1
|
Vleminckx J, Hogan JA, Metz MR, Comita LS, Queenborough SA, Wright SJ, Valencia R, Zambrano M, Garwood NC. Flower production decreases with warmer and more humid atmospheric conditions in a western Amazonian forest. THE NEW PHYTOLOGIST 2024; 241:1035-1046. [PMID: 37984822 DOI: 10.1111/nph.19388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/18/2023] [Indexed: 11/22/2023]
Abstract
Climate models predict that everwet western Amazonian forests will face warmer and wetter atmospheric conditions, and increased cloud cover. It remains unclear how these changes will impact plant reproductive performance, such as flowering, which plays a central role in sustaining food webs and forest regeneration. Warmer and wetter nights may cause reduced flower production, via increased dark respiration rates or alteration in the reliability of flowering cue-based processes. Additionally, more persistent cloud cover should reduce the amounts of solar irradiance, which could limit flower production. We tested whether interannual variation in flower production has changed in response to fluctuations in irradiance, rainfall, temperature, and relative humidity over 18 yrs in an everwet forest in Ecuador. Analyses of 184 plant species showed that flower production declined as nighttime temperature and relative humidity increased, suggesting that warmer nights and greater atmospheric water saturation negatively impacted reproduction. Species varied in their flowering responses to climatic variables but this variation was not explained by life form or phylogeny. Our results shed light on how plant communities will respond to climatic changes in this everwet region, in which the impacts of these changes have been poorly studied compared with more seasonal Neotropical areas.
Collapse
Affiliation(s)
- Jason Vleminckx
- Department of Biology of Organisms, Université Libre de Bruxelles, Brussels, 1050, Belgium
- Yale Institute for Biospheric Studies, Yale University, New Haven, CT, 06511, USA
- School of the Environment, Yale University, New Haven, CT, 06511, USA
| | - J Aaron Hogan
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Margaret R Metz
- Department of Biology, Lewis & Clark College, Portland, OR, 97219, USA
| | - Liza S Comita
- School of the Environment, Yale University, New Haven, CT, 06511, USA
| | | | - S Joseph Wright
- Smithsonian Tropical Research Institute, Apartado, Balboa, 0843-03092, Panama
| | - Renato Valencia
- Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, 170143, Ecuador
| | - Milton Zambrano
- Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, 170143, Ecuador
| | - Nancy C Garwood
- School of Biological Sciences, Southern Illinois University, Carbondale, IL, 62901, USA
| |
Collapse
|
2
|
Docherty EM, Gloor E, Sponchiado D, Gilpin M, Pinto CAD, Junior HM, Coughlin I, Ferreira L, Junior JAS, da Costa ACL, Meir P, Galbraith D. Long-term drought effects on the thermal sensitivity of Amazon forest trees. PLANT, CELL & ENVIRONMENT 2023; 46:185-198. [PMID: 36230004 PMCID: PMC10092618 DOI: 10.1111/pce.14465] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
The continued functioning of tropical forests under climate change depends on their resilience to drought and heat. However, there is little understanding of how tropical forests will respond to combinations of these stresses, and no field studies to date have explicitly evaluated whether sustained drought alters sensitivity to temperature. We measured the temperature response of net photosynthesis, foliar respiration and the maximum quantum efficiency of photosystem II (Fv /Fm ) of eight hyper-dominant Amazonian tree species at the world's longest-running tropical forest drought experiment, to investigate the effect of drought on forest thermal sensitivity. Despite a 0.6°C-2°C increase in canopy air temperatures following long-term drought, no change in overall thermal sensitivity of net photosynthesis or respiration was observed. However, photosystem II tolerance to extreme-heat damage (T50 ) was reduced from 50.0 ± 0.3°C to 48.5 ± 0.3°C under drought. Our results suggest that long-term reductions in precipitation, as projected across much of Amazonia by climate models, are unlikely to greatly alter the response of tropical forests to rising mean temperatures but may increase the risk of leaf thermal damage during heatwaves.
Collapse
Affiliation(s)
- Emma M. Docherty
- Department of Earth and Environment, School of GeographyUniversity of LeedsLeedsUK
| | - Emanuel Gloor
- Department of Earth and Environment, School of GeographyUniversity of LeedsLeedsUK
| | - Daniela Sponchiado
- Departamento de Ciências Biológicas, Laboratório de Ecologia VegetalUniversidade do Estado de Mato GrossoNova XavantinaMato GrossoBrasil
| | - Martin Gilpin
- Department of Earth and Environment, School of GeographyUniversity of LeedsLeedsUK
| | | | | | - Ingrid Coughlin
- Departamento de Biologia, FFCLRPUniversidade de São PauloRibeirao PretoSão PauloBrasil
- College of Science, Research School of BiologyAustralian National UniversityCanberraAustralian Capital TerritorAustralia
| | | | | | - Antonio C. L. da Costa
- Instituto de GeosciênciasUniversidade Federaldo ParáBelémParáBrasil
- Museu Paraense Emílio GoeldiBelémParáBrasil
| | - Patrick Meir
- College of Science, Research School of BiologyAustralian National UniversityCanberraAustralian Capital TerritorAustralia
- College of Science and Engineering, School of GeoSciencesUniversity of EdinburghEdinburghUK
| | - David Galbraith
- Department of Earth and Environment, School of GeographyUniversity of LeedsLeedsUK
| |
Collapse
|
3
|
Bittencourt PRL, Oliveira RS, da Costa ACL, Giles AL, Coughlin I, Costa PB, Bartholomew DC, Ferreira LV, Vasconcelos SS, Barros FV, Junior JAS, Oliveira AAR, Mencuccini M, Meir P, Rowland L. Amazonia trees have limited capacity to acclimate plant hydraulic properties in response to long-term drought. GLOBAL CHANGE BIOLOGY 2020; 26:3569-3584. [PMID: 32061003 DOI: 10.1111/gcb.15040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/30/2019] [Accepted: 02/02/2020] [Indexed: 05/29/2023]
Abstract
The fate of tropical forests under future climate change is dependent on the capacity of their trees to adjust to drier conditions. The capacity of trees to withstand drought is likely to be determined by traits associated with their hydraulic systems. However, data on whether tropical trees can adjust hydraulic traits when experiencing drought remain rare. We measured plant hydraulic traits (e.g. hydraulic conductivity and embolism resistance) and plant hydraulic system status (e.g. leaf water potential, native embolism and safety margin) on >150 trees from 12 genera (36 species) and spanning a stem size range from 14 to 68 cm diameter at breast height at the world's only long-running tropical forest drought experiment. Hydraulic traits showed no adjustment following 15 years of experimentally imposed moisture deficit. This failure to adjust resulted in these drought-stressed trees experiencing significantly lower leaf water potentials, and higher, but variable, levels of native embolism in the branches. This result suggests that hydraulic damage caused by elevated levels of embolism is likely to be one of the key drivers of drought-induced mortality following long-term soil moisture deficit. We demonstrate that some hydraulic traits changed with tree size, however, the direction and magnitude of the change was controlled by taxonomic identity. Our results suggest that Amazonian trees, both small and large, have limited capacity to acclimate their hydraulic systems to future droughts, potentially making them more at risk of drought-induced mortality.
Collapse
Affiliation(s)
- Paulo R L Bittencourt
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
- Instituto de Biologia, University of Campinas (UNICAMP), Campinas, Brazil
| | - Rafael S Oliveira
- Instituto de Biologia, University of Campinas (UNICAMP), Campinas, Brazil
- Biological Sciences, UWA, Perth, WA, Australia
| | | | - Andre L Giles
- Instituto de Biologia, University of Campinas (UNICAMP), Campinas, Brazil
| | - Ingrid Coughlin
- Departamento de Biologia, FFCLRP, Universidade de São Paulo, Ribeirão Preto, Brazil
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Patricia B Costa
- Instituto de Biologia, University of Campinas (UNICAMP), Campinas, Brazil
- Biological Sciences, UWA, Perth, WA, Australia
| | - David C Bartholomew
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | | | | | - Fernanda V Barros
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
- Instituto de Biologia, University of Campinas (UNICAMP), Campinas, Brazil
| | - Joao A S Junior
- Instituto de Biologia, University of Campinas (UNICAMP), Campinas, Brazil
| | | | | | - Patrick Meir
- Research School of Biology, Australian National University, Canberra, ACT, Australia
- School of GeoSciences, University of Edinburgh, Edinburgh, UK
| | - Lucy Rowland
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
4
|
Weemstra M, Kiorapostolou N, Ruijven J, Mommer L, Vries J, Sterck F. The role of fine‐root mass, specific root length and life span in tree performance: A whole‐tree exploration. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13520] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Monique Weemstra
- Forest Ecology and Forest Management Group Wageningen University Wageningen the Netherlands
- Plant Ecology and Nature Conservation Group Wageningen University Wageningen the Netherlands
| | - Natasa Kiorapostolou
- Forest Ecology and Forest Management Group Wageningen University Wageningen the Netherlands
- Department Territorio e Sistemi Agro‐Forestali University of Padova Legnaro Italy
| | - Jasper Ruijven
- Plant Ecology and Nature Conservation Group Wageningen University Wageningen the Netherlands
| | - Liesje Mommer
- Plant Ecology and Nature Conservation Group Wageningen University Wageningen the Netherlands
| | - Jorad Vries
- Centre for Crop System Analysis Wageningen University Wageningen the Netherlands
| | - Frank Sterck
- Forest Ecology and Forest Management Group Wageningen University Wageningen the Netherlands
| |
Collapse
|
5
|
Adams MA, Buckley TN, Turnbull TL. Rainfall drives variation in rates of change in intrinsic water use efficiency of tropical forests. Nat Commun 2019; 10:3661. [PMID: 31413322 PMCID: PMC6694106 DOI: 10.1038/s41467-019-11679-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 07/30/2019] [Indexed: 11/21/2022] Open
Abstract
Rates of change in intrinsic water use efficiency (W) of trees relative to those in atmospheric [CO2] (ca) have been mostly assessed via short-term studies (e.g., leaf analysis, flux analysis) and/or step increases in ca (e.g., FACE studies). Here we use compiled data for abundances of carbon isotopes in tree stems to show that on decadal scales, rates of change (dW/dca) vary with location and rainfall within the global tropics. For the period 1915-1995, and including corrections for mesophyll conductance and photorespiration, dW/dca for drier tropical forests (receiving ~ 1000 mm rainfall) were at least twice that of the wettest (receiving ~ 4000 mm). The data also empirically confirm theorized roles of tropical forests in changes in atmospheric 13C/12C ratios (the 13C Suess Effect). Further formal analysis of geographic variation in decade-to-century scale dW/dca will be needed to refine current models that predict increases in carbon uptake by forests without hydrological cost.
Collapse
Affiliation(s)
- Mark A Adams
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, VIC, Australia.
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia.
| | - Thomas N Buckley
- Department of Plant Sciences, College of Agricultural and Environmental Sciences, University of California, Davis, CA, USA
| | - Tarryn L Turnbull
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, VIC, Australia
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
6
|
Sass-Klaassen U, Fonti P, Cherubini P, Gričar J, Robert EMR, Steppe K, Bräuning A. A Tree-Centered Approach to Assess Impacts of Extreme Climatic Events on Forests. FRONTIERS IN PLANT SCIENCE 2016; 7:1069. [PMID: 27493654 PMCID: PMC4954821 DOI: 10.3389/fpls.2016.01069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/06/2016] [Indexed: 05/09/2023]
Affiliation(s)
- Ute Sass-Klaassen
- Forest Ecology and Forest Management Group, Wageningen UniversityWageningen, Netherlands
| | - Patrick Fonti
- Landscape Dynamics Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorf, Switzerland
| | - Paolo Cherubini
- Landscape Dynamics Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorf, Switzerland
| | - Jožica Gričar
- Department of Forest Yield and Silviculture, Slovenian Forestry InstituteLjubljana, Slovenia
| | - Elisabeth M. R. Robert
- CREAFCerdanyola del Vallès, Spain
- Laboratory of Plant Biology and Nature Management, Vrije Universiteit BrusselBrussels, Belgium
- Laboratory of Wood Biology and Xylarium, Royal Museum for Central AfricaTervuren, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent UniversityGhent, Belgium
| | - Achim Bräuning
- Department of Geography and Geosciences, Friedrich-Alexander-University Erlangen-NurembergErlangen, Germany
| |
Collapse
|