1
|
Charura N, Llamas E, De Quattro C, Vilchez D, Nowack MK, Zuccaro A. Root cap cell corpse clearance limits microbial colonization in Arabidopsis thaliana. eLife 2024; 13:RP96266. [PMID: 39531016 PMCID: PMC11556792 DOI: 10.7554/elife.96266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Programmed cell death occurring during plant development (dPCD) is a fundamental process integral for plant growth and reproduction. Here, we investigate the connection between developmentally controlled PCD and fungal accommodation in Arabidopsis thaliana roots, focusing on the root cap-specific transcription factor ANAC033/SOMBRERO (SMB) and the senescence-associated nuclease BFN1. Mutations of both dPCD regulators increase colonization by the beneficial fungus Serendipita indica, primarily in the differentiation zone. smb-3 mutants additionally exhibit hypercolonization around the meristematic zone and a delay of S. indica-induced root-growth promotion. This demonstrates that root cap dPCD and rapid post-mortem clearance of cellular corpses represent a physical defense mechanism restricting microbial invasion of the root. Additionally, reporter lines and transcriptional analysis revealed that BFN1 expression is downregulated during S. indica colonization in mature root epidermal cells, suggesting a transcriptional control mechanism that facilitates the accommodation of beneficial microbes in the roots.
Collapse
Affiliation(s)
- Nyasha Charura
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of CologneCologneGermany
| | - Ernesto Llamas
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of CologneCologneGermany
| | - Concetta De Quattro
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of CologneCologneGermany
| | - David Vilchez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of CologneCologneGermany
- Center for Molecular Medicine Cologne (CMMC), University of CologneCologneGermany
- Faculty of Medicine, University Hospital CologneCologneGermany
| | - Moritz K Nowack
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Alga Zuccaro
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of CologneCologneGermany
| |
Collapse
|
2
|
Eichfeld R, Mahdi LK, De Quattro C, Armbruster L, Endeshaw AB, Miyauchi S, Hellmann MJ, Cord-Landwehr S, Peterson D, Singan V, Lail K, Savage E, Ng V, Grigoriev IV, Langen G, Moerschbacher BM, Zuccaro A. Transcriptomics reveal a mechanism of niche defense: two beneficial root endophytes deploy an antimicrobial GH18-CBM5 chitinase to protect their hosts. THE NEW PHYTOLOGIST 2024; 244:980-996. [PMID: 39224928 DOI: 10.1111/nph.20080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Effector secretion is crucial for root endophytes to establish and protect their ecological niche. We used time-resolved transcriptomics to monitor effector gene expression dynamics in two closely related Sebacinales, Serendipita indica and Serendipita vermifera, during symbiosis with three plant species, competition with the phytopathogenic fungus Bipolaris sorokiniana, and cooperation with root-associated bacteria. We observed increased effector gene expression in response to biotic interactions, particularly with plants, indicating their importance in host colonization. Some effectors responded to both plants and microbes, suggesting dual roles in intermicrobial competition and plant-microbe interactions. A subset of putative antimicrobial effectors, including a GH18-CBM5 chitinase, was induced exclusively by microbes. Functional analyses of this chitinase revealed its antimicrobial and plant-protective properties. We conclude that dynamic effector gene expression underpins the ability of Sebacinales to thrive in diverse ecological niches with a single fungal chitinase contributing substantially to niche defense.
Collapse
Affiliation(s)
- Ruben Eichfeld
- University of Cologne, Institute for Plant Sciences, Cologne, 50674, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, 50674, Germany
| | - Lisa K Mahdi
- University of Cologne, Institute for Plant Sciences, Cologne, 50674, Germany
| | - Concetta De Quattro
- University of Cologne, Institute for Plant Sciences, Cologne, 50674, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, 50674, Germany
| | - Laura Armbruster
- University of Cologne, Institute for Plant Sciences, Cologne, 50674, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, 50674, Germany
| | - Asmamaw B Endeshaw
- University of Cologne, Institute for Plant Sciences, Cologne, 50674, Germany
| | - Shingo Miyauchi
- University of Cologne, Institute for Plant Sciences, Cologne, 50674, Germany
- Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Margareta J Hellmann
- Institute for Biology and Biotechnology of Plants, University of Münster, Münster, 48149, Germany
| | - Stefan Cord-Landwehr
- Institute for Biology and Biotechnology of Plants, University of Münster, Münster, 48149, Germany
| | - Daniel Peterson
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Vasanth Singan
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kathleen Lail
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Emily Savage
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Vivian Ng
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Gregor Langen
- University of Cologne, Institute for Plant Sciences, Cologne, 50674, Germany
| | - Bruno M Moerschbacher
- Institute for Biology and Biotechnology of Plants, University of Münster, Münster, 48149, Germany
| | - Alga Zuccaro
- University of Cologne, Institute for Plant Sciences, Cologne, 50674, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, 50674, Germany
| |
Collapse
|
3
|
Zhang Y, Yang Z, Yang Y, Han A, Rehneke L, Ding L, Wei Y, Liu Z, Meng Y, Schäfer P, Shan W. A symbiont fungal effector relocalizes a plastidic oxidoreductase to nuclei to induce resistance to pathogens and salt stress. Curr Biol 2024; 34:2957-2971.e8. [PMID: 38917798 DOI: 10.1016/j.cub.2024.05.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/24/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024]
Abstract
The root endophytic fungus Serendipita indica establishes beneficial symbioses with a broad spectrum of plants and enhances host resilience against biotic and abiotic stresses. However, little is known about the mechanisms underlying S. indica-mediated plant protection. Here, we report S. indica effector (SIE) 141 and its host target CDSP32, a conserved thioredoxin-like protein, and underlying mechanisms for enhancing pathogen resistance and abiotic salt tolerance in Arabidopsis thaliana. SIE141 binding interfered with canonical targeting of CDSP32 to chloroplasts, leading to its re-location into the plant nucleus. This nuclear translocation is essential for both their interaction and resistance function. Furthermore, SIE141 enhanced oxidoreductase activity of CDSP32, leading to CDSP32-mediated monomerization and activation of NON-EXPRESSOR OF PATHOGENESIS-RELATED 1 (NPR1), a key regulator of systemic resistance. Our findings provide functional insights on how S. indica transfers well-known beneficial effects to host plants and indicate CDSP32 as a genetic resource to improve plant resilience to abiotic and biotic stresses.
Collapse
Affiliation(s)
- Yingqi Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ziran Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Aiping Han
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Laura Rehneke
- Institute of Phytopathology, Land Use and Nutrition, Research Centre for BioSystems, Justus Liebig University, 35392 Giessen, Germany
| | - Liwen Ding
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yushu Wei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zeming Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuling Meng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Patrick Schäfer
- Institute of Phytopathology, Land Use and Nutrition, Research Centre for BioSystems, Justus Liebig University, 35392 Giessen, Germany
| | - Weixing Shan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
4
|
Rehneke L, Schäfer P. Symbiont effector-guided mapping of proteins in plant networks to improve crop climate stress resilience: Symbiont effectors inform highly interconnected plant protein networks and provide an untapped resource for crop climate resilience strategies. Bioessays 2024; 46:e2300172. [PMID: 38388783 DOI: 10.1002/bies.202300172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/21/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Abstract
There is an urgent need for novel protection strategies to sustainably secure crop production under changing climates. Studying microbial effectors, defined as microbe-derived proteins that alter signalling inside plant cells, has advanced our understanding of plant immunity and microbial plant colonisation strategies. Our understanding of effectors in the establishment and beneficial outcome of plant symbioses is less well known. Combining functional and comparative interaction assays uncovered specific symbiont effector targets in highly interconnected plant signalling networks and revealed the potential of effectors in beneficially modulating plant traits. The diverse functionality of symbiont effectors differs from the paradigmatic immuno-suppressive function of pathogen effectors. These effectors provide solutions for improving crop resilience against climate stress by their evolution-driven specification in host protein targeting and modulation. Symbiont effectors represent stringent tools not only to identify genetic targets for crop breeding, but to serve as applicable agents in crop management strategies under changing environments.
Collapse
Affiliation(s)
- Laura Rehneke
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Patrick Schäfer
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| |
Collapse
|
5
|
Van Gerrewey T, Chung HS. MAPK Cascades in Plant Microbiota Structure and Functioning. J Microbiol 2024; 62:231-248. [PMID: 38587594 DOI: 10.1007/s12275-024-00114-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 04/09/2024]
Abstract
Mitogen-activated protein kinase (MAPK) cascades are highly conserved signaling modules that coordinate diverse biological processes such as plant innate immunity and development. Recently, MAPK cascades have emerged as pivotal regulators of the plant holobiont, influencing the assembly of normal plant microbiota, essential for maintaining optimal plant growth and health. In this review, we provide an overview of current knowledge on MAPK cascades, from upstream perception of microbial stimuli to downstream host responses. Synthesizing recent findings, we explore the intricate connections between MAPK signaling and the assembly and functioning of plant microbiota. Additionally, the role of MAPK activation in orchestrating dynamic changes in root exudation to shape microbiota composition is discussed. Finally, our review concludes by emphasizing the necessity for more sophisticated techniques to accurately decipher the role of MAPK signaling in establishing the plant holobiont relationship.
Collapse
Affiliation(s)
- Thijs Van Gerrewey
- Plant Biotechnology Research Center, Department of Environmental Technology, Food Technology and Molecular Biotechnology, Ghent University Global Campus, Incheon, 21985, Republic of Korea
| | - Hoo Sun Chung
- Plant Biotechnology Research Center, Department of Environmental Technology, Food Technology and Molecular Biotechnology, Ghent University Global Campus, Incheon, 21985, Republic of Korea.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium.
| |
Collapse
|
6
|
Waqar S, Bhat AA, Khan AA. Endophytic fungi: Unravelling plant-endophyte interaction and the multifaceted role of fungal endophytes in stress amelioration. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108174. [PMID: 38070242 DOI: 10.1016/j.plaphy.2023.108174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/23/2023] [Accepted: 11/07/2023] [Indexed: 02/15/2024]
Abstract
Endophytic fungi colonize interior plant tissue and mostly form mutualistic associations with their host plant. Plant-endophyte interaction is a complex mechanism and is currently a focus of research to understand the underlying mechanism of endophyte asymptomatic colonization, the process of evading plant immune response, modulation of gene expression, and establishment of a balanced mutualistic relationship. Fungal endophytes rely on plant hosts for nutrients, shelter, and transmission and improve the host plant's tolerance against biotic stresses, including -herbivores, nematodes, bacterial, fungal, viral, nematode, and other phytopathogens. Endophytic fungi have been reported to improve plant health by reducing and eradicating the harmful effect of phytopathogens through competition for space or nutrients, mycoparasitism, and through direct or indirect defense systems by producing secondary metabolites as well as by induced systemic resistance (ISR). Additionally, for efficient crop improvement, practicing them would be a fruitful step for a sustainable approach. This review article summarizes the current research progress in plant-endophyte interaction and the fungal endophyte mechanism to overcome host defense responses, their subsequent colonization, and the establishment of a balanced mutualistic interaction with host plants. This review also highlighted the potential of fungal endophytes in the amelioration of biotic stress. We have also discussed the relevance of various bioactive compounds possessing antimicrobial potential against a variety of agricultural pathogens. Furthermore, endophyte-mediated ISR is also emphasized.
Collapse
Affiliation(s)
- Sonia Waqar
- Section of Environmental Botany and Plant Pathology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| | - Adil Ameen Bhat
- Section of Environmental Botany and Plant Pathology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| | - Abrar Ahmad Khan
- Section of Environmental Botany and Plant Pathology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
7
|
Mehri M, Ghabooli M, Movahedi Z. Contribution of Serendipita indica on growth improvement, antioxidative capacity of Dracocephalum kotschyi, and its resistance against cadmium stress. Int Microbiol 2023; 26:821-831. [PMID: 36801987 DOI: 10.1007/s10123-023-00339-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/28/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023]
Abstract
Cadmium pollution is a severe issue worldwide which causes an elevated concern in agriculture. The utilization of plant-microbial interactions offers a promising approach for the remediation of cadmium-polluted soils. To elucidate the mechanism of Serendipita indica-mediated cadmium stress tolerance, a potting experiment was conducted to study the impact of S. indica on Dracocephalum kotschyi plants grown under different cadmium concentrations (0, 5, 10, and 20 mg/kg). The effects of cadmium and S. indica on plant growth, antioxidant enzyme activities, and accumulation of cadmium were investigated. The results showed that cadmium stress significantly decreases biomass, photosynthetic pigments, and carbohydrate content concomitantly with increasing antioxidant activities, electrolyte leakage, and hydrogen peroxide, proline, and cadmium content. Inoculation with S. indica alleviated the adverse effect of cadmium stress by enhancing shoot and root dry weight, photosynthetic pigments, and carbohydrate, proline, and catalase activity. Unlike cadmium stress, the presence of fungus led to a reduction in electrolyte leakage and hydrogen peroxide content as well as the content of cadmium in D. kotschyi leaf which mitigates cadmium-induced oxidative stress. Our findings demonstrated S. indica inoculation alleviates the adverse effects of cadmium stress in D. kotschyi plants which could prolong their survival under stressful conditions. Due to the importance of D. kotschyi and the effect of biomass increase on the amount of its medicinal substances, exploiting S. indica not only promotes plant growth, but also may be used as a potential eco-friendly method for relieving the phytotoxicity of Cd and remediating Cd-contaminated soil.
Collapse
Affiliation(s)
- Mohammad Mehri
- Department of Plant Production and Genetics, Faculty of Agriculture, Malayer University, Malayer, Iran
| | - Mehdi Ghabooli
- Department of Plant Production and Genetics, Faculty of Agriculture, Malayer University, Malayer, Iran.
| | - Zahra Movahedi
- Department of Plant Production and Genetics, Faculty of Agriculture, Malayer University, Malayer, Iran
| |
Collapse
|
8
|
Li L, Feng Y, Qi F, Hao R. Research Progress of Piriformospora indica in Improving Plant Growth and Stress Resistance to Plant. J Fungi (Basel) 2023; 9:965. [PMID: 37888222 PMCID: PMC10607969 DOI: 10.3390/jof9100965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Piriformospora indica (Serendipita indica), a mycorrhizal fungus, has garnered significant attention in recent decades owing to its distinctive capacity to stimulate plant growth and augment plant resilience against environmental stressors. As an axenically cultivable fungus, P. indica exhibits a remarkable ability to colonize varieties of plants and promote symbiotic processes by directly influencing nutrient acquisition and hormone metabolism. The interaction of plant and P. indica raises hormone production including ethylene (ET), jasmonic acid (JA), gibberellin (GA), salicylic acid (SA), and abscisic acid (ABA), which also promotes root proliferation, facilitating improved nutrient acquisition, and subsequently leading to enhanced plant growth and productivity. Additionally, the plant defense system was employed by P. indica colonization and the defense genes associated with oxidation resistance were activated subsequently. This fungus-mediated defense response elicits an elevation in the enzyme activity of antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), and, finally, bolsters plant tolerance. Furthermore, P. indica colonization can initiate local and systemic immune responses against fungal and viral plant diseases through signal transduction mechanisms and RNA interference by regulating defense gene expression and sRNA secretion. Consequently, P. indica can serve diverse roles such as plant promoter, biofertilizer, bioprotectant, bioregulator, and bioactivator. A comprehensive review of recent literature will facilitate the elucidation of the mechanistic foundations underlying P. indica-crop interactions. Such discussions will significantly contribute to an in-depth comprehension of the interaction mechanisms, potential applications, and the consequential effects of P. indica on crop protection, enhancement, and sustainable agricultural practices.
Collapse
Affiliation(s)
- Liang Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; (Y.F.); (F.Q.); (R.H.)
| | | | | | | |
Collapse
|
9
|
Osborne R, Rehneke L, Lehmann S, Roberts J, Altmann M, Altmann S, Zhang Y, Köpff E, Dominguez-Ferreras A, Okechukwu E, Sergaki C, Rich-Griffin C, Ntoukakis V, Eichmann R, Shan W, Falter-Braun P, Schäfer P. Symbiont-host interactome mapping reveals effector-targeted modulation of hormone networks and activation of growth promotion. Nat Commun 2023; 14:4065. [PMID: 37429856 DOI: 10.1038/s41467-023-39885-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 06/27/2023] [Indexed: 07/12/2023] Open
Abstract
Plants have benefited from interactions with symbionts for coping with challenging environments since the colonisation of land. The mechanisms of symbiont-mediated beneficial effects and similarities and differences to pathogen strategies are mostly unknown. Here, we use 106 (effector-) proteins, secreted by the symbiont Serendipita indica (Si) to modulate host physiology, to map interactions with Arabidopsis thaliana host proteins. Using integrative network analysis, we show significant convergence on target-proteins shared with pathogens and exclusive targeting of Arabidopsis proteins in the phytohormone signalling network. Functional in planta screening and phenotyping of Si effectors and interacting proteins reveals previously unknown hormone functions of Arabidopsis proteins and direct beneficial activities mediated by effectors in Arabidopsis. Thus, symbionts and pathogens target a shared molecular microbe-host interface. At the same time Si effectors specifically target the plant hormone network and constitute a powerful resource for elucidating the signalling network function and boosting plant productivity.
Collapse
Affiliation(s)
- Rory Osborne
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Laura Rehneke
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, 35392, Giessen, Germany
| | - Silke Lehmann
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Laboratory of Biotechnology and Marine Chemistry LBCM, EA3884, IUEM, Southern Brittany University, 56000, Vannes, France
| | - Jemma Roberts
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Melina Altmann
- Institute of Network Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich, 85764, Munich-Neuherberg, Germany
| | - Stefan Altmann
- Institute of Network Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich, 85764, Munich-Neuherberg, Germany
| | - Yingqi Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Eva Köpff
- Institute of Molecular Botany, Ulm University, 89069, Ulm, Germany
| | | | - Emeka Okechukwu
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Chrysi Sergaki
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Vardis Ntoukakis
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Ruth Eichmann
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, 35392, Giessen, Germany
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Pascal Falter-Braun
- Institute of Network Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich, 85764, Munich-Neuherberg, Germany.
- Microbe-Host Interactions, Faculty of Biology, Ludwig-Maximilians-University München, 82152, Planegg-Martinsried, Germany.
| | - Patrick Schäfer
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, 35392, Giessen, Germany.
| |
Collapse
|
10
|
Teulet A, Quan C, Evangelisti E, Wanke A, Yang W, Schornack S. A pathogen effector FOLD diversified in symbiotic fungi. THE NEW PHYTOLOGIST 2023. [PMID: 37257494 DOI: 10.1111/nph.18996] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/27/2023] [Indexed: 06/02/2023]
Abstract
Pathogenic fungi use secreted effector proteins to suppress immunity and support their infection, but effectors have also been reported from fungi that engage in nutritional symbioses with plants. Sequence-based effector comparisons between pathogens and symbiotic arbuscular mycorrhizal (AM) fungi are hampered by the huge diversity of effector sequences even within closely related microbes. To find sequence-divergent but structurally similar effectors shared between symbiotic and pathogenic fungi, we compared secreted protein structure models of the AM fungus Rhizophagus irregularis to known pathogen effectors. We identified proteins with structural similarity to known Fusarium oxysporum f. sp. lycopersici dual domain (FOLD) effectors, which occur in low numbers in several fungal pathogens. Contrastingly, FOLD genes from AM fungi (MycFOLDs) are found in enlarged and diversified gene families with higher levels of positive selection in their C-terminal domains. Our structure model comparison suggests that MycFOLDs are similar to carbohydrate-binding motifs. Different MycFOLD genes are expressed during colonisation of different hosts and MycFOLD-17 transcripts accumulate in plant intracellular arbuscules. The exclusive presence of MycFOLDs across unrelated plant-colonising fungi, their inducible expression, lineage-specific sequence diversification and transcripts in arbuscules suggest that FOLD proteins act as effectors during plant colonisation of symbiotic and pathogenic fungi.
Collapse
Affiliation(s)
- Albin Teulet
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Clément Quan
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | | | - Alan Wanke
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Weibing Yang
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | | |
Collapse
|
11
|
Waheed A, Haxim Y, Islam W, Kahar G, Liu X, Zhang D. Role of pathogen's effectors in understanding host-pathogen interaction. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119347. [PMID: 36055522 DOI: 10.1016/j.bbamcr.2022.119347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Pathogens can pose challenges to plant growth and development at various stages of their life cycle. Two interconnected defense strategies prevent the growth of pathogens in plants, i.e., molecular patterns triggered immunity (PTI) and pathogenic effector-triggered immunity (ETI) that often provides resistance when PTI no longer functions as a result of pathogenic effectors. Plants may trigger an ETI defense response by directly or indirectly detecting pathogen effectors via their resistance proteins. A typical resistance protein is a nucleotide-binding receptor with leucine-rich sequences (NLRs) that undergo structural changes as they recognize their effectors and form associations with other NLRs. As a result of dimerization or oligomerization, downstream components activate "helper" NLRs, resulting in a response to ETI. It was thought that ETI is highly dependent on PTI. However, recent studies have found that ETI and PTI have symbiotic crosstalk, and both work together to create a robust system of plant defense. In this article, we have summarized the recent advances in understanding the plant's early immune response, its components, and how they cooperate in innate defense mechanisms. Moreover, we have provided the current perspective on engineering strategies for crop protection based on up-to-date knowledge.
Collapse
Affiliation(s)
- Abdul Waheed
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Urumqi 830011, China; Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China
| | - Yakupjan Haxim
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Urumqi 830011, China; Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China
| | - Waqar Islam
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Urumqi 830011, China; Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Gulnaz Kahar
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Urumqi 830011, China; Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China
| | - Xiaojie Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Urumqi 830011, China; Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China
| | - Daoyuan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Urumqi 830011, China; Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China.
| |
Collapse
|
12
|
Jing M, Xu X, Peng J, Li C, Zhang H, Lian C, Chen Y, Shen Z, Chen C. Comparative Genomics of Three Aspergillus Strains Reveals Insights into Endophytic Lifestyle and Endophyte-Induced Plant Growth Promotion. J Fungi (Basel) 2022; 8:jof8070690. [PMID: 35887447 PMCID: PMC9323082 DOI: 10.3390/jof8070690] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/19/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
Aspergillus includes both plant pathogenic and beneficial fungi. Although endophytes beneficial to plants have high potential for plant growth promotion and improving stress tolerance, studies on endophytic lifestyles and endophyte-plant interactions are still limited. Here, three endophytes belonging to Aspergillus, AS31, AS33, and AS42, were isolated. They could successfully colonize rice roots and significantly improved rice growth. The genomes of strains AS31, AS33, and AS42 were sequenced and compared with other Aspergillus species covering both pathogens and endophytes. The genomes of AS31, AS33, and AS42 were 36.8, 34.8, and 35.3 Mb, respectively. The endophytic genomes had more genes encoding carbohydrate-active enzymes (CAZymes) and small secreted proteins (SSPs) and secondary metabolism gene clusters involved in indole metabolism than the pathogens. In addition, these endophytes were able to improve Pi (phosphorus) accumulation and transport in rice by inducing the expression of Pi transport genes in rice. Specifically, inoculation with endophytes significantly increased Pi contents in roots at the early stage, while the Pi contents in inoculated shoots were significantly increased at the late stage. Our results not only provide important insights into endophyte-plant interactions but also provide strain and genome resources, paving the way for the agricultural application of Aspergillus endophytes.
Collapse
Affiliation(s)
- Minyu Jing
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.J.); (X.X.); (J.P.); (C.L.); (H.Z.); (Y.C.)
| | - Xihui Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.J.); (X.X.); (J.P.); (C.L.); (H.Z.); (Y.C.)
| | - Jing Peng
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.J.); (X.X.); (J.P.); (C.L.); (H.Z.); (Y.C.)
| | - Can Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.J.); (X.X.); (J.P.); (C.L.); (H.Z.); (Y.C.)
| | - Hanchao Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.J.); (X.X.); (J.P.); (C.L.); (H.Z.); (Y.C.)
| | - Chunlan Lian
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Tokyo 188-0002, Japan;
| | - Yahua Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.J.); (X.X.); (J.P.); (C.L.); (H.Z.); (Y.C.)
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.J.); (X.X.); (J.P.); (C.L.); (H.Z.); (Y.C.)
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (Z.S.); (C.C.); Tel.: +86-2584396391 (C.C.)
| | - Chen Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.J.); (X.X.); (J.P.); (C.L.); (H.Z.); (Y.C.)
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (Z.S.); (C.C.); Tel.: +86-2584396391 (C.C.)
| |
Collapse
|
13
|
Dutilloy E, Oni FE, Esmaeel Q, Clément C, Barka EA. Plant Beneficial Bacteria as Bioprotectants against Wheat and Barley Diseases. J Fungi (Basel) 2022; 8:jof8060632. [PMID: 35736115 PMCID: PMC9225584 DOI: 10.3390/jof8060632] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 02/07/2023] Open
Abstract
Wheat and barley are the main cereal crops cultivated worldwide and serve as staple food for a third of the world's population. However, due to enormous biotic stresses, the annual production has significantly reduced by 30-70%. Recently, the accelerated use of beneficial bacteria in the control of wheat and barley pathogens has gained prominence. In this review, we synthesized information about beneficial bacteria with demonstrated protection capacity against major barley and wheat pathogens including Fusarium graminearum, Zymoseptoria tritici and Pyrenophora teres. By summarizing the general insights into molecular factors involved in plant-pathogen interactions, we show to an extent, the means by which beneficial bacteria are implicated in plant defense against wheat and barley diseases. On wheat, many Bacillus strains predominantly reduced the disease incidence of F. graminearum and Z. tritici. In contrast, on barley, the efficacy of a few Pseudomonas, Bacillus and Paraburkholderia spp. has been established against P. teres. Although several modes of action were described for these strains, we have highlighted the role of Bacillus and Pseudomonas secondary metabolites in mediating direct antagonism and induced resistance against these pathogens. Furthermore, we advance a need to ascertain the mode of action of beneficial bacteria/molecules to enhance a solution-based crop protection strategy. Moreover, an apparent disjoint exists between numerous experiments that have demonstrated disease-suppressive effects and the translation of these successes to commercial products and applications. Clearly, the field of cereal disease protection leaves a lot to be explored and uncovered.
Collapse
|
14
|
The microscopic mechanism between endophytic fungi and host plants: From recognition to building stable mutually beneficial relationships. Microbiol Res 2022; 261:127056. [DOI: 10.1016/j.micres.2022.127056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 11/21/2022]
|
15
|
Ntana F, Johnson SR, Hamberger B, Jensen B, Jørgensen HJL, Collinge DB. Regulation of Tomato Specialised Metabolism after Establishment of Symbiosis with the Endophytic Fungus Serendipita indica. Microorganisms 2022; 10:microorganisms10010194. [PMID: 35056642 PMCID: PMC8778627 DOI: 10.3390/microorganisms10010194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/09/2022] [Accepted: 01/09/2022] [Indexed: 12/17/2022] Open
Abstract
Specialised metabolites produced during plant-fungal associations often define how symbiosis between the plant and the fungus proceeds. They also play a role in the establishment of additional interactions between the symbionts and other organisms present in the niche. However, specialised metabolism and its products are sometimes overlooked when studying plant-microbe interactions. This limits our understanding of the specific symbiotic associations and potentially future perspectives of their application in agriculture. In this study, we used the interaction between the root endophyte Serendipita indica and tomato (Solanum lycopersicum) plants to explore how specialised metabolism of the host plant is regulated upon a mutualistic symbiotic association. To do so, tomato seedlings were inoculated with S. indica chlamydospores and subjected to RNAseq analysis. Gene expression of the main tomato specialised metabolism pathways was compared between roots and leaves of endophyte-colonised plants and tissues of endophyte-free plants. S. indica colonisation resulted in a strong transcriptional response in the leaves of colonised plants. Furthermore, the presence of the fungus in plant roots appears to induce expression of genes involved in the biosynthesis of lignin-derived compounds, polyacetylenes, and specific terpenes in both roots and leaves, whereas pathways producing glycoalkaloids and flavonoids were expressed in lower or basal levels.
Collapse
Affiliation(s)
- Fani Ntana
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Copenhagen, Denmark; (F.N.); (B.J.); (H.J.L.J.)
| | - Sean R. Johnson
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA;
| | - Björn Hamberger
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI 48824, USA;
| | - Birgit Jensen
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Copenhagen, Denmark; (F.N.); (B.J.); (H.J.L.J.)
| | - Hans J. L. Jørgensen
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Copenhagen, Denmark; (F.N.); (B.J.); (H.J.L.J.)
| | - David B. Collinge
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Copenhagen, Denmark; (F.N.); (B.J.); (H.J.L.J.)
- Correspondence: ; Tel.: +45-35333356
| |
Collapse
|
16
|
Amoozadeh S, Johnston J, Meisrimler CN. Exploiting Structural Modelling Tools to Explore Host-Translocated Effector Proteins. Int J Mol Sci 2021; 22:12962. [PMID: 34884778 PMCID: PMC8657640 DOI: 10.3390/ijms222312962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 12/12/2022] Open
Abstract
Oomycete and fungal interactions with plants can be neutral, symbiotic or pathogenic with different impact on plant health and fitness. Both fungi and oomycetes can generate so-called effector proteins in order to successfully colonize the host plant. These proteins modify stress pathways, developmental processes and the innate immune system to the microbes' benefit, with a very different outcome for the plant. Investigating the biological and functional roles of effectors during plant-microbe interactions are accessible through bioinformatics and experimental approaches. The next generation protein modeling software RoseTTafold and AlphaFold2 have made significant progress in defining the 3D-structure of proteins by utilizing novel machine-learning algorithms using amino acid sequences as their only input. As these two methods rely on super computers, Google Colabfold alternatives have received significant attention, making the approaches more accessible to users. Here, we focus on current structural biology, sequence motif and domain knowledge of effector proteins from filamentous microbes and discuss the broader use of novel modelling strategies, namely AlphaFold2 and RoseTTafold, in the field of effector biology. Finally, we compare the original programs and their Colab versions to assess current strengths, ease of access, limitations and future applications.
Collapse
Affiliation(s)
- Sahel Amoozadeh
- School of Biological Science, University of Canterbury, Christchurch 8041, New Zealand;
| | - Jodie Johnston
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8041, New Zealand;
| | | |
Collapse
|
17
|
Rhizospheric microbiome: Bio-based emerging strategies for sustainable agriculture development and future perspectives. Microbiol Res 2021; 254:126901. [PMID: 34700186 DOI: 10.1016/j.micres.2021.126901] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 10/16/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022]
Abstract
In the light of intensification of cropping practices and changing climatic conditions, nourishing a growing global population requires optimizing environmental sustainability and reducing ecosystem impacts of food production. The use of microbiological systems to ameliorate the agricultural production in a sustainable and eco-friendly way is widespread accepted as a future key-technology. However, the multitude of interaction possibilities between the numerous beneficial microbes and plants in their habitat calls for systematic analysis and management of the rhizospheric microbiome. This review exploits present and future strategies for rhizospheric microbiome management with the aim to generate a comprehensive understanding of the known tools and techniques. Significant information on the structure and dynamics of rhizospheric microbiota of isolated microbial communities is now available. These microbial communities have beneficial effects including increased plant growth, essential nutrient acquisition, pathogens tolerance, and increased abiotic as well as biotic stress tolerance such as drought, temperature, salinity and antagonistic activities against the phyto-pathogens. A better and comprehensive understanding of the various effects and microbial interactions can be gained by application of molecular approaches as extraction of DNA/RNA and other biochemical markers to analyze microbial soil diversity. Novel techniques like interactome network analysis and split-ubiquitin system framework will enable to gain more insight into communication and interactions between the proteins from microbes and plants. The aim of the analysis tasks leads to the novel approach of Rhizosphere microbiome engineering. The capability of forming the rhizospheric microbiome in a defined way will allow combining several microbes (e.g. bacteria and fungi) for a given environment (soil type and climatic zone) in order to exert beneficial influences on specific plants. This integration will require a large-scale effort among academic researchers, industry researchers and farmers to understand and manage interactions of plant-microbiomes within modern farming systems, and is clearly a multi-domain approach and can be mastered only jointly by microbiology, mathematics and information technology. These innovations will open up a new avenue for designing and implementing intensive farming microbiome management approaches to maximize resource productivity and stress tolerance of agro-ecosystems, which in return will create value to the increasing worldwide population, for both food production and consumption.
Collapse
|
18
|
Jones DAB, Moolhuijzen PM, Hane JK. Remote homology clustering identifies lowly conserved families of effector proteins in plant-pathogenic fungi. Microb Genom 2021; 7. [PMID: 34468307 PMCID: PMC8715435 DOI: 10.1099/mgen.0.000637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Plant diseases caused by fungal pathogens are typically initiated by molecular interactions between 'effector' molecules released by a pathogen and receptor molecules on or within the plant host cell. In many cases these effector-receptor interactions directly determine host resistance or susceptibility. The search for fungal effector proteins is a developing area in fungal-plant pathology, with more than 165 distinct confirmed fungal effector proteins in the public domain. For a small number of these, novel effectors can be rapidly discovered across multiple fungal species through the identification of known effector homologues. However, many have no detectable homology by standard sequence-based search methods. This study employs a novel comparison method (RemEff) that is capable of identifying protein families with greater sensitivity than traditional homology-inference methods, leveraging a growing pool of confirmed fungal effector data to enable the prediction of novel fungal effector candidates by protein family association. Resources relating to the RemEff method and data used in this study are available from https://figshare.com/projects/Effector_protein_remote_homology/87965.
Collapse
Affiliation(s)
- Darcy A B Jones
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, Australia
| | - Paula M Moolhuijzen
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, Australia
| | - James K Hane
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, Australia.,Curtin Institute for Computation, Curtin University, Perth, Australia
| |
Collapse
|
19
|
Šečić E, Zanini S, Wibberg D, Jelonek L, Busche T, Kalinowski J, Nasfi S, Thielmann J, Imani J, Steinbrenner J, Kogel KH. A novel plant-fungal association reveals fundamental sRNA and gene expression reprogramming at the onset of symbiosis. BMC Biol 2021; 19:171. [PMID: 34429124 PMCID: PMC8385953 DOI: 10.1186/s12915-021-01104-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 07/16/2021] [Indexed: 01/15/2023] Open
Affiliation(s)
- Ena Šečić
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, 35392, Giessen, Germany
| | - Silvia Zanini
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, 35392, Giessen, Germany
| | - Daniel Wibberg
- Center for Biotechnology - CeBiTec, Bielefeld University, 33615, Bielefeld, Germany
| | - Lukas Jelonek
- Institute of Bioinformatics and Systems Biology, Justus Liebig University, 35392, Giessen, Germany
| | - Tobias Busche
- Center for Biotechnology - CeBiTec, Bielefeld University, 33615, Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology - CeBiTec, Bielefeld University, 33615, Bielefeld, Germany
| | - Sabrine Nasfi
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, 35392, Giessen, Germany
| | - Jennifer Thielmann
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, 35392, Giessen, Germany
| | - Jafargholi Imani
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, 35392, Giessen, Germany
| | - Jens Steinbrenner
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, 35392, Giessen, Germany
| | - Karl-Heinz Kogel
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, 35392, Giessen, Germany.
| |
Collapse
|
20
|
Ntana F, Bhat WW, Johnson SR, Jørgensen HJL, Collinge DB, Jensen B, Hamberger B. A Sesquiterpene Synthase from the Endophytic Fungus Serendipita indica Catalyzes Formation of Viridiflorol. Biomolecules 2021; 11:biom11060898. [PMID: 34208762 PMCID: PMC8234273 DOI: 10.3390/biom11060898] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 12/16/2022] Open
Abstract
Interactions between plant-associated fungi and their hosts are characterized by a continuous crosstalk of chemical molecules. Specialized metabolites are often produced during these associations and play important roles in the symbiosis between the plant and the fungus, as well as in the establishment of additional interactions between the symbionts and other organisms present in the niche. Serendipita indica, a root endophytic fungus from the phylum Basidiomycota, is able to colonize a wide range of plant species, conferring many benefits to its hosts. The genome of S. indica possesses only few genes predicted to be involved in specialized metabolite biosynthesis, including a putative terpenoid synthase gene (SiTPS). In our experimental setup, SiTPS expression was upregulated when the fungus colonized tomato roots compared to its expression in fungal biomass growing on synthetic medium. Heterologous expression of SiTPS in Escherichia coli showed that the produced protein catalyzes the synthesis of a few sesquiterpenoids, with the alcohol viridiflorol being the main product. To investigate the role of SiTPS in the plant-endophyte interaction, an SiTPS-over-expressing mutant line was created and assessed for its ability to colonize tomato roots. Although overexpression of SiTPS did not lead to improved fungal colonization ability, an in vitro growth-inhibition assay showed that viridiflorol has antifungal properties. Addition of viridiflorol to the culture medium inhibited the germination of spores from a phytopathogenic fungus, indicating that SiTPS and its products could provide S. indica with a competitive advantage over other plant-associated fungi during root colonization.
Collapse
Affiliation(s)
- Fani Ntana
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark;
| | - Wajid W. Bhat
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI 48824, USA;
| | - Sean R. Johnson
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA;
| | - Hans J. L. Jørgensen
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Copenhagen, Denmark; (H.J.L.J.); (D.B.C.); (B.J.)
| | - David B. Collinge
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Copenhagen, Denmark; (H.J.L.J.); (D.B.C.); (B.J.)
| | - Birgit Jensen
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Copenhagen, Denmark; (H.J.L.J.); (D.B.C.); (B.J.)
| | - Björn Hamberger
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI 48824, USA;
- Correspondence:
| |
Collapse
|
21
|
Narayan OP, Verma N, Jogawat A, Dua M, Johri AK. Sulfur transfer from the endophytic fungus Serendipita indica improves maize growth and requires the sulfate transporter SiSulT. THE PLANT CELL 2021; 33:1268-1285. [PMID: 33793849 DOI: 10.1093/plcell/koab006] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
A deficiency of the essential macronutrient sulfur leads to stunted plant growth and yield loss; however, an association with a symbiotic fungus can greatly improve nutrient uptake by the host plant. Here, we identified and functionally characterized a high-affinity sulfate transporter from the endophytic fungus Serendipita indica. SiSulT fulfills all the criteria expected of a functional sulfate transporter responding to sulfur limitation: SiSulT expression was induced when S. indica was grown under low-sulfate conditions, and heterologous expression of SiSulT complemented a yeast mutant lacking sulfate transport. We generated a knockdown strain of SiSulT by RNA interference to investigate the consequences of the partial loss of this transporter for the fungus and the host plant (maize, Zea mays) during colonization. Wild-type (WT) S. indica, but not the knockdown strain (kd-SiSulT), largely compensated for low-sulfate availability and supported plant growth. Colonization by WT S. indica also allowed maize roots to allocate precious resources away from sulfate assimilation under low-sulfur conditions, as evidenced by the reduction in expression of most sulfate assimilation genes. Our study illustrates the utility of the endophyte S. indica in sulfur nutrition research and offers potential avenues for agronomically sound amelioration of plant growth in low-sulfate environments.
Collapse
Affiliation(s)
- Om Prakash Narayan
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Nidhi Verma
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Abhimanyu Jogawat
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Meenakshi Dua
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Atul Kumar Johri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
22
|
Singh Y, Nair AM, Verma PK. Surviving the odds: From perception to survival of fungal phytopathogens under host-generated oxidative burst. PLANT COMMUNICATIONS 2021; 2:100142. [PMID: 34027389 PMCID: PMC8132124 DOI: 10.1016/j.xplc.2021.100142] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/04/2020] [Accepted: 01/01/2021] [Indexed: 05/04/2023]
Abstract
Fungal phytopathogens pose a serious threat to global crop production. Only a handful of strategies are available to combat these fungal infections, and the increasing incidence of fungicide resistance is making the situation worse. Hence, the molecular understanding of plant-fungus interactions remains a primary focus of plant pathology. One of the hallmarks of host-pathogen interactions is the overproduction of reactive oxygen species (ROS) as a plant defense mechanism, collectively termed the oxidative burst. In general, high accumulation of ROS restricts the growth of pathogenic organisms by causing localized cell death around the site of infection. To survive the oxidative burst and achieve successful host colonization, fungal phytopathogens employ intricate mechanisms for ROS perception, ROS neutralization, and protection from ROS-mediated damage. Together, these countermeasures maintain the physiological redox homeostasis that is essential for cell viability. In addition to intracellular antioxidant systems, phytopathogenic fungi also deploy interesting effector-mediated mechanisms for extracellular ROS modulation. This aspect of plant-pathogen interactions is significantly under-studied and provides enormous scope for future research. These adaptive responses, broadly categorized into "escape" and "exploitation" mechanisms, are poorly understood. In this review, we discuss the oxidative stress response of filamentous fungi, their perception signaling, and recent insights that provide a comprehensive understanding of the distinct survival mechanisms of fungal pathogens in response to the host-generated oxidative burst.
Collapse
Affiliation(s)
- Yeshveer Singh
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Athira Mohandas Nair
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Praveen Kumar Verma
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
23
|
Wang Y, Zhou M, Zou Q, Xu L. Machine learning for phytopathology: from the molecular scale towards the network scale. Brief Bioinform 2021; 22:6204793. [PMID: 33787847 DOI: 10.1093/bib/bbab037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/09/2021] [Accepted: 01/26/2021] [Indexed: 01/16/2023] Open
Abstract
With the increasing volume of high-throughput sequencing data from a variety of omics techniques in the field of plant-pathogen interactions, sorting, retrieving, processing and visualizing biological information have become a great challenge. Within the explosion of data, machine learning offers powerful tools to process these complex omics data by various algorithms, such as Bayesian reasoning, support vector machine and random forest. Here, we introduce the basic frameworks of machine learning in dissecting plant-pathogen interactions and discuss the applications and advances of machine learning in plant-pathogen interactions from molecular to network biology, including the prediction of pathogen effectors, plant disease resistance protein monitoring and the discovery of protein-protein networks. The aim of this review is to provide a summary of advances in plant defense and pathogen infection and to indicate the important developments of machine learning in phytopathology.
Collapse
Affiliation(s)
- Yansu Wang
- Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, China
| | | | - Quan Zou
- University of Electronic Science and Technology of China
| | - Lei Xu
- Shenzhen Polytechnic, China
| |
Collapse
|
24
|
|
25
|
Plett JM, Plett KL, Wong-Bajracharya J, de Freitas Pereira M, Costa MD, Kohler A, Martin F, Anderson IC. Mycorrhizal effector PaMiSSP10b alters polyamine biosynthesis in Eucalyptus root cells and promotes root colonization. THE NEW PHYTOLOGIST 2020; 228:712-727. [PMID: 32562507 DOI: 10.1111/nph.16759] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Pathogenic microbes are known to manipulate the defences of their hosts through the production of secreted effector proteins. More recently, mutualistic mycorrhizal fungi have also been described as using these secreted effectors to promote host colonization. Here we characterize a mycorrhiza-induced small secreted effector protein of 10 kDa produced by the ectomycorrhizal fungus Pisolithus albus, PaMiSSP10b. We demonstrate that PaMiSSP10b is secreted from fungal hyphae, enters the cells of its host, Eucalyptus grandis, and interacts with an S-adenosyl methionine decarboxylase (AdoMetDC) in the polyamine pathway. Plant polyamines are regulatory molecules integral to the plant immune system during microbial challenge. Using biochemical and transgenic approaches we show that expression of PaMiSSP10b influences levels of polyamines in the plant roots as it enhances the enzymatic activity of AdoMetDC and increases the biosynthesis of higher polyamines. This ultimately favours the colonization success of P. albus. These results identify a new mechanism by which mutualistic microbes are able to manipulate the host´s enzymatic pathways to favour colonization.
Collapse
Affiliation(s)
- Jonathan M Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Krista L Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Johanna Wong-Bajracharya
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Maíra de Freitas Pereira
- INRAE, UMR Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRA GrandEst Nancy, Université de Lorraine, Champenoux, 54280, France
- Bolsista do CNPq, Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Maurício Dutra Costa
- Bolsista do CNPq, Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Annegret Kohler
- INRAE, UMR Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRA GrandEst Nancy, Université de Lorraine, Champenoux, 54280, France
| | - Francis Martin
- INRAE, UMR Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRA GrandEst Nancy, Université de Lorraine, Champenoux, 54280, France
| | - Ian C Anderson
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| |
Collapse
|
26
|
Jacott CN, Charpentier M, Murray JD, Ridout CJ. Mildew Locus O facilitates colonization by arbuscular mycorrhizal fungi in angiosperms. THE NEW PHYTOLOGIST 2020; 227:343-351. [PMID: 32012282 PMCID: PMC7317859 DOI: 10.1111/nph.16465] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/27/2020] [Indexed: 05/03/2023]
Abstract
Loss of barley Mildew Resistance Locus O (MLO) is known to confer durable and robust resistance to powdery mildew (Blumeria graminis), a biotrophic fungal leaf pathogen. Based on the increased expression of MLO in mycorrhizal roots and its presence in a clade of the MLO family that is specific to mycorrhizal-host species, we investigated the potential role of MLO in arbuscular mycorrhizal interactions. Using mutants from barley (Hordeum vulgare), wheat (Triticum aestivum), and Medicago truncatula, we demonstrate a role for MLO in colonization by the arbuscular mycorrhizal fungus Rhizophagus irregularis. Early mycorrhizal colonization was reduced in mlo mutants of barley, wheat, and M. truncatula, and this was accompanied by a pronounced decrease in the expression of many of the key genes required for intracellular accommodation of arbuscular mycorrhizal fungi. These findings show that clade IV MLOs are involved in the establishment of symbiotic associations with beneficial fungi, a role that has been appropriated by powdery mildew.
Collapse
Affiliation(s)
- Catherine N. Jacott
- Crop Genetics DepartmentJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Myriam Charpentier
- Cell and Developmental Biology DepartmentJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Jeremy D. Murray
- Cell and Developmental Biology DepartmentJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
- National Key Laboratory of Plant Molecular GeneticsCAS‐JIC Centre of Excellence for Plant and Microbial Science (CEPAMS)CAS Centre for Excellence in Molecular and Plant SciencesInstitute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| | | |
Collapse
|
27
|
Khalid M, Hui N, Rahman SU, Hayat K, Huang D. Suppression of clubroot (Plasmodiophora brassicae) development in Brassica campestris sp. chinensis L. via exogenous inoculation of Piriformospora indica. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2020. [DOI: 10.1080/16878507.2020.1719337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Muhammad Khalid
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Nan Hui
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Saeed-ur- Rahman
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Kashif Hayat
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Danfeng Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| |
Collapse
|
28
|
Yu K, Pieterse CM, Bakker PA, Berendsen RL. Beneficial microbes going underground of root immunity. PLANT, CELL & ENVIRONMENT 2019; 42:2860-2870. [PMID: 31353481 PMCID: PMC6851990 DOI: 10.1111/pce.13632] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 05/19/2023]
Abstract
Plant roots interact with an enormous diversity of commensal, mutualistic, and pathogenic microbes, which poses a big challenge to roots to distinguish beneficial microbes from harmful ones. Plants can effectively ward off pathogens following immune recognition of conserved microbe-associated molecular patterns (MAMPs). However, such immune elicitors are essentially not different from those of neutral and beneficial microbes that are abundantly present in the root microbiome. Recent studies indicate that the plant immune system plays an active role in influencing rhizosphere microbiome composition. Moreover, it has become increasingly clear that root-invading beneficial microbes, including rhizobia and arbuscular mycorrhiza, evade or suppress host immunity to establish a mutualistic relationship with their host. Evidence is accumulating that many free-living rhizosphere microbiota members can suppress root immune responses, highlighting root immune suppression as an important function of the root microbiome. Thus, the gate keeping functions of the plant immune system are not restricted to warding off root-invading pathogens but also extend to rhizosphere microbiota, likely to promote colonization by beneficial microbes and prevent growth-defense tradeoffs triggered by the MAMP-rich rhizosphere environment.
Collapse
Affiliation(s)
- Ke Yu
- Plant‐Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4LifeUtrecht UniversityUtrecht3508TBThe Netherlands
| | - Corné M.J. Pieterse
- Plant‐Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4LifeUtrecht UniversityUtrecht3508TBThe Netherlands
| | - Peter A.H.M. Bakker
- Plant‐Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4LifeUtrecht UniversityUtrecht3508TBThe Netherlands
| | - Roeland L. Berendsen
- Plant‐Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4LifeUtrecht UniversityUtrecht3508TBThe Netherlands
| |
Collapse
|
29
|
Pellegrin C, Daguerre Y, Ruytinx J, Guinet F, Kemppainen M, Frey NFD, Puech‐Pagès V, Hecker A, Pardo AG, Martin FM, Veneault‐Fourrey C. Laccaria bicolor
MiSSP8 is a small‐secreted protein decisive for the establishment of the ectomycorrhizal symbiosis. Environ Microbiol 2019; 21:3765-3779. [DOI: 10.1111/1462-2920.14727] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/18/2019] [Accepted: 06/27/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Clément Pellegrin
- INRA, UMR1136Interactions Arbres/microorganismes Centre Grand‐Est Champenoux France
- UMR 1136, Interactions Arbres/Microorganismes (IAM), Faculté des Sciences et TechnologiesUniversité de Lorraine Vandœuvre lès Nancy France
| | - Yohann Daguerre
- INRA, UMR1136Interactions Arbres/microorganismes Centre Grand‐Est Champenoux France
- UMR 1136, Interactions Arbres/Microorganismes (IAM), Faculté des Sciences et TechnologiesUniversité de Lorraine Vandœuvre lès Nancy France
| | - Joske Ruytinx
- INRA, UMR1136Interactions Arbres/microorganismes Centre Grand‐Est Champenoux France
- UMR 1136, Interactions Arbres/Microorganismes (IAM), Faculté des Sciences et TechnologiesUniversité de Lorraine Vandœuvre lès Nancy France
| | - Frédéric Guinet
- INRA, UMR1136Interactions Arbres/microorganismes Centre Grand‐Est Champenoux France
- UMR 1136, Interactions Arbres/Microorganismes (IAM), Faculté des Sciences et TechnologiesUniversité de Lorraine Vandœuvre lès Nancy France
| | - Minna Kemppainen
- Laboratorio de Micología Molecular, Departamento de Ciencia y TecnologıaUniversidad Nacional de Quilmes and CONICET Roque Sáenz Peña 352 B1876 Bernal Provincia de Buenos Aires Argentina
| | - Nicolas Frei dit Frey
- Laboratoire de Recherche en Sciences VégétalesUniversité de Toulouse, CNRS, UPS 24 chemin de Borde Rouge, Auzeville, BP42617 31326 Castanet Tolosan France
| | - Virginie Puech‐Pagès
- Laboratoire de Recherche en Sciences VégétalesUniversité de Toulouse, CNRS, UPS 24 chemin de Borde Rouge, Auzeville, BP42617 31326 Castanet Tolosan France
| | - Arnaud Hecker
- INRA, UMR1136Interactions Arbres/microorganismes Centre Grand‐Est Champenoux France
- UMR 1136, Interactions Arbres/Microorganismes (IAM), Faculté des Sciences et TechnologiesUniversité de Lorraine Vandœuvre lès Nancy France
| | - Alejandro G. Pardo
- Laboratorio de Micología Molecular, Departamento de Ciencia y TecnologıaUniversidad Nacional de Quilmes and CONICET Roque Sáenz Peña 352 B1876 Bernal Provincia de Buenos Aires Argentina
| | - Francis M. Martin
- INRA, UMR1136Interactions Arbres/microorganismes Centre Grand‐Est Champenoux France
- UMR 1136, Interactions Arbres/Microorganismes (IAM), Faculté des Sciences et TechnologiesUniversité de Lorraine Vandœuvre lès Nancy France
| | - Claire Veneault‐Fourrey
- INRA, UMR1136Interactions Arbres/microorganismes Centre Grand‐Est Champenoux France
- UMR 1136, Interactions Arbres/Microorganismes (IAM), Faculté des Sciences et TechnologiesUniversité de Lorraine Vandœuvre lès Nancy France
| |
Collapse
|
30
|
Rodriguez PA, Rothballer M, Chowdhury SP, Nussbaumer T, Gutjahr C, Falter-Braun P. Systems Biology of Plant-Microbiome Interactions. MOLECULAR PLANT 2019; 12:804-821. [PMID: 31128275 DOI: 10.1016/j.molp.2019.05.006] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/07/2019] [Accepted: 05/15/2019] [Indexed: 05/02/2023]
Abstract
In natural environments, plants are exposed to diverse microbiota that they interact with in complex ways. While plant-pathogen interactions have been intensely studied to understand defense mechanisms in plants, many microbes and microbial communities can have substantial beneficial effects on their plant host. Such beneficial effects include improved acquisition of nutrients, accelerated growth, resilience against pathogens, and improved resistance against abiotic stress conditions such as heat, drought, and salinity. However, the beneficial effects of bacterial strains or consortia on their host are often cultivar and species specific, posing an obstacle to their general application. Remarkably, many of the signals that trigger plant immune responses are molecularly highly similar and often identical in pathogenic and beneficial microbes. Thus, it is unclear what determines the outcome of a particular microbe-host interaction and which factors enable plants to distinguish beneficials from pathogens. To unravel the complex network of genetic, microbial, and metabolic interactions, including the signaling events mediating microbe-host interactions, comprehensive quantitative systems biology approaches will be needed.
Collapse
Affiliation(s)
- Patricia A Rodriguez
- Institute of Network Biology (INET), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Michael Rothballer
- Institute of Network Biology (INET), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Soumitra Paul Chowdhury
- Institute of Network Biology (INET), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Thomas Nussbaumer
- Institute of Network Biology (INET), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany; Institute of Environmental Medicine (IEM), UNIKA-T, Technical University of Munich, Augsburg, Germany
| | - Caroline Gutjahr
- Plant Genetics, TUM School of Life Science Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| | - Pascal Falter-Braun
- Institute of Network Biology (INET), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany; Microbe-Host Interactions, Faculty of Biology, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany.
| |
Collapse
|
31
|
Johnson JM, Ludwig A, Furch ACU, Mithöfer A, Scholz S, Reichelt M, Oelmüller R. The Beneficial Root-Colonizing Fungus Mortierella hyalina Promotes the Aerial Growth of Arabidopsis and Activates Calcium-Dependent Responses That Restrict Alternaria brassicae-Induced Disease Development in Roots. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:351-363. [PMID: 30252617 DOI: 10.1094/mpmi-05-18-0115-r] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The endophytic fungus Mortierella hyalina colonizes the roots of Arabidopsis thaliana and stimulates growth and biomass production of the aerial parts but not of roots. An exudate fraction from the fungus induces rapid and transient cytoplasmic Ca2+elevation in the roots. The Ca2+ response does not require the well-characterized (co)receptors BAK1, CERK1, and FLS2 for pathogen-associated molecular patterns, and the Ca2+ channels GLR-2.4, GLR-2.5, and GLR-3.3 or the vacuolar TWO PORE CHANNEL1, which might be involved in cytoplasmic Ca2+ elevation. We isolated an ethyl-methane-sulfonate-induced Arabidopsis mutant that is impaired in this Ca2+ response. The roots of the mutant are impaired in M. hyalina-mediated suppression of immune responses after Alternaria brassicae infection, i.e., jasmonate accumulation, generation of reactive oxygen species, as well as the activation of jasmonate-related defense genes. Furthermore, they are more colonized by M. hyalina than wild-type roots. We propose that the mutant gene product is involved in a Ca2+-dependent signaling pathway activated by M. hyalina to suppress immune responses in Arabidopsis roots.
Collapse
Affiliation(s)
- Joy Michal Johnson
- 1 Matthias-Schleiden-Institute for Bioinformatics, Genetics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, Dornburger Str. 159, 07743 Jena, Germany
| | - Anatoli Ludwig
- 1 Matthias-Schleiden-Institute for Bioinformatics, Genetics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, Dornburger Str. 159, 07743 Jena, Germany
| | - Alexandra C U Furch
- 1 Matthias-Schleiden-Institute for Bioinformatics, Genetics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, Dornburger Str. 159, 07743 Jena, Germany
| | - Axel Mithöfer
- 2 Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology
- 3 Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology
| | - Sandra Scholz
- 1 Matthias-Schleiden-Institute for Bioinformatics, Genetics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, Dornburger Str. 159, 07743 Jena, Germany
| | - Michael Reichelt
- 4 Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Ralf Oelmüller
- 1 Matthias-Schleiden-Institute for Bioinformatics, Genetics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, Dornburger Str. 159, 07743 Jena, Germany
| |
Collapse
|
32
|
Khalid M, Rahman SU, Huang D. Molecular mechanism underlying Piriformospora indica-mediated plant improvement/protection for sustainable agriculture. Acta Biochim Biophys Sin (Shanghai) 2019; 51:229-242. [PMID: 30883651 DOI: 10.1093/abbs/gmz004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 01/02/2023] Open
Abstract
The beneficial endophytic microorganisms have received significant attention in agriculture because of their exceptional capabilities to facilitate functions like nutrient enrichment, water status, and stress tolerance (biotic and abiotic). This review signifies the molecular mechanisms to better understand the Piriformospora indica-mediated plants improvement or protection for sustainable agriculture. P. indica, an endophytic fungus, belonging to the order Sebacinales (Basidiomycota), is versatile in building mutualistic associations with a variety of plants including pteridophytes, bryophytes, gymnosperms, and angiosperms. P. indica has enormous potential to manipulate the hormonal pathway such as the production of indole-3-acetic acid which in turn increases root proliferation and subsequently improves plant nutrient acquisition. P. indica also enhances components of the antioxidant system and expression of stress-related genes which induce plant stress tolerance under adverse environmental conditions. P. indica has tremendous potential for crop improvement because of its multi-dimensional functions such as plant growth promotion, immunomodulatory effect, biofertilizer, obviates biotic (pathogens) and abiotic (metal toxicity, water stress, soil structure, salt, and pH) stresses, phytoremediator, and bio-herbicide. Considering the above points, herein, we reviewed the physiological and molecular mechanisms underlying P. indica-mediated plants improvement or protection under diverse agricultural environment. The first part of the review focuses on the symbiotic association of P. indica with special reference to biotic and abiotic stress tolerance and host plant root colonization mechanisms, respectively. Emphasis is given to the expression level of essential genes involved in the processes that induce changes at the cellular level. The last half emphasizes critical aspects related to the seed germination, plant yield, and nutrients acquisition.
Collapse
Affiliation(s)
- Muhammad Khalid
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Saeed-ur- Rahman
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Danfeng Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
33
|
Pascale A, Proietti S, Pantelides IS, Stringlis IA. Modulation of the Root Microbiome by Plant Molecules: The Basis for Targeted Disease Suppression and Plant Growth Promotion. FRONTIERS IN PLANT SCIENCE 2019; 10:1741. [PMID: 32038698 PMCID: PMC6992662 DOI: 10.3389/fpls.2019.01741] [Citation(s) in RCA: 237] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/11/2019] [Indexed: 05/18/2023]
Abstract
Plants host a mesmerizing diversity of microbes inside and around their roots, known as the microbiome. The microbiome is composed mostly of fungi, bacteria, oomycetes, and archaea that can be either pathogenic or beneficial for plant health and fitness. To grow healthy, plants need to surveil soil niches around the roots for the detection of pathogenic microbes, and in parallel maximize the services of beneficial microbes in nutrients uptake and growth promotion. Plants employ a palette of mechanisms to modulate their microbiome including structural modifications, the exudation of secondary metabolites and the coordinated action of different defence responses. Here, we review the current understanding on the composition and activity of the root microbiome and how different plant molecules can shape the structure of the root-associated microbial communities. Examples are given on interactions that occur in the rhizosphere between plants and soilborne fungi. We also present some well-established examples of microbiome harnessing to highlight how plants can maximize their fitness by selecting their microbiome. Understanding how plants manipulate their microbiome can aid in the design of next-generation microbial inoculants for targeted disease suppression and enhanced plant growth.
Collapse
Affiliation(s)
- Alberto Pascale
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Silvia Proietti
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Iakovos S. Pantelides
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
- *Correspondence: Iakovos S. Pantelides, ; Ioannis A. Stringlis,
| | - Ioannis A. Stringlis
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, Netherlands
- *Correspondence: Iakovos S. Pantelides, ; Ioannis A. Stringlis,
| |
Collapse
|
34
|
Bhatnagar VS, Bandyopadhyay P, Rajacharya GH, Sarkar S, Poluri KM, Kumar S. Amelioration of biomass and lipid in marine alga by an endophytic fungus Piriformospora indica. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:176. [PMID: 31316583 PMCID: PMC6613240 DOI: 10.1186/s13068-019-1516-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/23/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Many studies have been carried out on the growth-modulating efficiency of plants by the colonization of an endophytic fungus Piriformospora indica. However, studies involving the co-culture of alga with endophytic fungal strains for enhanced biodiesel production are rare. In this study, the interaction between P. indica and Parachlorella kessleri-I, a marine algal strain, was assessed at metabolic level. RESULTS In association with an endophytic fungus, the algal biomass enhanced from 471.6 to 704 mg/L, and the fatty acid methyl ester (FAME) profile of P. kessleri-I increased substantially. In case of FAME profile of co-cultured P. kessleri-I, two essential components of biodiesel, i.e. elaidic acid and oleic acid, increased by 1.4- and 1.8-fold, respectively. To ascertain changes in the metabolic profile of P. kessleri-I by P. indica co-culture, gas chromatography-mass spectrometry (GC-MS)-based untargeted metabolomics study was performed to identify the metabolites involved; and differential nature of the essential metabolites was also confirmed using HPLC and LC-MS. Significant modulation of the bioactive metabolites such as succinate, oxo-propanoate, l-alanine, glutamate, acetate and 1,2 propanediol, hydroxy butane was observed. CONCLUSION The metabolites like glutamate and succinate that usually belong to the GABA shunt pathway were observed to be upregulated. The pathway links nitrogen metabolism and carbon metabolism, thus influencing the growth and lipid profile of the algae. These differential metabolites thus indicated the important commensal association between the endophytic fungus and autotrophic marine alga, and established that endophytic fungus can be handy for the sustainability of algal biofuel industries.
Collapse
Affiliation(s)
- Vipul Swarup Bhatnagar
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Prasun Bandyopadhyay
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Girish H. Rajacharya
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Sharanya Sarkar
- Department of Biotechnology & Centre for Transportation Systems (CTRANS), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
| | - Krishna Mohan Poluri
- Department of Biotechnology & Centre for Transportation Systems (CTRANS), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
| | - Shashi Kumar
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| |
Collapse
|
35
|
Hiruma K, Kobae Y, Toju H. Beneficial associations between Brassicaceae plants and fungal endophytes under nutrient-limiting conditions: evolutionary origins and host-symbiont molecular mechanisms. CURRENT OPINION IN PLANT BIOLOGY 2018; 44:145-154. [PMID: 29738938 DOI: 10.1016/j.pbi.2018.04.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 05/02/2023]
Abstract
Brassicaceae plants have lost symbiotic interactions with mutualistic mycorrhizal fungi, but, nonmycorrhizal Brassicaceae associate with diverse taxonomic groups of mutualistic root-endophytic fungi. Distantly related fungal endophytes of Brassicaceae plants transfer phosphorus to the hosts and promote plant growth, thereby suggesting that the beneficial function was independently acquired via convergent evolution. These beneficial interactions appear tightly regulated by the tryptophan-derived secondary metabolite pathway, which specifically developed in Brassicaceae. Importantly, phosphate availability and types of colonizing microbes appear to influence the metabolite pathway. Thus, endophytes of Brassicaceae may have evolved to adapt to the Brassicaceae-specific traits. Future comparative functional analyses among well-defined endophytic fungi and their relatives with distinct life strategies and host plants will help understand the mechanisms that establish and maintain beneficial interactions.
Collapse
Affiliation(s)
- Kei Hiruma
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan; PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| | - Yoshihiro Kobae
- Department of Sustainable Agriculture, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan; Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization (NARO) , 1 Hitsujigaoka, Toyohira-ku, Sapporo, Hokkaido 062-8555, Japan
| | - Hirokazu Toju
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan; Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2113, Japan
| |
Collapse
|
36
|
Xu L, Wu C, Oelmüller R, Zhang W. Role of Phytohormones in Piriformospora indica-Induced Growth Promotion and Stress Tolerance in Plants: More Questions Than Answers. Front Microbiol 2018; 9:1646. [PMID: 30140257 PMCID: PMC6094092 DOI: 10.3389/fmicb.2018.01646] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/02/2018] [Indexed: 11/18/2022] Open
Abstract
Phytohormones play vital roles in the growth and development of plants as well as in interactions of plants with microbes such as endophytic fungi. The endophytic root-colonizing fungus Piriformospora indica promotes plant growth and performance, increases resistance of colonized plants to pathogens, insects and abiotic stress. Here, we discuss the roles of the phytohormones (auxins, cytokinin, gibberellins, abscisic acid, ethylene, salicylic acid, jasmonates, and brassinosteroids) in the interaction of P. indica with higher plant species, and compare available data with those from other (beneficial) microorganisms interacting with roots. Crosstalks between different hormones in balancing the plant responses to microbial signals is an emerging topic in current research. Furthermore, phytohormones play crucial roles in systemic signal propagation as well as interplant communication. P. indica interferes with plant hormone synthesis and signaling to stimulate growth, flowering time, differentiation and local and systemic immune responses. Plants adjust their hormone levels in the roots in response to the microbes to control colonization and fungal propagation. The available information on the roles of phytohormones in beneficial root-microbe interactions opens new questions of how P. indica manipulates the plant hormone metabolism to promote the benefits for both partners in the symbiosis.
Collapse
Affiliation(s)
- Le Xu
- Hubei Collaborative Innovation Center for Grain Industry, School of Agriculture, Yangtze University, Jingzhou, China
| | - Chu Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Ralf Oelmüller
- Matthias-Schleiden-Institute, Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Wenying Zhang
- Hubei Collaborative Innovation Center for Grain Industry, School of Agriculture, Yangtze University, Jingzhou, China
| |
Collapse
|
37
|
Bajaj R, Huang Y, Gebrechristos S, Mikolajczyk B, Brown H, Prasad R, Varma A, Bushley KE. Transcriptional responses of soybean roots to colonization with the root endophytic fungus Piriformospora indica reveals altered phenylpropanoid and secondary metabolism. Sci Rep 2018; 8:10227. [PMID: 29980739 PMCID: PMC6035220 DOI: 10.1038/s41598-018-26809-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 05/15/2018] [Indexed: 12/31/2022] Open
Abstract
Piriformospora indica, a root endophytic fungus, has been shown to enhance biomass production and confer tolerance to various abiotic and biotic stresses in many plant hosts. A growth chamber experiment of soybean (Glycine max) colonized by P. indica compared to uninoculated control plants showed that the fungus significantly increased shoot dry weight, nutrient content, and rhizobial biomass. RNA-Seq analyses of root tissue showed upregulation of 61 genes and downregulation of 238 genes in colonized plants. Gene Ontology (GO) enrichment analyses demonstrated that upregulated genes were most significantly enriched in GO categories related to lignin biosynthesis and regulation of iron transport and metabolism but also mapped to categories of nutrient acquisition, hormone signaling, and response to drought stress. Metabolic pathway analysis revealed upregulation of genes within the phenylpropanoid and derivative pathways such as biosynthesis of monolignol subunits, flavonoids and flavonols (luteolin and quercetin), and iron scavenging siderophores. Highly enriched downregulated GO categories included heat shock proteins involved in response to heat, high-light intensity, hydrogen peroxide, and several related to plant defense. Overall, these results suggest that soybean maintains an association with this root endosymbiotic fungus that improves plant growth and nutrient acquisition, modulates abiotic stress, and promotes synergistic interactions with rhizobia.
Collapse
Affiliation(s)
- Ruchika Bajaj
- Department of Plant Biology, University of Minnesota, Saint Paul, MN, USA
- Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, Noida, India
| | - Yinyin Huang
- Department of Plant Biology, University of Minnesota, Saint Paul, MN, USA
| | - Sebhat Gebrechristos
- Master of Biological Sciences Program, University of Minnesota, Saint Paul, MN, USA
| | - Brian Mikolajczyk
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA
| | - Heather Brown
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Ram Prasad
- Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, Noida, India
| | - Ajit Varma
- Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, Noida, India
| | - Kathryn E Bushley
- Department of Plant Biology, University of Minnesota, Saint Paul, MN, USA.
| |
Collapse
|
38
|
Casarrubia S, Daghino S, Kohler A, Morin E, Khouja HR, Daguerre Y, Veneault-Fourrey C, Martin FM, Perotto S, Martino E. The Hydrophobin-Like OmSSP1 May Be an Effector in the Ericoid Mycorrhizal Symbiosis. FRONTIERS IN PLANT SCIENCE 2018; 9:546. [PMID: 29765384 PMCID: PMC5938622 DOI: 10.3389/fpls.2018.00546] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/09/2018] [Indexed: 06/08/2023]
Abstract
Mutualistic and pathogenic plant-colonizing fungi use effector molecules to manipulate the host cell metabolism to allow plant tissue invasion. Some small secreted proteins (SSPs) have been identified as fungal effectors in both ectomycorrhizal and arbuscular mycorrhizal fungi, but it is currently unknown whether SSPs also play a role as effectors in other mycorrhizal associations. Ericoid mycorrhiza is a specific endomycorrhizal type that involves symbiotic fungi mostly belonging to the Leotiomycetes (Ascomycetes) and plants in the family Ericaceae. Genomic and RNASeq data from the ericoid mycorrhizal fungus Oidiodendron maius led to the identification of several symbiosis-upregulated genes encoding putative SSPs. OmSSP1, the most highly symbiosis up-regulated SSP, was found to share some features with fungal hydrophobins, even though it lacks the Pfam hydrophobin domain. Sequence alignment with other hydrophobins and hydrophobin-like fungal proteins placed OmSSP1 within Class I hydrophobins. However, the predicted features of OmSSP1 may suggest a distinct type of hydrophobin-like proteins. The presence of a predicted signal peptide and a yeast-based signal sequence trap assay demonstrate that OmSSP1 is secreted. OmSSP1 null-mutants showed a reduced capacity to form ericoid mycorrhiza with Vaccinium myrtillus roots, suggesting a role as effectors in the ericoid mycorrhizal interaction.
Collapse
Affiliation(s)
- Salvatore Casarrubia
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Stefania Daghino
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Annegret Kohler
- INRA (Institut National de la Recherche Agronomique), UMR 1136 INRA-Université de Lorraine Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, Centre INRA-Lorraine, Champenoux, France
| | - Emmanuelle Morin
- INRA (Institut National de la Recherche Agronomique), UMR 1136 INRA-Université de Lorraine Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, Centre INRA-Lorraine, Champenoux, France
| | | | - Yohann Daguerre
- INRA (Institut National de la Recherche Agronomique), UMR 1136 INRA-Université de Lorraine Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, Centre INRA-Lorraine, Champenoux, France
| | - Claire Veneault-Fourrey
- INRA (Institut National de la Recherche Agronomique), UMR 1136 INRA-Université de Lorraine Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, Centre INRA-Lorraine, Champenoux, France
- Université de Lorraine, UMR 1136 INRA-Université de Lorraine Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, Faculté des Sciences et Technologies, Vandoeuvre les Nancy, France
| | - Francis M. Martin
- INRA (Institut National de la Recherche Agronomique), UMR 1136 INRA-Université de Lorraine Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, Centre INRA-Lorraine, Champenoux, France
| | - Silvia Perotto
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Elena Martino
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
- INRA (Institut National de la Recherche Agronomique), UMR 1136 INRA-Université de Lorraine Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, Centre INRA-Lorraine, Champenoux, France
| |
Collapse
|
39
|
Vahabi K, Reichelt M, Scholz SS, Furch ACU, Matsuo M, Johnson JM, Sherameti I, Gershenzon J, Oelmüller R. Alternaria Brassicae Induces Systemic Jasmonate Responses in Arabidopsis Which Travel to Neighboring Plants via a Piriformsopora Indica Hyphal Network and Activate Abscisic Acid Responses. FRONTIERS IN PLANT SCIENCE 2018; 9:626. [PMID: 29868082 PMCID: PMC5952412 DOI: 10.3389/fpls.2018.00626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 04/20/2018] [Indexed: 05/20/2023]
Abstract
Stress information received by a particular local plant tissue is transferred to other tissues and neighboring plants, but how the information travels is not well understood. Application of Alternaria Brassicae spores to Arabidopsis leaves or roots stimulates local accumulation of jasmonic acid (JA), the expression of JA-responsive genes, as well as of NITRATE TRANSPORTER (NRT)2.5 and REDOX RESPONSIVE TRANSCRIPTION FACTOR1 (RRTF1). Infection information is systemically spread over the entire seedling and propagates radially from infected to non-infected leaves, axially from leaves to roots, and vice versa. The local and systemic NRT2.5 responses are reduced in the jar1 mutant, and the RRTF1 response in the rbohD mutant. Information about A. brassicae infection travels slowly to uninfected neighboring plants via a Piriformospora Indica hyphal network, where NRT2.5 and RRTF1 are up-regulated. The systemic A. brassicae-induced JA response in infected plants is converted to an abscisic acid (ABA) response in the neighboring plant where ABA and ABA-responsive genes are induced. We propose that the local threat information induced by A. brassicae infection is spread over the entire plant and transferred to neighboring plants via a P. indica hyphal network. The JA-specific response is converted to a general ABA-mediated stress response in the neighboring plant.
Collapse
Affiliation(s)
- Khabat Vahabi
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Sandra S. Scholz
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Alexandra C. U. Furch
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Mitsuhiro Matsuo
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Joy M. Johnson
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Irena Sherameti
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Ralf Oelmüller
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
- *Correspondence: Ralf Oelmüller
| |
Collapse
|
40
|
Card S, Johnson L, Teasdale S, Caradus J. Deciphering endophyte behaviour: the link between endophyte biology and efficacious biological control agents. FEMS Microbiol Ecol 2016; 92:fiw114. [PMID: 27222223 DOI: 10.1093/femsec/fiw114] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2016] [Indexed: 11/14/2022] Open
Abstract
Endophytes associate with the majority of plant species found in natural and managed ecosystems. They are regarded as extremely important plant partners that provide improved stress tolerance to the host compared with plants that lack this symbiosis. Fossil records of endophytes date back more than 400 million years, implicating these microorganisms in host plant adaptation to habitat transitions. However, it is only recently that endophytes, and their bioactive products, have received meaningful attention from the scientific community. The benefits some endophytes can confer on their hosts include plant growth promotion and survival through the inhibition of pathogenic microorganisms and invertebrate pests, the removal of soil contaminants, improved tolerance of low fertility soils, and increased tolerance of extreme temperatures and low water availability. Endophytes are extremely diverse and can exhibit many different biological behaviours. Not all endophyte technologies have been successfully commercialised. Of interest in the development of the next generation of plant protection products is how much of this is due to the biology of the particular endophytic microorganism. In this review, we highlight selected case studies of endophytes and discuss their lifestyles and behavioural traits, and discuss how these factors contribute towards their effectiveness as biological control agents.
Collapse
Affiliation(s)
- Stuart Card
- AgResearch Limited, Grasslands Research Centre, Private Bag 11008, Palmerston North 4442, New Zealand
| | - Linda Johnson
- AgResearch Limited, Grasslands Research Centre, Private Bag 11008, Palmerston North 4442, New Zealand
| | - Suliana Teasdale
- AgResearch Limited, Grasslands Research Centre, Private Bag 11008, Palmerston North 4442, New Zealand
| | - John Caradus
- Grasslanz Technology Limited, Private Bag 11008, Palmerston North 4442, New Zealand
| |
Collapse
|
41
|
Gill SS, Gill R, Trivedi DK, Anjum NA, Sharma KK, Ansari MW, Ansari AA, Johri AK, Prasad R, Pereira E, Varma A, Tuteja N. Piriformospora indica: Potential and Significance in Plant Stress Tolerance. Front Microbiol 2016; 7:332. [PMID: 27047458 PMCID: PMC4801890 DOI: 10.3389/fmicb.2016.00332] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/03/2016] [Indexed: 11/17/2022] Open
Abstract
Owing to its exceptional ability to efficiently promote plant growth, protection and stress tolerance, a mycorrhiza like endophytic Agaricomycetes fungus Piriformospora indica has received a great attention over the last few decades. P. indica is an axenically cultiviable fungus which exhibits its versatility for colonizing/hosting a broad range of plant species through directly manipulating plant hormone-signaling pathway during the course of mutualism. P. indica-root colonization leads to a better plant performance in all respect, including enhanced root proliferation by indole-3-acetic acid production which in turn results into better nutrient-acquisition and subsequently to improved crop growth and productivity. Additionally, P. indica can induce both local and systemic resistance to fungal and viral plant diseases through signal transduction. P. indica-mediated stimulation in antioxidant defense system components and expressing stress-related genes can confer crop/plant stress tolerance. Therefore, P. indica can biotize micropropagated plantlets and also help these plants to overcome transplantation shock. Nevertheless, it can also be involved in a more complex symbiotic relationship, such as tripartite symbiosis and can enhance population dynamic of plant growth promoting rhizobacteria. In brief, P. indica can be utilized as a plant promoter, bio-fertilizer, bioprotector, bioregulator, and biotization agent. The outcome of the recent literature appraised herein will help us to understand the physiological and molecular bases of mechanisms underlying P. indica-crop plant mutual relationship. Together, the discussion will be functional to comprehend the usefulness of crop plant-P. indica association in both achieving new insights into crop protection/improvement as well as in sustainable agriculture production.
Collapse
Affiliation(s)
- Sarvajeet S Gill
- Stress Physiology and Molecular Biology Laboratory, Centre for Biotechnology, Maharshi Dayanand University Rohtak, India
| | - Ritu Gill
- Stress Physiology and Molecular Biology Laboratory, Centre for Biotechnology, Maharshi Dayanand University Rohtak, India
| | - Dipesh K Trivedi
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology New Delhi, India
| | - Naser A Anjum
- Centre for Environmental and Marine Studies and Department of Chemistry, University of Aveiro Aveiro, Portugal
| | - Krishna K Sharma
- Department of Microbiology, Maharshi Dayanand University Rohtak, India
| | - Mohammed W Ansari
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology New Delhi, India
| | - Abid A Ansari
- Department of Biology, University of Tabuk Tabuk, Saudi Arabia
| | - Atul K Johri
- School of Life Sciences, Jawaharlal Nehru University New Delhi, India
| | - Ram Prasad
- Amity Institute of Microbial Technology, Amity University Noida, India
| | - Eduarda Pereira
- Centre for Environmental and Marine Studies and Department of Chemistry, University of Aveiro Aveiro, Portugal
| | - Ajit Varma
- Amity Institute of Microbial Technology, Amity University Noida, India
| | - Narendra Tuteja
- Amity Institute of Microbial Technology, Amity University Noida, India
| |
Collapse
|
42
|
Nath M, Bhatt D, Prasad R, Gill SS, Anjum NA, Tuteja N. Reactive Oxygen Species Generation-Scavenging and Signaling during Plant-Arbuscular Mycorrhizal and Piriformospora indica Interaction under Stress Condition. FRONTIERS IN PLANT SCIENCE 2016; 7:1574. [PMID: 27818671 PMCID: PMC5073151 DOI: 10.3389/fpls.2016.01574] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/06/2016] [Indexed: 05/18/2023]
Abstract
A defined balance between the generation and scavenging of reactive oxygen species (ROS) is essential to utilize ROS as an adaptive defense response of plants under biotic and abiotic stress conditions. Moreover, ROS are not only a major determinant of stress response but also act as signaling molecule that regulates various cellular processes including plant-microbe interaction. In particular, rhizosphere constitutes the biologically dynamic zone for plant-microbe interactions which forms a mutual link leading to reciprocal signaling in both the partners. Among plant-microbe interactions, symbiotic associations of arbuscular mycorrhizal fungi (AMF) and arbuscular mycorrhizal-like fungus especially Piriformospora indica with plants are well known to improve plant growth by alleviating the stress-impacts and consequently enhance the plant fitness. AMF and P. indica colonization mainly enhances ROS-metabolism, maintains ROS-homeostasis, and thereby averts higher ROS-level accrued inhibition in plant cellular processes and plant growth and survival under stressful environments. This article summarizes the major outcomes of the recent reports on the ROS-generation, scavenging and signaling in biotic-abiotic stressed plants with AMF and P. indica colonization. Overall, a detailed exploration of ROS-signature kinetics during plant-AMF/P. indica interaction can help in designing innovative strategies for improving plant health and productivity under stress conditions.
Collapse
Affiliation(s)
- Manoj Nath
- Amity Institute of Microbial Technology, Amity University Uttar PradeshNoida, India
- *Correspondence: Manoj Nath, Narendra Tuteja,
| | - Deepesh Bhatt
- Department of Biotechnology, Shree Ramkrishna Institute of Computer Education and Applied Sciences, Veer Narmad South Gujarat UniversitySurat, India
| | - Ram Prasad
- Amity Institute of Microbial Technology, Amity University Uttar PradeshNoida, India
| | - Sarvajeet S. Gill
- Stress Physiology and Molecular Biology Laboratory, Centre for Biotechnology, Maharshi Dayanand UniversityRohtak, India
| | - Naser A. Anjum
- Centre for Environmental and Marine Studies and Department of Chemistry, University of AveiroAveiro, Portugal
| | - Narendra Tuteja
- Amity Institute of Microbial Technology, Amity University Uttar PradeshNoida, India
- *Correspondence: Manoj Nath, Narendra Tuteja,
| |
Collapse
|