1
|
Hong C, Zhao Y, Qiao M, Huang Z, Wei L, Zhou Q, Lu W, Sun G, Huang Z, Gao H. Molecular dissection of the parental contribution in Paeonia Itoh hybrids. PLANT PHYSIOLOGY 2024; 196:1953-1964. [PMID: 39115387 DOI: 10.1093/plphys/kiae413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/11/2024] [Indexed: 11/05/2024]
Abstract
Hybrid breeding between herbaceous peonies (the maternal parent) and tree peonies (the paternal parent) results in Paeonia Itoh hybrids (Itoh peonies), a triploid species that combines advantageous traits from both parental species, thus offering great economic value. However, the exact genetic contribution of the two parents is unclear. In this study, we introduce a straightforward approach utilizing heterozygous single-nucleotide polymorphisms (SNPs) and Sanger sequencing of targeted gene fragments to trace the original bases back to their parents in Itoh peonies. Our results indicate that in triploid Itoh peonies, only one set of genes is derived from herbaceous peonies, and two sets of genes are derived from the tree peonies. Notably, the presence of three distinct bases of heterozygous SNPs across multiple Itoh cultivars suggests that the gametes from the paternal parents carry two sets of heterozygous homologous chromosomes, which could be due to Meiosis I failure during gamete formation. To validate our method's effectiveness in parentage determination, we analyze two Itoh hybrids and their parents, confirming its practical utility. This research presents a method to reveal the parental genetic contribution in Itoh peonies, which could enhance the efficiency and precision of hybrid breeding programs of triploids in Paeonia and other plant species.
Collapse
Affiliation(s)
- Conghao Hong
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Yingying Zhao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Meiyu Qiao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Ziteng Huang
- National Peony Gene Bank, Luoyang, Henan Province 471002, China
- Luoyang Peony Industry Development Center, Luoyang, Henan Province 471002, China
| | - Lan Wei
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Qingqing Zhou
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Wanqing Lu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Guorun Sun
- National Peony Gene Bank, Luoyang, Henan Province 471002, China
- Luoyang Peony Industry Development Center, Luoyang, Henan Province 471002, China
| | - Zhimin Huang
- National Peony Gene Bank, Luoyang, Henan Province 471002, China
- Luoyang Peony Industry Development Center, Luoyang, Henan Province 471002, China
| | - Hongbo Gao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
2
|
Meng J, Zhong H, Chu X, Guo J, Zhao S, Shen T, Sun W, Wang J, Jiang P. Comparative analysis of chemical elements and metabolites in diverse garlic varieties based on metabolomics and ionomics. Food Sci Nutr 2024; 12:7719-7736. [PMID: 39479693 PMCID: PMC11521672 DOI: 10.1002/fsn3.4397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 11/02/2024] Open
Abstract
As a plant classified under the "medicine food homology" concept, garlic offers various health benefits and comes in many different varieties. In this study, the metabolite composition of different garlic varieties were analyzed using LC-MS/MS quadrupole-Orbitrap mass spectrometry and ICP-MS. A total of 30 chemical elements and 1256 metabolites were identified. Significant differences in chemical elements and metabolomics profiles were observed among the five garlic groups (VIP > 1.5). Compared to WG, PG contained 5 unique compounds, HG had 15 unique compounds, SCG had 18 unique compounds, and SBG had 26 unique compounds. Furthermore, the results showed that WG had smaller differences with PG and HG, but significant differences with SBG and SCG. KEGG analysis revealed metabolic pathways associated with the formation of differential metabolites. These findings uncover the differences and mechanisms in the composition of various garlic varieties, providing a theoretical foundation for distinguishing the nutritional components of different garlic types.
Collapse
Affiliation(s)
- Junjun Meng
- Translational Pharmaceutical Laboratory, Jining No. 1 People's HospitalShandong First Medical UniversityJiningChina
| | - Haitao Zhong
- Translational Pharmaceutical Laboratory, Jining No. 1 People's HospitalShandong First Medical UniversityJiningChina
| | - Xue Chu
- Translational Pharmaceutical Laboratory, Jining No. 1 People's HospitalShandong First Medical UniversityJiningChina
| | - Jinxiu Guo
- Translational Pharmaceutical Laboratory, Jining No. 1 People's HospitalShandong First Medical UniversityJiningChina
| | - Shiyuan Zhao
- Translational Pharmaceutical Laboratory, Jining No. 1 People's HospitalShandong First Medical UniversityJiningChina
| | - Tao Shen
- Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Wenxue Sun
- Translational Pharmaceutical Laboratory, Jining No. 1 People's HospitalShandong First Medical UniversityJiningChina
| | - Jianhua Wang
- Translational Pharmaceutical Laboratory, Jining No. 1 People's HospitalShandong First Medical UniversityJiningChina
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining No. 1 People's HospitalShandong First Medical UniversityJiningChina
| |
Collapse
|
3
|
Li H, Lu Y, Liu Z, Ren Q, Liu Z, Liu S, Ren R, Wang F, Liu Y, Zhang Y. Transcriptomic analysis unveils alterations in the genetic expression profile of tree peony (Paeonia suffruticosa Andrews) infected by Alternaria alternata. BMC Genomics 2024; 25:861. [PMID: 39277723 PMCID: PMC11402206 DOI: 10.1186/s12864-024-10784-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Black spot disease in tree peony caused by the fungal necrotroph A. alternata, is a primary limiting factor in the production of the tree peony. The intricate molecular mechanisms underlying the tree peony resistance to A. alternata have not been thoroughly investigated. RESULTS The present study utilized high-throughput RNA sequencing (RNA-seq) technology to conduct global expression profiling, revealing an intricate network of genes implicated in the interaction between tree peony and A. alternata. RNA-Seq libraries were constructed from leaf samples and high-throughput sequenced using the BGISEQ-500 sequencing platform. Six distinct libraries were characterized. M1, M2 and M3 were derived from leaves that had undergone mock inoculation, while I1, I2 and I3 originated from leaves that had been inoculated with the pathogen. A range of 10.22-11.80 gigabases (Gb) of clean bases were generated, comprising 68,131,232 - 78,633,602 clean bases and 56,677 - 68,996 Unigenes. A grand total of 99,721 Unigenes were acquired, boasting a mean length of 1,266 base pairs. All these 99,721 Unigenes were annotated in various databases, including NR (Non-Redundant, 61.99%), NT (Nucleotide, 45.50%), SwissProt (46.32%), KEGG (Kyoto Encyclopedia of Genes and Genomes, 49.33%), KOG (clusters of euKaryotic Orthologous Groups, 50.18%), Pfam (Protein family, 47.16%), and GO (Gene Ontology, 34.86%). In total, 66,641 (66.83%) Unigenes had matches in at least one database. By conducting a comparative transcriptome analysis of the mock- and A. alternata-infected sample libraries, we found differentially expressed genes (DEGs) that are related to phytohormone signalling, pathogen recognition, active oxygen generation, and circadian rhythm regulation. Furthermore, multiple different kinds of transcription factors were identified. The expression levels of 10 selected genes were validated employing qRT-PCR (quantitative real-time PCR) to confirm RNA-Seq data. CONCLUSIONS A multitude of transcriptome sequences have been generated, thus offering a valuable genetic repository for further scholarly exploration on the immune mechanisms underlying the tree peony infected by A. alternata. While the expression of most DEGs increased, a few DEGs showed decreased expression.
Collapse
Affiliation(s)
- Huiyun Li
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China.
| | - Yifan Lu
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China
| | - Zixin Liu
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China
| | - Qing Ren
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China
| | - Zhongyan Liu
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China
| | - Sibing Liu
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China
| | - Ruili Ren
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China
| | - Fei Wang
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China
| | - Yi Liu
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China
| | - Yanzhao Zhang
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China.
| |
Collapse
|
4
|
Wang H, Kong Y, Dou X, Yang Y, Chi X, Lang L, Zhang Q, Pan H, Bai J. Integrative Metabolomic and Transcriptomic Analyses Reveal the Mechanism of Petal Blotch Formation in Rosa persica. Int J Mol Sci 2024; 25:4030. [PMID: 38612838 PMCID: PMC11012444 DOI: 10.3390/ijms25074030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Petal blotch is a specific flower color pattern commonly found in angiosperm families. In particular, Rosa persica is characterized by dark red blotches at the base of yellow petals. Modern rose cultivars with blotches inherited the blotch trait from R. persica. Therefore, understanding the mechanism for blotch formation is crucial for breeding rose cultivars with various color patterns. In this study, the metabolites and genes responsible for the blotch formation in R. persica were identified for the first time through metabolomic and transcriptomic analyses using LC-MS/MS and RNA-seq. A total of 157 flavonoids were identified, with 7 anthocyanins as the major flavonoids, namely, cyanidin 3-O-(6″-O-malonyl) glucoside 5-O-glucoside, cyanidin-3-O-glucoside, cyanidin 3-O-galactoside, cyanidin O-rutinoside-O-malonylglucoside, pelargonidin 3-O-glucoside, pelargonidin 3,5-O-diglucoside, and peonidin O-rutinoside-O-malonylglucoside, contributing to pigmentation and color darkening in the blotch parts of R. persica, whereas carotenoids predominantly influenced the color formation of non-blotch parts. Zeaxanthin and antheraxanthin mainly contributed to the yellow color formation of petals at the semi-open and full bloom stages. The expression levels of two 4-coumarate: CoA ligase genes (Rbe014123 and Rbe028518), the dihydroflavonol 4-reductase gene (Rbe013916), the anthocyanidin synthase gene (Rbe016466), and UDP-flavonoid glucosyltransferase gene (Rbe026328) indicated that they might be the key structural genes affecting the formation and color of petal blotch. Correlation analysis combined with weighted gene co-expression network analysis (WGCNA) further characterized 10 transcription factors (TFs). These TFs might participate in the regulation of anthocyanin accumulation in the blotch parts of petals by modulating one or more structural genes. Our results elucidate the compounds and molecular mechanisms underlying petal blotch formation in R. persica and provide valuable candidate genes for the future genetic improvement of rose cultivars with novel flower color patterns.
Collapse
Affiliation(s)
- Huan Wang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (H.W.); (Y.Y.); (X.C.); (Q.Z.)
- Institute of Radiation Technology, Beijing Academy of Science and Technology, Beijing 100875, China; (Y.K.); (X.D.); (L.L.)
| | - Ying Kong
- Institute of Radiation Technology, Beijing Academy of Science and Technology, Beijing 100875, China; (Y.K.); (X.D.); (L.L.)
| | - Xiaoying Dou
- Institute of Radiation Technology, Beijing Academy of Science and Technology, Beijing 100875, China; (Y.K.); (X.D.); (L.L.)
| | - Yi Yang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (H.W.); (Y.Y.); (X.C.); (Q.Z.)
| | - Xiufeng Chi
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (H.W.); (Y.Y.); (X.C.); (Q.Z.)
| | - Lixin Lang
- Institute of Radiation Technology, Beijing Academy of Science and Technology, Beijing 100875, China; (Y.K.); (X.D.); (L.L.)
| | - Qixiang Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (H.W.); (Y.Y.); (X.C.); (Q.Z.)
| | - Huitang Pan
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (H.W.); (Y.Y.); (X.C.); (Q.Z.)
| | - Jinrong Bai
- Institute of Radiation Technology, Beijing Academy of Science and Technology, Beijing 100875, China; (Y.K.); (X.D.); (L.L.)
| |
Collapse
|
5
|
Cai M, Yang T, Fang S, Ye L, Gu L, Wang H, Du X, Zhu B, Zeng T, Peng T. Integrative Physiological and Transcriptome Analysis Reveals the Mechanism of Cd Tolerance in Sinapis alba. Genes (Basel) 2023; 14:2224. [PMID: 38137046 PMCID: PMC10742500 DOI: 10.3390/genes14122224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Recently, pollution caused by the heavy metal Cd has seriously affected the environment and agricultural crops. While Sinapis alba is known for its edible and medicinal value, its tolerance to Cd and molecular response mechanism remain unknown. This study aimed to analyze the tolerance of S. alba to Cd and investigate its molecular response mechanism through transcriptomic and physiological indicators. To achieve this, S. alba seedlings were treated with different concentrations of CdCl2 (0.25 mmol/L, 0.5 mmol/L, and 1.0 mmol/L) for three days. Based on seedling performance, S. alba exhibited some tolerance to a low concentration of Cd stress (0.25 mmol/L CdCl2) and a strong Cd accumulation ability in its roots. The activities and contents of several antioxidant enzymes generally exhibited an increase under the treatment of 0.25 mmol/L CdCl2 but decreased under the treatment of higher CdCl2 concentrations. In particular, the proline (Pro) content was extremely elevated under the 0.25 and 0.5 mmol/L CdCl2 treatments but sharply declined under the 1.0 mmol/L CdCl2 treatment, suggesting that Pro is involved in the tolerance of S. alba to low concentration of Cd stress. In addition, RNA sequencing was utilized to analyze the gene expression profiles of S. alba exposed to Cd (under the treatment of 0.25 mmol/L CdCl2). The results indicate that roots were more susceptible to disturbance from Cd stress, as evidenced by the detection of 542 differentially expressed genes (DEGs) in roots compared to only 37 DEGs in leaves. GO and KEGG analyses found that the DEGs induced by Cd stress were primarily enriched in metabolic pathways, plant hormone signal transduction, and the biosynthesis of secondary metabolites. The key pathway hub genes were mainly associated with intracellular ion transport and cell wall synthesis. These findings suggest that S. alba is tolerant to a degree of Cd stress, but is also susceptible to the toxic effects of Cd. Furthermore, these results provide a theoretical basis for understanding Cd tolerance in S. alba.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Tao Peng
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (M.C.); (T.Y.); (S.F.); (L.Y.); (L.G.); (H.W.); (X.D.); (B.Z.); (T.Z.)
| |
Collapse
|
6
|
Jia Y, Yin X, Yang H, Xiang Y, Ding K, Pan Y, Jiang B, Yong X. Transcriptome Analyses Reveal the Aroma Terpeniods Biosynthesis Pathways of Primula forbesii Franch. and the Functional Characterization of the PfDXS2 Gene. Int J Mol Sci 2023; 24:12730. [PMID: 37628910 PMCID: PMC10454305 DOI: 10.3390/ijms241612730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Primula forbesii Franch. is a unique biennial herb with a strong floral fragrance, making it an excellent material for studying the aroma characteristics of the genus Primula. The floral scent is an important ornamental trait that facilitates fertilization. However, the molecular mechanism regulating the floral scent in Primula is unknown. In order to better understand the biological mechanisms of floral scents in this species, this study used RNA sequencing analysis to discuss the first transcriptome sequence of four flowering stages of P. forbesii, which generated 12 P. forbesii cDNA libraries with 79.64 Gb of clean data that formed 51,849 unigenes. Moreover, 53.26% of the unigenes were annotated using public databases. P. forbesii contained 44 candidate genes covering all known enzymatic steps for the biosynthesis of volatile terpenes, the major contributor to the flower's scent. Finally, 1-deoxy-d-xylulose 5-phosphate synthase gene of P. forbesii (PfDXS2, MK370094), the first key enzyme gene in the 2-c-methyl-d-erythritol 4-phosphate (MEP) pathway of terpenoids, was cloned and functionally verified using virus-induced gene silencing (VIGs). The results showed that PfDXS2-silencing significantly reduced the relative concentrations of main volatile terpenes. This report is the first to present molecular data related to aroma metabolites biosynthesis pathways and the functional characterization of any P. forbesii gene. The data on RNA sequencing provide comprehensive information for further analysis of other plants of the genus Primula.
Collapse
Affiliation(s)
- Yin Jia
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China; (X.Y.); (H.Y.); (Y.X.); (K.D.); (Y.P.); (B.J.); (X.Y.)
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Zhu J, Wang Y, Wang Q, Li B, Wang X, Zhou X, Zhang H, Xu W, Li S, Wang L. The combination of DNA methylation and positive regulation of anthocyanin biosynthesis by MYB and bHLH transcription factors contributes to the petal blotch formation in Xibei tree peony. HORTICULTURE RESEARCH 2023; 10:uhad100. [PMID: 37427034 PMCID: PMC10327543 DOI: 10.1093/hr/uhad100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 05/05/2023] [Indexed: 07/11/2023]
Abstract
Xibei tree peony is a distinctive cultivar group that features red-purple blotches in petals. Interestingly, the pigmentations of blotches and non-blotches are largely independent of one another. The underlying molecular mechanism had attracted lots of attention from investigators, but was still uncertain. Our present work demonstrates the factors that are closely related to blotch formation in Paeonia rockii 'Shu Sheng Peng Mo'. Non-blotch pigmentation is prevented by the silencing of anthocyanin structural genes, among which PrF3H, PrDFR, and PrANS are the three major genes. We characterized two R2R3-MYBs as the key transcription factors that control the early and late anthocyanin biosynthetic pathways. PrMYBa1, which belongs to MYB subgroup 7 (SG7) was found to activate the early biosynthetic gene (EBG) PrF3H by interacting with SG5 member PrMYBa2 to form an 'MM' complex. The SG6 member PrMYBa3 interacts with two SG5 (IIIf) bHLHs to synergistically activate the late biosynthetic genes (LBGs) PrDFR and PrANS, which is essential for anthocyanin accumulation in petal blotches. The comparison of methylation levels of the PrANS and PrF3H promoters between blotch and non-blotch indicated a correlation between hypermethylation and gene silencing. The methylation dynamics of PrANS promoter during flower development revealed a potential early demethylating reaction, which may have contributed to the particular expression of PrANS solely in the blotch area. We suggest that the formation of petal blotch may be highly associated with the cooperation of transcriptional activation and DNA methylation of structural gene promoters.
Collapse
Affiliation(s)
- Jin Zhu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yizhou Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianyu Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohan Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xian Zhou
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hechen Zhang
- Horticulture Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Wenzhong Xu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanshan Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liangsheng Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Liu Z, Zhou L, Gan C, Hu L, Pang B, Zuo D, Wang G, Wang H, Liu Y. Transcriptomic analysis reveals key genes and pathways corresponding to Cd and Pb in the hyperaccumulator Arabis paniculata. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114757. [PMID: 36950987 DOI: 10.1016/j.ecoenv.2023.114757] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/15/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Soil and water are increasingly at risk of contamination from the toxic heavy metals lead (Pb) and cadmium (Cd). Arabis paniculata (Brassicaceae) is a hyperaccumulator of heavy metals (HMs) found widely distributed in areas impacts by mining activities. However, the mechanism by which A. paniculata tolerates HMs is still uncharacterized. For this experiment, we employed RNA sequencing (RNA-seq) in order to find Cd (0.25 mM)- and Pb (2.50 mM)-coresponsive genes A. paniculata. In total, 4490 and 1804 differentially expressed genes (DEGs) were identified in root tissue, and 955 and 2209 DEGs were identified in shoot tissue, after Cd and Pb exposure, respectively. Interestingly in root tissue, gene expression corresponded similarly to both Cd and Pd exposure, of which 27.48% were co-upregulated and 41.00% were co-downregulated. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses showed that the co-regulated genes were predominantly involved in transcription factors (TFs), cell wall biosynthesis, metal transport, plant hormone signal transduction, and antioxidant enzyme activity. Many critical Pb/Cd-induced DEGs involved in phytohormone biosynthesis and signal transduction, HM transport, and transcription factors were also identified. Especially the gene ABCC9 was co-downregulated in root tissues but co-upregulated in shoot tissues. The co-downregulation of ABCC9 in the roots prevented Cd and Pb from entering the vacuole rather than the cytoplasm for transporting HMs to shoots. While in shoots, the ABCC9 co-upregulated results in vacuolar Cd and Pb accumulation, which may explain why A. paniculata is a hyperaccumulator. These results will help to reveal the molecular and physiological processes underlying tolerance to HM exposure in the hyperaccumulator A. paniculata, and aid in future efforts to utilize this plant in phytoremediation.
Collapse
Affiliation(s)
- Zhaochao Liu
- School of Life Science, Guizhou Normal University, Guiyang 550025, Guizhou, China
| | - Lizhou Zhou
- School of Life Science, Guizhou Normal University, Guiyang 550025, Guizhou, China
| | - Chenchen Gan
- School of Life Science, Guizhou Normal University, Guiyang 550025, Guizhou, China
| | - Lijuan Hu
- School of Life Science, Guizhou Normal University, Guiyang 550025, Guizhou, China
| | - Biao Pang
- School of Life Science, Guizhou Normal University, Guiyang 550025, Guizhou, China
| | - Dan Zuo
- School of Life Science, Guizhou Normal University, Guiyang 550025, Guizhou, China
| | - Guangyi Wang
- School of Life Science, Guizhou Normal University, Guiyang 550025, Guizhou, China
| | - Hongcheng Wang
- School of Life Science, Guizhou Normal University, Guiyang 550025, Guizhou, China.
| | - Yingliang Liu
- School of Life Science, Guizhou Normal University, Guiyang 550025, Guizhou, China.
| |
Collapse
|
9
|
Ji N, Wang Q, Li S, Wen J, Wang L, Ding X, Zhao S, Feng H. Metabolic profile and transcriptome reveal the mystery of petal blotch formation in rose. BMC PLANT BIOLOGY 2023; 23:46. [PMID: 36670355 PMCID: PMC9854060 DOI: 10.1186/s12870-023-04057-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Petal blotch is a unique ornamental trait in angiosperm families, and blotch in rose petal is rare and has great esthetic value. However, the cause of the formation of petal blotch in rose is still unclear. The influence of key enzyme genes and regulatory genes in the pigment synthesis pathways needs to be explored and clarified. RESULTS In this study, the rose cultivar 'Sunset Babylon Eyes' with rose-red to dark red blotch at the base of petal was selected as the experimental material. The HPLC-DAD and UPLC-TQ-MS analyses indicated that only cyanidin 3,5-O-diglucoside (Cy3G5G) contributed to the blotch pigmentation of 'Sunset Babylon Eyes', and the amounts of Cy3G5G varied at different developmental stages. Only flavonols but no flavone were found in blotch and non-blotch parts. As a consequence, kaempferol and its derivatives as well as quercetin and its derivatives may act as background colors during flower developmental stages. Despite of the differences in composition, the total content of carotenoids in blotch and non-blotch parts were similar, and carotenoids may just make the petals show a brighter color. Transcriptomic data, quantitative real-time PCR and promoter sequence analyses indicated that RC7G0058400 (F3'H), RC6G0470600 (DFR) and RC7G0212200 (ANS) may be the key enzyme genes for the early formation and color deepening of blotch at later stages. As for two transcription factor, RC7G0019000 (MYB) and RC1G0363600 (WRKY) may bind to the promoters of critical enzyme genes, or RC1G0363600 (WRKY) may bind to the promoter of RC7G0019000 (MYB) to activate the anthocyanin accumulation in blotch parts of 'Sunset Babylon Eyes'. CONCLUSIONS Our findings provide a theoretical basis for the understanding of the chemical and molecular mechanism for the formation of petal blotch in rose.
Collapse
Affiliation(s)
- Naizhe Ji
- Beijing Key Lab of Greening Plants Breeding, Beijing Academy of Forestry and Landscape Architecture, Beijing, China
| | - Qianyu Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shanshan Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiaxin Wen
- College of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Liangsheng Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohao Ding
- College of Food Science, Fuyang Normal University, Fuyang, China
| | - Shiwei Zhao
- Beijing Key Lab of Greening Plants Breeding, Beijing Academy of Forestry and Landscape Architecture, Beijing, China.
| | - Hui Feng
- Beijing Key Lab of Greening Plants Breeding, Beijing Academy of Forestry and Landscape Architecture, Beijing, China.
| |
Collapse
|
10
|
Liu J, Fu P, Wang L, Lin X, Enayatizamir N. A fungus ( Trametes pubescens) resists cadmium toxicity by rewiring nitrogen metabolism and enhancing energy metabolism. Front Microbiol 2022; 13:1040579. [PMID: 36504813 PMCID: PMC9733723 DOI: 10.3389/fmicb.2022.1040579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/26/2022] [Indexed: 11/22/2022] Open
Abstract
As a primary goal, cadmium (Cd) is a heavy metal pollutant that is readily adsorbed and retained in rice, and it becomes a serious threat to food safety and human health. Fungi have attracted interest for their ability to remove heavy metals from the environment, although the underlying mechanisms of how fungi defend against Cd toxicity are still unclear. In this study, a Cd-resistant fungus Trametes pubescens (T. pubescens) was investigated. Pot experiments of rice seedlings colonized with T. pubescens showed that their coculture could significantly enhance rice seedling growth and reduce Cd accumulation in rice tissues. Furthermore, integrated transcriptomic and metabolomic analyses were used to explore how T. pubescens would reprogram its metabolic network against reactive oxygen species (ROS) caused by Cd toxicity. Based on multi-omic data mining results, we postulated that under Cd stress, T. pubescens was able to upregulate both the mitogen-activated protein kinase (MAPK) and phosphatidylinositol signaling pathways, which enhanced the nitrogen flow from amino acids metabolism through glutaminolysis to α-ketoglutarate (α-KG), one of the entering points of tricarboxylic acid (TCA) cycle within mitochondria; it thus increased the production of energy equivalents, adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide phosphate (NADPH) for T. pubescens to resist oxidative damage. This study can enable a better understanding of the metabolic rewiring of T. pubescens under Cd stress, and it can also provide a promising potential to prevent the rice paddy fields from Cd toxicity and enhance food safety.
Collapse
Affiliation(s)
- Jing Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China,School of Food Science and Engineering, Hainan University, Haikou, China
| | - Pengcheng Fu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China,*Correspondence: Pengcheng Fu,
| | - Li Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Xiuying Lin
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Naeimeh Enayatizamir
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China,Department of Soil Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
11
|
Wang Y, Song Y, Wang D. Transcriptomic and Metabolomic Analyses Providing Insights into the Coloring Mechanism of Docynia delavayi. Foods 2022; 11:foods11182899. [PMID: 36141027 PMCID: PMC9498648 DOI: 10.3390/foods11182899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/23/2022] [Accepted: 09/15/2022] [Indexed: 11/22/2022] Open
Abstract
The metabolome and transcriptome profiles of three different variations of mature Docynia delavayi fruit were synthesized to reveal their fruit color formation mechanism. A total of 787 secondary metabolites containing 149 flavonoid metabolites, most of which were flavonoids and flavonols, were identified in the three variations using ultra performance liquid chromatography- tandem mass spectrometry (UPLC-MS/MS), and we found that the secondary metabolites cyanidin-3-O-galactoside and cyanidin-3-O-glucoside were the major coloring substances in D. delavayi. This was associated with the significant upregulation of the structural genes F3H and F3′H in the anthocyanin synthesis pathway and the control genes WRKY, MYB, bZIP, bHLH, and NAC in RP. F3′H expression may play a significant role in the selection of components for anthocyanin synthesis. Our results contribute to breeding and nutritional research in D. delavayi and provide insight into metabolite studies of the anthocyanin biosynthetic pathway.
Collapse
Affiliation(s)
- Yuchang Wang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Yuyang Song
- Department of Forestry, Agricultural College, Xinjiang Shihezi University, Shihezi 832003, China
- Correspondence: (Y.S.); (D.W.); Tel.: +86-135-7967-9010 (Y.S.); +86-138-8891-5161 (D.W.)
| | - Dawei Wang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China
- Correspondence: (Y.S.); (D.W.); Tel.: +86-135-7967-9010 (Y.S.); +86-138-8891-5161 (D.W.)
| |
Collapse
|
12
|
Shao D, Liang Q, Wang X, Zhu QH, Liu F, Li Y, Zhang X, Yang Y, Sun J, Xue F. Comparative Metabolome and Transcriptome Analysis of Anthocyanin Biosynthesis in White and Pink Petals of Cotton ( Gossypium hirsutum L.). Int J Mol Sci 2022; 23:ijms231710137. [PMID: 36077538 PMCID: PMC9456042 DOI: 10.3390/ijms231710137] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
Upland cotton (Gossypium hirsutum L.) is one of the important fiber crops. Cotton flowers usually appear white (or cream-colored) without colored spots at the petal base, and turn pink on the next day after flowering. In this study, using a mutant showing pink petals with crimson spots at their base, we conducted comparative metabolome and transcriptome analyses to investigate the molecular mechanism of coloration in cotton flowers. Metabolic profiling showed that cyanidin-3-O-glucoside and glycosidic derivatives of pelargonidins and peonidins are the main pigments responsible for the coloration of the pink petals of the mutant. A total of 2443 genes differentially expressed (DEGs) between the white and pink petals were identified by RNA-sequencing. Many DEGs are structural genes and regulatory genes of the anthocyanin biosynthesis pathway. Among them, MYB21, UGT88F3, GSTF12, and VPS32.3 showed significant association with the accumulation of cyanidin-3-O-glucoside in the pink petals. Taken together, our study preliminarily revealed the metabolites responsible for the pink petals and the key genes regulating the biosynthesis and accumulation of anthocyanins in the pink petals. The results provide new insights into the biochemical and molecular mechanism underlying anthocyanin biosynthesis in upland cotton.
Collapse
Affiliation(s)
- Dongnan Shao
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi 832003, China
| | - Qian Liang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi 832003, China
| | - Xuefeng Wang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi 832003, China
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra 2601, Australia
| | - Feng Liu
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi 832003, China
| | - Yanjun Li
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi 832003, China
| | - Xinyu Zhang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi 832003, China
| | - Yonglin Yang
- Cotton Research Institute, Shihezi Academy of Agriculture Science, Shihezi 832000, China
| | - Jie Sun
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi 832003, China
- Correspondence: (J.S.); (F.X.)
| | - Fei Xue
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi 832003, China
- Correspondence: (J.S.); (F.X.)
| |
Collapse
|
13
|
Li Y, Kong F, Liu Z, Peng L, Shu Q. PhUGT78A22, a novel glycosyltransferase in Paeonia 'He Xie', can catalyze the transfer of glucose to glucosylated anthocyanins during petal blotch formation. BMC PLANT BIOLOGY 2022; 22:405. [PMID: 35982415 PMCID: PMC9386992 DOI: 10.1186/s12870-022-03777-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Flower color patterns play an important role in the evolution and subsequent diversification of flowers by attracting animal pollinators. This interaction can drive the diversity observed in angiosperms today in many plant families such as Liliaceae, Paeoniaceae, and Orchidaceae, and increased their ornamental values. However, the molecular mechanism underlying the differential distribution of anthocyanins within petals remains unclear in Paeonia. RESULTS In this study, we used an intersectional hybrid between the section Moutan and Paeonia, hereafter named Paeonia 'He Xie', which has purple flowers with dark purple blotches. After Ultra-high performance liquid chromatography-diode array detector (UPLC-DAD) analysis of blotched and non-blotched parts of petals, we found the anthocyanin content in the blotched part was always higher than that in the non-blotched part. Four kinds of anthocyanins, namely cyanidin-3-O-glucoside (Cy3G), cyanidin-3,5-O-glucoside (Cy3G5G), peonidin-3-O-glucoside (Pn3G), and peonidin-3,5-O-glucoside (Pn3G5G) were detected in the blotched parts, while only Cy3G5G and Pn3G5G were detected in the non-blotched parts. This suggests that glucosyltransferases may play a vital role in the four kinds of glucosylated anthocyanins in the blotched parts. Moreover, 2433 differentially expressed genes (DEGs) were obtained from transcriptome analysis of blotched and non-blotched parts, and a key UDP-glycosyltransferase named PhUGT78A22 was identified, which could use Cy3G and Pn3G as substrates to produce Cy3G5G and Pn3G5G, respectively, in vitro. Furthermore, silencing of PhUGT78A22 reduced the content of anthocyanidin 3,5-O-diglucoside in P. 'He Xie'. CONCLUSIONS A UDP-glycosyltransferase, PhUGT78A22, was identified in P. 'He Xie', and the molecular mechanism underlying differential distribution of anthocyanins within petals was elucidated. This study provides new insights on the biosynthesis of different kinds of anthocyanins within colorful petals, and helps to explain petal blotch formation, which will facilitate the cultivar breeding with respect to increasing ornamental value. Additionally, it provides a reference for understanding the molecular mechanisms responsible for precise regulation of anthocyanin biosynthesis and distribution patterns.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| | - Fan Kong
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Zheng'an Liu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China.
| | - Liping Peng
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| | - Qingyan Shu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
14
|
Luan Y, Tang Y, Wang X, Xu C, Tao J, Zhao D. Tree Peony R2R3-MYB Transcription Factor PsMYB30 Promotes Petal Blotch Formation by Activating the Transcription of the Anthocyanin Synthase Gene. PLANT & CELL PHYSIOLOGY 2022; 63:1101-1116. [PMID: 35713501 DOI: 10.1093/pcp/pcac085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Petal blotches are commonly observed in many angiosperm families and not only influence plant-pollinator interactions but also confer high ornamental value. Tree peony (Paeonia suffruticosa Andr.) is an important cut flower worldwide, but few studies have focused on its blotch formation. In this study, anthocyanins were found to be the pigment basis for blotch formation of P. suffruticosa, and peonidin-3,5-di-O-glucoside (Pn3G5G) was the most important component of anthocyanins, while the dihydroflavonol-4-reductase gene was the key factor contributing to blotch formation. Then, the R2R3-myeloblastosis (MYB) transcription factor PsMYB30 belonging to subgroup 1 was proven as a positive anthocyanin regulator with transcriptional activation and nuclear expression. Furthermore, silencing PsMYB30 in P. suffruticosa petals reduced blotch size by 37.9%, faded blotch color and decreased anthocyanin and Pn3G5G content by 23.6% and 32.9%, respectively. Overexpressing PsMYB30 increased anthocyanin content by 14.5-fold in tobacco petals. In addition, yeast one-hybrid assays, dual-luciferase assays and electrophoretic mobility shift assays confirmed that PsMYB30 could bind to the promoter of the anthocyanin synthase (ANS) gene and enhance its expression. Altogether, a novel MYB transcription factor, PsMYB30, was identified to promote petal blotch formation by activating the expression of PsANS involved in anthocyanin biosynthesis, which provide new insights for petal blotch formation in plants.
Collapse
Affiliation(s)
- Yuting Luan
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Yuhan Tang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Xin Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Cong Xu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Jun Tao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Daqiu Zhao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
| |
Collapse
|
15
|
Shi Q, Yuan M, Wang S, Luo X, Luo S, Fu Y, Li X, Zhang Y, Li L. PrMYB5 activates anthocyanin biosynthetic PrDFR to promote the distinct pigmentation pattern in the petal of Paeonia rockii. FRONTIERS IN PLANT SCIENCE 2022; 13:955590. [PMID: 35991417 PMCID: PMC9382232 DOI: 10.3389/fpls.2022.955590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Paeonia rockii is well-known for its distinctive large dark-purple spot at the white petal base and has been considered to be the main genetic source of spotted tree peony cultivars. In this study, the petal base and petal background of Paeonia ostii (pure white petals without any spot), P. rockii, and other three tree peony cultivars were sampled at four blooming stages from the small bell-like bud stage to the initial blooming stage. There is a distinct difference between the pigmentation processes of spots and petal backgrounds; the spot pigmentation was about 10 days earlier than the petal background. Moreover, the cyanin and peonidin type anthocyanin accumulation at the petal base mainly contributed to the petal spot formation. Then, we identified a C1 subgroup R2R3-MYB transcription factor, PrMYB5, predominantly transcribing at the petal base. This is extremely consistent with PrDFR and PrANS expression, the contents of anthocyanins, and spot formation. Furthermore, PrMYB5 could bind to and activate the promoter of PrDFR in yeast one-hybrid and dual-luciferase assays, which was further verified in overexpression of PrMYB5 in tobacco and PrMYB5-silenced petals of P. rockii by comparing the color change, anthocyanin contents, and gene expression. In summary, these results shed light on the mechanism of petal spot formation in P. rockii and speed up the molecular breeding process of tree peony cultivars with novel spot pigmentation patterns.
Collapse
Affiliation(s)
- Qianqian Shi
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Meng Yuan
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Shu Wang
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Xiaoning Luo
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Sha Luo
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Yaqi Fu
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Xiang Li
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Yanlong Zhang
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Long Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
16
|
Ni X, Ni Z, Ouma KO, Gao Z. Mutations in PmUFGT3 contribute to color variation of fruit skin in Japanese apricot (Prunus mume Sieb. et Zucc.). BMC PLANT BIOLOGY 2022; 22:304. [PMID: 35751035 PMCID: PMC9229503 DOI: 10.1186/s12870-022-03693-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/14/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND Japanese apricot (Prunus mume Sieb. et Zucc.) is popular for both ornamental and processing value, fruit color affects the processing quality, and red pigmentation is the most obvious phenotype associated with fruit color variation in Japanese apricot, mutations in structural genes in the anthocyanin pathway can disrupt the red pigmentation, while the formation mechanism of the red color trait in Japanese apricot is still unclear. RESULTS: One SNP marker (PmuSNP_27) located within PmUFGT3 gene coding region was found highly polymorphic among 44 different fruit skin color cultivars and relative to anthocyanin biosynthesis in Japanese apricot. Meantime, critical mutations were identified in two alleles of PmUFGT3 in the green-skinned type is inactivated by seven nonsense mutations in the coding region, which leads to seven amino acid substitution, resulting in an inactive UFGT enzyme. Overexpression of the PmUFGT3 allele from red-skinned Japanese apricot in green-skinned fruit lines resulted in greater anthocyanin accumulation in fruit skin. Expression of same allele in an Arabidopsis T-DNA mutant deficient in anthocyanidin activity the accumulation of anthocyanins. In addition, using site-directed mutagenesis, we created a single-base substitution mutation (G to T) of PmUFGT3 isolated from green-skinned cultivar, which caused an E to D amino acid substitution and restored the function of the inactive allele of PmUFGT3 from a green-skinned individual. CONCLUSION This study confirms the function of PmUFGT3, and provides insight into the mechanism underlying fruit color determination in Japanese apricot, and possible approaches towards genetic engineering of fruit color.
Collapse
Affiliation(s)
- Xiaopeng Ni
- College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095 China
| | - Zhaojun Ni
- College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095 China
| | - Kenneth Omondi Ouma
- College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095 China
| | - Zhihong Gao
- College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095 China
| |
Collapse
|
17
|
Zhang L, Yan L, Zhang C, Kong X, Zheng Y, Dong L. Glucose Supply Induces PsMYB2-Mediated Anthocyanin Accumulation in Paeonia suffruticosa 'Tai Yang' Cut Flower. FRONTIERS IN PLANT SCIENCE 2022; 13:874526. [PMID: 35774824 PMCID: PMC9237572 DOI: 10.3389/fpls.2022.874526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Tree peony (Paeonia suffruticosa) is a well-known Chinese ornamental plant with showy flower color. However, the color fading problem during vase time seriously blocks its development in the cut flower market. In this study, we found that exogenous glucose supply improved the color quality of P. suffruticosa 'Tai Yang' cut flowers with increased total soluble sugar and anthocyanin contents of petals. Besides, the promotion effect of glucose was better than the osmotic control of 3-O-methylglucose (3OMG) treatment and the glucose analog mannose treatment. The structural genes, including PsF3H, PsF3'H, PsDFR, PsAOMT, and PsUF5GT, were remarkably upregulated under glucose treatment. Meanwhile, the regulatory genes, including PsbHLH1, PsbHLH3, PsMYB2, PsWD40-1, and PsWD40-2, also showed a strong response to glucose treatment. Among these five regulatory genes, PsMYB2 showed less response to 3OMG treatment but was highly expressed under glucose and mannose treatments, indicating that PsMYB2 may have an important role in the glucose signal pathway. Ectopic overexpression of PsMYB2 in Nicotiana tabacum resulted in a strong pigmentation in petals and stamens of tobacco flowers accompanied with multiple anthocyanin biosynthetic genes upregulated. More importantly, the overexpression of PsMYB2 enhanced the ability of glucose-induced anthocyanin accumulation in Arabidopsis thaliana seedlings since PsMYB2-overexpressing Arabidopsis showed higher expression levels of AtPAL1, AtCHS, AtF3H, AtF3'H, AtDFR, and AtLDOX than those of wild type under glucose treatment. In summary, we suggested that glucose supply promoted petal coloration of P. suffruticosa 'Tai Yang' cut flower through the signal pathway, and PsMYB2 was a key component in this process. Our research made a further understanding of the mechanism that glucose-induced anthocyanin biosynthesis of P. suffruticosa cut flowers during postharvest development, laying a foundation for color retention technology development of cut flowers.
Collapse
Affiliation(s)
- Lili Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture and College of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Li Yan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture and College of Landscape Architecture, Beijing Forestry University, Beijing, China
- Ningxia State Farm, Yinchuan, China
| | - Chao Zhang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Xin Kong
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture and College of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Yiqing Zheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture and College of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Li Dong
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture and College of Landscape Architecture, Beijing Forestry University, Beijing, China
| |
Collapse
|
18
|
Alteration of LncRNA expression in mice placentae after frozen embryo transfer is associated with increased fetal weight. Reprod Biol 2022; 22:100646. [PMID: 35567965 DOI: 10.1016/j.repbio.2022.100646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 04/18/2022] [Accepted: 04/23/2022] [Indexed: 11/15/2022]
Abstract
The birthweight after frozen embryo transfer (FET) was significantly higher compared with fresh embryo transfer (fresh ET), while the mechanism remains unclear. In this study, we transferred vitrified-warmed or fresh mice blastocysts into pseudopregnant recipients (n = 11 each group) produced by natural mating to avoid the influence of superovulation. The fetal weight, placental weight, placental efficiency and placental architecture were studied at E18.5. Placental RNA-Seq analysis was used to identify candidate different lncRNAs and mRNAs between the FET group and the fresh ET group. We found that the fetal weight was increased in the FET group, with increased placental efficiency and the proportion of placental function related labyrinth zone area. 554 lncRNAs and 1012 mRNAs were differentially expressed. KEGG and GO enrichment analyses showed these differentially expressed lncRNAs and their targeted mRNAs might be related to placental morphogenesis. Furthermore, the most differentially expressed 15 lncRNAs and 15 mRNAs were validated by qRT-PCR, we found the LncRNA embryonic stem cells expressed 1 (Lncenc1) was significantly decreased, and Gjb5, which played an important role in labyrinth zone development, was increased. Gjb5 protein increase was further confirmed by Western blot. Lncenc1 and Gjb5 had 48 predicted co-targeted miRNAs, while the correlation analysis of Lncenc1 and Gjb5 mRNA showed a significant inverse correlation. The results showed that FET treatment might enhance the placental function to increase mouse fetal weight via the network diagram of Lncenc1-miRNA-Gjb5.
Collapse
|
19
|
Wong DCJ, Perkins J, Peakall R. Anthocyanin and Flavonol Glycoside Metabolic Pathways Underpin Floral Color Mimicry and Contrast in a Sexually Deceptive Orchid. FRONTIERS IN PLANT SCIENCE 2022; 13:860997. [PMID: 35401591 PMCID: PMC8983864 DOI: 10.3389/fpls.2022.860997] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/17/2022] [Indexed: 06/10/2023]
Abstract
Sexually deceptive plants secure pollination by luring specific male insects as pollinators using a combination of olfactory, visual, and morphological mimicry. Flower color is a key component to this attraction, but its chemical and genetic basis remains poorly understood. Chiloglottis trapeziformis is a sexually deceptive orchid which has predominantly dull green-red flowers except for the central black callus projecting from the labellum lamina. The callus mimics the female of the pollinator and the stark color contrast between the black callus and dull green or red lamina is thought to enhance the visibility of the mimic. The goal of this study was to investigate the chemical composition and genetic regulation of temporal and spatial color patterns leading to visual mimicry, by integrating targeted metabolite profiling and transcriptomic analysis. Even at the very young bud stage, high levels of anthocyanins were detected in the dark callus, with peak accumulation by the mature bud stage. In contrast, anthocyanin levels in the lamina peaked as the buds opened and became reddish-green. Coordinated upregulation of multiple genes, including dihydroflavonol reductase and leucoanthocyanidin dioxygenase, and the downregulation of flavonol synthase genes (FLS) in the callus at the very young bud stage underpins the initial high anthocyanin levels. Conversely, within the lamina, upregulated FLS genes promote flavonol glycoside over anthocyanin production, with the downstream upregulation of flavonoid O-methyltransferase genes further contributing to the accumulation of methylated flavonol glycosides, whose levels peaked in the mature bud stage. Finally, the peak anthocyanin content of the reddish-green lamina of the open flower is underpinned by small increases in gene expression levels and/or differential upregulation in the lamina in select anthocyanin genes while FLS patterns showed little change. Differential expression of candidate genes involved in specific transport, vacuolar acidification, and photosynthetic pathways may also assist in maintaining the distinct callus and contrasting lamina color from the earliest bud stage through to the mature flower. Our findings highlight that flower color in this sexually deceptive orchid is achieved by complex tissue-specific coordinated regulation of genes and biochemical pathways across multiple developmental stages.
Collapse
|
20
|
Han L, Zhou L, Zou H, Yuan M, Wang Y. PsGSTF3, an Anthocyanin-Related Glutathione S-Transferase Gene, Is Essential for Petal Coloration in Tree Peony. Int J Mol Sci 2022; 23:ijms23031423. [PMID: 35163347 PMCID: PMC8836093 DOI: 10.3390/ijms23031423] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 01/27/2023] Open
Abstract
Anthocyanins, as the most important chromogenic substances in flavonoids, are responsible for the red, purple, and blue coloration of flowers. Anthocyanins are synthesized in the cytoplasmic surface of the endoplasmic reticulum (ER) but accumulate predominantly in the vacuole, while glutathione S-transferases (GSTs) are considered to be mainly responsible for the transport process. Our previous studies showed that the expression of PsGSTF3 was positively correlated with anthocyanin content in tree peony tissues, which is a key candidate gene for anthocyanin accumulation. Here, we successfully cloned and characterized full-length PsGSTF3 containing three exons and two introns. Subcellular localization showed that PsGSTF3 was localized in the nucleus and ER membrane. Functional complementation of the Arabidopsis transparent testa19 (tt19) mutant indicated that PsGSTF3 was responsible for the transport of anthocyanins but not of proanthocyanidins (PAs). Virus-induced gene silencing (VIGS) of PsGSTF3 not only led to a decrease in anthocyanin accumulation but also caused a reduction of structural genes in the anthocyanin biosynthesis pathway (ABP) to varying degrees. Heterologous overexpression of PsGSTF3 was found to increase the anthocyanin accumulation in tobacco petals. Furthermore, the yeast two-hybrid (Y2H) assay showed that PsGSTF3 interacted with PsDFR, which together contributed to the coloration of petals. In conclusion, these results demonstrate that PsGSTF3 encodes an important GST transporter of anthocyanin in tree peony petals and provides a new perspective for the associated transport and regulatory mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Yan Wang
- Correspondence: ; Tel.: +86-010-6288-9715
| |
Collapse
|
21
|
Fu M, Yang X, Zheng J, Wang L, Yang X, Tu Y, Ye J, Zhang W, Liao Y, Cheng S, Xu F. Unraveling the Regulatory Mechanism of Color Diversity in Camellia japonica Petals by Integrative Transcriptome and Metabolome Analysis. FRONTIERS IN PLANT SCIENCE 2021; 12:685136. [PMID: 34178004 PMCID: PMC8226227 DOI: 10.3389/fpls.2021.685136] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/17/2021] [Indexed: 05/03/2023]
Abstract
Camellia japonica petals are colorful, rich in anthocyanins, and possess important ornamental, edible, and medicinal value. However, the regulatory mechanism of anthocyanin accumulation in C. japonica is still unclear. In this study, an integrative analysis of the metabolome and transcriptome was conducted in five C. japonica cultivars with different petal colors. Overall, a total of 187 flavonoids were identified (including 25 anthocyanins), and 11 anthocyanins were markedly differentially accumulated among these petals, contributing to the different petal colors in C. japonica. Moreover, cyanidin-3-O-(6″-O-malonyl) glucoside was confirmed as the main contributor to the red petal phenotype, while cyanidin-3-O-rutinoside, peonidin-3-O-glucoside, cyanidin-3-O-glucoside, and pelargonidin-3-O-glucoside were responsible for the deep coloration of the C. japonica petals. Furthermore, a total of 12,531 differentially expressed genes (DEGs) and overlapping DEGs (634 DEGs) were identified by RNA sequencing, and the correlation between the expression level of the DEGs and the anthocyanin content was explored. The candidate genes regulating anthocyanin accumulation in the C. japonica petals were identified and included 37 structural genes (especially CjANS and Cj4CL), 18 keys differentially expressed transcription factors (such as GATA, MYB, bHLH, WRKY, and NAC), and 16 other regulators (mainly including transporter proteins, zinc-finger proteins, and others). Our results provide new insights for elucidating the function of anthocyanins in C. japonica petal color expression.
Collapse
Affiliation(s)
- Mingyue Fu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Xu Yang
- Department of Forestry Ecology, Hubei Ecology Polytechnic College, Wuhan, China
| | - Jiarui Zheng
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Ling Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Xiaoyan Yang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Yi Tu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Jiabao Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Shuiyuan Cheng
- National R&D Center for Se-Rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan, China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| |
Collapse
|
22
|
Sulli M, Barchi L, Toppino L, Diretto G, Sala T, Lanteri S, Rotino GL, Giuliano G. An Eggplant Recombinant Inbred Population Allows the Discovery of Metabolic QTLs Controlling Fruit Nutritional Quality. FRONTIERS IN PLANT SCIENCE 2021; 12:638195. [PMID: 34079565 PMCID: PMC8166230 DOI: 10.3389/fpls.2021.638195] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/22/2021] [Indexed: 06/02/2023]
Abstract
Eggplant (Solanum melongena L.) represents the third most important crop of the Solanaceae family and is an important component of our daily diet. A population of 164 F6 recombinant inbred lines (RILs), derived from two eggplant lines differing with respect to several key agronomic traits, "305E40" and "67/3," was grown to the commercial maturation stage, and fruits were harvested, separated into peel and flesh, and subjected to liquid chromatography Liquid Chromatography/Mass Spectrometry (LC/MS) analysis. Through a combination of untargeted and targeted metabolomics approaches, a number of metabolites belonging to the glycoalkaloid, anthocyanin, and polyamine classes and showing a differential accumulation in the two parental lines and F1 hybrid were identified. Through metabolic profiling of the RILs, we identified several metabolomic quantitative trait loci (mQTLs) associated with the accumulation of those metabolites. Each of the metabolic traits proved to be controlled by one or more quantitative trait loci (QTLs); for most of the traits, one major mQTL (phenotypic variation explained [PVE] ≥ 10%) was identified. Data on mQTL mapping and dominance-recessivity relationships of measured compounds in the parental lines and F1 hybrid, as well as an analysis of the candidate genes underlying the QTLs and of their sequence differences in the two parental lines, suggested a series of candidate genes underlying the traits under study.
Collapse
Affiliation(s)
- Maria Sulli
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Rome, Italy
| | - Lorenzo Barchi
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics and Breeding, University of Turin, Grugliasco, Italy
| | - Laura Toppino
- CREA, Council for Agricultural and Economics Research, Research Centre for Genomics and Bioinformatics, Montanaso Lombardo, Italy
| | - Gianfranco Diretto
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Rome, Italy
| | - Tea Sala
- CREA, Council for Agricultural and Economics Research, Research Centre for Genomics and Bioinformatics, Montanaso Lombardo, Italy
| | - Sergio Lanteri
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics and Breeding, University of Turin, Grugliasco, Italy
| | - Giuseppe Leonardo Rotino
- CREA, Council for Agricultural and Economics Research, Research Centre for Genomics and Bioinformatics, Montanaso Lombardo, Italy
| | - Giovanni Giuliano
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Rome, Italy
| |
Collapse
|
23
|
Li L, Ye J, Li H, Shi Q. Characterization of Metabolites and Transcripts Involved in Flower Pigmentation in Primula vulgaris. FRONTIERS IN PLANT SCIENCE 2020; 11:572517. [PMID: 33329630 PMCID: PMC7714730 DOI: 10.3389/fpls.2020.572517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/12/2020] [Indexed: 05/28/2023]
Abstract
Primula vulgaris exhibits a wide range of flower colors and is a valuable ornamental plant. The combination of flavonols/anthocyanins and carotenoids provides various colorations ranging from yellow to violet-blue. However, the complex metabolic networks and molecular mechanisms underlying the different flower colors of P. vulgaris remain unclear. Based on comprehensive analysis of morphological anatomy, metabolites, and gene expression in different-colored flowers of P. vulgaris, the mechanisms relating color-determining compounds to gene expression profiles were revealed. In the case of P. vulgaris flower color, hirsutin, rosinin, petunidin-, and cyanidin-type anthocyanins and the copigment herbacetin contributed to the blue coloration, whereas peonidin-, cyandin-, and delphinidin-type anthocyanins showed high accumulation levels in pink flowers. The color formation of blue and pink were mainly via the regulation of F3'5'H (c53168), AOMT (c47583, c44905), and 3GT (c50034). Yellow coloration was mainly due to gossypetin and carotenoid, which were regulated by F3H (c43100), F3 1 (c53714), 3GT (c53907) as well as many carotenoid biosynthetic pathway-related genes. Co-expression network and transient expression analysis suggested a potential direct link between flavonoid and carotenoid biosynthetic pathways through MYB transcription factor regulation. This work reveals that transcription changes influence physiological characteristics, and biochemistry characteristics, and subsequently results in flower coloration in P. vulgaris.
Collapse
Affiliation(s)
- Long Li
- College of Forestry, Northwest A&F University, Yangling, China
| | - Jing Ye
- College of Forestry, Northwest A&F University, Yangling, China
| | - Houhua Li
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Qianqian Shi
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| |
Collapse
|
24
|
Zhang Y, Xu S, Cheng Y, Wang J, Wang X, Liu R, Han J. Functional identification of PsMYB57 involved in anthocyanin regulation of tree peony. BMC Genet 2020; 21:124. [PMID: 33198624 PMCID: PMC7667756 DOI: 10.1186/s12863-020-00930-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/30/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND R2R3 myeloblastosis (MYB) genes are widely distributed in plants and comprise one of the largest transcription factor gene families. They play important roles in the regulatory networks controlling development, metabolism, and stress responses. Researches on functional genes in tree peony are still in its infancy. To date, few MYB genes have thus far been reported. RESULTS In this study, we constructed a comprehensive reference gene set by transcriptome sequencing to obtain R2R3 MYB genes. The transcriptomes of eight different tissues were sequenced, and 92,837 unigenes were obtained with an N50 of 1662 nt. A total of 48,435 unigenes (77.98%) were functionally annotated in public databases. Based on the assembly, we identified 57 R2R3 MYB genes containing full-length open reading frames, which clustered into 35 clades by phylogenetic analysis. PsMYB57 clustered with anthocyanin regulation genes in Arabidopsis and was mainly transcribed in the buds and young leaves. The overexpression of PsMYB57 induced anthocyanin accumulation in tobacco, and four detected anthocyanin structural genes, including NtCHS, NtF3'H, NtDFR, and NtANS, were upregulated. The two endogenous bHLH genes NtAn1a and NtAn1b were also upregulated and may work in combination with PsMYB57 in regulating anthocyanin structural genes. CONCLUSIONS Our study offers a useful reference to the selection of candidate MYB genes for further functional studies in tree peony. Function analysis of PsMYB57 is helpful to understand the color accumulation in vegetative organs of tree peony. PsMYB57 is also a promising resource to improve plant color in molecular breeding.
Collapse
Affiliation(s)
- Yanzhao Zhang
- Life Science Department, Luoyang Normal University, Luoyang, 471022, China.
| | - Shuzhen Xu
- Life Science Department, Luoyang Normal University, Luoyang, 471022, China
| | - Yanwei Cheng
- Life Science Department, Luoyang Normal University, Luoyang, 471022, China
| | - Jing Wang
- Life Science Department, Luoyang Normal University, Luoyang, 471022, China
| | - Xiangxiang Wang
- Life Science Department, Luoyang Normal University, Luoyang, 471022, China
| | - Runxiao Liu
- Life Science Department, Luoyang Normal University, Luoyang, 471022, China
| | - Jianming Han
- Life Science Department, Luoyang Normal University, Luoyang, 471022, China
| |
Collapse
|
25
|
Lv S, Cheng S, Wang Z, Li S, Jin X, Lan L, Yang B, Yu K, Ni X, Li N, Hou X, Huang G, Wang J, Dong Y, Wang E, Huang J, Zhang G, Zhang C. Draft genome of the famous ornamental plant Paeonia suffruticosa. Ecol Evol 2020; 10:4518-4530. [PMID: 32551041 PMCID: PMC7297784 DOI: 10.1002/ece3.5965] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 11/25/2019] [Accepted: 12/06/2019] [Indexed: 01/01/2023] Open
Abstract
Tree peony (Paeonia Sect. Moutan) is a famous ornamental plant, with huge historical, cultural, and economic significance worldwide. In this study, we reported the ~13.79 Gb draft genome of a wide-grown Paeonia suffruticosa cultivar "Luo shen xiao chun," representing the largest sequenced genome in dicots to date. Phylogenetic analyses based on genome sequences demonstrated that P. suffruticosa was placed as sister to Vitales, and they together formed a clade that was sister to Rosids, weakly supporting a relationship of ((Saxifragales and Vitales) and Rosids). The identification and expression analysis of MADS-box genes based on the genome assembly and de novo transcriptome assembly of P. suffruticosa revealed that the function of C class genes was restricted in flower development, which might be responsible for the stamen petalody in tree peony cultivars. Overall, the first sequenced genome in the family Paeoniaceae provides an important resource for the origin, domestication, and evolutionary study as well as cultivar breeding in tree peony.
Collapse
|
26
|
Zhang Y, Cheng Y, Xu S, Ma H, Han J, Zhang Y. Tree peony variegated flowers show a small insertion in the F3'H gene of the acyanic flower parts. BMC PLANT BIOLOGY 2020; 20:211. [PMID: 32398153 PMCID: PMC7216414 DOI: 10.1186/s12870-020-02428-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/30/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND The tree peony (Paeonia suffruticosa Andr.) cultivar 'Er Qiao' is appreciated for its unstable variegated flower coloration, with cyanic and acyanic flowers appearing on different branches of the same plant and occasionally in a single flower or petal. However, the variegation mechanism is still unclear. RESULTS In this study, we found significantly higher contents and more diverse sets of anthocyanins in the cyanic petals than in the acyanic petals. Comparative transcriptome analysis between the two flower types revealed 477 differentially expressed genes (DEGs). Quantitative real-time PCR results verified that the transcript levels of the flavonol synthase (FLS) gene were significantly increased in the acyanic petals. Furthermore, we found that a GCGGCG insertion at 246 bp in the flavonoid 3'-hydroxylase (F3'H) gene-coding region constitutes a duplication of the 241-245 bp section and was consistently found only in acyanic flowers. Sequence alignment of the F3'H gene from different plant species indicated that only the acyanic petals of 'Er Qiao' contained the GCGGCG insertion. The transformation of Arabidopsis tt7-1 lines demonstrated that the ectopic expression of F3'H-cyanic, but not F3'H-acyanic, could complement the colors in the hypocotyl and seed coat. CONCLUSION In summary, we found that an indel in F3'H and the upregulation of FLS drastically reduced the anthocyanin content in acyanic petals. Our results provide molecular candidates for a better understanding of the variegation mechanisms in tree peony.
Collapse
Affiliation(s)
- Yanzhao Zhang
- Life Science Department, Luoyang Normal University, Luoyang, 471022, People's Republic of China.
| | - Yanwei Cheng
- Life Science Department, Luoyang Normal University, Luoyang, 471022, People's Republic of China
| | - Shuzhen Xu
- Life Science Department, Luoyang Normal University, Luoyang, 471022, People's Republic of China
| | - Huiping Ma
- Luoyang Research Institute of Peony, Luoyang, 471022, People's Republic of China
| | - Jianming Han
- Life Science Department, Luoyang Normal University, Luoyang, 471022, People's Republic of China
| | - Yan Zhang
- Life Science Department, Luoyang Normal University, Luoyang, 471022, People's Republic of China
| |
Collapse
|
27
|
Identification and differential expression analysis of anthocyanin biosynthetic genes in root-skin color variants of radish (Raphanus sativus L.). Genes Genomics 2020; 42:413-424. [PMID: 31997158 DOI: 10.1007/s13258-020-00915-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 01/14/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Taproot skin color is a major trait for assessing the commercial and nutritional quality of radish, and red-skinned radish is confirmed to improve consumer's interest and health. However, little is known about the molecular mechanisms responsible for controlling the formation of red-skinned radish. OBJECTIVE This study aimed to identify the differentially expressed anthocyanin biosynthetic genes between red- and white-skinned radishes and understand the molecular regulatory mechanism underlying red-skinned radish formation. METHODS Based on the published complete genome sequence of radish, the digital gene expression profiles of Yangzhouyuanbai (YB, white-skinned) and Sading (SD, red-skinned) were analyzed using Illumina sequencing. RESULTS A total of 3666 DEGs were identified in SD compared with YB. Interestingly, 46 genes encoded enzymes related to anthocyanin biosynthesis and 241 genes encoded transcription factors were identified. KEGG pathway analysis showed that the formation of red-skinned radish was mainly controlled by pelargonidin-derived anthocyanin biosynthetic pathway genes. This process included the upregulation of PAL, C4H, 4CL, CHS, CHI, F3H, DFR, LDOX, and UGT enzymes in SD. CHS genes were specifically expressed in SD, and it might be the key point for red pigment accumulation in red-skinned radish. Furthermore, MYB1/2/75, bHLH (TT8), and WD 40 showed higher expression in SD than in YB. Meanwhile, the corresponding low-abundance anthocyanin biosynthesis enzymes and upregulation of MYB4 might be the factors influencing the formation of white-skinned radish. CONCLUSION These findings provide new insights into the molecular mechanisms and regulatory network of anthocyanin biosynthesis in red-skinned radish.
Collapse
|
28
|
Fan Y, Wang Q, Dong Z, Yin Y, Teixeira da Silva JA, Yu X. Advances in molecular biology of Paeonia L. PLANTA 2019; 251:23. [PMID: 31784828 DOI: 10.1007/s00425-019-03299-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
Molecular biology can serve as a tool to solve the limitations of traditional breeding and cultivation techniques related to flower patterns, the improvement of flower color, and the regulation of flowering and stress resistance. These characteristics of molecular biology ensured its significant role in improving the efficiency of breeding and germplasm amelioration of Paeonia. This review describes the advances in molecular biology of Paeonia, including: (1) the application of molecular markers; (2) genomics, transcriptomics, proteomics, metabolomics, and microRNA studies; (3) studies of functional genes; and (4) molecular biology techniques. This review also points out select limitations in current molecular biology, analyzes the direction of Paeonia molecular biology research, and provides advice for future research objectives.
Collapse
Affiliation(s)
- Yongming Fan
- College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, People's Republic of China
| | - Qi Wang
- College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, People's Republic of China
| | - Zhijun Dong
- College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, People's Republic of China
| | - Yijia Yin
- College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, People's Republic of China
| | | | - Xiaonan Yu
- College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, People's Republic of China.
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, People's Republic of China.
| |
Collapse
|
29
|
Zhao A, Cui Z, Li T, Pei H, Sheng Y, Li X, Zhao Y, Zhou Y, Huang W, Song X, Peng T, Wang J. mRNA and miRNA Expression Analysis Reveal the Regulation for Flower Spot Patterning in Phalaenopsis 'Panda'. Int J Mol Sci 2019; 20:ijms20174250. [PMID: 31480267 PMCID: PMC6747512 DOI: 10.3390/ijms20174250] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/25/2019] [Accepted: 08/26/2019] [Indexed: 12/16/2022] Open
Abstract
Phalaenopsis cultivar ‘Panda’ is a beautiful and valuable ornamental for its big flower and unique big spots on the petals and sepals. Although anthocyanins are known as the main pigments responsible for flower colors in Phalaenopsis, and the anthocyanins biosynthetic pathway in Phalaenopsis is generally well known, the detailed knowledge of anthocynins regulation within the spot and non-spot parts in ‘Panda’ flower is limited. In this study, transcriptome and small RNA libraries analysis from spot and non-spot sepal tissues of ‘Panda’ were performed, and we found PeMYB7, PeMYB11, and miR156g, miR858 is associated with the purple spot patterning in its sepals. Transcriptome analyses showed a total 674 differentially expressed genes (DEGs), with 424 downregulated and 250 upregulated (Non-spot-VS-Spot), and 10 candidate DEGs involved in anthocyanin biosynthetic pathway. The qPCR analysis confirmed that seven candidate structure genes (PeANS, PeF3′H, PeC4H, PeF3H, PeF3H1, Pe4CL2, and PeCHI) have significantly higher expressing levels in spot tissues than non-spot tissues. A total 1552 differentially expressed miRNAs (DEMs) were detected with 676 downregulated and 876 upregulated. However, microRNA data showed no DEMs targeting on anthocyanin biosynthesis structure gene, while a total 40 DEMs target transcription factor (TF) genes, which expressed significantly different level in spot via non-spot sepal, including 2 key MYB regulator genes. These results indicated that the lack of anthocyanidins in non-spot sepal may not directly be caused by microRNA suppressing anthocyanidin synthesis genes rather than the MYB genes. Our findings will help in understanding the role of miRNA molecular mechanisms in the spot formation pattern of Phalaenopsis, and would be useful to provide a reference to similar research in other species.
Collapse
Affiliation(s)
- Anjin Zhao
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Hainan Key Laboratory for Biology of Tropical Ornamental Plants Germplasm, College of Forestry, Hainan University, Haikou 570228, China
| | - Zheng Cui
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Hainan Key Laboratory for Biology of Tropical Ornamental Plants Germplasm, College of Forestry, Hainan University, Haikou 570228, China
| | - Tingge Li
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Hainan Key Laboratory for Biology of Tropical Ornamental Plants Germplasm, College of Forestry, Hainan University, Haikou 570228, China
| | - Huiqin Pei
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Hainan Key Laboratory for Biology of Tropical Ornamental Plants Germplasm, College of Forestry, Hainan University, Haikou 570228, China
| | - Yuhui Sheng
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Hainan Key Laboratory for Biology of Tropical Ornamental Plants Germplasm, College of Forestry, Hainan University, Haikou 570228, China
| | - Xueqing Li
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Hainan Key Laboratory for Biology of Tropical Ornamental Plants Germplasm, College of Forestry, Hainan University, Haikou 570228, China
| | - Ying Zhao
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Hainan Key Laboratory for Biology of Tropical Ornamental Plants Germplasm, College of Forestry, Hainan University, Haikou 570228, China
- Research Center for Terrestrial Biodiversity of the South China Sea, College of Forestry, Hainan University, Haikou 570228, China
| | - Yang Zhou
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Hainan Key Laboratory for Biology of Tropical Ornamental Plants Germplasm, College of Forestry, Hainan University, Haikou 570228, China
- Research Center for Terrestrial Biodiversity of the South China Sea, College of Forestry, Hainan University, Haikou 570228, China
| | - Wenjun Huang
- Department of Development and Design, Hainan University, Haikou 570228, China
| | - Xiqiang Song
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Hainan Key Laboratory for Biology of Tropical Ornamental Plants Germplasm, College of Forestry, Hainan University, Haikou 570228, China
- Research Center for Terrestrial Biodiversity of the South China Sea, College of Forestry, Hainan University, Haikou 570228, China
| | - Ting Peng
- Key Laboratory of Germplasm Innovation on Protection and Conservation of Mountain Plant Resources, Ministry of Education/College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Jian Wang
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Hainan Key Laboratory for Biology of Tropical Ornamental Plants Germplasm, College of Forestry, Hainan University, Haikou 570228, China.
- Research Center for Terrestrial Biodiversity of the South China Sea, College of Forestry, Hainan University, Haikou 570228, China.
| |
Collapse
|
30
|
Liu N, Cheng F, Zhong Y, Guo X. Comparative transcriptome and coexpression network analysis of carpel quantitative variation in Paeonia rockii. BMC Genomics 2019; 20:683. [PMID: 31464595 PMCID: PMC6716868 DOI: 10.1186/s12864-019-6036-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 08/16/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Quantitative variation of floral organs in plants is caused by an extremely complex process of transcriptional regulation. Despite progress in model plants, the molecular mechanisms of quantitative variation remain unknown in woody flower plants. The Paeonia rockii originated in China is a precious woody plant with ornamental, medicinal and oil properties. There is a wide variation in the number of carpel in P. rockii, but the molecular mechanism of the variation has rarely been studied. Then a comparative transcriptome was performed among two cultivars of P. rockii with different development patterns of carpel in this study. RESULTS Through the next-generation and single-molecule long-read sequencing (NGS and SMLRS), 66,563 unigenes and 28,155 differentially expressed genes (DEGs) were identified in P. rockii. Then clustering pattern and weighted gene coexpression network analysis (WGCNA) indicated that 15 candidate genes were likely involved in the carpel quantitative variation, including floral organ development, transcriptional regulatory and enzyme-like factors. Moreover, transcription factors (TFs) from the MYB, WD, RING1 and LRR gene families suggested the important roles in the management of the upstream genes. Among them, PsMYB114-like, PsMYB12 and PsMYB61-like from the MYB gene family were probably the main characters that regulated the carpel quantitative variation. Further, a hypothetical model for the regulation pattern of carpel quantitative variation was proposed in which the candidate genes function synergistically the quantitative variation process. CONCLUSIONS We present the high-quality sequencing products in P. rockii. Our results summarize a valuable collective of gene expression profiles characterizing the carpel quantitative variation. The DEGs are candidate for functional analyses of genes regulating the carpel quantitative variation in tree peonies, which provide a precious resource that reveals the molecular mechanism of carpel quantitative variation in other woody flower crops.
Collapse
Affiliation(s)
- Na Liu
- Peony International Institute, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Fangyun Cheng
- Peony International Institute, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| | - Yuan Zhong
- Peony International Institute, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Xin Guo
- Peony International Institute, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
31
|
Li L, Zhai Y, Luo X, Zhang Y, Shi Q. Comparative transcriptome analyses reveal genes related to pigmentation in the petals of red and white Primula vulgaris cultivars. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:1029-1041. [PMID: 31404227 PMCID: PMC6656844 DOI: 10.1007/s12298-019-00664-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 02/05/2019] [Accepted: 04/01/2019] [Indexed: 05/12/2023]
Abstract
Primula vulgaris is an important ornamental plant species with various flower color. To explore the molecular mechanism of its color formation, comparative transcriptome analyses of the petals in red and white cultivars was performed. A total of 4451 differentially expressed genes were identified and annotated into 128 metabolic pathways. Candidate genes FLS, F3'H, DFR, ANS and AOMT in the anthocyanin pathway were expressed significantly higher in the red cultivar than the white and may be responsible for the red coloration. In the red petals, a putative transcription factors bHLH (c52273.graph_c0) was up-regulated about 14-fold, while a R2R3-MYB unigene (c36140.graph_c0) was identified as a repressor involved in anthocyanin regulation and was significantly down-regulated. In addition, the anatomy analyses and pigments composition in the red and white petals were also analyzed. The papillae on the adaxial epidermis of the red petals of P. vulgaris display a triangle-shapes, in contrast with a spherical shape for the white petals. Although flavonoids were detected in both cultivars, anthocyanins could only be identified in the red cultivar. Gossypetin and peonidin/rosinin were the most abundant pigments in red petals. This study shed light on the genetic and biochemistry mechanisms underlying the flower coloration in Primula.
Collapse
Affiliation(s)
- Long Li
- College of Forestry, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yuhui Zhai
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Xiaoning Luo
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Ying Zhang
- Beijing Key Lab of Digital Plant, No. 11 Shuguang Huayuan Middle Road, Haidian District, Beijing, 100097 China
| | - Qianqian Shi
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
32
|
Xie L, Zhang Q, Sun D, Yang W, Hu J, Niu L, Zhang Y. Virus-induced gene silencing in the perennial woody Paeonia ostii. PeerJ 2019; 7:e7001. [PMID: 31179188 PMCID: PMC6545099 DOI: 10.7717/peerj.7001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 04/21/2019] [Indexed: 11/24/2022] Open
Abstract
Tree peony is a perennial deciduous shrub with great ornamental and medicinal value. A limitation of its current functional genomic research is the lack of effective molecular genetic tools. Here, the first application of a Tobacco rattle virus (TRV)-based virus-induced gene silencing (VIGS) in the tree peony species Paeonia ostii is presented. Two different approaches, leaf syringe-infiltration and seedling vacuum-infiltration, were utilized for Agrobacterium-mediated inoculation. The vacuum-infiltration was shown to result in a more complete Agrobacterium penetration than syringe-infiltration, and thereby determined as an appropriate inoculation method. The silencing of reporter gene PoPDS encoding phytoene desaturase was achieved in TRV-PoPDS-infected triennial tree peony plantlets, with a typical photobleaching phenotype shown in uppermost newly-sprouted leaves. The endogenous PoPDS transcripts were remarkably down-regulated in VIGS photobleached leaves. Moreover, the green fluorescent protein (GFP) fluorescence was detected in leaves and roots of plants inoculated with TRV-GFP, suggesting the capability of TRV to silence genes in various tissues. Taken together, the data demonstrated that the TRV-based VIGS technique could be adapted for high-throughput functional characterization of genes in tree peony.
Collapse
Affiliation(s)
- Lihang Xie
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, China
| | - Qingyu Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, China
| | - Daoyang Sun
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, China
| | - Weizong Yang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiayuan Hu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, China
| | - Lixin Niu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanlong Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
33
|
Gu Z, Zhu J, Hao Q, Yuan YW, Duan YW, Men S, Wang Q, Hou Q, Liu ZA, Shu Q, Wang L. A Novel R2R3-MYB Transcription Factor Contributes to Petal Blotch Formation by Regulating Organ-Specific Expression of PsCHS in Tree Peony (Paeonia suffruticosa). PLANT & CELL PHYSIOLOGY 2019; 60:599-611. [PMID: 30496505 DOI: 10.1093/pcp/pcy232] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/24/2018] [Indexed: 05/20/2023]
Abstract
Flower color patterns play critical roles in plant-pollinator interactions and represent one of the most common adaptations during angiosperm evolution. However, the molecular mechanisms underlying flower color pattern formation are less understood in non-model organisms. The aim of this study was to identify genes involved in the formation of petal blotches in tree peony (Paeonia suffruticosa) through transcriptome profiling and functional experiments. We identified an R2R3-MYB gene, PsMYB12, representing a distinct R2R3-MYB subgroup, with a spatiotemporal expression pattern tightly associated with petal blotch development. We further demonstrated that PsMYB12 interacts with a basic helix-loop-helix (bHLH) and a WD40 protein in a regulatory complex that directly activates PsCHS expression, which is also specific to the petal blotches. Together, these findings advance our understanding of the molecular mechanisms of pigment pattern formation beyond model plants. They also benefit molecular breeding of tree peony cultivars with novel color patterns and promote germplasm innovation.
Collapse
Affiliation(s)
- Zhaoyu Gu
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | - Jin Zhu
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qing Hao
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yao-Wu Yuan
- Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Yuan-Wen Duan
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Siqi Men
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qianyu Wang
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qinzheng Hou
- College of Life Science, Northwest Normal University, Lanzhou, Gansu, China
| | - Zheng-An Liu
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | - Qingyan Shu
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | - Liangsheng Wang
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
34
|
Zhang X, Zhao M, Guo J, Zhao L, Xu Z. Anatomical and biochemical analyses reveal the mechanism of double-color formation in Paeonia suffruticosa 'Shima Nishiki'. 3 Biotech 2018; 8:420. [PMID: 30305991 PMCID: PMC6158150 DOI: 10.1007/s13205-018-1459-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/24/2018] [Indexed: 10/28/2022] Open
Abstract
Paeonia suffruticosa 'Shima Nishiki' is a very precious double-color cultivar because of its distinctive and colorful flowers. However, our understanding of the underlying mechanisms of its double-color formation is limited. The present study investigated the soluble sugar content, cell sap pH value and anatomical structure, anthocyanin composition and content and expression patterns of genes related to anthocyanin biosynthesis in the red and pink petals of the 'Shima Nishiki' cultivar. Here, we found that soluble sugar content, cell sap pH and the shape of outer epidermal cells were not the key factors that determine double-color formation. Five different anthocyanins were detected in both the red and pink petals, and the pelargonidin-3,5-di-O-glucoside (Pg3G5G) and pelargonidin-3-O-glucoside (Pg3G) contents in the red petals were significantly higher than those in the pink petals at every developmental stage. In addition, these gene expression patterns suggested that the significant differential expression of the dihydroflavonol 4-reductase gene (PsDFR) gene might play a key role in double-color formation. These results will provide a valuable resource for further studies unraveling the underlying genetic mechanisms of double-color formation in P. suffruticosa 'Shima Nishiki'.
Collapse
Affiliation(s)
- Xinpeng Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Mingyuan Zhao
- College of Forestry, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Jing Guo
- College of Forestry, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Lanyong Zhao
- College of Forestry, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Zongda Xu
- College of Forestry, Shandong Agricultural University, Taian, 271018 Shandong China
| |
Collapse
|
35
|
Ma KF, Zhang QX, Cheng TR, Yan XL, Pan HT, Wang J. Substantial Epigenetic Variation Causing Flower Color Chimerism in the Ornamental Tree Prunus mume Revealed by Single Base Resolution Methylome Detection and Transcriptome Sequencing. Int J Mol Sci 2018; 19:E2315. [PMID: 30087265 PMCID: PMC6121637 DOI: 10.3390/ijms19082315] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/29/2018] [Accepted: 08/02/2018] [Indexed: 01/03/2023] Open
Abstract
Epigenetic changes caused by methylcytosine modification participate in gene regulation and transposable element (TE) repression, resulting in phenotypic variation. Although the effects of DNA methylation and TE repression on flower, fruit, seed coat, and leaf pigmentation have been investigated, little is known about the relationship between methylation and flower color chimerism. In this study, we used a comparative methylomic⁻transcriptomic approach to explore the molecular mechanism responsible for chimeric flowers in Prunus mume "Danban Tiaozhi". High-performance liquid chromatography-electrospray ionization mass spectrometry revealed that the variation in white (WT) and red (RT) petal tissues in this species is directly due to the accumulation of anthocyanins, i.e., cyanidin 3,5-O-diglucoside, cyanidin 3-O-glucoside, and peonidin 3-O-glucoside. We next mapped the first-ever generated methylomes of P. mume, and found that 11.29⁻14.83% of the genomic cytosine sites were methylated. We also determined that gene expression was negatively correlated with methylcytosine level in general, and uncovered significant epigenetic variation between WT and RT. Furthermore, we detected differentially methylated regions (DMRs) and DMR-related genes between WT and RT, and concluded that many of these genes, including differentially expressed genes (DEGs) and transcription factor genes, are critical participants in the anthocyanin regulatory pathway. Importantly, some of the associated DEGs harbored TE insertions that were also modified by methylcytosine. The above evidence suggest that flower color chimerism in P. mume is induced by the DNA methylation of critical genes and TEs.
Collapse
Affiliation(s)
- Kai-Feng Ma
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Qi-Xiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China.
| | - Tang-Ren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Xiao-Lan Yan
- Mei Research Center of China, Wuhan 430074, China.
| | - Hui-Tang Pan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
36
|
Zhang Y, Xu S, Cheng Y, Peng Z, Han J. Transcriptome profiling of anthocyanin-related genes reveals effects of light intensity on anthocyanin biosynthesis in red leaf lettuce. PeerJ 2018; 6:e4607. [PMID: 29666761 PMCID: PMC5900932 DOI: 10.7717/peerj.4607] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 03/22/2018] [Indexed: 01/09/2023] Open
Abstract
Red leaf lettuce (Lactuca sativa L.) is popular due to its high anthocyanin content, but poor leaf coloring often occurs under low light intensity. In order to reveal the mechanisms of anthocyanins affected by light intensity, we compared the transcriptome of L. sativa L. var. capitata under light intensities of 40 and 100 μmol m-2 s-1. A total of 62,111 unigenes were de novo assembled with an N50 of 1,681 bp, and 48,435 unigenes were functionally annotated in public databases. A total of 3,899 differentially expressed genes (DEGs) were detected, of which 1,377 unigenes were up-regulated and 2,552 unigenes were down-regulated in the high light samples. By Kyoto Encyclopedia of Genes and Genomes enrichment analysis, the DEGs were significantly enriched in 14 pathways. Using gene annotation and phylogenetic analysis, we identified seven anthocyanin structural genes, including CHS, CHI, F3H, F3'H, DFR, ANS, and 3GT, and two anthocyanin transport genes, GST and MATE. In terms of anthocyanin regulatory genes, five MYBs and one bHLH gene were identified. An HY5 gene was discovered, which may respond to light-signaling and regulate anthocyanin structural genes. These genes showed a log2FC of 2.7-9.0 under high irradiance, and were validated using quantitative real-time-PCR. In conclusion, our results indicated transcriptome variance in red leaf lettuce under low and high light intensity, and observed a anthocyanin biosynthesis and regulation pattern. The data should further help to unravel the molecular mechanisms of anthocyanins influenced by light intensity.
Collapse
Affiliation(s)
- Yanzhao Zhang
- Life Science Department, Luoyang Normal University, Luoyang, China
| | - Shuzhen Xu
- Life Science Department, Luoyang Normal University, Luoyang, China
| | - Yanwei Cheng
- Life Science Department, Luoyang Normal University, Luoyang, China
| | | | - Jianming Han
- Life Science Department, Luoyang Normal University, Luoyang, China
| |
Collapse
|
37
|
Zhang X, Zhao L, Xu Z, Yu X. Transcriptome sequencing of Paeonia suffruticosa 'Shima Nishiki' to identify differentially expressed genes mediating double-color formation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 123:114-124. [PMID: 29227950 DOI: 10.1016/j.plaphy.2017.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 11/14/2017] [Accepted: 12/04/2017] [Indexed: 05/21/2023]
Abstract
Paeonia suffruticosa 'Shima Nishiki' is one of extremely rare double-color cultivars in the world. It usually shows the two beautiful colors of red and white in the same flower, and this trait undoubtedly makes the flowers more charming for the ornamental market. However, few studies have been done to unravel the molecular mechanisms of double-color formation in P. suffruticosa 'Shima Nishiki'. In this study, we measured the anthocyanin composition and concentration, and sequenced the transcriptomes of the red and white petals. We found that the total content of Pg-based glycosides was at a significantly higher level in the red petals. Furthermore, we assembled and annotated 92,671 unigenes. Comparative analyses of the two transcriptomes showed 227 differentially expressed genes (DEGs), among which 57 were up-regulated, and 170 were down-regulated in the red petals. Subsequently, we identified 3 DEGs and the other 6 structural genes in the anthocyanin biosynthetic pathway including PsCHS, PsCHI, PsF3H, PsF3'H, PsDFR, PsANS, PsAOMT, PsMYB, and PsWD40. Among them, PsDFR and PsMYB expressed at a significantly higher level and showed positive correlations between their expression and anthocyanin concentration in the red petals. However, PsWD40 expressed at a significantly lower level and exhibited an inverse relationship in the red petals. Furthermore, we further confirmed the relative expression of the 9 candidate genes using quantitative real-time PCR. Based on the above results, we concluded that the significant differential expression of PsDFR, PsMYB and PsWD40 may play a key role in anthocyanin concentration in the red and white petals, thereby mediating double-color formation. These data will provide a valuable resource to better understand the molecular mechanisms of double-color formation of P. suffruticosa 'Shima Nishiki'.
Collapse
Affiliation(s)
- Xinpeng Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China
| | - Lanyong Zhao
- College of Forestry, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China.
| | - Zongda Xu
- College of Forestry, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China.
| | - Xiaoyan Yu
- College of Forestry, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China
| |
Collapse
|
38
|
Transcriptomic Analysis Reveals Transcription Factors Related to Leaf Anthocyanin Biosynthesis in Paeonia qiui. Molecules 2017; 22:molecules22122186. [PMID: 29292771 PMCID: PMC6149671 DOI: 10.3390/molecules22122186] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 12/03/2017] [Accepted: 12/04/2017] [Indexed: 11/17/2022] Open
Abstract
Paeonia qiui is a wild species of tree peony. P. qiui has good ornamental value owing to its leaf color change in spring. So far, the molecular mechanism of leaf color change in P. qiui is unclear. This study analyzes the anthocyanin level and transcriptome of two different color stages in P. qiui leaf. The purplish-red leaf stage is rich in anthocyanin, while the green leaf has very low levels of anthocyanin. Transcriptome analysis reveals that 6678 differentially-expressed genes (DEGs) are up-regulated, and 14,667 are down-regulated in the purplish-red leaf. Among these DEGs, 40 MYB (v-myb avian myeloblastosis viral oncogene homolog) genes, 40 bHLH (MYC-like basic helix–loop–helix) genes, and 15 WD40 (WD-repeat protein) genes were found. Based on phylogenetic and alignment analysis with the deduced amino acid sequences with known transcription factors, Unigene0024459 (MYB1) is likely the R2R3-MYB that promotes anthocyanin biosynthesis; Unigene0050761 (MYB2) is likely the R2R3-MYB that represses anthocyanin biosynthesis; Unigene0005081 (bHLH1) and Unigene0006146 (WD40-1) are likely the bHLH and WD40 that participate in regulating anthocyanin biosynthesis. Additionally, quantitative RT-PCR results confirmed the transcriptome analyses for key genes.
Collapse
|
39
|
Zhang H, Tian H, Chen M, Xiong J, Cai H, Liu Y. Transcriptome analysis reveals potential genes involved in flower pigmentation in a red-flowered mutant of white clover (Trifolium repens L.). Genomics 2017; 110:191-200. [PMID: 28966045 DOI: 10.1016/j.ygeno.2017.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/19/2017] [Accepted: 09/25/2017] [Indexed: 11/29/2022]
Abstract
White clover (Trifolium repens L.) has been cultivated for ornamental use because of its flowers, leaf marks and creeping habit. Although a mutation in flower color is very infrequent in this species, the red-flowered mutant of white clover was a novel germplasm for ornamental white clover breeding. The mechanism of flower pigmentation in white clover is still limited because of the rarity of mutation materials and the lack of genomic data. In this study, two cDNA libraries from red-flowered white clover mutant between sunlight-exposed plants and shade-treated plants, respectively, were used for transcriptome sequencing. A total of 157,964 unigenes with an average length of 728bp and a median length of 1346bp were isolated. A large number of differentially expressed genes (6282) that were potentially involved in multiple biological and metabolic pathways, including anthocyanin flavonoid biosynthetic pathway and flavonoid biosynthetic pathway, were obtained, 70 of which could be identified as putative homologues of color-related genes. Furthermore, eight key candidate genes (CHS, F3'H, F3'5'H, UFGT, FLS, LAR, ANS, and DFR) in flavonoid biological synthesis pathway were identified by quantitative real-time PCR (qRT-PCR). Mass sequence data obtained by RNA-Seq of white clover and its red-flowered mutant provided basic sequence information and a platform for future molecular biological research on the red flower trait.
Collapse
Affiliation(s)
- Heshan Zhang
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Hong Tian
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Mingxin Chen
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Junbo Xiong
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Hua Cai
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yang Liu
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| |
Collapse
|
40
|
Biochemical and Comparative Transcriptomic Analyses Identify Candidate Genes Related to Variegation Formation in Paeonia rockii. Molecules 2017; 22:molecules22081364. [PMID: 28817092 PMCID: PMC6152351 DOI: 10.3390/molecules22081364] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 08/14/2017] [Indexed: 12/15/2022] Open
Abstract
Paeonia rockii is a wild tree peony species with large and dark purple variegations at the base of its petals. It is the genetic resource for various variegation patterns in tree peony cultivars, which is in contrast to the pure white petals of Paeonia ostii. However, the molecular mechanism underlying the formation of variegation in this plant is still unknown. Here, we conducted Illumina transcriptome sequencing for P. rockii, P. ostii (with pure white petals) and their F1 individuals (with purple-red variegation). A total of 181,866 unigenes were generated, including a variety of unigenes involved in anthocyanin biosynthesis and sequestration and the regulation of anthocyanin biosynthesis. The dark purple or purple-red variegation patterns mainly occurred due to the proportions of cyanidin (Cy)- and peonidin (Pn)-based anthocyanins. The variegations of P. rockii exhibited a “Cy > Pn” phenotype, whereas the F1 progeny showed a “Pn > Cy” phenotype. The CHS, DFR, ANS, and GST genes might play key roles in variegation pigmentation in P. rockii according to gene expression and interaction network analysis. Two R2R3-MYB transcription factors (c131300.graph_c0 and c133735.graph_c0) regulated variegation formation by controlling CHS, ANS and GST genes. Our results indicated that the various variegation patterns were caused by transcriptional regulation of anthocyanin biosynthesis genes, and the transcription profiles of the R2R3-MYBs provided clues to elucidate the mechanisms underlying this trait. The petal transcriptome data produced in this study will provide a valuable resource for future association investigations of the genetic regulation of various variegation patterns in tree peonies.
Collapse
|
41
|
Transcriptomic Analysis of Leaf in Tree Peony Reveals Differentially Expressed Pigments Genes. Molecules 2017; 22:molecules22020324. [PMID: 28230761 PMCID: PMC6155769 DOI: 10.3390/molecules22020324] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 02/13/2017] [Indexed: 12/11/2022] Open
Abstract
Tree peony (Paeonia suffruticosa Andrews) is an important traditional flower in China. Besides its beautiful flower, the leaf of tree peony has also good ornamental value owing to its leaf color change in spring. So far, the molecular mechanism of leaf color change in tree peony is unclear. In this study, the pigment level and transcriptome of three different color stages of tree peony leaf were analyzed. The purplish red leaf was rich in anthocyanin, while yellowish green leaf was rich in chlorophyll and carotenoid. Transcriptome analysis revealed that 4302 differentially expressed genes (DEGs) were upregulated, and 4225 were downregulated in the purplish red leaf vs. yellowish green leaf. Among these DEGs, eight genes were predicted to participate in anthocyanin biosynthesis, eight genes were predicted involved in porphyrin and chlorophyll metabolism, and 10 genes were predicted to participate in carotenoid metabolism. In addition, 27 MYBs, 20 bHLHs, 36 WD40 genes were also identified from DEGs. Anthocyanidin synthase (ANS) is the key gene that controls the anthocyanin level in tree peony leaf. Protochlorophyllide oxido-reductase (POR) is the key gene which regulated the chlorophyll content in tree peony leaf.
Collapse
|
42
|
Wu Q, Wu J, Li SS, Zhang HJ, Feng CY, Yin DD, Wu RY, Wang LS. Transcriptome sequencing and metabolite analysis for revealing the blue flower formation in waterlily. BMC Genomics 2016; 17:897. [PMID: 27829354 PMCID: PMC5101690 DOI: 10.1186/s12864-016-3226-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/28/2016] [Indexed: 01/06/2023] Open
Abstract
Background Waterlily (Nymphaea spp.), a perennial herbaceous aquatic plant, is divided into two ecological groups: hardy waterlily and tropical waterlily. Although the hardy waterlily has no attractive blue flower cultivar, its adaptability is stronger than tropical waterlily because it can survive a cold winter. Thus, breeding hardy waterlily with real blue flowers has become an important target for breeders. Molecular breeding may be a useful way. However, molecular studies on waterlily are limited due to the lack of sequence data. Results In this study, six cDNA libraries generated from the petals of two different coloring stages of blue tropical waterlily cultivar Nymphaea ‘King of Siam’ were sequenced using the Illumina HiSeq™ 2500 platform. Each library produced no less than 5.65 Gb clean reads. Subsequently, de novo assembly generated 112,485 unigenes, including 26,206 unigenes annotated to seven public protein databases. Then, 127 unigenes could be identified as putative homologues of color-related genes in other species, including 28 up-regulated and 5 down-regulated unigenes. In petals, 16 flavonoids (4 anthocyanins and 12 flavonols) were detected in different contents during the color development due to the different expression levels of color-related genes, and four flavonols were detected in waterlily for the first time. Furthermore, UA3GTs were selected as the most important candidates involved in the flavonoid metabolic pathway, UA3GTs induced blue petal color formation in Nymphaea ‘King of Siam’. Conclusions This study will improve our understanding of the molecular mechanism of blue flowers in waterlily and provide the basis for molecular breeding of blue hardy waterlily cultivars. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3226-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qian Wu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Wu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shan-Shan Li
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Hui-Jin Zhang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Cheng-Yong Feng
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan-Dan Yin
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ru-Yan Wu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liang-Sheng Wang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|