1
|
Zhou N, Yan Y, Wen Y, Zhang M, Huang Y. Integrated transcriptome and metabolome analysis unveils the mechanism of color-transition in Edgeworthia chrysantha tepals. BMC PLANT BIOLOGY 2023; 23:567. [PMID: 37968605 PMCID: PMC10652483 DOI: 10.1186/s12870-023-04585-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 11/06/2023] [Indexed: 11/17/2023]
Abstract
BACKGROUND Edgeworthia chrysantha, a deciduous shrub endemic to China, is known for its high ornamental value, extensive cultivation history, and wide-ranging applications. However, theoretical research on this plant is severely lacking. While its flowering process displays striking color transitions from green (S1) to yellow (S2) and then to white (S3), the scientific exploration of this phenomenon is limited, and the underlying regulatory mechanisms are yet to be elucidated. RESULTS Correlation analysis between phenotypic measurements and pigment content revealed that carotenoids and chlorophyll are the key pigments responsible for the color changes. Metabolomic analysis of carotenoids demonstrated that lutein and β-carotene were present at higher levels in S1, while S2 exhibited increased diversity and quantity of carotenoids compared to other stages. Notably, antheraxanthin, zeaxanthin, lycopene, and α-cryptoxanthin showed significant increases. In S3, apart from the colorless phytoene, other carotenoid metabolites were significantly reduced to extremely low levels. Transcriptomic data indicated that PSY, Z-ISO, crtZ, ZEP, PDS and ZDS are key genes involved in carotenoid biosynthesis and accumulation, while NCED plays a crucial role in carotenoid degradation. SGR was identified as a key gene contributing to the progressive decline in chlorophyll content. Additionally, three transcription factors potentially regulating carotenoid metabolism were also identified. CONCLUSIONS This study represents the first systematic investigation, spanning from phenotypic to molecular levels, of the color-changing phenomenon in E. chrysantha. The study elucidates the crucial pigments, metabolites, genes, and transcription factors responsible for flower color changes during the flowering process, thereby providing preliminary understanding of the intrinsic regulatory mechanisms. These findings establish a theoretical foundation for the genetic improvement of flower color in E. chrysantha.
Collapse
Affiliation(s)
- Ningzhi Zhou
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, 410004, China
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha, 410004, China
| | - Yujuan Yan
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, 410004, China.
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha, 410004, China.
| | - Yafeng Wen
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, 410004, China
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha, 410004, China
| | - Minhuan Zhang
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, 410004, China
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha, 410004, China
| | - Yu Huang
- Nanning University, Nanning, 530200, China.
| |
Collapse
|
2
|
Lim SH, Kim DH, Lee JY. Molecular mechanism controlling anthocyanin composition and content in radish plants with different root colors. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108091. [PMID: 37864927 DOI: 10.1016/j.plaphy.2023.108091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023]
Abstract
Radish (Raphanus sativus) roots exhibit various colors that reflect their anthocyanin compositions and contents. However, the details of the mechanism linking the expression of anthocyanin biosynthesis and their transcriptional regulators to anthocyanin composition in radish roots remained unknown. Here, we characterized the role of the anthocyanin biosynthetic enzyme flavonoid 3'-hydroxylase (RsF3'H), together with the R2R3 MYB transcription factor (TF) RsMYB1 and the basic helix-loop-helix (bHLH) TF TRANSPARENT TESTA 8 (RsTT8), in four radish plants with different root colors: white (W), deep red (DR), dark purple (DP), and dark greyish purple (DGP). The DR plant contained heterozygous for RsF3'H with low expression level and accumulated a large amount of pelargonidin, resulting in deep red color. While, the DP and DGP plants accumulated the cyanidin due to the higher expression level of functional RsF3'H. Notably, RsMYB1 and RsTT8 transcripts were abundant in all pigmented roots, but not in white roots. To investigate the differential expression of RsMYB1 and RsTT8, we compared the sequences of their promoter regions among the four radish plants, revealing variations in the numbers of cis-elements and in promoter architecture. Promoter activation assays demonstrated that variation in the RsMYB1 and RsTT8 promoters may contribute to the expression level of these genes, and RsMYB1 can activate its own expression as well as promote the RsTT8 expression. These results suggested that RsF3'H plays a vital role in anthocyanin composition and the expression level of both RsMYB1 and RsTT8 are crucial determinants for anthocyanin content in radish roots. Overall, these findings provide insight into the molecular basis of anthocyanin composition and level in radish roots.
Collapse
Affiliation(s)
- Sun-Hyung Lim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong, 17579, Republic of Korea; Research Institute of International Technology and Information, Hankyong National University, Anseong, 17579, Republic of Korea.
| | - Da-Hye Kim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong, 17579, Republic of Korea; Research Institute of International Technology and Information, Hankyong National University, Anseong, 17579, Republic of Korea
| | - Jong-Yeol Lee
- National Academy of Agricultural Science, Rural Development Administration, Jeonju, 54874, Republic of Korea
| |
Collapse
|
3
|
Fu M, Guo J, Tang K, Jiang S, Luo S, Luo W, Khan I, Li G. Comparative Transcriptome Analysis of Purple and Green Flowering Chinese Cabbage and Functional Analyses of BrMYB114 Gene. Int J Mol Sci 2023; 24:13951. [PMID: 37762252 PMCID: PMC10531404 DOI: 10.3390/ijms241813951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Flowering Chinese cabbage (Brassica rapa var. parachinensis) is one of the most popular vegetables in the south of China. As an antioxidant, anthocyanin is an important quality trait in vegetables, and the gene related to anthocyanin biosynthesis in purple flowering Chinese cabbage is also important. In this study, two flowering Chinese cabbage with extreme colors in the stem were used as materials for transcriptome analysis. RNA-seq analysis showed that 6811 differentially expressed genes (DEGs) were identified, including 295 transcription factors. Phenylpropanoid biosynthesis, flavone and flavanol biosynthesis, and flavonoid biosynthesis pathways were found to be significantly enriched in the purple flowering Chinese cabbage. A total of 25 DEGs associated with anthocyanin biosynthesis were found at a higher expression in purple flowering Chinese cabbage than in green flowering Chinese cabbage. Bioinformatics analysis shows that BrMYB114 is a candidate gene for the regulation of anthocyanin biosynthesis, and heterologous expression analysis of BrMYB114 in Nicotiana benthamiana indicates that BrMYB114 functions in anthocyanin biosynthesis. Therefore, our findings provide vital evidence for elucidating the molecular mechanism in the purple stem in flowering Chinese cabbage.
Collapse
Affiliation(s)
- Mei Fu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China; (M.F.); (J.G.); (K.T.); (S.J.); (S.L.); (W.L.)
| | - Juxian Guo
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China; (M.F.); (J.G.); (K.T.); (S.J.); (S.L.); (W.L.)
| | - Kang Tang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China; (M.F.); (J.G.); (K.T.); (S.J.); (S.L.); (W.L.)
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Shizheng Jiang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China; (M.F.); (J.G.); (K.T.); (S.J.); (S.L.); (W.L.)
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Shanwei Luo
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China; (M.F.); (J.G.); (K.T.); (S.J.); (S.L.); (W.L.)
| | - Wenlong Luo
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China; (M.F.); (J.G.); (K.T.); (S.J.); (S.L.); (W.L.)
| | - Imran Khan
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China; (M.F.); (J.G.); (K.T.); (S.J.); (S.L.); (W.L.)
| | - Guihua Li
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China; (M.F.); (J.G.); (K.T.); (S.J.); (S.L.); (W.L.)
| |
Collapse
|
4
|
Gao Z, Yang X, Chen J, Rausher MD, Shi T. Expression inheritance and constraints on cis- and trans-regulatory mutations underlying lotus color variation. PLANT PHYSIOLOGY 2023; 191:1662-1683. [PMID: 36417237 PMCID: PMC10022630 DOI: 10.1093/plphys/kiac522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Both cis- and trans-regulatory mutations drive changes in gene expression that underpin plant phenotypic evolution. However, how and why these two major types of regulatory mutations arise in different genes and how gene expression is inherited and associated with these regulatory changes are unclear. Here, by studying allele-specific expression in F1 hybrids of pink-flowered sacred lotus (Nelumbo nucifera) and yellow-flowered American lotus (N. lutea), we reveal the relative contributions of cis- and trans-regulatory changes to interspecific expression rewiring underlying petal color change and how the expression is inherited in hybrids. Although cis-only variants influenced slightly more genes, trans-only variants had a stronger impact on expression differences between species. In F1 hybrids, genes under cis-only and trans-only regulatory effects showed a propensity toward additive and dominant inheritance, respectively, whereas transgressive inheritance was observed in genes carrying both cis- and trans-variants acting in opposite directions. By investigating anthocyanin and carotenoid coexpression networks in petals, we found that the same category of regulatory mutations, particularly trans-variants, tend to rewire hub genes in coexpression modules underpinning flower color differentiation between species; we identified 45 known genes with cis- and trans-regulatory variants significantly correlated with flower coloration, such as ANTHOCYANIN 5-AROMATIC ACYLTRANSFERASE (ACT), GLUTATHIONE S-TRANSFERASE F11 (GSTF11), and LYCOPENE Ε-CYCLASE (LCYE). Notably, the relative abundance of genes in different categories of regulatory divergence was associated with the inferred magnitude of constraints like expression level and breadth. Overall, our study suggests distinct selective constraints and modes of gene expression inheritance among different regulatory mutations underlying lotus petal color divergence.
Collapse
Affiliation(s)
- Zhiyan Gao
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingyu Yang
- Wuhan Institute of Landscape Architecture, Wuhan 430081, China
| | - Jinming Chen
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Mark D Rausher
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | - Tao Shi
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
5
|
Cyanidin-3-O-glucoside Contributes to Leaf Color Change by Regulating Two bHLH Transcription Factors in Phoebe bournei. Int J Mol Sci 2023; 24:ijms24043829. [PMID: 36835240 PMCID: PMC9960835 DOI: 10.3390/ijms24043829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
Anthocyanins produce different-colored pigments in plant organs, which provide ornamental value. Thus, this study was conducted to understand the mechanism of anthocyanin synthesis in ornamental plants. Phoebe bournei, a Chinese specialty tree, has high ornamental and economic value due to its rich leaf color and diverse metabolic products. Here, the metabolic data and gene expression of red P. bournei leaves at the three developmental stages were evaluated to elucidate the color-production mechanism in the red-leaved P. bournei species. First, metabolomic analysis identified 34 anthocyanin metabolites showing high levels of cyanidin-3-O-glucoside (cya-3-O-glu) in the S1 stage, which may suggest that it is a characteristic metabolite associated with the red coloration of the leaves. Second, transcriptome analysis showed that 94 structural genes were involved in anthocyanin biosynthesis, especially flavanone 3'-hydroxy-lase (PbF3'H), and were significantly correlated with the cya-3-O-glu level. Third, K-means clustering analysis and phylogenetic analyses identified PbbHLH1 and PbbHLH2, which shared the same expression pattern as most structural genes, indicating that these two PbbHLH genes may be regulators of anthocyanin biosynthesis in P. bournei. Finally, overexpression of PbbHLH1 and PbbHLH2 in Nicotiana tabacum leaves triggered anthocyanin accumulation. These findings provide a basis for cultivating P. bournei varieties that have high ornamental value.
Collapse
|
6
|
Mikulic-Petkovsek M, Ivancic A, Gacnik S, Veberic R, Hudina M, Marinovic S, Molitor C, Halbwirth H. Biochemical Characterization of Black and Green Mutant Elderberry during Fruit Ripening. PLANTS (BASEL, SWITZERLAND) 2023; 12:504. [PMID: 36771589 PMCID: PMC9918921 DOI: 10.3390/plants12030504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/22/2022] [Accepted: 01/16/2023] [Indexed: 05/22/2023]
Abstract
The content of sugars, organic acids, phenolic compounds and selected enzyme activities in the anthocyanin pathway were analyzed in NIGRA (Sambucus nigra var. nigra-black fruits) and VIRIDIS (S. nigra var. viridis-green fruits) fruits over four stages of ripening. The share of glucose and fructose in green fruits was higher than in colored fruits, and the sugar content increased significantly until the third developmental stage. Ripe NIGRA berries had 47% flavonol glycosides, 34% anthocyanins, 3% hydroxycinnamic acids and 14% flavanols, whereas the major phenolic group in the VIRIDIS fruits, making up 88% of the total analyzed polyphenols, was flavonols. NIGRA fruits were rich in anthocyanins (6020 µg g-1 FW), showing strong activation of the late anthocyanin pathway (dihydroflavonol 4-reductase, anthocyanidin synthase). In both color types, phenylalanine ammonia lyase and chalcone synthase/chalcone isomerase activities were highest in the first stage and decreased during ripening. In VIRIDIS fruit, no anthocyanins and only one flavanol (procyanidin dimer) were found. This was most likely caused by a lack of induction of the late anthocyanin pathway in the last period of fruit ripening. The VIRIDIS genotype may be useful in studying the regulatory structures of anthocyanin biosynthesis and the contribution of distinct flavonoid classes to the health benefits of elderberries.
Collapse
Affiliation(s)
- Maja Mikulic-Petkovsek
- Chair for Fruit Growing, Viticulture and Vegetable Growing, Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Anton Ivancic
- 2 Chair for Genetics, Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, SI-2311 Hoce, Slovenia
| | - Sasa Gacnik
- Chair for Fruit Growing, Viticulture and Vegetable Growing, Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Robert Veberic
- Chair for Fruit Growing, Viticulture and Vegetable Growing, Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Metka Hudina
- Chair for Fruit Growing, Viticulture and Vegetable Growing, Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Silvija Marinovic
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Getreidemarkt 9, A-1060 Vienna, Austria
| | - Christian Molitor
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Getreidemarkt 9, A-1060 Vienna, Austria
| | - Heidi Halbwirth
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Getreidemarkt 9, A-1060 Vienna, Austria
| |
Collapse
|
7
|
Comparative Transcriptome Analysis Unveils the Molecular Mechanism Underlying Sepal Colour Changes under Acidic pH Substratum in Hydrangea macrophylla. Int J Mol Sci 2022; 23:ijms232315428. [PMID: 36499756 PMCID: PMC9739076 DOI: 10.3390/ijms232315428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
The hydrangea (Hydrangea macrophylla (Thunb). Ser.), an ornamental plant, has good marketing potential and is known for its capacity to change the colour of its inflorescence depending on the pH of the cultivation media. The molecular mechanisms causing these changes are still uncertain. In the present study, transcriptome and targeted metabolic profiling were used to identify molecular changes in the RNAome of hydrangea plants cultured at two different pH levels. De novo assembly yielded 186,477 unigenes. Transcriptomic datasets provided a comprehensive and systemic overview of the dynamic networks of the gene expression underlying flower colour formation in hydrangeas. Weighted analyses of gene co-expression network identified candidate genes and hub genes from the modules linked closely to the hyper accumulation of Al3+ during different stages of flower development. F3'5'H, ANS, FLS, CHS, UA3GT, CHI, DFR, and F3H were enhanced significantly in the modules. In addition, MYB, bHLH, PAL6, PAL9, and WD40 were identified as hub genes. Thus, a hypothesis elucidating the colour change in the flowers of Al3+-treated plants was established. This study identified many potential key regulators of flower pigmentation, providing novel insights into the molecular networks in hydrangea flowers.
Collapse
|
8
|
Qian J, Jiang L, Qing H, Chen J, Wan Z, Xu M, Fu J, Zhang C. ZeMYB9 regulates cyanidin synthesis by activating the expression of flavonoid 3'-hydroxylase gene in Zinnia elegans. FRONTIERS IN PLANT SCIENCE 2022; 13:981086. [PMID: 36330274 PMCID: PMC9623174 DOI: 10.3389/fpls.2022.981086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Petal color in Zinnia elegans is characterized mainly by anthocyanin accumulation. The difference in the content of anthocyanins, especially cyanidins, affects petal coloration in Z. elegans, but the underlying regulatory mechanism remains elusive. Here, we report one R2R3-MYB transcription factor from subgroup 6, ZeMYB9, acting as a positive regulator of anthocyanin accumulation in Z. elegans. Up-regulated expression of ZeMYB9 and flavonoid 3'-hydroxylase gene (ZeF3'H) was detected in the cultivar with higher cyanidin content. ZeMYB9 could specifically activate the promoter of ZeF3'H, and over-expression of ZeMYB9 induces much greater anthocyanin accumulation and higher expression level of anthocyanin biosynthetic genes in both petunia and tobacco. And then, ZeMYB9 was demonstrated to interact with ZeGL3, a bHLH transcription factor belonging to IIIf subgroup. Promoter activity of ZeF3'H was significantly promoted by co-expressing ZeMYB9 and ZeGL3 compared with expressing ZeMYB9 alone. Moreover, transient co-expression of ZeMYB9 and ZeGL3 induced anthocyanin accumulation in tobacco leaves. Our results suggest that ZeMYB9 could enhance cyanidin synthesis and regulate petal color in Z. elegans though activating the expression of ZeF3'H, by itself or interacting with ZeGL3.
Collapse
Affiliation(s)
- Jieyu Qian
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- School of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Lingli Jiang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- School of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Hongsheng Qing
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- School of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Jiahong Chen
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- School of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Ziyun Wan
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- School of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Menghan Xu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- School of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Jianxin Fu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- School of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Chao Zhang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- School of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
| |
Collapse
|
9
|
Wang Y, Song Y, Wang D. Transcriptomic and Metabolomic Analyses Providing Insights into the Coloring Mechanism of Docynia delavayi. Foods 2022; 11:foods11182899. [PMID: 36141027 PMCID: PMC9498648 DOI: 10.3390/foods11182899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/23/2022] [Accepted: 09/15/2022] [Indexed: 11/22/2022] Open
Abstract
The metabolome and transcriptome profiles of three different variations of mature Docynia delavayi fruit were synthesized to reveal their fruit color formation mechanism. A total of 787 secondary metabolites containing 149 flavonoid metabolites, most of which were flavonoids and flavonols, were identified in the three variations using ultra performance liquid chromatography- tandem mass spectrometry (UPLC-MS/MS), and we found that the secondary metabolites cyanidin-3-O-galactoside and cyanidin-3-O-glucoside were the major coloring substances in D. delavayi. This was associated with the significant upregulation of the structural genes F3H and F3′H in the anthocyanin synthesis pathway and the control genes WRKY, MYB, bZIP, bHLH, and NAC in RP. F3′H expression may play a significant role in the selection of components for anthocyanin synthesis. Our results contribute to breeding and nutritional research in D. delavayi and provide insight into metabolite studies of the anthocyanin biosynthetic pathway.
Collapse
Affiliation(s)
- Yuchang Wang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Yuyang Song
- Department of Forestry, Agricultural College, Xinjiang Shihezi University, Shihezi 832003, China
- Correspondence: (Y.S.); (D.W.); Tel.: +86-135-7967-9010 (Y.S.); +86-138-8891-5161 (D.W.)
| | - Dawei Wang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China
- Correspondence: (Y.S.); (D.W.); Tel.: +86-135-7967-9010 (Y.S.); +86-138-8891-5161 (D.W.)
| |
Collapse
|
10
|
Shi Z, Han X, Wang G, Qiu J, Zhou LJ, Chen S, Fang W, Chen F, Jiang J. Transcriptome analysis reveals chrysanthemum flower discoloration under high-temperature stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1003635. [PMID: 36186082 PMCID: PMC9515547 DOI: 10.3389/fpls.2022.1003635] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
Temperature is an important environmental factor affecting plant anthocyanin synthesis. High temperatures are associated with decreased anthocyanin pigmentation in chrysanthemum. To reveal the effects of high temperature on anthocyanin biosynthesis in chrysanthemum, ray florets of the heat-sensitive cultivar "Nannong Ziyunying" (ZYY) were subjected to RNA sequencing. A total of 18,286 unigenes were differentially expressed between the control and treatment groups. Functional annotation and enrichment analyses of these unigenes revealed that the heat shock response and flavonoid pathways were significantly enriched, suggesting that the expression of these genes in response to high temperature is associated with the fading of chrysanthemum flower color. In addition, genes related to anthocyanin synthesis and heat shock response were differentially expressed under high-temperature stress. Finally, to further investigate the molecular mechanism of discoloration under high-temperature stress and facilitate the use of marker-assisted breeding for developing novel heat-tolerant cultivars, these results were used to mine candidate genes by analyzing changes in their transcription levels in chrysanthemum.
Collapse
|
11
|
Comparative Transcriptome Analysis of Purple and Green Non-Heading Chinese Cabbage and Function Analyses of BcTT8 Gene. Genes (Basel) 2022; 13:genes13060988. [PMID: 35741750 PMCID: PMC9222865 DOI: 10.3390/genes13060988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/15/2022] [Accepted: 05/23/2022] [Indexed: 02/05/2023] Open
Abstract
Non-heading Chinese cabbage (Brassica campestris ssp. chinensis) is an important vegetative crop in the south of China. As an antioxidant, anthocyanin is the major quality trait for vegetables with purple leaves or petioles. However, the molecular biosynthetic mechanism of anthocyanin in non-heading Chinese cabbage has not been explained exclusively. In this study, two non-heading Chinese cabbage with contrasting colors in the leaves were used as the materials for RNA-seq. A total of 906 DEGs were detected, and we found that the anthocyanin and flavonoid biosynthetic pathways are significantly enriched in the purple NHCC. The transcriptome result was verified by RT-qPCR. Though bioinformatics analysis, BcTT8 was selected as the candidate gene for the regulation of anthocyanin synthesis, and the characterization of BcTT8 was elucidated by the functional analyses. The results proved that BcTT8 is a nucleus protein and phylogenetically close to the TT8 protein from Brassica. After silencing BcTT8, the total anthocyanin content of pTY-BcTT8 plants decreased by 42.5%, and the relative expression levels of anthocyanin pathway genes BcDFR, BcLODX and BcUF3GT-1 were significantly downregulated, while the transcription level of BcFLS was significantly upregulated. Compared with the wild type, the transgenic Arabidopsis showed obvious violet in the cotyledons part, and the anthocyanin biosynthetic genes such as AtDFR and AtLODX were significantly upregulated. In conclusion, BcTT8 is critical in the anthocyanin synthesis process of non-heading Chinese cabbage. Our findings illustrated the molecular mechanism of anthocyanin biosynthesis in non-heading Chinese cabbage.
Collapse
|
12
|
Qiu L, Zheng T, Liu W, Zhuo X, Li P, Wang J, Cheng T, Zhang Q. Integration of Transcriptome and Metabolome Reveals the Formation Mechanism of Red Stem in Prunus mume. FRONTIERS IN PLANT SCIENCE 2022; 13:884883. [PMID: 35599903 PMCID: PMC9120947 DOI: 10.3389/fpls.2022.884883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/25/2022] [Indexed: 06/15/2023]
Abstract
Prunus mume var. purpurea, commonly known as "Red Bone", is a special variety with pink or purple-red xylem. It is famous due to gorgeous petals and delightful aromas, playing important roles in urban landscaping. The regulation mechanism of color formation in P. mume var. purpurea stem development is unclear. Here, we conducted a comprehensive analysis of transcriptome and metabolome in WYY ('Wuyuyu' accession, red stem) and FLE ('Fei Lve' accession, green stem), and found a total of 256 differential metabolites. At least 14 anthocyanins were detected in WYY, wherein cyanidin 3,5-O-diglucoside and peonidin3-O-glucoside were significantly accumulated through LC-MS/MS analysis. Transcriptome data showed that the genes related to flavonoid-anthocyanin biosynthesis pathways were significantly enriched in WYY. The ratio of dihydroflavonol 4-reductase (DFR) and flavonol synthase (FLS) expression levels may affect metabolic balance in WYY, suggesting a vital role in xylem color formation. In addition, several transcription factors were up-regulated, which may be the key factors contributing to transcriptional changes in anthocyanin synthesis. Overall, the results provide a reference for further research on the molecular mechanism of xylem color regulation in P. mume and lay a theoretical foundation for cultivating new varieties.
Collapse
Affiliation(s)
| | - Tangchun Zheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | | | | | | | | | | | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| |
Collapse
|
13
|
Husain A, Chanana H, Khan SA, Dhanalekshmi UM, Ali M, Alghamdi AA, Ahmad A. Chemistry and Pharmacological Actions of Delphinidin, a Dietary Purple Pigment in Anthocyanidin and Anthocyanin Forms. Front Nutr 2022; 9:746881. [PMID: 35369062 PMCID: PMC8969030 DOI: 10.3389/fnut.2022.746881] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 01/31/2022] [Indexed: 12/22/2022] Open
Abstract
Anthocyanins are naturally occurring water-soluble flavonoids abundantly present in fruits and vegetables. They are polymethoxyderivatives of 2-phenyl-benzopyrylium or flavylium salts. Delphinidin (Dp) is a purple-colored plant pigment, which occurs in a variety of berries, eggplant, roselle, and wine. It is found in a variety of glycosidic forms ranging from glucoside to arabinoside. Dp is highly active in its aglycone form, but the presence of a sugar moiety is vital for its bioavailability. Several animal and human clinical studies have shown that it exerts beneficial effects on gut microbiota. Dp exhibits a variety of useful biological activities by distinct and complex mechanisms. This manuscript highlights the basic characteristics, chemistry, biosynthesis, stability profiling, chemical synthesis, physicochemical parameters along with various analytical methods developed for extraction, isolation and characterization, diverse biological activities and granted patents to this lead anthocyanin molecule, Dp. This review aims to open pathways for further exploration and research investigation on the true potential of the naturally occurring purple pigment (Dp) in its anthocyanidin and anthocyanin forms beyond nutrition.
Collapse
Affiliation(s)
- Asif Husain
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Harshit Chanana
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shah Alam Khan
- College of Pharmacy, National University of Science and Technology, Muscat, Oman
| | - U M Dhanalekshmi
- College of Pharmacy, National University of Science and Technology, Muscat, Oman
| | - M Ali
- Department of Pharmacognosy, College of Pharmacy, Jazan University, Jizan, Saudi Arabia
| | - Anwar A Alghamdi
- Department of Health Information Technology, Faculty of Applied Studies, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aftab Ahmad
- Department of Health Information Technology, Faculty of Applied Studies, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
14
|
Qi F, Liu Y, Luo Y, Cui Y, Lu C, Li H, Huang H, Dai S. Functional analysis of the ScAG and ScAGL11 MADS-box transcription factors for anthocyanin biosynthesis and bicolour pattern formation in Senecio cruentus ray florets. HORTICULTURE RESEARCH 2022; 9:uhac071. [PMID: 35734379 PMCID: PMC9209810 DOI: 10.1093/hr/uhac071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 03/07/2022] [Indexed: 06/15/2023]
Abstract
Cineraria (Senecio cruentus) is an ornamental plant with pure colour and bicolour cultivars, widely used for landscaping. Anthocyanin biosynthesis influences coloration patterns in cineraria. However, how anthocyanins accumulate and distribute in cineraria is poorly understood. This study investigated the molecular mechanisms underlying anthocyanin biosynthesis and bicolour formation in cineraria using pure colour and bicolour cultivars. Transcriptome and gene expression analysis showed that five genes, ScCHS2, ScF3H1, ScDFR3, ScANS, and ScbHLH17, were inhibited in the white cultivar and colourless regions of bicolour cultivars. In contrast, two MADS-box genes, ScAG and ScAGL11, showed significantly higher expression in the colourless regions of bicolour cultivars. ScAG and ScAGL11 were localized in the nucleus and co-expressed with the bicolour trait. Further functional analysis verified that ScAG inhibits anthocyanin accumulation in tobacco (Nicotiana tabacum). However, virus-induced gene silencing (VIGS) experiments showed that silencing of ScAG and ScAGL11 increases anthocyanin content in cineraria leaves. Similar results were observed when ScAG and ScAGL11 were silenced in the cineraria capitulum, accompanied by the smaller size of the colourless region, specifically in the ScAG/ScAGL11-silenced plants. The expression of ScCHS2, ScDFR3, and ScF3H1 increased in silenced cineraria leaves and capitulum. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation experiments demonstrated that ScAG interacts with ScAGL11. Moreover, ScAG directly inhibited the transcription of ScF3H1 while ScAGL11 inhibited ScDFR3 expression by binding to their promoters separately. The findings reported herein indicate that ScAG and ScAGL11 negatively regulate anthocyanin biosynthesis in cineraria ray florets, and their differential expression in ray florets influences the bicolour pattern appearance.
Collapse
Affiliation(s)
- Fangting Qi
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yuting Liu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yiliu Luo
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yumeng Cui
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Chenfei Lu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Hao Li
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - He Huang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Silan Dai
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
15
|
Cui Y, Fan J, Lu C, Ren J, Qi F, Huang H, Dai S. ScGST3 and multiple R2R3-MYB transcription factors function in anthocyanin accumulation in Senecio cruentus. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111094. [PMID: 34763879 DOI: 10.1016/j.plantsci.2021.111094] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Anthocyanins are important flavonoid pigments involved in the colouring of flowers and fruits. They are synthesized on the cytoplasmic surface of the endoplasmic reticulum and transported into the vacuole for storage. Previous reports have suggested that glutathione S-transferase (GST) is involved in anthocyanin transport. However, due to the limitation of plant materials, most GSTs only participate in the cyanidin or delphinidin transport pathway. Here, an anthocyanin-related GST, ScGST3, was identified from the transcriptome of cineraria. The expression pattern of ScGST3 was highly consistent with anthocyanin accumulation in ray florets. Molecular complementation of Arabidopsis tt19 indicated that the overexpression of ScGST3 restores the anthocyanin-deficient phenotype of the mutant. Virus-induced gene silencing (VIGS) of ScGST3 in carmine and blue cineraria leaves could inhibit anthocyanin accumulation, further confirming the function of ScGST3 in anthocyanin accumulation. In vitro assays showed that ScGST3 increases the water solubility of cyanidin-3-O-glucoside (C3G) and delphinidin-3-O-glucosid (D3G). In addition, we also identified two anthocyanin-related MYB transcription factors, ScMYB3 and ScMYB6. The expression pattern of these two genes was also highly consistent with anthocyanin accumulation. Faded abaxial leaf phenotypes were observed after the silencing of ScMYB3 and ScMYB6, and the expression levels of partial structural genes were repressed. Based on the results from dual-luciferase assays and yeast one-hybrid assays, ScMYB3 can activate the promoter of ScGST3. Collectively, the transcription of ScGST3 is regulated by ScMYB3, which plays an important role in the transport of C3G and D3G in cineraria.
Collapse
Affiliation(s)
- Yumeng Cui
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Jiawei Fan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Chenfei Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Jiangshan Ren
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Fangting Qi
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - He Huang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| | - Silan Dai
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
16
|
Transcriptomic and metabolomic joint analysis reveals distinct flavonoid biosynthesis regulation for variegated testa color development in peanut (Arachis hypogaea L.). Sci Rep 2021; 11:10721. [PMID: 34021210 PMCID: PMC8140124 DOI: 10.1038/s41598-021-90141-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 05/07/2021] [Indexed: 12/14/2022] Open
Abstract
Peanut is one of the important oil and economic crops, among which the variegated testa peanut is a unique member. The molecular mechanisms underlying the pigment synthesis in variegated testa are still unclear. Differentially expressed genes (DEGs) in the flavonoid metabolism pathway in pigmented areas indicated that there were 27 DEGs highly related to the synthesis of variegated testa color among 1,050 DEGs. Of these 27, 13 were up-regulated and 14 were down-regulated, including 3 PALs, 1 C4H, 2 CHSs, 1 F3H, 1 F3'H, 2 DFRs, 2 LARs, 2 IAAs, 4 bHLHs, and 9 MYBs. GO (Gene Ontology) analysis indicated that DEGs were similarly enriched in three branches. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis suggested flavonoid biosynthesis is the most direct metabolic pathway for the synthesis of testa variegation. The liquid chromatography–tandem mass spectrometry (LC–MS/MS) results showed that cyanidin and delphinidin were the primary metabolites that caused the color differences between the pigmented and the non-pigmented areas. Through the verification of 20 DEGs via qPCR, the results were consistent with transcriptome sequencing in four comparison groups. The results in this study lay the foundation for revealing the molecular regulation mechanisms of flavonoid synthesis in variegated testa peanut.
Collapse
|
17
|
Ye LJ, Mӧller M, Luo YH, Zou JY, Zheng W, Wang YH, Liu J, Zhu AD, Hu JY, Li DZ, Gao LM. Differential expressions of anthocyanin synthesis genes underlie flower color divergence in a sympatric Rhododendron sanguineum complex. BMC PLANT BIOLOGY 2021; 21:204. [PMID: 33910529 PMCID: PMC8082929 DOI: 10.1186/s12870-021-02977-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/08/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND The Rhododendron sanguineum complex is endemic to alpine mountains of northwest Yunnan and southeast Tibet of China. Varieties in this complex exhibit distinct flower colors even at the bud stage. However, the underlying molecular regulations for the flower color variation have not been well characterized. Here, we investigated this via measuring flower reflectance profiles and comparative transcriptome analyses on three coexisting varieties of the R. sanguineum complex, with yellow flush pink, bright crimson, and deep blackish crimson flowers respectively. We compared the expression levels of differentially-expressed-genes (DEGs) of the anthocyanin / flavonoid biosynthesis pathway using RNA-seq and qRT-PCR data. We performed clustering analysis based on transcriptome-derived Single Nucleotide Polymorphisms (SNPs) data, and finally analyzed the promoter architecture of DEGs. RESULTS Reflectance spectra of the three color morphs varied distinctively in the range between 400 and 700 nm, with distinct differences in saturation, brightness, hue, and saturation/hue ratio, an indirect measurement of anthocyanin content. We identified 15,164 orthogroups that were shared among the three varieties. The SNP clustering analysis indicated that the varieties were not monophyletic. A total of 40 paralogous genes encoding 12 enzymes contributed to the flower color polymorphism. These anthocyanin biosynthesis-related genes were associated with synthesis, modification and transportation properties (RsCHS, RsCHI, RsF3H, RsF3'H, RsFLS, RsANS, RsAT, RsOMT, RsGST), as well as genes involved in catabolism and degradation (RsBGLU, RsPER, RsCAD). Variations in sequence and cis-acting elements of these genes might correlate with the anthocyanin accumulation, thus may contribute to the divergence of flower color in the R. sanguineum complex. CONCLUSIONS Our results suggested that the varieties are very closely related and flower color variations in the R. sanguineum complex correlate tightly with the differential expression levels of genes involved in the anabolic and catabolic synthesis network of anthocyanin. Our study provides a scenario involving intricate relationships between genetic mechanisms for floral coloration accompanied by gene flow among the varieties that may represent an early case of pollinator-mediated incipient sympatric speciation.
Collapse
Affiliation(s)
- Lin-Jiang Ye
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- School of Life Sciences, Yunnan University, Kunming, 650091, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | | | - Ya-Huang Luo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Jia-Yun Zou
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Wei Zheng
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Yue-Hua Wang
- School of Life Sciences, Yunnan University, Kunming, 650091, Yunnan, China
| | - Jie Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - An-Dan Zhu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Jin-Yong Hu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
- University of Chinese Academy of Sciences, Beijing, 10049, China.
| | - Lian-Ming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
- Yunnan Lijiang Forest Ecosystem National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, Yunnan, China.
| |
Collapse
|
18
|
Gómez-Martínez H, Gil-Muñoz F, Bermejo A, Zuriaga E, Badenes ML. Insights of Phenolic Pathway in Fruits: Transcriptional and Metabolic Profiling in Apricot ( Prunus armeniaca). Int J Mol Sci 2021; 22:ijms22073411. [PMID: 33810284 PMCID: PMC8037730 DOI: 10.3390/ijms22073411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/17/2021] [Accepted: 03/24/2021] [Indexed: 11/16/2022] Open
Abstract
There is an increasing interest in polyphenols, plant secondary metabolites, in terms of fruit quality and diet, mainly due to their antioxidant effect. However, the identification of key gene enzymes and their roles in the phenylpropanoid pathway in temperate fruits species remains uncertain. Apricot (Prunus armeniaca) is a Mediterranean fruit with high diversity and fruit quality properties, being an excellent source of polyphenol compounds. For a better understanding of the phenolic pathway in these fruits, we selected a set of accessions with genetic-based differences in phenolic compounds accumulation. HPLC analysis of the main phenolic compounds and transcriptional analysis of the genes involved in key steps of the polyphenol network were carried out. Phenylalanine ammonia-lyase (PAL), dihydroflavonol-4-reductase (DFR) and flavonol synthase (FLS) were the key enzymes selected. Orthologous of the genes involved in transcription of these enzymes were identified in apricot: ParPAL1, ParPAL2, ParDFR, ParFLS1 and ParFLS2. Transcriptional data of the genes involved in those critical points and their relationships with the polyphenol compounds were analyzed. Higher expression of ParDFR and ParPAL2 has been associated with red-blushed accessions. Differences in expression between paralogues could be related to the presence of a BOXCOREDCPAL cis-acting element related to the genes involved in anthocyanin synthesis ParFLS2, ParDFR and ParPAL2.
Collapse
|
19
|
Wang R, Ren C, Dong S, Chen C, Xian B, Wu Q, Wang J, Pei J, Chen J. Integrated Metabolomics and Transcriptome Analysis of Flavonoid Biosynthesis in Safflower ( Carthamus tinctorius L.) With Different Colors. FRONTIERS IN PLANT SCIENCE 2021; 12:712038. [PMID: 34381487 PMCID: PMC8351732 DOI: 10.3389/fpls.2021.712038] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/28/2021] [Indexed: 05/20/2023]
Abstract
Safflower is widely used in dying and in traditional medicine, and C-glucosylquinochalcones are the main metabolic species in the red color of safflower. Various safflower cultivars have flowers with different colors. However, the metabolic and transcriptional differences among safflower cultivars with different-colored flowers and the genes participating in C-glucosylquinochalcone biosynthesis are largely unknown. To provide insights on this issue, we performed integrated metabolomics and transcriptome analyses on the flavonoid biosynthesis of flowers of different colors in safflower (white-W, yellow-Y, light red-LR, and deep red-DR). The metabolic analysis showed that flavonoid metabolites showed great differences among the different colors of safflower. More flavonoid metabolic species were detected in Y and W, while C-glucosylquinochalcones were not detected in W. The content of C-glucosylquinochalcones increased with increasing color. Transcriptional analysis showed that most of the annotated flavonoid biosynthesis genes were significantly increased in W. The expression of genes related to flavonoid biosynthesis decreased with increasing color. We analyzed the candidate genes associated with C-glucosylquinochalcones, and an integration of the metabolic and transcriptional analyses indicated that the differential expression of the chalcone synthase (CHS) gene is one of the main reasons for the difference in flavonoid species and content among the different colors of safflower. Combined with the expression pattern analysis, these results indicated that HH_035319, HH_032689, and HH_018025 are likely involved in C-glucosylquinochalcones biosynthesis. In addition, we found that their expression showed greatly increased after the methyl jasmonate (MeJA) treatment. Therefore, HH_035319, HH_032689, and HH_018025 might participate in C-glucosylquinochalcone biosynthesis, which ultimately leads to the red color in safflower.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chaoxiang Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuai Dong
- The State Bank of Chinese Drug Germplam Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chao Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bin Xian
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qinghua Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Qinghua Wu,
| | - Jie Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin Pei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiang Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Jiang Chen,
| |
Collapse
|
20
|
Qi Y, Wei H, Gu W, Shi W, Jiang L, Deng L, Liu X. Transcriptome profiling provides insights into the fruit color development of wild Lycium ruthenicum Murr. from Qinghai-Tibet Plateau. PROTOPLASMA 2021; 258:33-43. [PMID: 32886216 DOI: 10.1007/s00709-020-01542-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Lycium ruthenicum Murr. is an important ecological and economic species in the Qaidam Basin of Qinghai-Tibet Plateau. Its black fruits (BF) are rich in anthocyanins, which have health-promoting properties for humans and thus provide nutritional benefits for this plant. Although the fruit quality of natural white fruit (WF) is affected by the disappearance of pigmentation in phenotypes, this phenomenon provides an opportunity to unravel the complex color metabolic networks. In this study, anthocyanin profiling confirmed that WF was formed due to anthocyanin loss. Transcriptome analysis of BF and WF revealed 101,466 unigenes, 261 of which were identified as the putative homologs of color-related genes in other species. Genes encoding the enzymes involved in flavonoid biosynthesis were also identified systematically. The structural gene expression levels of chalcone synthase (CHS), chalcone isomerase (CHI), flavonoid 3'5'-hydroxylase (F3'5'H), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS), and anthocyanidin 3-O-glucosyltransferase (UFGT) were highly similar and significantly positively correlated with anthocyanin accumulation rate in BF. In particular, F3'5'H, UFGT, ANS, and DFR expression levels in BF were 2391, 119, 96, and 85 times higher than those in WF at S3 (35 days after anthesis), respectively. This result strongly suggests that the low expression of these genes in WF is responsible for the anthocyanin loss. Meanwhile, the expression patterns of the anthocyanin regulatory genes were also investigated by qRT-PCR. Mass sequencing data were obtained and annotated by deep sequencing and provided a platform for future function and molecular biological research on L. ruthenicum Murr.
Collapse
Affiliation(s)
- Yinyan Qi
- Qinghai Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, Qinghai, China
- Qinghai Plateau Key Laboratory of Tree Genetics and Breeding, Xining, 810016, Qinghai, China
| | - Haibin Wei
- Qinghai Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China
- Qinghai Plateau Key Laboratory of Tree Genetics and Breeding, Xining, 810016, Qinghai, China
| | - Wenyi Gu
- Qinghai Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China
- Qinghai Plateau Key Laboratory of Tree Genetics and Breeding, Xining, 810016, Qinghai, China
| | - Wenjun Shi
- Qinghai Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China
- Qinghai Plateau Key Laboratory of Tree Genetics and Breeding, Xining, 810016, Qinghai, China
| | - Liling Jiang
- Qinghai Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, Qinghai, China
| | - Lei Deng
- Qinghai Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China
- Qinghai Plateau Key Laboratory of Tree Genetics and Breeding, Xining, 810016, Qinghai, China
| | - Xiaoli Liu
- Qinghai Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China.
- Qinghai Plateau Key Laboratory of Tree Genetics and Breeding, Xining, 810016, Qinghai, China.
| |
Collapse
|
21
|
Lu C, Li Y, Cui Y, Ren J, Qi F, Qu J, Huang H, Dai S. Isolation and Functional Analysis of Genes Involved in Polyacylated Anthocyanin Biosynthesis in Blue Senecio cruentus. FRONTIERS IN PLANT SCIENCE 2021; 12:640746. [PMID: 33692819 PMCID: PMC7937962 DOI: 10.3389/fpls.2021.640746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/01/2021] [Indexed: 05/07/2023]
Abstract
Polyacylated anthocyanins with multiple glycosyl and aromatic acyl groups tend to make flowers display bright and stable blue colours. However, there are few studies on the isolation and functional characterization of genes involved in the polyacylated anthocyanin biosynthesis mechanism, which limits the molecular breeding of truly blue flowers. Senecio cruentus is an important potted ornamental plant, and its blue flowers contain 3',7-polyacylated delphinidin-type anthocyanins that are not reported in any other plants, suggesting that it harbours abundant gene resources for the molecular breeding of blue flowers. In this study, using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analysis of blue, carmine and white colours of cineraria cultivars "Venezia" (named VeB, VeC, and VeW, respectively), we found that 3',7-polyacylated anthocyanin, cinerarin, was the main pigment component that determined the blue colour of ray florets of cineraria. Based on the transcriptome sequencing and differential gene expression (DEG) analysis combined with RT- and qRT-PCR, we found two genes encoding uridine diphosphate glycosyltransferase, named ScUGT1 and ScUGT4; two genes encoding acyl-glucoside-dependent glucosyltransferases which belong to glycoside hydrolase family 1 (GH1), named ScAGGT11 and ScAGGT12; one gene encoding serine carboxypeptidase-like acyltransferase ScSCPL2; and two MYB transcriptional factor genes ScMYB2 and ScMYB4, that were specifically highly expressed in the ray florets of VeB, which indicated that these genes may be involved in cinerarin biosynthesis. The function of ScSCPL2 was analysed by virus-induced gene silencing (VIGS) in cineraria leaves combined with HPLC-MS/MS. ScSCPL2 mainly participated in the 3' and 7-position acylation of cinerarin. These results will provide new insight into the molecular basis of the polyacylated anthocyanin biosynthesis mechanism in higher plants and are of great significance for blue flower molecular breeding of ornamental plants.
Collapse
|
22
|
Hu Y, Siddiqui MH, Li C, Jiang L, Zhang H, Zhao X. Polyamine Metabolism, Photorespiration, and Excitation Energy Allocation in Photosystem II Are Potentially Regulatory Hubs in Poplar Adaptation to Soil Nitrogen Availability. FRONTIERS IN PLANT SCIENCE 2020; 11:1271. [PMID: 32983189 PMCID: PMC7479266 DOI: 10.3389/fpls.2020.01271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/04/2020] [Indexed: 05/13/2023]
Abstract
Nitrogen fertilization is common for poplar trees to improve growth and productivity. The utilization of N by poplar largely depends on fertilizer application patterns; however, the underlying regulatory hubs are not fully understood. In this study, N utilization and potentially physiological regulations of two poplar clones (XQH and BC5) were assessed through two related experiments (i: five levels of N supply and ii: conventional and exponential N additions). Poplar growth (leaf area) and N utilization significantly increased under fertilized compared to unfertilized conditions, whereas photosynthetic N utilization efficiency significantly decreased under low N supplies. Growth characteristics were better in the XQH than in the BC5 clone under the same N supplies, indicating higher N utilization efficiency. Leaf absorbed light energy, and thermal dissipation fraction was significantly different for XQH clone between conventional and exponential N additions. Leaf concentrations of putrescine (Put) and acetylated Put were significantly higher in exponential than in conventional N addition. Photorespiration significantly increased in leaves of XQH clone under exponential compared to conventional N addition. Our results indicate that an interaction of the clone and N supply pattern significantly occurs in poplar growth; leaf expansion and the storage N allocations are the central hubs in the regulation of poplar N utilization.
Collapse
Affiliation(s)
- Yanbo Hu
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
- Forestry College, Beihua University, Jilin, China
| | - Manzer H. Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Chunming Li
- Institute of Forestry Science, Heilongjiang Academy of Forestry, Harbin, China
| | - Luping Jiang
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Heng Zhang
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Xiyang Zhao
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| |
Collapse
|
23
|
Deng C, Wang J, Lu C, Li Y, Kong D, Hong Y, Huang H, Dai S. CcMYB6-1 and CcbHLH1, two novel transcription factors synergistically involved in regulating anthocyanin biosynthesis in cornflower. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:271-283. [PMID: 32247249 DOI: 10.1016/j.plaphy.2020.03.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/26/2020] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
Anthocyanins in cornflower (Centaurea cyanus) is catalysed by a set of biosynthesis genes, however, the potential mechanism of transcriptional regulation remains unclear. In the present study, we traced the dynamic changes of petal colour development from white to violet and finally to blue on the same petal in cornflower. Pigment analysis showed that anthocyanin accumulation dramatically increased with petal colour development. Subsequently, nine libraries from above three colour regions were constructed for RNA-seq and 105,506 unigenes were obtained by de novo assembling. The differentially expressed genes among three colour regions were significantly enriched in the phenylpropanoid biosynthesis and flavonoid biosynthesis pathways, leading to the excavation and analysis of 46 biosynthesis genes involved in this process. Furthermore, four R2R3-CcMYBs clustered into subgroup 4 or subgroup 6 and one CcbHLH1 clustered into IIIf subgroup were screened out by phylogenetic analysis with Arabidopsis homologues. The promoters of flavanone 3-hydroxylase (CcF3H) and dihydroflavonol 4-reductase (CcDFR) were further isolated to investigate upstream regulation mechanism. CcMYB6-1 significantly upregulated the activity of above two promoters and stimulated anthocyanin accumulation by dual luciferase assay and transient expression in tobacco leaves, and its activity was obviously enhanced when co-infiltrated with CcbHLH1. Moreover, both yeast two-hybrid and bimolecular fluorescence complementation assays indicated the protein-protein interaction between these two activators. Based on these obtained results, it reveals that CcMYB6-1 and CcbHLH1 are two novel transcription factors synergistically involved in regulating anthocyanin biosynthesis. This study provides insights into the regulatory mechanism of anthocyanin accumulation in cornflower.
Collapse
Affiliation(s)
- Chengyan Deng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
| | - Jiaying Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
| | - Chenfei Lu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
| | - Yanfei Li
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
| | - Deyuan Kong
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
| | - Yan Hong
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
| | - He Huang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
| | - Silan Dai
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
24
|
Li Y, Liu Y, Qi F, Deng C, Lu C, Huang H, Dai S. Establishment of virus-induced gene silencing system and functional analysis of ScbHLH17 in Senecio cruentus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 147:272-279. [PMID: 31891861 DOI: 10.1016/j.plaphy.2019.12.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/12/2019] [Accepted: 12/19/2019] [Indexed: 05/23/2023]
Abstract
Virus-induced gene silencing (VIGS) is a technology for rapid gene functional analysis that depends on the degradation of viral RNA and is part of the natural defense mechanism in plants. Senecio cruentus is an important Compositae ornamental species that is plentiful and available in a variety of colors and has a typical blue variety that is rare in Compositae. These advantages make it a good material for studying the anthocyanin biosynthesis and blue flower formation mechanism. With the development of gene sequencing technology, the functions of many candidate genes that may be involved in anthocyanin biosynthesis in S. cruentus need to be identified. However, a stable and rapid genetic transformation system of S. cruentus is still lacking. Here, we screened two cultivars, 'Venezia' and 'Jseter', selected ScPDS and ScANS as test genes, and investigated the effect of developmental periods, bacterial cell concentrations and infection methods on gene silencing efficiency. The results showed that the silencing efficiency of S. cruentus leaves was low (13%), and it was less affected by the parameters. However, the transcription factor gene ScbHLH17 was still silenced by VIGS, which resulted in the loss of anthocyanin accumulation in leaves, and the expression levels of anthocyanin biosynthesis pathway (ABP) structural genes, including ScCHI, ScDFR3 and ScANS, were decreased significantly. The result proved that ScbHLH17 was an important transcription factor that regulated flower color formation in S. cruentus. In addition, ScANS-silencing phenotypes were observed in S. cruentus capitulum by vacuum-infiltrating S1 stage buds for 10 min after scape injection. In general, the present study provided an important technical support for the study of anthocyanin metabolism pathways in S. cruentus.
Collapse
Affiliation(s)
- Yajun Li
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, 100083, China; National Engineering Research Center for Floriculture, Beijing, 100083, China; Beijing Laboratory of Urbanand Rural Ecological Environment, Beijing, 100083, China; School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yuting Liu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, 100083, China; National Engineering Research Center for Floriculture, Beijing, 100083, China; Beijing Laboratory of Urbanand Rural Ecological Environment, Beijing, 100083, China; School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Fangting Qi
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, 100083, China; National Engineering Research Center for Floriculture, Beijing, 100083, China; Beijing Laboratory of Urbanand Rural Ecological Environment, Beijing, 100083, China; School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Chengyan Deng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, 100083, China; National Engineering Research Center for Floriculture, Beijing, 100083, China; Beijing Laboratory of Urbanand Rural Ecological Environment, Beijing, 100083, China; School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Chenfei Lu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, 100083, China; National Engineering Research Center for Floriculture, Beijing, 100083, China; Beijing Laboratory of Urbanand Rural Ecological Environment, Beijing, 100083, China; School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - He Huang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, 100083, China; National Engineering Research Center for Floriculture, Beijing, 100083, China; Beijing Laboratory of Urbanand Rural Ecological Environment, Beijing, 100083, China; School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| | - Silan Dai
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, 100083, China; National Engineering Research Center for Floriculture, Beijing, 100083, China; Beijing Laboratory of Urbanand Rural Ecological Environment, Beijing, 100083, China; School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
25
|
Li H, Yang Z, Zeng Q, Wang S, Luo Y, Huang Y, Xin Y, He N. Abnormal expression of bHLH3 disrupts a flavonoid homeostasis network, causing differences in pigment composition among mulberry fruits. HORTICULTURE RESEARCH 2020; 7:83. [PMID: 32528695 PMCID: PMC7261776 DOI: 10.1038/s41438-020-0302-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 05/18/2023]
Abstract
Mulberry fruits with high concentrations of anthocyanins are favored by consumers because of their good taste, bright color, and high nutritional value. However, neither the regulatory mechanism controlling flavonoid biosynthesis in mulberry nor the molecular basis of different mulberry fruit colors is fully understood. Here, we report that a flavonoid homeostasis network comprising activation and feedback regulation mechanisms determines mulberry fruit color. In vitro and in vivo assays showed that MYBA-bHLH3-TTG1 regulates the biosynthesis of anthocyanins, while TT2L1 and TT2L2 work with bHLH3 or GL3 and form a MYB-bHLH-WD40 (MBW) complex with TTG1 to regulate proanthocyanidin (PA) synthesis. Functional and expression analyses showed that bHLH3 is a key regulator of the regulatory network controlling mulberry fruit coloration and that MYB4 is activated by MBW complexes and participates in negative feedback control of the regulatory network to balance the accumulation of anthocyanins and proanthocyanidins. Our research demonstrates that the interaction between bHLH3 and MYB4 in the homeostasis regulatory network ensures that the fruits accumulate desirable flavonoids and that this network is stable in pigment-rich mulberry fruits. However, the abnormal expression of bHLH3 disrupts the balance of the network and redirects flavonoid metabolic flux in pale-colored fruits, resulting in differences in the levels and proportions of anthocyanins, flavones, and flavonols among differently colored mulberry fruits (red, yellow, and white). The results of our study reveal the molecular basis of the diversity of mulberry fruit colors.
Collapse
Affiliation(s)
- Han Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, 400715 Chongqing, P.R. China
| | - Zhen Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, 400715 Chongqing, P.R. China
| | - Qiwei Zeng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, 400715 Chongqing, P.R. China
| | - Shibo Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, 400715 Chongqing, P.R. China
| | - Yiwei Luo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, 400715 Chongqing, P.R. China
| | - Yan Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, 400715 Chongqing, P.R. China
| | - Youchao Xin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, 400715 Chongqing, P.R. China
| | - Ningjia He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, 400715 Chongqing, P.R. China
| |
Collapse
|
26
|
Zhang Y, Zhou T, Dai Z, Dai X, Li W, Cao M, Li C, Tsai WC, Wu X, Zhai J, Liu Z, Wu S. Comparative Transcriptomics Provides Insight into Floral Color Polymorphism in a Pleione limprichtii Orchid Population. Int J Mol Sci 2019; 21:E247. [PMID: 31905846 PMCID: PMC6982098 DOI: 10.3390/ijms21010247] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/25/2019] [Accepted: 12/26/2019] [Indexed: 12/12/2022] Open
Abstract
Floral color polymorphism can provide great insight into species evolution from a genetic and ecological standpoint. Color variations between species are often mediated by pollinators and are fixed characteristics, indicating their relevance to adaptive evolution, especially between plants within a single population or between similar species. The orchid genus Pleione has a wide variety of flower colors, from violet, rose-purple, pink, to white, but their color formation and its evolutionary mechanism are unclear. Here, we selected the P. limprichtii population in Huanglong, Sichuan Province, China, which displayed three color variations: Rose-purple, pink, and white, providing ideal material for exploring color variations with regard to species evolution. We investigated the distribution pattern of the different color morphs. The ratio of rose-purple:pink:white-flowered individuals was close to 6:3:1. We inferred that the distribution pattern may serve as a reproductive strategy to maintain the population size. Metabolome analysis was used to reveal that cyanindin derivatives and delphidin are the main color pigments involved. RNA sequencing was used to characterize anthocyanin biosynthetic pathway-related genes and reveal different color formation pathways and transcription factors in order to identify differentially-expressed genes and explore their relationship with color formation. In addition, qRT-PCR was used to validate the expression patterns of some of the genes. The results show that PlFLS serves as a crucial gene that contributes to white color formation and that PlANS and PlUFGT are related to the accumulation of anthocyanin which is responsible for color intensity, especially in pigmented flowers. Phylogenetic and co-expression analyses also identified a R2R3-MYB gene PlMYB10, which is predicted to combine with PlbHLH20 or PlbHLH26 along with PlWD40-1 to form an MBW protein complex (MYB, bHLH, and WDR) that regulates PlFLS expression and may serve as a repressor of anthocyanin accumulation-controlled color variations. Our results not only explain the molecular mechanism of color variation in P. limprichtii, but also contribute to the exploration of a flower color evolutionary model in Pleione, as well as other flowering plants.
Collapse
Affiliation(s)
- Yiyi Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Z.D.); (X.D.); (W.L.); (M.C.); (C.L.); (W.-C.T.); (X.W.); (J.Z.)
| | - Tinghong Zhou
- Huanglong National Scenic Reserve, Songpan 623300, China;
| | - Zhongwu Dai
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Z.D.); (X.D.); (W.L.); (M.C.); (C.L.); (W.-C.T.); (X.W.); (J.Z.)
| | - Xiaoyu Dai
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Z.D.); (X.D.); (W.L.); (M.C.); (C.L.); (W.-C.T.); (X.W.); (J.Z.)
| | - Wei Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Z.D.); (X.D.); (W.L.); (M.C.); (C.L.); (W.-C.T.); (X.W.); (J.Z.)
| | - Mengxia Cao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Z.D.); (X.D.); (W.L.); (M.C.); (C.L.); (W.-C.T.); (X.W.); (J.Z.)
| | - Chengru Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Z.D.); (X.D.); (W.L.); (M.C.); (C.L.); (W.-C.T.); (X.W.); (J.Z.)
| | - Wen-Chieh Tsai
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Z.D.); (X.D.); (W.L.); (M.C.); (C.L.); (W.-C.T.); (X.W.); (J.Z.)
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan City 701, China
| | - Xiaoqian Wu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Z.D.); (X.D.); (W.L.); (M.C.); (C.L.); (W.-C.T.); (X.W.); (J.Z.)
| | - Junwen Zhai
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Z.D.); (X.D.); (W.L.); (M.C.); (C.L.); (W.-C.T.); (X.W.); (J.Z.)
| | - Zhongjian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Z.D.); (X.D.); (W.L.); (M.C.); (C.L.); (W.-C.T.); (X.W.); (J.Z.)
| | - Shasha Wu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Z.D.); (X.D.); (W.L.); (M.C.); (C.L.); (W.-C.T.); (X.W.); (J.Z.)
| |
Collapse
|
27
|
Le Maitre NC, Pirie MD, Bellstedt DU. Floral Color, Anthocyanin Synthesis Gene Expression and Control in Cape Erica Species. FRONTIERS IN PLANT SCIENCE 2019; 10:1565. [PMID: 31850039 PMCID: PMC6892755 DOI: 10.3389/fpls.2019.01565] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/07/2019] [Indexed: 05/31/2023]
Abstract
Introduction: The Cape Floristic Region (CFR) is a biodiversity hotspot, recognized globally for its unusually high levels of endemism. The origins of this biodiversity are a long-standing topic of research. The largest "Cape clade," Erica, radiated dramatically in the CFR, its ca. 690 species arising within 10-15 Ma. Notable between- and within-species flower color variation in Erica may have contributed to the origins of species diversity through its impact on pollinator efficiency and specificity. Methods: We investigate the expression and function of the genes of the anthocyanin biosynthesis pathway that controls floral color in 12 Erica species groups using RT-qPCR and UPLC-MS/MS. Results: Shifts from ancestral pink- or red- to white- and/or yellow flowers were associated with independent losses of single pathway gene expression, abrogation of the entire pathway due to loss of the expression of a transcription factor or loss of function mutations in pathway genes. Discussion: Striking floral color shifts are prevalent amongst the numerous species of Cape Erica. These results show independent origins of a palette of mutations leading to such shifts, revealing the diverse genetic basis for potentially rapid evolution of a speciation-relevant trait.
Collapse
Affiliation(s)
- N C Le Maitre
- Bellstedt Laboratory, Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Michael David Pirie
- Johannes Gutenberg-Universität, Mainz, Mainz, Germany
- University Museum, University of Bergen, Bergen, Norway
| | - Dirk U. Bellstedt
- Bellstedt Laboratory, Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
28
|
Hu Y, Peuke AD, Zhao X, Yan J, Li C. Effects of simulated atmospheric nitrogen deposition on foliar chemistry and physiology of hybrid poplar seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 143:94-108. [PMID: 31491704 DOI: 10.1016/j.plaphy.2019.08.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 05/27/2023]
Abstract
During recent decades, the southern and eastern regions of Asia have experienced high levels of atmospheric N deposition. Excess N deposition is predicted to influence tree growth and species composition in the regions, but visual or physiological assessments alone are not sufficient to determine the real effects of atmospheric N deposition. In this study, we simulated atmospheric wet deposition of inorganic N by spraying a NO3- solution (20 mmol⋅L-1) or a mixture of NO3- (20 mmol⋅L-1) plus NO2- (100 or 300 μmol⋅L-1) on leaves of hybrid poplar (Populus alba × Populus berolinensis) seedlings and examined morphoanatomical traits and physiological processes. Leaves of seedlings sprayed with single or mixed N solutions developed marginal necrosis, curling, and small cracks on the adaxial surface. The silicon (Si)-rich crystals were larger (about 100% increase in crystal diameter compared to untreated seedlings) on the adaxial leaf surface, with a significant positive correlation between the atomic percentage of N and Si on the crystal areas of the surface. Leaves were sensitive to NO2- compared with NO3- even at a low concentration; water content, dry mass, and photochemical variables significantly declined and dark respiration increased only in leaves treated with mixed N form. Mixed N foliar applications significantly increased leaf concentrations of the free amino acids Glu, Gln, and Asn and organic acids oxaloacetic acid and citric acid. Besides, mixed N treatment stimulated leaf transamination, as indicated by significant increases in Ala and Asp concentrations and activities of glutamic oxalacetic transaminase and glutamic pyruvic transaminase. However, mixed N applications led to declines in leaf concentrations of putrescine (by 65%, p = 0.01) and spermine (by 53%, p = 0.01). A higher proportion of NO2- (300 μmol⋅L-1) in mixed N solution was inhibitory to key N-metabolic enzymes and N translocation via the phloem. Our results showed that wet deposition of airborne N pollutants modified surface properties and induced additional detrimental effects related to N-compound foliar absorption. Furthermore, our findings indicate that detoxification of reactive N is apparently related to N assimilation and export from the treated leaves via the phloem.
Collapse
Affiliation(s)
- Yanbo Hu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin City, 150040, PR China; State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin City, 150040, PR China.
| | - Andreas D Peuke
- ADP International Plant Science Consulting, Talstrasse 8, D-79194, Gundelfingen, Germany
| | - Xiyang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin City, 150040, PR China
| | - Junxin Yan
- College of Landscape Architecture, Northeast Forestry University, Harbin City, 150040, PR China
| | - Chunming Li
- Heilongjiang Academy of Forestry, Harbin City, 150081, PR China
| |
Collapse
|
29
|
Deng C, Li S, Feng C, Hong Y, Huang H, Wang J, Wang L, Dai S. Metabolite and gene expression analysis reveal the molecular mechanism for petal colour variation in six Centaurea cyanus cultivars. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 142:22-33. [PMID: 31255906 DOI: 10.1016/j.plaphy.2019.06.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/09/2019] [Accepted: 06/13/2019] [Indexed: 06/09/2023]
Abstract
Centaurea cyanus is a popular garden plant native to Europe. Although their petals show abundant colour variations, the flavonoid profiling and the potential molecular mechanisms remain unclear. In the present study, we collected six cornflower cultivars with white, pink, red, blue, mauve and black petals. Ultra-performance liquid chromatography coupled with photodiode array and tandem mass spectrometry (UPLC-MS/MS) was used to investigate the comparative profiling of flavonoids both qualitatively and quantitatively. Ten anthocyanins, six flavones and two flavonols were separated and putatively identified. Except for white petals without any anthocyanins, both pink and red flowers contained pelargonidin derivatives, whereas blue, mauve and black petals accumulated cyanidins. The expression patterns of genes involved in the flavonoid biosynthesis were performed by real-time quantitative reverse transcription-PCR. The anthocyanin biosynthetic pathway in white petals was inhibited starting from flavanone 3-hydroxylase, resulting in the absence of anthocyanin accumulation. The open reading frame of flavonoid 3'-hydroxylase in pink and red petals was truncated; this led to loss of a haem binding site, a conserved motif in the cytochrome P450 family, and loss of conversion from dihydrokaempferol to dihydroquercetin. The significantly higher expression of structural genes corresponding to the hyper-accumulation of flavonoids in black petals may play an important role in black coloration. Remarkably, the mauve and blue petals accumulated the same cyanidin derivative but contained apigenin with different modifications on the 4' position, which may cause the coloration differences. The results obtained in this study will provide insights into the mechanisms of vivid colour diversities in cornflower.
Collapse
Affiliation(s)
- Chengyan Deng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Shanshan Li
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengyong Feng
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Hong
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - He Huang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Jiaying Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Liangsheng Wang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Silan Dai
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
30
|
Li Z, Vickrey TL, McNally MG, Sato SJ, Clemente TE, Mower JP. Assessing Anthocyanin Biosynthesis in Solanaceae as a Model Pathway for Secondary Metabolism. Genes (Basel) 2019; 10:genes10080559. [PMID: 31349565 PMCID: PMC6723469 DOI: 10.3390/genes10080559] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 01/25/2023] Open
Abstract
Solanaceae have played an important role in elucidating how flower color is specified by the flavonoid biosynthesis pathway (FBP), which produces anthocyanins and other secondary metabolites. With well-established reverse genetics tools and rich genomic resources, Solanaceae provide a robust framework to examine the diversification of this well-studied pathway over short evolutionary timescales and to evaluate the predictability of genetic perturbation on pathway flux. Genomes of eight Solanaceae species, nine related asterids, and four rosids were mined to evaluate variation in copy number of the suite of FBP enzymes involved in anthocyanin biosynthesis. Comparison of annotation sources indicated that the NCBI annotation pipeline generated more and longer FBP annotations on average than genome-specific annotation pipelines. The pattern of diversification of each enzyme among asterids was assessed by phylogenetic analysis, showing that the CHS superfamily encompasses a large paralogous family of ancient and recent duplicates, whereas other FBP enzymes have diversified via recent duplications in particular lineages. Heterologous expression of a pansy F3′5′H gene in tobacco changed flower color from pink to dark purple, demonstrating that anthocyanin production can be predictably modified using reverse genetics. These results suggest that the Solanaceae FBP could be an ideal system to model genotype-to-phenotype interactions for secondary metabolism.
Collapse
Affiliation(s)
- Zuo Li
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Trisha L Vickrey
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Moira G McNally
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA
- Biology Department, University of Jamestown, Jamestown, ND 58405, USA
| | - Shirley J Sato
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA
- Center for Biotechnology, University of Nebraska, Lincoln, NE 68588, USA
| | - Tom Elmo Clemente
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583, USA
| | - Jeffrey P Mower
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA.
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583, USA.
| |
Collapse
|
31
|
Ma YJ, Duan HR, Zhang F, Li Y, Yang HS, Tian FP, Zhou XH, Wang CM, Ma R. Transcriptomic analysis of Lycium ruthenicum Murr. during fruit ripening provides insight into structural and regulatory genes in the anthocyanin biosynthetic pathway. PLoS One 2018; 13:e0208627. [PMID: 30532153 PMCID: PMC6285980 DOI: 10.1371/journal.pone.0208627] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 11/20/2018] [Indexed: 02/04/2023] Open
Abstract
Fruit development in Lycium ruthenicum Murr. involves a succession of physiological and biochemical changes reflecting the transcriptional modulation of thousands of genes. Although recent studies have investigated the dynamic transcriptomic responses during fruit ripening in L. ruthenicum, most have been limited in scope, and thus systematic data representing the structural genes and transcription factors involved in anthocyanin biosynthesis are lacking. In this study, the transcriptomes of three ripening stages associated with anthocyanin accumulation, including S1 (green ripeness stage), S2 (skin color change) and S3 (complete ripeness stage) in L. ruthenicum were investigated using Illumina sequencing. Of a total of 43,573 assembled unigenes, 12,734 were differentially expressed during fruit ripening in L. ruthenicum. Twenty-five significantly differentially expressed structural genes (including PAL, C4H, 4CL, CHS, CHI, F3H, F3'H, F3'5'H, DFR, ANS and UFGT) were identified that might be associated with anthocyanin biosynthesis. Additionally, several transcription factors, including MYB, bHLH, WD40, NAC, WRKY, bZIP and MADS, were correlated with the structural genes, implying their important interaction with anthocyanin biosynthesis-related genes. Our findings provide insight into anthocyanin biosynthesis and regulation patterns in L. ruthenicum and offer a systematic basis for elucidating the molecular mechanisms governing anthocyanin biosynthesis in L. ruthenicum.
Collapse
Affiliation(s)
- Yan-Jun Ma
- College of Forestry, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Hui-Rong Duan
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Feng Zhang
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Yi Li
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Hong-Shan Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fu-Ping Tian
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xue-Hui Zhou
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chun-Mei Wang
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Rui Ma
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
32
|
Transcriptome Sequencing and Metabolism Analysis Reveals the role of Cyanidin Metabolism in Dark-red Onion (Allium cepa L.) Bulbs. Sci Rep 2018; 8:14109. [PMID: 30237461 PMCID: PMC6148220 DOI: 10.1038/s41598-018-32472-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 08/28/2018] [Indexed: 12/11/2022] Open
Abstract
Onion (Allium cepa L.) is an important bulbous vegetable crop that possesses important properties related to health as well as extraordinary colors. Naturally white onion bulbs were used in this study to reveal the complex metabolic mechanisms that underlie phenotypic traits, especially bulb pigmentation. Six libraries (three dark-red and three white) were constructed and analyzed to elucidate differences in cyanidin (Cy) metabolism between dark-red and white onion bulbs. Libraries were screened using RNA-sequencing (RNA-seq) to reveal the differentially expressed genes (DEGs) involved in anthocyanin biosynthesis at the transcriptional level. Comparison with the Kyoto Encyclopedia of Genes and Genomes (KEGG) database shows that a total of 27 unigenes participate in onion anthocyanin biosynthesis and 16 DEGs perform critical roles in flavonoid biosynthesis. Expression patterns of color-related flavonoid compounds associated with the onion anthocyanin biosynthesis pathway (ABP) show that flavonoid 3′,5′-hydroxylase (F3′5′H) and dihydroflavonol 4-reductase (DFR) genes play crucial roles in the biosynthesis of dark-red bulbs, the expression levels of flavonol synthase (FLS) and DFR genes may act to block blue pigmentation, and the loss of Cy from white onion bulbs might explain multibranching in the synthesis of this compound. Positive variation in the F3′5′H/F3′H ratio also affects onion bulb color diversity. The transcriptome presented here provides a basis for future onion molecular breeding based on variations in the diversity of ornamental plant pigmentation.
Collapse
|
33
|
Li X, Qian X, Lǚ X, Wang X, Ji N, Zhang M, Ren M. Upregulated structural and regulatory genes involved in anthocyanin biosynthesis for coloration of purple grains during the middle and late grain-filling stages. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:235-247. [PMID: 30014927 DOI: 10.1016/j.plaphy.2018.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/07/2018] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
Anthocyanin biosynthesis is controlled by structural and regulatory genes. Purple wheat grains accumulate anthocyanin during developmental processes. However, anthocyanin cannot accumulate at the beginning of grain formation. To understand the reason for this phenomenon, we performed observations and analyses of pigments, developmental stages, and the transcriptome of caryopsis in Triticum aestivum L. cv. Guizi 1 (GZ1). In the early grain-filling stage (10 dpa to 20 dpa), anthocyanin accumulated from nearly 0 mg·kg-1 (10 dpa) to 15.39 mg·kg-1 (20 dpa), and the expression levels of structural genes (except GzDFR) and main regulatory genes GzMYB-7D1 and GzMYC-2A1 were low. When the grains developed to the middle (20 dpa to 30 dpa) and late (30 dpa to 40 dpa) grain-filling stages, the anthocyanin content peaked at 197.31 mg·kg-1, and the expression levels of structural and regulatory genes at 25 dpa and 35 dpa were higher than that at 10 dpa. In particular, the expression levels of GzANS, Gz3GT, GzMYB-7D1, and GzMYC-2A1 were upregulated 45.74˜28.54, 765.00˜384.00, 419.00˜574.00, and 5.34˜29.05 times, respectively. Grains were also colored from green to purple. Anthocyanin accumulates in the pericarp and testa and is stored in vacuoles of epidermal and transverse cells. The major compositions are cyanidin and peonidin. These results revealed that the upregulated structural and regulatory genes in the middle and late grain-filling stages may result in the anthocyanin biosynthesis and coloration of grains, which provides new insights into anthocyanin biosynthesis and regulation mechanisms.
Collapse
Affiliation(s)
- Xiaolan Li
- School of Life Sciences, State Engineering Technology Institute for Karst Desertification Control, Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China.
| | - Xiaokang Qian
- School of Agriculture, Guizhou Sub-Center of National Wheat Improvement Center, Guizhou University, Guiyang, 550025, China
| | - Xiang Lǚ
- School of Life Sciences, State Engineering Technology Institute for Karst Desertification Control, Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Xiaohong Wang
- School of Life Sciences, State Engineering Technology Institute for Karst Desertification Control, Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Ning Ji
- School of Life Sciences, State Engineering Technology Institute for Karst Desertification Control, Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Mingsheng Zhang
- School of Life Sciences, State Engineering Technology Institute for Karst Desertification Control, Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China.
| | - Mingjian Ren
- School of Agriculture, Guizhou Sub-Center of National Wheat Improvement Center, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
34
|
Feng K, Xu ZS, Que F, Liu JX, Wang F, Xiong AS. An R2R3-MYB transcription factor, OjMYB1, functions in anthocyanin biosynthesis in Oenanthe javanica. PLANTA 2018; 247:301-315. [PMID: 28965159 DOI: 10.1007/s00425-017-2783-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/24/2017] [Indexed: 06/07/2023]
Abstract
This study showed that an R2R3-MYB transcription factor, OjMYB1, is involved in anthocyanin biosynthesis and accumulation in Oenanthe javanica. Anthocyanins can be used as safe natural food colorants, obtained from many plants. R2R3-MYB transcription factors (TFs) play important roles in anthocyanins biosynthesis during plant development. Oenanthe javanica is a popular vegetable with high nutritional values and numerous medical functions. O. javanica has purple petioles that are mainly due to anthocyanins accumulation. In the present study, the gene encoding an R2R3-MYB TF, OjMYB1, was isolated from purple O. javanica. Sequencing results showed that OjMYB1 contained a 912-bp open reading frame encoding 303 amino acids. Sequence alignments revealed that OjMYB1 contained bHLH-interaction motif ([DE]Lx2[RK]x3Lx6Lx3R) and ANDV motif ([A/G]NDV). Phylogenetic analysis indicated that the OjMYB1 classified into the anthocyanins biosynthesis clade. Subcellular localization assay showed that OjMYB1 was a nuclear protein in vivo. The heterologous expression of OjMYB1 in Arabidopsis could enhance the anthocyanins content and up-regulate the expression levels of the structural genes-related anthocyanins biosynthesis. Yeast two-hybrid assay indicated that OjMYB1 could interact with AtTT8 and AtEGL3 proteins. Enzymatic analysis revealed that overexpression of OjMYB1 gene up-regulated the enzyme activity of 3-O-glycosyltransferase encoded by AtUGT78D2 in transgenic Arabidopsis. Our results provided a comprehensive understanding of the structure and function of OjMYB1 TF in O. javanica.
Collapse
Affiliation(s)
- Kai Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Que
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie-Xia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
35
|
Zorenc Z, Veberic R, Slatnar A, Koron D, Miosic S, Chen MH, Haselmair-Gosch C, Halbwirth H, Mikulic-Petkovsek M. A wild 'albino' bilberry (Vaccinium myrtillus L.) from Slovenia shows three bottlenecks in the anthocyanin pathway and significant differences in the expression of several regulatory genes compared to the common blue berry type. PLoS One 2017; 12:e0190246. [PMID: 29272302 PMCID: PMC5741254 DOI: 10.1371/journal.pone.0190246] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/11/2017] [Indexed: 12/26/2022] Open
Abstract
Relative expressions of structural genes and a number of transcription factors of the anthocyanin pathway relevant in Vaccinium species, and related key enzyme activities were compared with the composition and content of metabolites in skins of ripe fruits of wild albino and blue bilberry (Vaccinium myrtillus) found in Slovenia. Compared to the common blue type, the albino variant had a 151-fold lower total anthocyanin and a 7-fold lower total phenolic content in their berry skin, which correlated with lower gene expression of flavonoid 3-O-glycosyltransferase (FGT; 33-fold), flavanone 3-hydroxylase (FHT; 18-fold), anthocyanidin synthase (ANS; 11-fold), chalcone synthase (CHS, 7.6-fold) and MYBPA1 transcription factor (22-fold). The expression of chalcone isomerase (CHI), dihydroflavonol 4-reductase (DFR), leucoanthocyanidin reductase (LAR), anthocyanidin reductase (ANR) and MYBC2 transcription factor was reduced only by a factor of 1.5-2 in the albino berry skins, while MYBR3 and flavonoid 3',5'-hydroxylase (F3'5'H) were increased to a similar extent. Expression of the SQUAMOSA class transcription factor TDR4, in contrast, was independent of the color type and does therefore not seem to be correlated with anthocyanin formation in this variant. At the level of enzymes, significantly lower FHT and DFR activities, but not of phenylalanine ammonia-lyase (PAL) and CHS/CHI, were observed in the fruit skins of albino bilberries. A strong increase in relative hydroxycinnamic acid derivative concentrations indicates the presence of an additional bottleneck in the general phenylpropanoid pathway at a so far unknown step between PAL and CHS.
Collapse
Affiliation(s)
- Zala Zorenc
- Department of Agronomy, Chair for Fruit, Wine and Vegetable Growing, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Robert Veberic
- Department of Agronomy, Chair for Fruit, Wine and Vegetable Growing, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ana Slatnar
- Department of Agronomy, Chair for Fruit, Wine and Vegetable Growing, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Darinka Koron
- Department of Fruit Growing, Viticulture and Oenology, Agricultural Institute of Slovenia, Ljubljana, Slovenia
| | - Silvija Miosic
- Institute of Chemical, Environmental and Biological Engineering, Technische Universität Wien, Vienna, Austria
| | - Ming-Hui Chen
- Institute of Chemical, Environmental and Biological Engineering, Technische Universität Wien, Vienna, Austria
| | - Christian Haselmair-Gosch
- Institute of Chemical, Environmental and Biological Engineering, Technische Universität Wien, Vienna, Austria
| | - Heidi Halbwirth
- Institute of Chemical, Environmental and Biological Engineering, Technische Universität Wien, Vienna, Austria
| | - Maja Mikulic-Petkovsek
- Department of Agronomy, Chair for Fruit, Wine and Vegetable Growing, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
36
|
Zhao D, Wei M, Shi M, Hao Z, Tao J. Identification and comparative profiling of miRNAs in herbaceous peony (Paeonia lactiflora Pall.) with red/yellow bicoloured flowers. Sci Rep 2017; 7:44926. [PMID: 28317945 PMCID: PMC5357961 DOI: 10.1038/srep44926] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 02/15/2017] [Indexed: 02/05/2023] Open
Abstract
Herbaceous peony (Paeonia lactiflora Pall.) is popular worldwide because of its gorgeous flower colour, and the yellow flower is the rarest. However, its mechanism of yellow formation is still unexplored from the post-translational level. In this study, the anatomy of the petal, cell sap pH and metal elements were investigated in bicoloured flower cultivar 'Jinhui' with red outer-petal and yellow inner-petal, and the yellow formation was influenced by the anatomy of petal, while not by the cell sap pH and metal elements. Subsequently, microRNAs sequencing (miRNA-seq) was used to identify small RNAs (sRNAs). A total of 4,172,810 and 3,565,152 specific unique sRNAs were obtained, 207 and 204 conserved miRNAs and 38 and 42 novel miRNAs were identified from red outer-petal and yellow inner-petal, respectively, which were confirmed by subcloning. Among these miRNAs, 163 conserved and 28 novel miRNAs were differentially expressed in two wheel of petals. And 5 differentially expressed miRNAs and their corresponding target genes related to yellow formation were screened, and their dynamic expression patterns confirmed that the yellow formation might be under the regulation of miR156e-3p-targeted squamosa promoter binding protein-like gene (SPL1). These results improve the understanding of miRNA regulation of the yellow formation in P. lactiflora.
Collapse
Affiliation(s)
- Daqiu Zhao
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P.R. China
| | - Mengran Wei
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P.R. China
| | - Min Shi
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P.R. China
| | - Zhaojun Hao
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P.R. China
| | - Jun Tao
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P.R. China
| |
Collapse
|