. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7110495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The influence of the development stage and post-harvest handling on the microbial composition of mango fruit plays a central role in fruit health. Hence, the composition of fungal and bacterial microbiota on the anthoplane, fructoplane, stems and stem-end pulp of mango during fruit development and post-harvest handling were determined using next-generation sequencing of the internal transcribed spacer and 16S rRNA regions. At full bloom, the inflorescence had the richest fungal and bacterial communities. The young developing fruit exhibited lower fungal richness and diversities in comparison to the intermediate and fully developed fruit stages on the fructoplane. At the post-harvest stage, lower fungal and bacterial diversities were observed following prochloraz treatment both on the fructoplane and stem-end pulp. Ascomycota (52.8%) and Basidiomycota (43.2%) were the most dominant fungal phyla, while Penicillium, Botryosphaeria, Alternaria and Mucor were detected as the known post-harvest decay-causing fungal genera. The Cyanobacteria (35.6%), Firmicutes (26.1%) and Proteobacteria (23.1%) were the most dominant bacterial phyla. Changes in the presence of Bacillus subtilis following post-harvest interventions such as prochloraz suggested a non-target effect of the fungicide. The present study, therefore, provides the primary baseline data on mango fungal and bacterial diversity and composition, which can be foundational in the development of effective disease (stem-end rot) management strategies.
Collapse
|
35
|
García YH, Zamora OR, Troncoso-Rojas R, Tiznado-Hernández ME, Báez-Flores ME, Carvajal-Millan E, Rascón-Chu A. Toward Understanding the Molecular Recognition of Fungal Chitin and Activation of the Plant Defense Mechanism in Horticultural Crops. Molecules 2021; 26:molecules26216513. [PMID: 34770922 PMCID: PMC8587247 DOI: 10.3390/molecules26216513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/15/2021] [Accepted: 10/22/2021] [Indexed: 11/25/2022] Open
Abstract
Large volumes of fruit and vegetable production are lost during postharvest handling due to attacks by necrotrophic fungi. One of the promising alternatives proposed for the control of postharvest diseases is the induction of natural defense responses, which can be activated by recognizing molecules present in pathogens, such as chitin. Chitin is one of the most important components of the fungal cell wall and is recognized through plant membrane receptors. These receptors belong to the receptor-like kinase (RLK) family, which possesses a transmembrane domain and/or receptor-like protein (RLP) that requires binding to another RLK receptor to recognize chitin. In addition, these receptors have extracellular LysM motifs that participate in the perception of chitin oligosaccharides. These receptors have been widely studied in Arabidopsis thaliana (A. thaliana) and Oryza sativa (O. sativa); however, it is not clear how the molecular recognition and plant defense mechanisms of chitin oligosaccharides occur in other plant species or fruits. This review includes recent findings on the molecular recognition of chitin oligosaccharides and how they activate defense mechanisms in plants. In addition, we highlight some of the current advances in chitin perception in horticultural crops.
Collapse
Affiliation(s)
- Yaima Henry García
- Coordinación de Tecnología en Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo C.P. 83304, Mexico; (Y.H.G.); (O.R.Z.); (M.E.T.-H.); (A.R.-C.)
| | - Orlando Reyes Zamora
- Coordinación de Tecnología en Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo C.P. 83304, Mexico; (Y.H.G.); (O.R.Z.); (M.E.T.-H.); (A.R.-C.)
| | - Rosalba Troncoso-Rojas
- Coordinación de Tecnología en Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo C.P. 83304, Mexico; (Y.H.G.); (O.R.Z.); (M.E.T.-H.); (A.R.-C.)
- Correspondence:
| | - Martín Ernesto Tiznado-Hernández
- Coordinación de Tecnología en Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo C.P. 83304, Mexico; (Y.H.G.); (O.R.Z.); (M.E.T.-H.); (A.R.-C.)
| | - María Elena Báez-Flores
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa. Calle de las Américas y Josefa Ortiz de Domínguez, Culiacán C.P. 80013, Mexico;
| | - Elizabeth Carvajal-Millan
- Coordinación de Tecnología en Alimentos de Origen Animal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo C.P. 83304, Mexico;
| | - Agustín Rascón-Chu
- Coordinación de Tecnología en Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo C.P. 83304, Mexico; (Y.H.G.); (O.R.Z.); (M.E.T.-H.); (A.R.-C.)
| |
Collapse
|
36
|
Influence of Ripening on Polyphenolic Content, Degradative, and Browning Enzymes in Cantaloupe Varieties (C. Melo, L.). HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7110421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The biochemical changes that occur during the growth and ripening of fruit and vegetable tissues, especially for color and firmness, are the most important factors affecting the quality of fresh products. Cantaloupe (Cucumis melo, L.) is one of the main economically important fruits in the world and its quality parameters, e.g., sweetness, nutritional factors, and texture, influence consumer preferences. Hence, these two features, appearance and texture changes, were investigated in three different genotypes of netted melon, all characterized by an extended shelf life but with different ripening phases. In particular, in all melon cultivars, the cell wall-modifying enzymatic activities and indicators of softening as well as total polyphenols, ortho-diphenols, flavonoids, and tannins, and antioxidant activity were studied. One variety with excellent shelf-life displayed the best nutritional and healthy qualities, in the early stages of ripening, and the lowest degree of browning. The lytic enzyme activities were reduced in the initial stages and after they increased gradually until the overripe stage, with the same trend for all varieties under investigation. The antioxidant activities declined with increasing time of ripeness in all genotypes. The outcomes confirm that the activities of both classes examined, antioxidant and cell wall-modifying enzymes, may vary significantly during ripeness depending on the genotype, suggesting the involvement in determining the postharvest behavior of these fruits.
Collapse
|
37
|
Rizwan HM, Zhimin L, Harsonowati W, Waheed A, Qiang Y, Yousef AF, Munir N, Wei X, Scholz SS, Reichelt M, Oelmüller R, Chen F. Identification of Fungal Pathogens to Control Postharvest Passion Fruit ( Passiflora edulis) Decays and Multi-Omics Comparative Pathway Analysis Reveals Purple Is More Resistant to Pathogens than a Yellow Cultivar. J Fungi (Basel) 2021; 7:jof7100879. [PMID: 34682301 PMCID: PMC8538400 DOI: 10.3390/jof7100879] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 01/25/2023] Open
Abstract
Production of passion fruit (Passiflora edulis) is restricted by postharvest decay, which limits the storage period. We isolated, identified, and characterized fungal pathogens causing decay in two passion fruit cultivars during two fruit seasons in China. Morphological characteristics and nucleotide sequences of ITS-rDNA regions identified eighteen isolates, which were pathogenic on yellow and purple fruit. Fusarium kyushuense, Fusarium concentricum, Colletotrichum truncatum, and Alternaria alternata were the most aggressive species. Visible inspections and comparative analysis of the disease incidences demonstrated that wounded and non-wounded yellow fruit were more susceptible to the pathogens than the purple fruit. Purple cultivar showed higher expression levels of defense-related genes through expression and metabolic profiling, as well as significantly higher levels of their biosynthesis pathways. We also found fungi with potential beneficial features for the quality of fruits. Our transcriptomic and metabolomics data provide a basis to identify potential targets to improve the pathogen resistance of the susceptible yellow cultivar. The identified fungi and affected features of the fruit of both cultivars provide important information for the control of pathogens in passion fruit industry and postharvest storage.
Collapse
Affiliation(s)
- Hafiz Muhammad Rizwan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.M.R.); (Y.Q.); (A.F.Y.); (N.M.); (R.O.)
| | - Lin Zhimin
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou 350002, China;
| | - Wiwiek Harsonowati
- Department of Bioresource Science, College of Agriculture, Ibaraki University, 3-21-1 Chuuo, Ami, Inashiki, Ibaraki 300-0393, Japan;
| | - Abdul Waheed
- Key Laboratory for Bio Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yang Qiang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.M.R.); (Y.Q.); (A.F.Y.); (N.M.); (R.O.)
| | - Ahmed Fathy Yousef
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.M.R.); (Y.Q.); (A.F.Y.); (N.M.); (R.O.)
- Department of Horticulture, College of Agriculture, University of Al-Azhar (Branch Assiut), Assiut 71524, Egypt
| | - Nigarish Munir
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.M.R.); (Y.Q.); (A.F.Y.); (N.M.); (R.O.)
| | - Xiaoxia Wei
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350002, China;
| | - Sandra S. Scholz
- Matthias Schleiden Institute, Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany;
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany;
| | - Ralf Oelmüller
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.M.R.); (Y.Q.); (A.F.Y.); (N.M.); (R.O.)
- Matthias Schleiden Institute, Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany;
| | - Faxing Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.M.R.); (Y.Q.); (A.F.Y.); (N.M.); (R.O.)
- Correspondence:
| |
Collapse
|
38
|
Extension of Solanaceae Food Crops Shelf Life by the Use of Elicitors and Sustainable Practices During Postharvest Phase. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02713-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
39
|
Albedo- and Flavedo-Specific Transcriptome Profiling Related to Penicillium digitatum Infection in Citrus Fruit. Foods 2021; 10:foods10092196. [PMID: 34574307 PMCID: PMC8467057 DOI: 10.3390/foods10092196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 01/04/2023] Open
Abstract
Penicillium digitatum is the main postharvest pathogen of citrus fruit. Although the inner fruit peel part (albedo) is less resistant than the outer part (flavedo) to P. digitatum, the global mechanisms involved in their different susceptibility remain unknown. Here, we examine transcriptome differences between both tissues at fruit harvest and in their early responses to infection. At harvest, not only was secondary metabolism, involving phenylpropanoids, waxes, and terpenoids, generally induced in flavedo vs. albedo, but also energy metabolism, transcription factors (TFs), and biotic stress-related hormones and proteins too. Flavedo-specific induced responses to infection might be regulated in part by ERF1 TF, and are related to structural plant cell wall reinforcement. Other induced responses may be related to H2O2, the synthesis of phenylpropanoids, and the stress-related proteins required to maintain basal defense responses against virulent pathogens, whereas P. digitatum represses some hydrolase-encoding genes that play different functions and auxin-responsive genes in this peel tissue. In infected albedo, the repression of transport and signal transduction prevail, as does the induction of not only the processes related to the synthesis of flavonoids, indole glucosinolates, cutin, and oxylipins, but also the specific genes that elicit plant immunity against pathogens.
Collapse
|
40
|
Lima PG, Freitas CDT, Oliveira JTA, Neto NAS, Amaral JL, Silva AFB, Sousa JS, Franco OL, Souza PFN. Synthetic antimicrobial peptides control Penicillium digitatum infection in orange fruits. Food Res Int 2021; 147:110582. [PMID: 34399551 DOI: 10.1016/j.foodres.2021.110582] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/07/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022]
Abstract
Fungal contamination is among the main reasons for food spoilage, affecting food safety and the economy. Among fungi, Penicillium digitatum is a major agent of this problem. Here, the in vitro activity of eight synthetic antimicrobial peptides was assessed against P. digitatum, and their action mechanisms were evaluated. All peptides were able to inhibit fungal growth. Furthermore, atomic force and fluorescence microscopies revealed that all peptides targeted the fungal membrane leading to pore formation, loss of internal content, and death. The induction of high levels of reactive oxygen species (ROS) was also a mechanism employed by some peptides. Interestingly, only three peptides (PepGAT, PepKAA, and Mo-CBP3-PepI) effectively control P. digitatum colonization in orange fruits, at a concentration (50 µg mL-1) 20-fold lower than the commercial food preservative (sodium propionate). Altogether, PepGAT, PepKAA, and Mo-CBP3-PepI showed high biotechnological potential as new food preservatives to control food infection by P. digitatum.
Collapse
Affiliation(s)
- Patrícia G Lima
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará CEP 60.440-554, Brazil
| | - Cleverson D T Freitas
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará CEP 60.440-554, Brazil
| | - Jose T A Oliveira
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará CEP 60.440-554, Brazil
| | - Nilton A S Neto
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará CEP 60.440-554, Brazil
| | - Jackson L Amaral
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará CEP 60.440-554, Brazil; Department of Physics, Federal University of Ceará, Fortaleza, Brazil
| | - Ayrles F B Silva
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará CEP 60.440-554, Brazil; Department of Physics, Federal University of Ceará, Fortaleza, Brazil
| | - Jeanlex S Sousa
- Department of Physics, Federal University of Ceará, Fortaleza, Brazil
| | - Octávio L Franco
- S-Inova Biotech, Programa de Pós Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil; Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília 70790160, Brazil
| | - Pedro F N Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará CEP 60.440-554, Brazil.
| |
Collapse
|
41
|
Yu YY, Dou GX, Sun XX, Chen L, Zheng Y, Xiao HM, Wang YP, Li HY, Guo JH, Jiang CH. Transcriptome and Biochemical Analysis Jointly Reveal the Effects of Bacillus cereus AR156 on Postharvest Strawberry Gray Mold and Fruit Quality. FRONTIERS IN PLANT SCIENCE 2021; 12:700446. [PMID: 34434207 PMCID: PMC8380966 DOI: 10.3389/fpls.2021.700446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/28/2021] [Indexed: 05/29/2023]
Abstract
Postharvest strawberry is susceptible to gray mold disease caused by Botrytis cinerea, which seriously damage the storage capacity of fruits. Biological control has been implicated as an effective and safe method to suppress plant disease. The aim of this study is to evaluate the postharvest disease control ability of Bacillus cereus AR156 and explore the response of strawberry fruit to this biocontrol microorganism. Bacillus cereus AR156 treatment significantly suppressed gray mold disease and postponed the strawberry senescence during storage. The bacterium pretreatment remarkably enhanced the reactive oxygen-scavenging and defense-related activities of enzymes. The promotion on the expression of the encoding-genes was confirmed by quantitative real-time PCR (qRT-PCR) that significantly increased the expression of the marker genes of salicylic acid (SA) signaling pathway, such as PR1, PR2, and PR5, instead of that of the jasmonic acid (JA)/ethylene (ET) pathway, which was also shown. Moreover, through transcriptome profiling, about 6,781 differentially expressed genes (DEGS) in strawberry upon AR156 treatment were identified. The gene ontology (GO) classification and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment indicated that AR156 altered the transcription of numerous transcription factors and genes involved in the SA-related plant disease resistance, metabolism, and biosynthesis of benzoxazinoids and flavonoids. This study offered a non-antagonistic Bacillus as a method for postharvest strawberry storage and disease control, and further revealed that the biocontrol effects were arisen from the induction of host responses on the transcription level and subsequent resistance-related substance accumulation.
Collapse
Affiliation(s)
- Yi-Yang Yu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing, China
- Engineering Center of Bioresource Pesticides in Jiangsu Province, Nanjing, China
| | - Guo-Xia Dou
- Key Laboratory of Quality and Safety Risk Assessment in Agricultural Products Preservation (Nanjing), Ministry of Agriculture, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xing-Xing Sun
- Jiangsu Coastal Area Institute of Agricultural Science, Yancheng, China
| | - Lin Chen
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing, China
- Engineering Center of Bioresource Pesticides in Jiangsu Province, Nanjing, China
| | - Ying Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing, China
- Engineering Center of Bioresource Pesticides in Jiangsu Province, Nanjing, China
| | - Hong-Mei Xiao
- Key Laboratory of Quality and Safety Risk Assessment in Agricultural Products Preservation (Nanjing), Ministry of Agriculture, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yun-Peng Wang
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| | - Hong-Yang Li
- Jiangsu Coastal Area Institute of Agricultural Science, Yancheng, China
| | - Jian-Hua Guo
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing, China
- Engineering Center of Bioresource Pesticides in Jiangsu Province, Nanjing, China
| | - Chun-Hao Jiang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing, China
- Engineering Center of Bioresource Pesticides in Jiangsu Province, Nanjing, China
| |
Collapse
|
42
|
Figueroa CR, Jiang CZ, Torres CA, Fortes AM, Alkan N. Editorial: Regulation of Fruit Ripening and Senescence. FRONTIERS IN PLANT SCIENCE 2021; 12:711458. [PMID: 34381486 PMCID: PMC8350513 DOI: 10.3389/fpls.2021.711458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Carlos R. Figueroa
- Institute of Biological Sciences, Campus Talca, Universidad de Talca, Talca, Chile
| | - Cai-Zhong Jiang
- Crops Pathology and Genetics Research Unit, USDA-ARS, Davis, CA, United States
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Carolina A. Torres
- Horticulture Department, Tree Fruit Research and Extension Center, Washington State University, Wenatchee, WA, United States
| | - Ana M. Fortes
- Faculty of Sciences, BioISI - Biosystems and Integrative Sciences Institute, University of Lisbon, Lisbon, Portugal
| | - Noam Alkan
- Department of Postharvest Science, Agricultural Research Organization (ARO), Rishon LeZion, Israel
| |
Collapse
|
43
|
Feygenberg O, Diskin S, Maurer D, Alkan N. Effect of Biological and Chemical Treatments During Flowering on Stem-End Rot Disease, and Mango Yield. PLANT DISEASE 2021; 105:1602-1609. [PMID: 33337236 DOI: 10.1094/pdis-03-19-0612-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Pathogenic fungi, as the Botryosphaeriaceae family, can penetrate during flowering and endophytically colonize the stem of mango fruit (Mangifera indica) without causing any visible symptoms. Those fungi become active during abiotic stress or fruit ripening and cause stem and inflorescence dieback or fruit stem-end rot (SER) fungal disease. We hypothesized that anti-fungal treatments during the main event of Botryosphaeriaceae penetration would reduce the disease. Initially, we showed that treatments with the fungicide "Switch" (fludioxonil and cyprodinil) during orchard flowering (cv. Keitt and Shelly) reduced the occurrence of pathogenic fungi in the fruit stem-end and significantly reduced fruit's incidence of SER disease. As mango orchards are sprayed weekly against powdery mildew (PM) disease during flowering, we combined two treatments against PM disease with two treatments against both PM- and SER-causing pathogens. Application of biological treatments of the fungicide "Serenade" (Bacillus subtilis) or chemical treatments of the fungicides "Luna Tranquility" (fluopyram and pyrimethanil) or "Switch" during flowering in 'Shelly' and 'Keitt' mango orchards significantly reduced inflorescence/stem dieback (up to 50%) and fruit drop and significantly increased the number of fruit per tree, which led to a significant increase in yield, up to 41%, in heavily infected orchards. In addition, this application during flowering (March to April) affected post-harvest fruit quality (August to September) by a significant (P < 0.005) reduction of the incidence and the severity of stem-end rot disease and even fruit side-rot disease, without affecting fruit ripening and other quality parameters. While all fungicides were effective, the chemical fungicides were more effective than the biological fungicide. Thus, changing the PM fungicide regime to control Botryosphaeriaceae penetration during mango orchard flowering led to reduced inflorescence/stem dieback, reduced fruit drop, increase in yield, and minimized post-harvest decay.
Collapse
Affiliation(s)
- Oleg Feygenberg
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center, Rishon LeZion, 7505101, Israel
| | - Sonia Diskin
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center, Rishon LeZion, 7505101, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 761001, Israel
| | - Dalia Maurer
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center, Rishon LeZion, 7505101, Israel
| | - Noam Alkan
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center, Rishon LeZion, 7505101, Israel
| |
Collapse
|
44
|
Yadav A, Fennec A, Davidovich-Rikanati R, Meir S, Kochanek B, Lewinsohn E, Aharoni A, Alkan N, Friedman H. Phenylpropanoid Metabolism in Astringent and Nonastringent Persimmon ( Diospyros kaki) Cultivars Determines Sensitivity to Alternaria Infection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5628-5637. [PMID: 33983017 PMCID: PMC8278483 DOI: 10.1021/acs.jafc.1c01312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Fruits of nonastringent persimmon cultivars, as compared to astringent ones, were more resistant to Alternaria infection despite having lower polyphenol content. Metabolic analysis from the pulp of nonastringent "Shinshu", as compared to the astringent "Triumph", revealed a higher concentration of salicylic, coumaric, quinic, 5-o-feruloyl quinic, ferulic acids, β-glucogallin, gallocatechin, catechin, and procyanidins. Selected compounds like salicylic, ferulic, and ρ-coumaric acids inhibited in vitro Alternaria growth, and higher activity was demonstrated for methyl ferulic and methyl ρ-coumaric acids. These compounds also reduced in vivo Alternaria growth and the black spot disease in stored fruits. On the other hand, methyl gallic acid was a predominant compound in the "Triumph" pulp, as compared to the "Shinshu" pulp, and it augmented Alternaria growth in vitro and in vivo. Our results might explain the high sensitivity of the cultivar "Triumph" to Alternaria. It also emphasizes that specific phenolic compounds, and not the total phenol, affect susceptibility to fungal infection.
Collapse
Affiliation(s)
- Akhilesh Yadav
- Department
of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion 7505101, Israel
| | - Anton Fennec
- Department
of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion 7505101, Israel
| | | | - Sagit Meir
- Department
of Plant and Environmental Sciences, Weizmann
Institute, Rehovot 7610001, Israel
| | - Bettina Kochanek
- Department
of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion 7505101, Israel
| | - Efraim Lewinsohn
- Newe
Ya’ar Research Center, Agricultural
Research Organization (ARO), Ramat
Yishay 3009500, Israel
| | - Asaph Aharoni
- Department
of Plant and Environmental Sciences, Weizmann
Institute, Rehovot 7610001, Israel
| | - Noam Alkan
- Department
of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion 7505101, Israel
| | - Haya Friedman
- Department
of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion 7505101, Israel
| |
Collapse
|
45
|
Silva CJ, van den Abeele C, Ortega-Salazar I, Papin V, Adaskaveg JA, Wang D, Casteel CL, Seymour GB, Blanco-Ulate B. Host susceptibility factors render ripe tomato fruit vulnerable to fungal disease despite active immune responses. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2696-2709. [PMID: 33462583 PMCID: PMC8006553 DOI: 10.1093/jxb/eraa601] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/19/2020] [Indexed: 05/03/2023]
Abstract
The increased susceptibility of ripe fruit to fungal pathogens poses a substantial threat to crop production and marketability. Here, we coupled transcriptomic analyses with mutant studies to uncover critical processes associated with defense and susceptibility in tomato (Solanum lycopersicum) fruit. Using unripe and ripe fruit inoculated with three fungal pathogens, we identified common pathogen responses reliant on chitinases, WRKY transcription factors, and reactive oxygen species detoxification. We established that the magnitude and diversity of defense responses do not significantly impact the interaction outcome, as susceptible ripe fruit mounted a strong immune response to pathogen infection. Then, to distinguish features of ripening that may be responsible for susceptibility, we utilized non-ripening tomato mutants that displayed different susceptibility patterns to fungal infection. Based on transcriptional and hormone profiling, susceptible tomato genotypes had losses in the maintenance of cellular redox homeostasis, while jasmonic acid accumulation and signaling coincided with defense activation in resistant fruit. We identified and validated a susceptibility factor, pectate lyase (PL). CRISPR-based knockouts of PL, but not polygalacturonase (PG2a), reduced susceptibility of ripe fruit by >50%. This study suggests that targeting specific genes that promote susceptibility is a viable strategy to improve the resistance of tomato fruit against fungal disease.
Collapse
Affiliation(s)
- Christian J Silva
- Department of Plant Sciences, University of California, Davis, Davis, CA, USA
| | - Casper van den Abeele
- Department of Plant Sciences, University of California, Davis, Davis, CA, USA
- Laboratory of Plant Physiology, Wageningen University, Wageningen, The Netherlands
| | | | - Victor Papin
- Department of Plant Sciences, University of California, Davis, Davis, CA, USA
- Ecole Nationale Supérieure Agronomique de Toulouse, Toulouse, France
| | - Jaclyn A Adaskaveg
- Department of Plant Sciences, University of California, Davis, Davis, CA, USA
| | - Duoduo Wang
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
- School of Biosciences, Plant and Crop Science Division, University of Nottingham, Sutton Bonington, Loughborough, UK
| | - Clare L Casteel
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Graham B Seymour
- School of Biosciences, Plant and Crop Science Division, University of Nottingham, Sutton Bonington, Loughborough, UK
| | | |
Collapse
|
46
|
Bartholomew HP, Bradshaw M, Jurick WM, Fonseca JM. The Good, the Bad, and the Ugly: Mycotoxin Production During Postharvest Decay and Their Influence on Tritrophic Host-Pathogen-Microbe Interactions. Front Microbiol 2021; 12:611881. [PMID: 33643240 PMCID: PMC7907610 DOI: 10.3389/fmicb.2021.611881] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/22/2021] [Indexed: 12/18/2022] Open
Abstract
Mycotoxins are a prevalent problem for stored fruits, grains, and vegetables. Alternariol, aflatoxin, and patulin, produced by Alternaria spp., Aspergillus spp., and Penicillium spp., are the major mycotoxins that negatively affect human and animal health and reduce fruit and produce quality. Control strategies for these toxins are varied, but one method that is increasing in interest is through host microbiome manipulation, mirroring a biocontrol approach. While the majority of mycotoxins and other secondary metabolites (SM) produced by fungi impact host–fungal interactions, there is also an interplay between the various organisms within the host microbiome. In addition to SMs, these interactions involve compounds such as signaling molecules, plant defense and growth hormones, and metabolites produced by both the plants and microbial community. Therefore, studies to understand the impact of the various toxins impacting the beneficial and harmful microorganisms that reside within the microbiome is warranted, and could lead to identification of safe analogs for antimicrobial activity to reduce fruit decay. Additionally, exploring the composition of the microbial carposphere of host plants is likely to shed light on developing a microbial consortium to maintain quality during storage and abate mycotoxin contamination.
Collapse
Affiliation(s)
- Holly P Bartholomew
- Food Quality Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Michael Bradshaw
- Food Quality Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Wayne M Jurick
- Food Quality Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Jorge M Fonseca
- Food Quality Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| |
Collapse
|
47
|
Jimenez Feijoo MI, Cevallos-Cevallos JM. Pathogenicity of Moniliophthora roreri isolates from selected morphology groups in harvested cacao pods and in vitro sensitivity to compost tea. BIONATURA 2021. [DOI: 10.21931/rb/2021.06.01.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Moniliopthora roreri is the frosty pod rot disease (FPD) and one of the most devastating cacao pathogens worldwide. However, M. roreri pathogenicity on harvested cacao pods and sensitivity to compost tea have not been fully described. Monosporic cultures of M. roreri from different morphology groups were obtained. The isolates’ pathogenicity was tested by inoculation onto harvested cacao pods, and symptoms were evaluated at 3-day intervals during 16 days before estimating the area under the disease progress curve (AUDPC). The sensitivity of M. roreri to compost tea was evaluated on potato dextrose agar (PDA) amended with 1 to 5 % compost tea. All morphology groups could infect harvested cacao pods during the 16 days with a disease severity index abode 75 %. Compost tea completely inhibited the growth of M. roreri when used at 4.5 % or higher. Results suggest a shortened biotrophic phase during the infection in harvested pods and a medium to high sensitivity of M. roreri to compost tea.
Collapse
Affiliation(s)
- Maria Isabel Jimenez Feijoo
- Escuela Superior Politecnica del Litoral, ESPOL. Facultad de Ciencias de la Vida (CIBE). Campus Gustavo Galindo Km 30.5 vía perimetral. Apartado 09015863, Guayaquil-Ecuador
| | - Juan Manuel Cevallos-Cevallos
- Escuela Superior Politecnica del Litoral, ESPOL. Facultad de Ciencias de la Vida (CIBE). Campus Gustavo Galindo Km 30.5 vía perimetral. Apartado 09015863, Guayaquil-Ecuador
| |
Collapse
|
48
|
Lee K, Lee JG, Min K, Choi JH, Lim S, Lee EJ. Transcriptome Analysis of the Fruit of Two Strawberry Cultivars "Sunnyberry" and "Kingsberry" That Show Different Susceptibility to Botrytis cinerea after Harvest. Int J Mol Sci 2021; 22:ijms22041518. [PMID: 33546320 PMCID: PMC7913547 DOI: 10.3390/ijms22041518] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 12/15/2022] Open
Abstract
Gray mold (Botrytis cinerea) is a fungal plant pathogen causing postharvest decay in strawberry fruit. Here, we conducted a comparative transcriptome analysis to identify differences in gene expression between the immature-green (IG) and mature-red (MR) stages of the “Sunnyberry” (gray mold-resistant) and “Kingsberry” (gray mold susceptible) strawberry cultivars. Most of the genes involved in lignin and alkane-type wax biosynthesis were relatively upregulated in “Sunnyberry”. However, pathogenesis-related proteins encoding R- and antioxidant-related genes were comparatively upregulated in “Kingsberry”. Analysis of gene expression and physiological traits in the presence and absence of B. cinerea inoculation revealed that the defense response patterns significantly differed between IG and MR rather than the cultivars. “Kingsberry” showed higher antioxidant induction at IG and upregulated hemicellulose-strengthening and R genes at MR. Hence, “Sunnyberry” and “Kingsberry” differed mainly in terms of the expression levels of the genes forming cuticle, wax, and lignin and controlling the defense responses. These discrepancies might explain the relative difference between these strawberry cultivars in terms of their postharvest responses to B. cinerea.
Collapse
Affiliation(s)
- Kyuweon Lee
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (K.L.); (J.G.L.); (K.M.)
| | - Jeong Gu Lee
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (K.L.); (J.G.L.); (K.M.)
| | - Kyeonglim Min
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (K.L.); (J.G.L.); (K.M.)
| | - Jeong Hee Choi
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Korea;
| | - Sooyeon Lim
- National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju-gun 55365, Korea;
| | - Eun Jin Lee
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (K.L.); (J.G.L.); (K.M.)
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Correspondence:
| |
Collapse
|
49
|
Fresno DH, Munné-Bosch S. Differential Tissue-Specific Jasmonic Acid, Salicylic Acid, and Abscisic Acid Dynamics in Sweet Cherry Development and Their Implications in Fruit-Microbe Interactions. FRONTIERS IN PLANT SCIENCE 2021; 12:640601. [PMID: 33603766 PMCID: PMC7884454 DOI: 10.3389/fpls.2021.640601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/12/2021] [Indexed: 05/31/2023]
Abstract
Sweet cherry is an important non-climacteric fruit with a high commercial interest, but exploitation of sweet cherry trees (Prunus avium L.) in orchards is usually subject to important economic losses due to fruit decay by pathogenic fungi and other microorganisms. Sweet cherries development and ripening are characterized by profound physiological changes in the fruit, among which the phytohormone abscisic acid (ABA) plays a pivotal role. In addition, sweet cherries are usually affected by fruit decay pathogens, and the role of other stress-related hormones such as jasmonic acid (JA) and salicylic acid (SA) may also be of paramount importance, not only from a developmental point of view, but also from a fruit-microbe interaction perspective. Here, a tissue-specific hormone quantification by LC-MS/MS, including the contents of JA, SA, and ABA, in the fruit exocarp and mesocarp of sweet cherries during fruit development from trees growing in a commercial orchard was carried out. Additionally, this study was complemented with the characterization of the culturable epiphytic and endophytic microbial communities of sweet cherries at various stages of fruit development and during cracking lesion formation. Our results revealed a completely differential behavior of phytohormones between both tissues (the exocarp and mesocarp), with a more dynamic exocarp in front of a more stable mesocarp, and with marked variations during fruit development. Microbial epiphytic community was mainly composed by yeasts, although rot-causing fungi like Alternaria spp. were always also present throughout fruit development. Endophytic colonization was poor, but it increased throughout fruit development. Furthermore, when the exocarp was naturally disrupted in sweet cherries suffering from cracking, the colonization by Alternaria spp. markedly increased. Altogether, results suggest that the fruit exocarp and mesocarp are very dynamic tissues in which endogenous phytohormones not only modulate fruit development and ripening but also fruit-microbe interactions.
Collapse
Affiliation(s)
- David H. Fresno
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA), University of Barcelona, Barcelona, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA), University of Barcelona, Barcelona, Spain
| |
Collapse
|
50
|
Endophytic fungal community structure in olive orchards with high and low incidence of olive anthracnose. Sci Rep 2021; 11:689. [PMID: 33436767 PMCID: PMC7804420 DOI: 10.1038/s41598-020-79962-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/10/2020] [Indexed: 01/29/2023] Open
Abstract
Fungal endophytes have been increasingly recognized to promote host plant protection to pathogens, but knowledge of the multiple effects that they could have in crop diseases is still scarce. This work attempts to understand the role of fungal endophytes in crop diseases, specifically in reducing disease development and interfering on lifestyle transition of the pathogen. To accomplish this, the endophytic fungal community of reproductive organs of olive tree from two orchards showing different levels of anthracnose incidence, a major disease of olive fruits, was characterized and compared between them. The two orchards showed distinct endophytic communities, differing in species richness, abundance and composition, with highest isolation rates and richness of endophytes in the orchard with low anthracnose incidence. These differences among orchards were greater on fruits than on flowers, suggesting that these changes in endophytic fungal composition may influence the lifestyle shifts in pathogen (from latent to pathogen). A number of fungal taxa were found to be positively associated to one of the two orchards. The fungal endophytes best correlated with high incidence of anthracnose are pathogens, while endophytes-associated to low anthracnose incidence are described to protect plants. Altogether, the results suggest varying pathogen-endophyte interactions among the two orchards.
Collapse
|