1
|
Fernandes P, Pimentel D, Ramiro RS, Silva MDC, Fevereiro P, Costa RL. Dual transcriptomic analysis reveals early induced Castanea defense-related genes and Phytophthora cinnamomi effectors. FRONTIERS IN PLANT SCIENCE 2024; 15:1439380. [PMID: 39188543 PMCID: PMC11345161 DOI: 10.3389/fpls.2024.1439380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/05/2024] [Indexed: 08/28/2024]
Abstract
Phytophthora cinnamomi Rands devastates forest species worldwide, causing significant ecological and economic impacts. The European chestnut (Castanea sativa) is susceptible to this hemibiotrophic oomycete, whereas the Asian chestnuts (Castanea crenata and Castanea mollissima) are resistant and have been successfully used as resistance donors in breeding programs. The molecular mechanisms underlying the different disease outcomes among chestnut species are a key foundation for developing science-based control strategies. However, these are still poorly understood. Dual RNA sequencing was performed in C. sativa and C. crenata roots inoculated with P. cinnamomi. The studied time points represent the pathogen's hemibiotrophic lifestyle previously described at the cellular level. Phytophthora cinnamomi expressed several genes related to pathogenicity in both chestnut species, such as cell wall-degrading enzymes, host nutrient uptake transporters, and effectors. However, the expression of effectors related to the modulation of host programmed cell death (elicitins and NLPs) and sporulation-related genes was higher in the susceptible chestnut. After pathogen inoculation, 1,556 and 488 genes were differentially expressed by C. crenata and C. sativa, respectively. The most significant transcriptional changes occur at 2 h after inoculation (hai) in C. sativa and 48 hai in C. crenata. Nevertheless, C. crenata induced more defense-related genes, indicating that the resistant response to P. cinnamomi is controlled by multiple loci, including several pattern recognition receptors, genes involved in the phenylpropanoid, salicylic acid and ethylene/jasmonic acid pathways, and antifungal genes. Importantly, these results validate previously observed cellular responses for C. crenata. Collectively, this study provides a comprehensive time-resolved description of the chestnut-P. cinnamomi dynamic, revealing new insights into susceptible and resistant host responses and important pathogen strategies involved in disease development.
Collapse
Affiliation(s)
- Patrícia Fernandes
- Department of Environmental Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY, United States
| | - Diana Pimentel
- InnovPlantProtect Collaborative Laboratory, Elvas, Portugal
| | | | - Maria do Céu Silva
- Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
- Linking Landscape, Environment, Agriculture and Food, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro Fevereiro
- InnovPlantProtect Collaborative Laboratory, Elvas, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB, Green-It Unit), Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Rita Lourenço Costa
- Instituto Nacional de Investigação Agrária e Veterinária I.P., Oeiras, Portugal
- Centro de Estudos Florestais, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
2
|
Ngaki MN, Srivastava SK, Feifei W, Bhattacharyya MK. The soybean plasma membrane GmDR1 protein conferring broad-spectrum disease and pest resistance regulates several receptor kinases and NLR proteins. Sci Rep 2024; 14:12253. [PMID: 38806545 PMCID: PMC11133457 DOI: 10.1038/s41598-024-62332-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
Overexpression of Glycine max disease resistant 1 (GmDR1) exhibits broad-spectrum resistance against Fusarium virguliforme, Heterodera glycines (soybean cyst nematode), Tetranychus urticae (Koch) (spider mites), and Aphis glycines Matsumura (soybean aphids) in soybean. To understand the mechanisms of broad-spectrum immunity mediated by GmDR1, the transcriptomes of a strong and a weak GmDR1-overexpressor following treatment with chitin, a pathogen- and pest-associated molecular pattern (PAMP) common to these organisms, were investigated. The strong and weak GmDR1-overexpressors exhibited altered expression of 6098 and 992 genes, respectively, as compared to the nontransgenic control following chitin treatment. However, only 192 chitin- and 115 buffer-responsive genes exhibited over two-fold changes in expression levels in both strong and weak GmDR1-overexpressors as compared to the control. MapMan analysis of the 192 chitin-responsive genes revealed 64 biotic stress-related genes, of which 53 were induced and 11 repressed as compared to the control. The 53 chitin-induced genes include nine genes that encode receptor kinases, 13 encode nucleotide-binding leucine-rich repeat (NLR) receptor proteins, seven encode WRKY transcription factors, four ethylene response factors, and three MYB-like transcription factors. Investigation of a subset of these genes revealed three receptor protein kinases, seven NLR proteins, and one WRKY transcription factor genes that are induced following F. virguliforme and H. glycines infection. The integral plasma membrane GmDR1 protein most likely recognizes PAMPs including chitin and activates transcription of genes encoding receptor kinases, NLR proteins and defense-related genes. GmDR1 could be a pattern recognition receptor that regulates the expression of several NLRs for expression of PAMP-triggered immunity and/or priming the effector triggered immunity.
Collapse
Affiliation(s)
| | - Subodh K Srivastava
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
- USDA-ARS APDL, BARC-East Building 1040, 10300 Baltimore Ave., Beltsville, MD, 20705, USA
| | - Wang Feifei
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, The Chinese Academy of Sciences, Harbin, 150081, China
| | | |
Collapse
|
3
|
Ma N, Sun P, Li ZY, Zhang FJ, Wang XF, You CX, Zhang CL, Zhang Z. Plant disease resistance outputs regulated by AP2/ERF transcription factor family. STRESS BIOLOGY 2024; 4:2. [PMID: 38163824 PMCID: PMC10758382 DOI: 10.1007/s44154-023-00140-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024]
Abstract
Plants have evolved a complex and elaborate signaling network to respond appropriately to the pathogen invasion by regulating expression of defensive genes through certain transcription factors. The APETALA2/ethylene response factor (AP2/ERF) family members have been determined as key regulators in growth, development, and stress responses in plants. Moreover, a growing body of evidence has demonstrated the critical roles of AP2/ERFs in plant disease resistance. In this review, we describe recent advances for the function of AP2/ERFs in defense responses against microbial pathogens. We summarize that AP2/ERFs are involved in plant disease resistance by acting downstream of mitogen activated protein kinase (MAPK) cascades, and regulating expression of genes associated with hormonal signaling pathways, biosynthesis of secondary metabolites, and formation of physical barriers in an MAPK-dependent or -independent manner. The present review provides a multidimensional perspective on the functions of AP2/ERFs in plant disease resistance, which will facilitate the understanding and future investigation on the roles of AP2/ERFs in plant immunity.
Collapse
Affiliation(s)
- Ning Ma
- College of Horticulture Science and Engineering, Apple Technology Innovation Center of Shandong Province, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, 271000, Shandong, China
| | - Ping Sun
- College of Horticulture Science and Engineering, Apple Technology Innovation Center of Shandong Province, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, 271000, Shandong, China
| | - Zhao-Yang Li
- College of Horticulture Science and Engineering, Apple Technology Innovation Center of Shandong Province, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, 271000, Shandong, China
| | - Fu-Jun Zhang
- College of Horticulture Science and Engineering, Apple Technology Innovation Center of Shandong Province, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, 271000, Shandong, China
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Xiao-Fei Wang
- College of Horticulture Science and Engineering, Apple Technology Innovation Center of Shandong Province, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, 271000, Shandong, China
| | - Chun-Xiang You
- College of Horticulture Science and Engineering, Apple Technology Innovation Center of Shandong Province, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, 271000, Shandong, China
| | - Chun-Ling Zhang
- College of Agricultural Science and Technology, Shandong Agriculture and Engineering University, Jinan, 250100, Shandong, China.
| | - Zhenlu Zhang
- College of Horticulture Science and Engineering, Apple Technology Innovation Center of Shandong Province, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, 271000, Shandong, China.
| |
Collapse
|
4
|
Najafi M, Nasr-Esfahani M, Vatandoost J, Hassanzade-Khankahdani H, Jami Moeini M. Transcriptome-based analysis of candidate gene markers associated with resistance mechanism to Phytophthora melonis that causes root and crown rot in pumpkin. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23038. [PMID: 38207292 DOI: 10.1071/fp23038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 12/18/2023] [Indexed: 01/13/2024]
Abstract
Root and crown rot incited by an oomycete, Phytophthora melonis , causes significant yield losses in commercial pumpkin (Cucurbita pepo ) production worldwide. Currently, resistant cultivars and knowledge of molecular mechanism of C. pepo against P. melonis are scarce. Here, we analysed the quantitative gene expression changes of 10 candidate gene markers (bHLH87, ERF014, HSF, MYB, PR-1, WRKY21, CPI, POD, PSK, SGT ) in pumpkin roots and leaves at three time points (h post-inoculation, hpi) following inoculation with P. melonis in two resistant (Ghelyani and Tanbal), and two susceptible (Marmari and Khoreshti) varieties of pumpkin. Gene expression using quantitative real time PCR along a time course revealed the strongest transcriptomic response at 48 and 72hpi in resistant genotypes, 1.1-2.7-fold in roots and leaves, respectively, with a high significant correlation (r =0.857**-0.974**). We also found that CPI , PSK, SGT1 and POD act as a dual regulator that similarly modulate immunity not only against P. melonis , but also against other diseases such as early blight (Alternaria cucumerina) , powdery mildew (Podosphaera xanthii ), downy mildews (Pseudoperonospora cubensis ), and pathogenic plant nematodes (Meloidogyne javanica ). Furthermore, significantly higher activities of the ROS scavenging defence enzymes, catalase (1.6-fold increase) and peroxidase (6-fold increase) were observed in the roots of resistant cultivars at different hpi compared with non-inoculated controls. In addition, the biomass growth parameters including leaf and root length, stem and root diameter, root fresh weight and volume were significantly different among studied genotypes. Cumulatively, the transcriptome data provide novel insights into the response of pumpkins for improving pumpkin breeding to P. melonis .
Collapse
Affiliation(s)
- Mohammadhadi Najafi
- Department of Agricultural-Biotechnology, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran
| | - Mehdi Nasr-Esfahani
- Plant Protection Research Department, Isfahan Agriculture and Natural Resource Research and Education Center, AREEO, Isfahan 81786-96446, Iran
| | - Jafar Vatandoost
- Department of Biology, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran
| | - Hamed Hassanzade-Khankahdani
- Department of Horticulture Crops Research, Hormozgan Agricultural and Natural Resources Research and Education Center, AREEO, Bandar Abbas, Iran
| | - Matin Jami Moeini
- Department of Agricultural-Biotechnology, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran
| |
Collapse
|
5
|
Million CR, Wijeratne S, Karhoff S, Cassone BJ, McHale LK, Dorrance AE. Molecular mechanisms underpinning quantitative resistance to Phytophthora sojae in Glycine max using a systems genomics approach. FRONTIERS IN PLANT SCIENCE 2023; 14:1277585. [PMID: 38023885 PMCID: PMC10662313 DOI: 10.3389/fpls.2023.1277585] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
Expression of quantitative disease resistance in many host-pathogen systems is controlled by genes at multiple loci, each contributing a small effect to the overall response. We used a systems genomics approach to study the molecular underpinnings of quantitative disease resistance in the soybean-Phytophthora sojae pathosystem, incorporating expression quantitative trait loci (eQTL) mapping and gene co-expression network analysis to identify the genes putatively regulating transcriptional changes in response to inoculation. These findings were compared to previously mapped phenotypic (phQTL) to identify the molecular mechanisms contributing to the expression of this resistance. A subset of 93 recombinant inbred lines (RILs) from a Conrad × Sloan population were inoculated with P. sojae isolate 1.S.1.1 using the tray-test method; RNA was extracted, sequenced, and the normalized read counts were genetically mapped from tissue collected at the inoculation site 24 h after inoculation from both mock and inoculated samples. In total, more than 100,000 eQTLs were mapped. There was a switch from predominantly cis-eQTLs in the mock treatment to an almost entirely nonoverlapping set of predominantly trans-eQTLs in the inoculated treatment, where greater than 100-fold more eQTLs were mapped relative to mock, indicating vast transcriptional reprogramming due to P. sojae infection occurred. The eQTLs were organized into 36 hotspots, with the four largest hotspots from the inoculated treatment corresponding to more than 70% of the eQTLs, each enriched for genes within plant-pathogen interaction pathways. Genetic regulation of trans-eQTLs in response to the pathogen was predicted to occur through transcription factors and signaling molecules involved in plant-pathogen interactions, plant hormone signal transduction, and MAPK pathways. Network analysis identified three co-expression modules that were correlated with susceptibility to P. sojae and associated with three eQTL hotspots. Among the eQTLs co-localized with phQTLs, two cis-eQTLs with putative functions in the regulation of root architecture or jasmonic acid, as well as the putative master regulators of an eQTL hotspot nearby a phQTL, represent candidates potentially underpinning the molecular control of these phQTLs for resistance.
Collapse
Affiliation(s)
- Cassidy R. Million
- Department of Plant Pathology, The Ohio State University, Wooster, OH, United States
- Center for Soybean Research and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
| | - Saranga Wijeratne
- Molecular and Cellular Imaging Center, The Ohio State University, Wooster, OH, United States
| | - Stephanie Karhoff
- Center for Soybean Research and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
- Translational Plant Sciences Graduate Program, The Ohio State University, Columbus, OH, United States
| | - Bryan J. Cassone
- Center for Soybean Research and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
- Department of Biology, Brandon University, Brandon, Manitoba, MB, Canada
| | - Leah K. McHale
- Center for Soybean Research and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, United States
| | - Anne E. Dorrance
- Department of Plant Pathology, The Ohio State University, Wooster, OH, United States
- Center for Soybean Research and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
6
|
Mena E, Reboledo G, Stewart S, Montesano M, Ponce de León I. Comparative analysis of soybean transcriptional profiles reveals defense mechanisms involved in resistance against Diaporthe caulivora. Sci Rep 2023; 13:13061. [PMID: 37567886 PMCID: PMC10421924 DOI: 10.1038/s41598-023-39695-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Soybean stem canker (SSC) caused by the fungal pathogen Diaporthe caulivora is an important disease affecting soybean production worldwide. However, limited information related to the molecular mechanisms underlying soybean resistance to Diaporthe species is available. In the present work, we analyzed the defense responses to D. caulivora in the soybean genotypes Williams and Génesis 5601. The results showed that compared to Williams, Génesis 5601 is more resistant to fungal infection evidenced by significantly smaller lesion length, reduced disease severity and pathogen biomass. Transcriptional profiling was performed in untreated plants and in D. caulivora-inoculated and control-treated tissues at 8 and 48 h post inoculation (hpi). In total, 2.322 and 1.855 genes were differentially expressed in Génesis 5601 and Williams, respectively. Interestingly, Génesis 5601 exhibited a significantly higher number of upregulated genes compared to Williams at 8 hpi, 1.028 versus 434 genes. Resistance to D. caulivora was associated with defense activation through transcriptional reprogramming mediating perception of the pathogen by receptors, biosynthesis of phenylpropanoids, hormone signaling, small heat shock proteins and pathogenesis related (PR) genes. These findings provide novel insights into soybean defense mechanisms leading to host resistance against D. caulivora, and generate a foundation for the development of resistant SSC varieties within soybean breeding programs.
Collapse
Affiliation(s)
- Eilyn Mena
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Guillermo Reboledo
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Silvina Stewart
- Programa Nacional de Cultivos de Secano, Instituto Nacional de Investigación Agropecuaria (INIA), La Estanzuela, Colonia, Uruguay
| | - Marcos Montesano
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Laboratorio de Fisiología Vegetal, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Inés Ponce de León
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| |
Collapse
|
7
|
Lopes NDS, Santos AS, de Novais DPS, Pirovani CP, Micheli F. Pathogenesis-related protein 10 in resistance to biotic stress: progress in elucidating functions, regulation and modes of action. FRONTIERS IN PLANT SCIENCE 2023; 14:1193873. [PMID: 37469770 PMCID: PMC10352611 DOI: 10.3389/fpls.2023.1193873] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/08/2023] [Indexed: 07/21/2023]
Abstract
Introduction The Family of pathogenesis-related proteins 10 (PR-10) is widely distributed in the plant kingdom. PR-10 are multifunctional proteins, constitutively expressed in all plant tissues, playing a role in growth and development or being induced in stress situations. Several studies have investigated the preponderant role of PR-10 in plant defense against biotic stresses; however, little is known about the mechanisms of action of these proteins. This is the first systematic review conducted to gather information on the subject and to reveal the possible mechanisms of action that PR-10 perform. Methods Therefore, three databases were used for the article search: PubMed, Web of Science, and Scopus. To avoid bias, a protocol with inclusion and exclusion criteria was prepared. In total, 216 articles related to the proposed objective of this study were selected. Results The participation of PR-10 was revealed in the plant's defense against several stressor agents such as viruses, bacteria, fungi, oomycetes, nematodes and insects, and studies involving fungi and bacteria were predominant in the selected articles. Studies with combined techniques showed a compilation of relevant information about PR-10 in biotic stress that collaborate with the understanding of the mechanisms of action of these molecules. The up-regulation of PR-10 was predominant under different conditions of biotic stress, in addition to being more expressive in resistant varieties both at the transcriptional and translational level. Discussion Biological models that have been proposed reveal an intrinsic network of molecular interactions involving the modes of action of PR-10. These include hormonal pathways, transcription factors, physical interactions with effector proteins or pattern recognition receptors and other molecules involved with the plant's defense system. Conclusion The molecular networks involving PR-10 reveal how the plant's defense response is mediated, either to trigger susceptibility or, based on data systematized in this review, more frequently, to have plant resistance to the disease.
Collapse
Affiliation(s)
- Natasha dos Santos Lopes
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus-Bahia, Brazil
| | - Ariana Silva Santos
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus-Bahia, Brazil
| | - Diogo Pereira Silva de Novais
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus-Bahia, Brazil
| | - Carlos Priminho Pirovani
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus-Bahia, Brazil
| | - Fabienne Micheli
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus-Bahia, Brazil
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes Meditérranéennes et Tropicales (UMR AGAP Institut), Montpellier, France
| |
Collapse
|
8
|
Vuong UT, Iswanto ABB, Nguyen Q, Kang H, Lee J, Moon J, Kim SH. Engineering plant immune circuit: walking to the bright future with a novel toolbox. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:17-45. [PMID: 36036862 PMCID: PMC9829404 DOI: 10.1111/pbi.13916] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Plant pathogens destroy crops and cause severe yield losses, leading to an insufficient food supply to sustain the human population. Apart from relying on natural plant immune systems to combat biological agents or waiting for the appropriate evolutionary steps to occur over time, researchers are currently seeking new breakthrough methods to boost disease resistance in plants through genetic engineering. Here, we summarize the past two decades of research in disease resistance engineering against an assortment of pathogens through modifying the plant immune components (internal and external) with several biotechnological techniques. We also discuss potential strategies and provide perspectives on engineering plant immune systems for enhanced pathogen resistance and plant fitness.
Collapse
Affiliation(s)
- Uyen Thi Vuong
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Arya Bagus Boedi Iswanto
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Quang‐Minh Nguyen
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Hobin Kang
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Jihyun Lee
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Jiyun Moon
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Sang Hee Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
- Division of Life ScienceGyeongsang National UniversityJinjuRepublic of Korea
| |
Collapse
|
9
|
Wu Y, Li X, Zhang J, Zhao H, Tan S, Xu W, Pan J, Yang F, Pi E. ERF subfamily transcription factors and their function in plant responses to abiotic stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:1042084. [PMID: 36531407 PMCID: PMC9748296 DOI: 10.3389/fpls.2022.1042084] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/09/2022] [Indexed: 06/09/2023]
Abstract
Ethylene Responsive Factor (ERF) subfamily comprise the largest number of proteins in the plant AP2/ERF superfamily, and have been most extensively studied on the biological functions. Members of this subfamily have been proven to regulate plant resistances to various abiotic stresses, such as drought, salinity, chilling and some other adversities. Under these stresses, ERFs are usually activated by mitogen-activated protein kinase induced phosphorylation or escape from ubiquitin-ligase enzymes, and then form complex with nucleic proteins before binding to cis-element in promoter regions of stress responsive genes. In this review, we will discuss the phylogenetic relationships among the ERF subfamily proteins, summarize molecular mechanism how the transcriptional activity of ERFs been regulated and how ERFs of different subgroup regulate the transcription of stress responsive genes, such as high-affinity K+ transporter gene PalHKT1;2, reactive oxygen species related genes LcLTP, LcPrx, and LcRP, flavonoids synthesis related genes FtF3H and LhMYBSPLATTER, etc. Though increasing researches demonstrate that ERFs are involved in various abiotic stresses, very few interact proteins and target genes of them have been comprehensively annotated. Hence, future research prospects are described on the mechanisms of how stress signals been transited to ERFs and how ERFs regulate the transcriptional expression of stress responsive genes.
Collapse
|
10
|
Chandra S, Choudhary M, Bagaria PK, Nataraj V, Kumawat G, Choudhary JR, Sonah H, Gupta S, Wani SH, Ratnaparkhe MB. Progress and prospectus in genetics and genomics of Phytophthora root and stem rot resistance in soybean ( Glycine max L.). Front Genet 2022; 13:939182. [PMID: 36452161 PMCID: PMC9702362 DOI: 10.3389/fgene.2022.939182] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 10/21/2022] [Indexed: 09/16/2023] Open
Abstract
Soybean is one of the largest sources of protein and oil in the world and is also considered a "super crop" due to several industrial advantages. However, enhanced acreage and adoption of monoculture practices rendered the crop vulnerable to several diseases. Phytophthora root and stem rot (PRSR) caused by Phytophthora sojae is one of the most prevalent diseases adversely affecting soybean production globally. Deployment of genetic resistance is the most sustainable approach for avoiding yield losses due to this disease. PRSR resistance is complex in nature and difficult to address by conventional breeding alone. Genetic mapping through a cost-effective sequencing platform facilitates identification of candidate genes and associated molecular markers for genetic improvement against PRSR. Furthermore, with the help of novel genomic approaches, identification and functional characterization of Rps (resistance to Phytophthora sojae) have also progressed in the recent past, and more than 30 Rps genes imparting complete resistance to different PRSR pathotypes have been reported. In addition, many genomic regions imparting partial resistance have also been identified. Furthermore, the adoption of emerging approaches like genome editing, genomic-assisted breeding, and genomic selection can assist in the functional characterization of novel genes and their rapid introgression for PRSR resistance. Hence, in the near future, soybean growers will likely witness an increase in production by adopting PRSR-resistant cultivars. This review highlights the progress made in deciphering the genetic architecture of PRSR resistance, genomic advances, and future perspectives for the deployment of PRSR resistance in soybean for the sustainable management of PRSR disease.
Collapse
Affiliation(s)
| | | | - Pravin K. Bagaria
- Department of Plant Pathology, Punjab Agricultural University, Ludhiana, India
| | | | | | | | - Humira Sonah
- National Agri-Food Biotechnology Institute, Mohali, India
| | - Sanjay Gupta
- ICAR-Indian Institute of Soybean Research, Indore, India
| | - Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu and Kashmir, India
| | | |
Collapse
|
11
|
Chu S, Ma H, Li K, Li J, Liu H, Quan L, Zhu X, Chen M, Lu W, Chen X, Qu X, Xu J, Lian Y, Lu W, Xiong E, Jiao Y. Comparisons of constitutive resistances to soybean cyst nematode between PI 88788- and Peking-type sources of resistance in soybean by transcriptomic and metabolomic profilings. Front Genet 2022; 13:1055867. [PMID: 36437927 PMCID: PMC9686325 DOI: 10.3389/fgene.2022.1055867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
Soybean cyst nematode (SCN) is a serious damaging disease in soybean worldwide. Peking- and PI 88788-type sources of resistance are two most important germplasm used in breeding resistant soybean cultivars against this disease. However, until now, no comparisons of constitutive resistances to soybean cyst nematode between these two types of sources had been conducted, probably due to the influences of different backgrounds. In this study, we used pooled-sample analysis strategy to minimize the influence of different backgrounds and directly compared the molecular mechanisms underlying constitutive resistance to soybean cyst nematode between these two types of sources via transcriptomic and metabolomic profilings. Six resistant soybean accessions that have identical haplotypes as Peking at Rgh1 and Rhg4 loci were pooled to represent Peking-type sources. The PI88788-type and control pools were also constructed in a same way. Through transcriptomic and metabolomics anaylses, differentially expressed genes and metabolites were identified. The molecular pathways involved in the metabolism of toxic metabolites were predicted to play important roles in conferring soybean cyst nematode resistance to soybean. Functions of two resistant candidate genes were confirmed by hairy roots transformation methods in soybean. Our studies can be helpful for soybean scientists to further learn about the molecular mechanism of resistance to soybean cyst nematode in soybean.
Collapse
Affiliation(s)
- Shanshan Chu
- Collaborative Innovation Center of Henan Grain Crops /College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Hui Ma
- Collaborative Innovation Center of Henan Grain Crops /College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Ke Li
- Collaborative Innovation Center of Henan Grain Crops /College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Junfeng Li
- Collaborative Innovation Center of Henan Grain Crops /College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Hongli Liu
- Collaborative Innovation Center of Henan Grain Crops /College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Leipo Quan
- Collaborative Innovation Center of Henan Grain Crops /College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Xuling Zhu
- Collaborative Innovation Center of Henan Grain Crops /College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Meiling Chen
- Collaborative Innovation Center of Henan Grain Crops /College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Wenyan Lu
- Collaborative Innovation Center of Henan Grain Crops /College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Xiaoming Chen
- Collaborative Innovation Center of Henan Grain Crops /College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Xuelian Qu
- Collaborative Innovation Center of Henan Grain Crops /College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Jiaqi Xu
- Collaborative Innovation Center of Henan Grain Crops /College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Yun Lian
- Zhengzhou Subcenter of National Soybean Improvement Center, Key Laboratory of Oil Crops in Huang-Huai Valleys of Ministry of Agriculture, Institute of Industrial Crops, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Weiguo Lu
- Zhengzhou Subcenter of National Soybean Improvement Center, Key Laboratory of Oil Crops in Huang-Huai Valleys of Ministry of Agriculture, Institute of Industrial Crops, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Erhui Xiong
- Collaborative Innovation Center of Henan Grain Crops /College of Agronomy, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Yongqing Jiao, ; Erhui Xiong,
| | - Yongqing Jiao
- Collaborative Innovation Center of Henan Grain Crops /College of Agronomy, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Yongqing Jiao, ; Erhui Xiong,
| |
Collapse
|
12
|
Agarwal C, Chen W, Varshney RK, Vandemark G. Linkage QTL Mapping and Genome-Wide Association Study on Resistance in Chickpea to Pythium ultimum. Front Genet 2022; 13:945787. [PMID: 36046237 PMCID: PMC9420999 DOI: 10.3389/fgene.2022.945787] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
The soilborne oomycete plant pathogen Pythium ultimum causes seed rot and pre-emergence damping-off of chickpea (Cicer arietinum L.). The pathogen has been controlled for several decades using the fungicide metalaxyl as seed treatment but has re-emerged as a severe problem with the detection of metalaxyl-resistant isolates of the pathogen from infested fields in the United States Pacific Northwest. The objective of this study was to identify genetic markers and candidate genes associated with resistance to P. ultimum in an interspecific recombinant inbred line population (CRIL-7) derived from a cross between C. reticulatum (PI 599072) x C. arietinum (FLIP 84-92C) and conduct genome-wide association studies (GWAS) for disease resistance using a chickpea diversity panel consisting of 184 accessions. CRIL-7 was examined using 1029 SNP markers spanning eight linkage groups. A major QTL, “qpsd4-1,” was detected on LG 4 that explained 41.8% of phenotypic variance, and a minor QTL, “qpsd8-1,” was detected on LG8 that explained 4.5% of phenotypic variance. Seven candidate genes were also detected using composite interval mapping including several genes previously associated with disease resistance in other crop species. A total of 302,902 single nucleotide polymorphic (SNP) markers were used to determine population structure and kinship of the diversity panel. Marker–trait associations were established by employing different combinations of principal components (PC) and kinships (K) in the FarmCPU model. Genome-wide association studies detected 11 significant SNPs and seven candidate genes associated with disease resistance. SNP Ca4_1765418, detected by GWAS on chromosome 4, was located within QTL qpsd4-1 that was revealed in the interspecific CRIL-7 population. The present study provides tools to enable MAS for resistance to P. ultimum and identified genomic domains and candidate genes involved in the resistance of chickpea to soilborne diseases.
Collapse
Affiliation(s)
- Chiti Agarwal
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Weidong Chen
- USDA-ARS, Grain Legume Genetics and Physiology Research Unit, Pullman, WA, United States
| | - Rajeev Kumar Varshney
- Centre for Crop and Food Innovation, State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA, Australia
| | - George Vandemark
- USDA-ARS, Grain Legume Genetics and Physiology Research Unit, Pullman, WA, United States
- *Correspondence: George Vandemark,
| |
Collapse
|
13
|
Fang X, Ma J, Guo F, Qi D, Zhao M, Zhang C, Wang L, Song B, Liu S, He S, Liu Y, Wu J, Xu P, Zhang S. The AP2/ERF GmERF113 Positively Regulates the Drought Response by Activating GmPR10-1 in Soybean. Int J Mol Sci 2022; 23:ijms23158159. [PMID: 35897735 PMCID: PMC9330420 DOI: 10.3390/ijms23158159] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/05/2023] Open
Abstract
Ethylene response factors (ERFs) are involved in biotic and abiotic stress; however, the drought resistance mechanisms of many ERFs in soybeans have not been resolved. Previously, we proved that GmERF113 enhances resistance to the pathogen Phytophthora sojae in soybean. Here, we determined that GmERF113 is induced by 20% PEG-6000. Compared to the wild-type plants, soybean plants overexpressing GmERF113 (GmERF113-OE) displayed increased drought tolerance which was characterized by milder leaf wilting, less water loss from detached leaves, smaller stomatal aperture, lower Malondialdehyde (MDA) content, increased proline accumulation, and higher Superoxide dismutase (SOD) and Peroxidase (POD) activities under drought stress, whereas plants with GmERF113 silenced through RNA interference were the opposite. Chromatin immunoprecipitation and dual effector-reporter assays showed that GmERF113 binds to the GCC-box in the GmPR10-1 promoter, activating GmPR10-1 expression directly. Overexpressing GmPR10-1 improved drought resistance in the composite soybean plants with transgenic hairy roots. RNA-seq analysis revealed that GmERF113 downregulates abscisic acid 8′-hydroxylase 3 (GmABA8’-OH 3) and upregulates various drought-related genes. Overexpressing GmERF113 and GmPR10-1 increased the abscisic acid (ABA) content and reduced the expression of GmABA8’-OH3 in transgenic soybean plants and hairy roots, respectively. These results reveal that the GmERF113-GmPR10-1 pathway improves drought resistance and affects the ABA content in soybean, providing a theoretical basis for the molecular breeding of drought-tolerant soybean.
Collapse
Affiliation(s)
- Xin Fang
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (X.F.); (J.M.); (F.G.); (D.Q.); (M.Z.); (C.Z.); (L.W.); (B.S.); (S.L.); (S.H.); (Y.L.)
| | - Jia Ma
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (X.F.); (J.M.); (F.G.); (D.Q.); (M.Z.); (C.Z.); (L.W.); (B.S.); (S.L.); (S.H.); (Y.L.)
| | - Fengcai Guo
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (X.F.); (J.M.); (F.G.); (D.Q.); (M.Z.); (C.Z.); (L.W.); (B.S.); (S.L.); (S.H.); (Y.L.)
| | - Dongyue Qi
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (X.F.); (J.M.); (F.G.); (D.Q.); (M.Z.); (C.Z.); (L.W.); (B.S.); (S.L.); (S.H.); (Y.L.)
| | - Ming Zhao
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (X.F.); (J.M.); (F.G.); (D.Q.); (M.Z.); (C.Z.); (L.W.); (B.S.); (S.L.); (S.H.); (Y.L.)
| | - Chuanzhong Zhang
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (X.F.); (J.M.); (F.G.); (D.Q.); (M.Z.); (C.Z.); (L.W.); (B.S.); (S.L.); (S.H.); (Y.L.)
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150030, China
| | - Le Wang
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (X.F.); (J.M.); (F.G.); (D.Q.); (M.Z.); (C.Z.); (L.W.); (B.S.); (S.L.); (S.H.); (Y.L.)
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150030, China
| | - Bo Song
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (X.F.); (J.M.); (F.G.); (D.Q.); (M.Z.); (C.Z.); (L.W.); (B.S.); (S.L.); (S.H.); (Y.L.)
| | - Shanshan Liu
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (X.F.); (J.M.); (F.G.); (D.Q.); (M.Z.); (C.Z.); (L.W.); (B.S.); (S.L.); (S.H.); (Y.L.)
| | - Shengfu He
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (X.F.); (J.M.); (F.G.); (D.Q.); (M.Z.); (C.Z.); (L.W.); (B.S.); (S.L.); (S.H.); (Y.L.)
| | - Yaguang Liu
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (X.F.); (J.M.); (F.G.); (D.Q.); (M.Z.); (C.Z.); (L.W.); (B.S.); (S.L.); (S.H.); (Y.L.)
| | - Junjiang Wu
- Soybean Research Institute of Heilongjiang Academy of Agricultural Sciences/Key Laboratory of Soybean Cultivation of Ministry of Agriculture, Harbin 150030, China;
| | - Pengfei Xu
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (X.F.); (J.M.); (F.G.); (D.Q.); (M.Z.); (C.Z.); (L.W.); (B.S.); (S.L.); (S.H.); (Y.L.)
- Correspondence: (P.X.); (S.Z.)
| | - Shuzhen Zhang
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (X.F.); (J.M.); (F.G.); (D.Q.); (M.Z.); (C.Z.); (L.W.); (B.S.); (S.L.); (S.H.); (Y.L.)
- Correspondence: (P.X.); (S.Z.)
| |
Collapse
|
14
|
Li L, Li X, Yang C, Cheng Y, Cai Z, Nian H, Ma Q. GsERF1 enhances Arabidopsis thaliana aluminum tolerance through an ethylene-mediated pathway. BMC PLANT BIOLOGY 2022; 22:258. [PMID: 35610574 PMCID: PMC9128276 DOI: 10.1186/s12870-022-03625-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 05/04/2022] [Indexed: 05/09/2023]
Abstract
Ethylene response factor (ERF) transcription factors constitute a subfamily of the AP2/ERF superfamily in plants and play multiple roles in plant growth and development as well as in stress responses. In this study, the GsERF1 gene from the wild soybean BW69 line (an Al-resistant Glycine soja line) was rapidly induced in response to aluminum stress. Quantitative real-time PCR (qRT-PCR) analysis showed that the GsERF1 gene maintained a constitutive expression pattern and was induced in soybean in response to aluminum stress, with increased amounts of transcripts detected in the roots. The putative GsERF1 protein, which contains an AP2 domain, was located in the nucleus and maintained transactivation activity. In addition, under AlCl3 treatment, GsERF1 overexpression increased the relative growth rate of the roots of Arabidopsis and weakened the hematoxylin staining of hairy roots. Ethylene synthesis-related genes such as ACS4, ACS5 and ACS6 were upregulated in GsERF1 transgenic lines compared with the wild type under AlCl3 treatment. Furthermore, the expression levels of stress/ABA-responsive marker genes, including ABI1, ABI2, ABI4, ABI5 and RD29B, in the GsERF1 transgenic lines were affected by AlCl3 treatment, unlike those in the wild type. Taken together, the results indicated that overexpression of GsERF1 may enhance aluminum tolerance of Arabidopsis through an ethylene-mediated pathway and/or ABA signaling pathway, the findings of which lay a foundation for breeding soybean plants tolerant to aluminum stress.
Collapse
Grants
- 2016ZX08004002-007 the Major Project of New Varieties Cultivation of Genetically Modified Organisms
- 2016ZX08004002-007 the Major Project of New Varieties Cultivation of Genetically Modified Organisms
- 2016ZX08004002-007 the Major Project of New Varieties Cultivation of Genetically Modified Organisms
- 2016ZX08004002-007 the Major Project of New Varieties Cultivation of Genetically Modified Organisms
- 2016ZX08004002-007 the Major Project of New Varieties Cultivation of Genetically Modified Organisms
- 2016ZX08004002-007 the Major Project of New Varieties Cultivation of Genetically Modified Organisms
- 2016ZX08004002-007 the Major Project of New Varieties Cultivation of Genetically Modified Organisms
- 31771816, 31971965 the National Natural Science Foundation of China
- 31771816, 31971965 the National Natural Science Foundation of China
- 31771816, 31971965 the National Natural Science Foundation of China
- 31771816, 31971965 the National Natural Science Foundation of China
- 31771816, 31971965 the National Natural Science Foundation of China
- 31771816, 31971965 the National Natural Science Foundation of China
- 31771816, 31971965 the National Natural Science Foundation of China
- 4100-C17106, 21301091702101 the Special Supervision on Quality and Safety of Agricultural Products of the Ministry of Agriculture and Rural Areas
- 4100-C17106, 21301091702101 the Special Supervision on Quality and Safety of Agricultural Products of the Ministry of Agriculture and Rural Areas
- 4100-C17106, 21301091702101 the Special Supervision on Quality and Safety of Agricultural Products of the Ministry of Agriculture and Rural Areas
- 4100-C17106, 21301091702101 the Special Supervision on Quality and Safety of Agricultural Products of the Ministry of Agriculture and Rural Areas
- 4100-C17106, 21301091702101 the Special Supervision on Quality and Safety of Agricultural Products of the Ministry of Agriculture and Rural Areas
- 4100-C17106, 21301091702101 the Special Supervision on Quality and Safety of Agricultural Products of the Ministry of Agriculture and Rural Areas
- 4100-C17106, 21301091702101 the Special Supervision on Quality and Safety of Agricultural Products of the Ministry of Agriculture and Rural Areas
- 2018YFE0116900 the Key Projects of International Scientific and Technological Innovation Cooperation among Governments under National Key R & D Plan
- 2018YFE0116900 the Key Projects of International Scientific and Technological Innovation Cooperation among Governments under National Key R & D Plan
- 2018YFE0116900 the Key Projects of International Scientific and Technological Innovation Cooperation among Governments under National Key R & D Plan
- 2018YFE0116900 the Key Projects of International Scientific and Technological Innovation Cooperation among Governments under National Key R & D Plan
- 2018YFE0116900 the Key Projects of International Scientific and Technological Innovation Cooperation among Governments under National Key R & D Plan
- 2018YFE0116900 the Key Projects of International Scientific and Technological Innovation Cooperation among Governments under National Key R & D Plan
- 2018YFE0116900 the Key Projects of International Scientific and Technological Innovation Cooperation among Governments under National Key R & D Plan
- CARS-04-PS09 the China Agricultural Research System
- CARS-04-PS09 the China Agricultural Research System
- CARS-04-PS09 the China Agricultural Research System
- CARS-04-PS09 the China Agricultural Research System
- CARS-04-PS09 the China Agricultural Research System
- CARS-04-PS09 the China Agricultural Research System
- CARS-04-PS09 the China Agricultural Research System
- 2020B020220008 the Key-Area Research and Development Program of Guangdong Province
- 2020B020220008 the Key-Area Research and Development Program of Guangdong Province
- 2020B020220008 the Key-Area Research and Development Program of Guangdong Province
- 2020B020220008 the Key-Area Research and Development Program of Guangdong Province
- 2020B020220008 the Key-Area Research and Development Program of Guangdong Province
- 2020B020220008 the Key-Area Research and Development Program of Guangdong Province
- 2020B020220008 the Key-Area Research and Development Program of Guangdong Province
- 201804020015 the Project of Science and Technology of Guangzhou
- 201804020015 the Project of Science and Technology of Guangzhou
- 201804020015 the Project of Science and Technology of Guangzhou
- 201804020015 the Project of Science and Technology of Guangzhou
- 201804020015 the Project of Science and Technology of Guangzhou
- 201804020015 the Project of Science and Technology of Guangzhou
- 201804020015 the Project of Science and Technology of Guangzhou
- the Key Projects of International Scientific and Technological Innovation Cooperation among Governments under National Key R & D Plan
Collapse
Affiliation(s)
- Lu Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Zengcheng Teaching and Research Base, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Xingang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Zengcheng Teaching and Research Base, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Ce Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Zengcheng Teaching and Research Base, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Yanbo Cheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Zengcheng Teaching and Research Base, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Zhandong Cai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Zengcheng Teaching and Research Base, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Hai Nian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.
- Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.
- Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.
- Zengcheng Teaching and Research Base, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.
| | - Qibin Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.
- Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.
- Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.
- Zengcheng Teaching and Research Base, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.
| |
Collapse
|
15
|
Chen Y, Zhang M, Wang L, Yu X, Li X, Jin D, Zeng J, Ren H, Wang F, Song S, Yan X, Zhao J, Pei Y. GhKWL1 Upregulates GhERF105 but Its Function Is Impaired by Binding with VdISC1, a Pathogenic Effector of Verticillium dahliae. Int J Mol Sci 2021; 22:7328. [PMID: 34298948 PMCID: PMC8306359 DOI: 10.3390/ijms22147328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/27/2021] [Accepted: 07/02/2021] [Indexed: 01/08/2023] Open
Abstract
Verticillium wilt, caused by Verticillium dahliae, is a devastating disease for many important crops, including cotton. Kiwellins (KWLs), a group of cysteine-rich proteins synthesized in many plants, have been shown to be involved in response to various phytopathogens. To evaluate genes for their function in resistance to Verticillium wilt, we investigated KWL homologs in cotton. Thirty-five KWL genes (GhKWLs) were identified from the genome of upland cotton (Gossypium hirsutum). Among them, GhKWL1 was shown to be localized in nucleus and cytosol, and its gene expression is induced by the infection of V. dahliae. We revealed that GhKWL1 was a positive regulator of GhERF105. Silencing of GhKWL1 resulted in a decrease, whereas overexpression led to an increase in resistance of transgenic plants to Verticillium wilt. Interestingly, through binding to GhKWL1, the pathogenic effector protein VdISC1 produced by V. dahliae could impair the defense response mediated by GhKWL1. Therefore, our study suggests there is a GhKWL1-mediated defense response in cotton, which can be hijacked by V. dahliae through the interaction of VdISC1 with GhKWL1.
Collapse
Affiliation(s)
- Yang Chen
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Mi Zhang
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Lei Wang
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Xiaohan Yu
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Xianbi Li
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Dan Jin
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Jianyan Zeng
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Hui Ren
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Fanlong Wang
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Shuiqing Song
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Xingying Yan
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Juan Zhao
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Yan Pei
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400716, China
| |
Collapse
|
16
|
Sakeh NM, Abdullah SNA, Bahari MNA, Azzeme AM, Shaharuddin NA, Idris AS. EgJUB1 and EgERF113 transcription factors as potential master regulators of defense response in Elaeis guineensis against the hemibiotrophic Ganoderma boninense. BMC PLANT BIOLOGY 2021; 21:59. [PMID: 33482731 PMCID: PMC7825162 DOI: 10.1186/s12870-020-02812-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Hemibiotrophic pathogen such as the fungal pathogen Ganoderma boninense that is destructive to oil palm, manipulates host defense mechanism by strategically switching from biotrophic to necrotrophic phase. Our previous study revealed two distinguishable expression profiles of oil palm genes that formed the basis in deducing biotrophic phase at early interaction which switched to necrotrophic phase at a later stage of infection. RESULTS The present report is a continuing study from our previous published transcriptomic profiling of oil palm seedlings against G. boninense. We focused on identifying differentially expressed genes (DEGs) encoding transcription factors (TFs) from the same RNA-seq data; resulting in 106 upregulated and 108 downregulated TFs being identified. The DEGs are involved in four established defense-related pathways responsible for cell wall modification, reactive oxygen species (ROS)-mediated signaling, programmed cell death (PCD) and plant innate immunity. We discovered upregulation of JUNGBRUNNEN 1 (EgJUB1) during the fungal biotrophic phase while Ethylene Responsive Factor 113 (EgERF113) demonstrated prominent upregulation when the palm switches to defense against necrotrophic phase. EgJUB1 was shown to have a binding activity to a 19 bp palindromic SNBE1 element, WNNYBTNNNNNNNAMGNHW found in the promoter region of co-expressing EgHSFC-2b. Further in silico analysis of promoter regions revealed co-expression of EgJUB1 with TFs containing SNBE1 element with single nucleotide change at either the 5th or 18th position. Meanwhile, EgERF113 binds to both GCC and DRE/CRT elements promoting plasticity in upregulating the downstream defense-related genes. Both TFs were proven to be nuclear-localized based on subcellular localization experiment using onion epidermal cells. CONCLUSION Our findings demonstrated unprecedented transcriptional reprogramming of specific TFs potentially to enable regulation of a specific set of genes during different infection phases of this hemibiotrophic fungal pathogen. The results propose the intricacy of oil palm defense response in orchestrating EgJUB1 during biotrophic and EgERF113 during the subsequent transition to the necrotrophic phase. Binding of EgJUB1 to SNBE motif instead of NACBS while EgERF113 to GCC-box and DRE/CRT motifs is unconventional and not normally associated with pathogen infection. Identification of these phase-specific oil palm TFs is important in designing strategies to tackle or attenuate the progress of infection.
Collapse
Affiliation(s)
- Nurshafika Mohd Sakeh
- Institute of Plantation Studies, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Siti Nor Akmar Abdullah
- Institute of Plantation Studies, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
| | | | - Azzreena Mohamad Azzeme
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Noor Azmi Shaharuddin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Abu Seman Idris
- Ganoderma and Diseases Research for Oil Palm Unit, Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| |
Collapse
|
17
|
Ji S, Liu Z, Wang Y. Trichoderma-Induced Ethylene Responsive Factor MsERF105 Mediates Defense Responses in Malus sieversii. FRONTIERS IN PLANT SCIENCE 2021; 12:708010. [PMID: 34777407 PMCID: PMC8585786 DOI: 10.3389/fpls.2021.708010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/13/2021] [Indexed: 05/02/2023]
Abstract
Trichoderma can induce plant hormone signal pathways mediating plant defenses, resulting in broad-spectrum resistance to phytopathogens. Herein, Malus sieversii seedlings were treated with Trichoderma biofertilizer and/or Alternaria alternata f. sp. mali, and transcriptome analysis revealed significant differential expression. There was a high similarity between the transcriptome expression profiles of Trichoderma-induced and A. alternata-infected M. sieversii samples for genes related to jasmonic acid (JA), ethylene, and salicylic acid (SA) signaling pathways. Additionally, Trichoderma biofertilizer activated numerous disease-resistant genes (ERF, NAC, bHLH, and STK) and defense response genes (DRP, ABC, and HSP). Among transcription factors, members of the ERF family were the most differentially expressed (18 ERFs), indicating that they may be closely related to defense responses. Among ERFs, differential expression of MsERF105 was the most significant (upregulated 27.6-fold compared to controls). MsERF105 was heterologously expressed in PdPap poplar (Populus davidiana × Populus alba var. pyramidalis Louche), and following infection with A. alternata (Aal), transgenic PdPap-MsERF105s plants displayed lower malondialdehyde (downregulated 41.4%) and reactive oxygen species (ROSs) levels, and higher reductase activities, especially superoxide dismutase (SOD; upregulated 77.5% compared to PdPap-ROK2 plants). Furthermore, the lesion areas of PdPap-MsERF105s leaves were significantly smaller (0.2%) than those of PdPap-ROK2 leaves (∼26.0%), and the cell membrane integrity was superior for PdPap-MsERF105s leaves. Thus, MsERF105 enhanced the resistance of PaPap poplar to Aal, presumably because MsERF105 activates the expression of PR1 and PDF1.2. In conclusion, Trichoderma biofertilizer modulated the differential expression of numerous disease resistance genes and defense response genes in M. sieversii in response to pathogen attack, and MsERF105 played important roles in this process.
Collapse
Affiliation(s)
- Shida Ji
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhihua Liu
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Yucheng Wang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Yucheng Wang, ;
| |
Collapse
|
18
|
Zang Z, Wang Z, Zhao F, Yang W, Ci J, Ren X, Jiang L, Yang W. Maize Ethylene Response Factor ZmERF061 Is Required for Resistance to Exserohilum turcicum. FRONTIERS IN PLANT SCIENCE 2021; 12:630413. [PMID: 33767717 PMCID: PMC7985547 DOI: 10.3389/fpls.2021.630413] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/14/2021] [Indexed: 05/09/2023]
Abstract
Plants have evolved a series of sophisticated defense mechanisms to help them from harm. Ethylene Response Factor (ERF) plays pivotal roles in plant immune reactions, however, its underlying mechanism in maize with a defensive function to Exserohilum turcicum (E. turcicum) remains poorly understood. Here, we isolated and characterized a novel ERF transcription factor, designated ZmERF061, from maize. Phylogenetic analysis revealed that ZmERF061 is a member of B3 group in the ERF family. qRT-PCR assays showed that the expression of ZmERF061 is significantly induced by E. turcicum inoculation and hormone treatments with salicylic acid (SA) and methyl jasmonate (MeJA). ZmERF061 was proved to function as a nucleus-localized transcription activator and specifically bind to the GCC-box element. zmerf061 mutant lines resulted in enhanced susceptibility to E. turcicum via decreasing the expression of ZmPR10.1 and ZmPR10.2 and the activity of antioxidant defense system. zmerf061 mutant lines increased the expression of the SA signaling-related gene ZmPR1a and decreased the expression of the jasmonic acid (JA) signaling-related gene ZmLox1 after infection with E. turcicum. In addition, ZmERF061 could interact with ZmMPK6-1. These results suggested that ZmERF061 plays an important role in response to E. turcicum and may be useful in genetic engineering breeding.
Collapse
Affiliation(s)
- Zhenyuan Zang
- College of Agriculture, Jilin Agricultural University, Changchun, China
| | - Zhen Wang
- College of Agriculture, Jilin Agricultural University, Changchun, China
| | - Fuxing Zhao
- College of Agriculture, Jilin Agricultural University, Changchun, China
| | - Wei Yang
- College of Agriculture, Jilin Agricultural University, Changchun, China
| | - Jiabin Ci
- College of Agriculture, Jilin Agricultural University, Changchun, China
| | - Xuejiao Ren
- College of Agriculture, Jilin Agricultural University, Changchun, China
| | - Liangyu Jiang
- College of Agriculture, Jilin Agricultural University, Changchun, China
- Crop Science Post-doctoral Station, Jilin Agricultural University, Changchun, China
- *Correspondence: Liangyu Jiang,
| | - Weiguang Yang
- College of Agriculture, Jilin Agricultural University, Changchun, China
- Weiguang Yang,
| |
Collapse
|
19
|
Li D, Liu X, Shu L, Zhang H, Zhang S, Song Y, Zhang Z. Global analysis of the AP2/ERF gene family in rose (Rosa chinensis) genome unveils the role of RcERF099 in Botrytis resistance. BMC PLANT BIOLOGY 2020; 20:533. [PMID: 33228522 PMCID: PMC7684944 DOI: 10.1186/s12870-020-02740-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 11/16/2020] [Indexed: 05/18/2023]
Abstract
BACKGROUND The AP2/ERFs belong to a large family of transcription factors in plants. The AP2/ERF gene family has been identified as a key player involved in both biotic and abiotic stress responses in plants, however, no comprehensive study has yet been carried out on the AP2/ERF gene family in rose (Rosa sp.), the most important ornamental crop worldwide. RESULTS The present study comprises a genome-wide analysis of the AP2/ERF family genes (RcERFs) in the rose, involving their identification, gene structure, phylogenetic relationship, chromosome localization, collinearity analysis, as well as their expression patterns. Throughout the phylogenetic analysis, a total of 131 AP2/ERF genes in the rose genome were divided into 5 subgroups. The RcERFs are distributed over all the seven chromosomes of the rose, and genome duplication may have played a key role in their duplication. Furthermore, Ka/Ks analysis indicated that the duplicated RcERF genes often undergo purification selection with limited functional differentiation. Gene expression analysis revealed that 23 RcERFs were induced by infection of the necrotrophic fungal pathogen Botrytis cinerea. Presumably, these RcERFs are candidate genes which can react to the rose's resistance against Botrytis cinerea infection. By using virus-induced gene silencing, we confirmed that RcERF099 is an important regulator involved in the B.cinerea resistance in the rose petal. CONCLUSION Overall, our results conclude the necessity for further study of the AP2/ERF gene family in rose, and promote their potential application in improving the rose when subjected to biological stress.
Collapse
Affiliation(s)
- Dandan Li
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Yuanmingyuan Xilu 2, Beijing, 100193, China
| | - Xintong Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Yuanmingyuan Xilu 2, Beijing, 100193, China
| | - Lizhe Shu
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hua Zhang
- Beijing Key Laboratory of Greening Plants Breeding, Beijing Institute of Landscape Architecture, Beijing, China
| | - Shiya Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Yuanmingyuan Xilu 2, Beijing, 100193, China
| | - Yin Song
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Zhao Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Yuanmingyuan Xilu 2, Beijing, 100193, China.
| |
Collapse
|
20
|
Wang Y, Gao Y, Zang P, Xu Y. Transcriptome analysis reveals underlying immune response mechanism of fungal (Penicillium oxalicum) disease in Gastrodia elata Bl. f. glauca S. chow (Orchidaceae). BMC PLANT BIOLOGY 2020; 20:445. [PMID: 32993485 PMCID: PMC7525978 DOI: 10.1186/s12870-020-02653-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/15/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Gastrodia elata Bl. f. glauca S. Chow is a medicinal plant. G. elata f. glauca is unavoidably infected by pathogens in their growth process. In previous work, we have successfully isolated and identified Penicillium oxalicum from fungal diseased tubers of G. elata f. glauca. As a widespread epidemic, this fungal disease seriously affected the yield and quality of G. elata f. glauca. We speculate that the healthy G. elata F. glauca might carry resistance genes, which can resist against fungal disease. In this study, healthy and fungal diseased mature tubers of G. elata f. glauca from Changbai Mountain area were used as experimental materials to help us find potential resistance genes against the fungal disease. RESULTS A total of 7540 differentially expressed Unigenes (DEGs) were identified (FDR < 0.01, log2FC > 2). The current study screened 10 potential resistance genes. They were attached to transcription factors (TFs) in plant hormone signal transduction pathway and plant pathogen interaction pathway, including WRKY22, GH3, TIFY/JAZ, ERF1, WRKY33, TGA. In addition, four of these genes were closely related to jasmonic acid signaling pathway. CONCLUSIONS The immune response mechanism of fungal disease in G. elata f. glauca is a complex biological process, involving plant hormones such as ethylene, jasmonic acid, salicylic acid and disease-resistant transcription factors such as WRKY, TGA.
Collapse
Affiliation(s)
- Yanhua Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Yugang Gao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China.
| | - Pu Zang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Yue Xu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| |
Collapse
|
21
|
Zhao J, Li H, Yin Y, An W, Qin X, Wang Y, Fan Y, Li Y, Cao Y. Fruit ripening in Lycium barbarum and Lycium ruthenicum is associated with distinct gene expression patterns. FEBS Open Bio 2020; 10:1550-1567. [PMID: 32533890 PMCID: PMC7396440 DOI: 10.1002/2211-5463.12910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/27/2020] [Accepted: 06/07/2020] [Indexed: 11/06/2022] Open
Abstract
Goji berries have been used as food and medicine for millennia. Due to their high morphological similarity, fruits of two distinct species belonging to the family Solanaceae, Lycium barbarum (LB) and Lycium chinense (Chinese boxthorn), are usually marketed together as goji berries, but nearly 90% of all commercially available goji berries belong to the former species. A third closely related species, a wild perennial thorny shrub native to north‐western China, Lycium ruthenicum (LR; known as Russian box thorn, and its fruit as black wolfberry), has become a popular choice for combating soil desertification and for alleviating soil salinity/alkalinity due to its high resistance to the harsh environment of saline deserts. Despite the phylogenetic closeness of LB and LR, their fruits are very different. To identify the genes involved in these distinct phenotypes, here we studied expression patterns of 22 transcriptional regulators that may be crucial drivers of these differences during five developmental stages. BAM1 may contribute to higher sugar content in LB. High expression of BFRUCT in ripe LR is likely to be an evolutionary adaptation to fruit ripening in an arid environment. Two arogenate dehydratase paralogues, CHS and LDOX, are probably crucial elements of the mechanism by which LR accumulates much higher levels of anthocyanin. DXS2 (carotenoid accumulation in LB) and CCD4 (carotenoid degradation in ripe LR fruit) may be crucial drivers behind the much higher content of carotenoids in LB. EIL3 and ERF5 are two transcription factors that may contribute to the higher abiotic stress resilience of LR. GATA22‐like appears to have more important roles in growth than ripening in LB fruit and vice versa in LR. HAT5‐like exhibited opposite temporal patterns in two fruits: high in the 1st stage in LB and high in the 5th stage in LR. PED1 was expressed at a much lower level in LR. Finally, we hypothesise that the poorly functionally characterised SCL32 gene may play a part in the increased resistance to environmental stress of LR. We suggest that BAM1, BFRUCT, EIL3, ERF5, ADT paralogues (for functional redundancy), PED1, GATA22‐like, HAT5‐like and SCL32 warrant further functional studies.
Collapse
Affiliation(s)
- Jianhua Zhao
- Wolfberry Engineering Research Institute, Ningxia Academy of Agriculture and Forestry Sciences/National Wolfberry Engineering Research Center, Yinchuan, China
| | - Haoxia Li
- Desertification Control Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Yue Yin
- Wolfberry Engineering Research Institute, Ningxia Academy of Agriculture and Forestry Sciences/National Wolfberry Engineering Research Center, Yinchuan, China
| | - Wei An
- Wolfberry Engineering Research Institute, Ningxia Academy of Agriculture and Forestry Sciences/National Wolfberry Engineering Research Center, Yinchuan, China
| | - Xiaoya Qin
- Wolfberry Engineering Research Institute, Ningxia Academy of Agriculture and Forestry Sciences/National Wolfberry Engineering Research Center, Yinchuan, China
| | - Yajun Wang
- Wolfberry Engineering Research Institute, Ningxia Academy of Agriculture and Forestry Sciences/National Wolfberry Engineering Research Center, Yinchuan, China
| | - Yunfang Fan
- Wolfberry Engineering Research Institute, Ningxia Academy of Agriculture and Forestry Sciences/National Wolfberry Engineering Research Center, Yinchuan, China
| | - Yanlong Li
- Wolfberry Engineering Research Institute, Ningxia Academy of Agriculture and Forestry Sciences/National Wolfberry Engineering Research Center, Yinchuan, China
| | - Youlong Cao
- Wolfberry Engineering Research Institute, Ningxia Academy of Agriculture and Forestry Sciences/National Wolfberry Engineering Research Center, Yinchuan, China
| |
Collapse
|
22
|
Javed T, Shabbir R, Ali A, Afzal I, Zaheer U, Gao SJ. Transcription Factors in Plant Stress Responses: Challenges and Potential for Sugarcane Improvement. PLANTS (BASEL, SWITZERLAND) 2020; 9:E491. [PMID: 32290272 PMCID: PMC7238037 DOI: 10.3390/plants9040491] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023]
Abstract
Increasing vulnerability of crops to a wide range of abiotic and biotic stresses can have a marked influence on the growth and yield of major crops, especially sugarcane (Saccharum spp.). In response to various stresses, plants have evolved a variety of complex defense systems of signal perception and transduction networks. Transcription factors (TFs) that are activated by different pathways of signal transduction and can directly or indirectly combine with cis-acting elements to modulate the transcription efficiency of target genes, which play key regulators for crop genetic improvement. Over the past decade, significant progresses have been made in deciphering the role of plant TFs as key regulators of environmental responses in particular important cereal crops; however, a limited amount of studies have focused on sugarcane. This review summarizes the potential functions of major TF families, such as WRKY, NAC, MYB and AP2/ERF, in regulating gene expression in the response of plants to abiotic and biotic stresses, which provides important clues for the engineering of stress-tolerant cultivars in sugarcane.
Collapse
Affiliation(s)
- Talha Javed
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (T.J.); (R.S.); (A.A.); (U.Z.)
- Seed Physiology Lab., Department of Agronomy, University of Agriculture, Faisalabad-38040, Pakistan;
| | - Rubab Shabbir
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (T.J.); (R.S.); (A.A.); (U.Z.)
- Seed Physiology Lab., Department of Agronomy, University of Agriculture, Faisalabad-38040, Pakistan;
| | - Ahmad Ali
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (T.J.); (R.S.); (A.A.); (U.Z.)
| | - Irfan Afzal
- Seed Physiology Lab., Department of Agronomy, University of Agriculture, Faisalabad-38040, Pakistan;
| | - Uroosa Zaheer
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (T.J.); (R.S.); (A.A.); (U.Z.)
| | - San-Ji Gao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (T.J.); (R.S.); (A.A.); (U.Z.)
| |
Collapse
|
23
|
Zang Z, Lv Y, Liu S, Yang W, Ci J, Ren X, Wang Z, Wu H, Ma W, Jiang L, Yang W. A Novel ERF Transcription Factor, ZmERF105, Positively Regulates Maize Resistance to Exserohilum turcicum. FRONTIERS IN PLANT SCIENCE 2020; 11:850. [PMID: 32612628 PMCID: PMC7308562 DOI: 10.3389/fpls.2020.00850] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/27/2020] [Indexed: 05/18/2023]
Abstract
The ethylene response factor (ERF) plays a crucial role in plant innate immunity. However, the molecular function of ERF in response to Exserohilum turcicum (E. turcicum) remains unknown in maize. In this study, a novel ERF gene, designated as ZmERF105, was firstly isolated and characterized. The ZmERF105 protein contains an APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) domain and a conserved LSPLSPHP motif in its C-terminal region. ZmERF105 protein was exclusively localized to the nucleus. ZmERF105 expression responded to E. turcicum treatment. Yeast one-hybrid and transcription activity assays revealed that ZmERF105 is an activator of transcription and binds to GCC-box elements. Over-expression of ZmERF105 was shown to increase maize resistance against E. turcicum, and erf105 mutant lines displayed opposite phenotype. Moreover, the activities of superoxide dismutase (SOD) and peroxidase (POD) in the ZmERF105 over-expression lines were markedly higher than in the wild-type maize lines (WT) after infection with E. turcicum, and were compromised in the erf105 mutant lines. Simultaneously, ZmERF105 over-expression lines enhanced the expression of several pathogenesis-related (PR) genes, including ZmPR1a, ZmPR2, ZmPR5, ZmPR10.1, and ZmPR10.2 after infection with E. turcicum. In contrast, the expression of PR genes was reduced in erf105 mutant lines. Our work reveals that ZmERF105 as a novel player of the ERF network and positively regulates the maize resistance response to E. turcicum.
Collapse
Affiliation(s)
- Zhenyuan Zang
- College of Agriculture, Jilin Agricultural University, Changchun, China
| | - Ying Lv
- College of Agriculture, Jilin Agricultural University, Changchun, China
| | - Shuang Liu
- College of Agriculture, Jilin Agricultural University, Changchun, China
| | - Wei Yang
- College of Agriculture, Jilin Agricultural University, Changchun, China
| | - Jiabin Ci
- College of Agriculture, Jilin Agricultural University, Changchun, China
| | - Xuejiao Ren
- College of Agriculture, Jilin Agricultural University, Changchun, China
| | - Zhen Wang
- College of Agriculture, Jilin Agricultural University, Changchun, China
| | - Hao Wu
- College of Agriculture, Jilin Agricultural University, Changchun, China
| | - Wenyu Ma
- College of Agriculture, Jilin Agricultural University, Changchun, China
| | - Liangyu Jiang
- College of Agriculture, Jilin Agricultural University, Changchun, China
- Crop Science Post-doctoral Station, Jilin Agricultural University, Changchun, China
- *Correspondence: Liangyu Jiang, ; Weiguang Yang,
| | - Weiguang Yang
- College of Agriculture, Jilin Agricultural University, Changchun, China
- *Correspondence: Liangyu Jiang, ; Weiguang Yang,
| |
Collapse
|
24
|
Jiang W, Zhang X, Song X, Yang J, Pang Y. Genome-Wide Identification and Characterization of APETALA2/Ethylene-Responsive Element Binding Factor Superfamily Genes in Soybean Seed Development. FRONTIERS IN PLANT SCIENCE 2020; 11:566647. [PMID: 33013987 PMCID: PMC7498640 DOI: 10.3389/fpls.2020.566647] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/17/2020] [Indexed: 05/15/2023]
Abstract
Glycine max is one of the most important grain and oil crops, and improvement of seed yield is one of the major objectives in soybean breeding. The AP2/ERF superfamily members are involved in regulating flower and seed development in many species, and therefore play key roles in seed yield. However, it is still unknown that how many AP2/ERF members were presented in the G. max genome and whether these AP2/ERF family members function in flower and seed development in G. max. Here, we identified 380 AP2/ERF superfamily genes in the G. max genome. Phylogenetic analysis showed that 323 members were grouped into the ERF family, and 49 into the AP2 family. Among the AP2 family, 14 members of the euAP2 lineage showed high identity with their orthologs, and eight member of the ANT lineage were expressed highly in the seeds. Furthermore, seven of them (GmAP2-1 to GmAP2-7) were successfully cloned and over-expressed in Arabidopsis thaliana. The transgenic Arabidopsis plants over-expressing these GmAP2 genes flowered earlier relative to the wild type control. The seed length and width, and seed area of these over-expression lines were increased compared with the wild type, and seed weight of over-expression lines of GmAP2-1, GmAP2-4, GmAP2-5, and GmAP2-6 were greater than those of the wild type. Furthermore, the seed number per silique of the over-expression lines for GmAP2 genes were not affected except GmAP2-5. Collectively, GmAP2-1, GmAP2-4, and GmAP2-6 played important roles in regulating seed weight by affecting seed length, width and area, and further controlling seed yield.
Collapse
Affiliation(s)
- Wenbo Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuejing Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xuewei Song
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Junfeng Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yongzhen Pang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Yongzhen Pang,
| |
Collapse
|
25
|
Cui X, Yan Q, Gan S, Xue D, Wang H, Xing H, Zhao J, Guo N. GmWRKY40, a member of the WRKY transcription factor genes identified from Glycine max L., enhanced the resistance to Phytophthora sojae. BMC PLANT BIOLOGY 2019; 19:598. [PMID: 31888478 PMCID: PMC6937711 DOI: 10.1186/s12870-019-2132-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 11/12/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND The WRKY proteins are a superfamily of transcription factors and members play essential roles in the modulation of diverse physiological processes, such as growth, development, senescence and response to biotic and abiotic stresses. However, the biological roles of the majority of the WRKY family members remains poorly understood in soybean relative to the research progress in model plants. RESULTS In this study, we identified and characterized GmWRKY40, which is a group IIc WRKY gene. Transient expression analysis revealed that the GmWRKY40 protein is located in the nucleus of plant cells. Expression of GmWRKY40 was strongly induced in soybean following infection with Phytophthora sojae, or treatment with methyl jasmonate, ethylene, salicylic acid, and abscisic acid. Furthermore, soybean hairy roots silencing GmWRKY40 enhanced susceptibility to P. sojae infection compared with empty vector transgenic roots. Moreover, suppression of GmWRKY40 decreased the accumulation of reactive oxygen species (ROS) and modified the expression of several oxidation-related genes. Yeast two-hybrid experiment combined with RNA-seq analysis showed that GmWRKY40 interacted with 8 JAZ proteins with or without the WRKY domain or zinc-finger domain of GmWRKY40, suggesting there were different interaction patterns among these interacted proteins. CONCLUSIONS Collectively, these results suggests that GmWRKY40 functions as a positive regulator in soybean plants response to P. sojae through modulating hydrogen peroxide accumulation and JA signaling pathway.
Collapse
Affiliation(s)
- Xiaoxia Cui
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Qiang Yan
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shuping Gan
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Dong Xue
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Haitang Wang
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Han Xing
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jinming Zhao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Na Guo
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
26
|
Xue D, Guo N, Zhang XL, Zhao JM, Bu YP, Jiang DL, Wang XT, Wang HT, Guan RZ, Xing H. Genome-Wide Analysis Reveals the Role of Mediator Complex in the Soybean- Phytophthora sojae Interaction. Int J Mol Sci 2019; 20:E4570. [PMID: 31540158 PMCID: PMC6770253 DOI: 10.3390/ijms20184570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/07/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023] Open
Abstract
The mediator complex is an essential link between transcription factors and RNA polymerase II, and mainly functions in the transduction of diverse signals to genes involved in different pathways. Limited information is available on the role of soybean mediator subunits in growth and development, and their participation in defense response regulation. Here, we performed genome-wide identification of the 95 soybean mediator subunits, which were unevenly localized on the 20 chromosomes and only segmental duplication events were detected. We focused on GmMED16-1, which is highly expressed in the roots, for further functional analysis. Transcription of GmMED16-1 was induced in response to Phytophthora sojae infection. Agrobacterium rhizogenes mediated soybean hairy root transformation was performed for the silencing of the GmMED16-1 gene. Silencing of GmMED16-1 led to an enhanced susceptibility phenotype and increased accumulation of P. sojae biomass in hairy roots of transformants. The transcript levels of NPR1, PR1a, and PR5 in the salicylic acid defense pathway in roots of GmMED16-1-silenced transformants were lower than those of empty-vector transformants. The results provide evidence that GmMED16-1 may participate in the soybean-P. sojae interaction via a salicylic acid-dependent process.
Collapse
Affiliation(s)
- Dong Xue
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Na Guo
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao-Li Zhang
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jin-Ming Zhao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yuan-Peng Bu
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Dian-Liang Jiang
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xiao-Ting Wang
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Hai-Tang Wang
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Rong-Zhan Guan
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Han Xing
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
27
|
Ectopic expression of GmZAT4, a putative C2H2-type zinc finger protein, enhances PEG and NaCl stress tolerances in Arabidopsis thaliana. 3 Biotech 2019; 9:166. [PMID: 30997303 DOI: 10.1007/s13205-019-1673-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 03/09/2019] [Indexed: 01/19/2023] Open
Abstract
The zinc finger protein (ZFP) transcription factor family plays an important role in regulating plant growth, development, and response to abiotic stress. In this study, we aimed to determine the role of GmZAT4, a C2H2-type transcription factor, in abiotic stress tolerance. The complete coding sequence of the GmZAT4 gene was isolated from soybean root RNA, which shows highest expression level compared with leaf, flower and other tissues. Using multiple sequence alignment and conserved domain analysis, we showed that GmZAT4 is a typical C2H2-type transcription factor which is comprised of two C2H2 domains, including a highly conserved QALGGH motif, and implied the regulation of abiotic stress tolerance in plant. A phylogenetic tree revealed that the soybean GmZAT4 gene clustered with ZAT4 from Glycine soja and AZF1, AZF2, and AZF3 from Arabidopsis thaliana. The mRNA expression levels of GmZAT4 were determined in two soybean cultivars by quantitative reverse transcription (qRT)-PCR and compared. The results showed higher expression (up to 60, 25 and 4 times, respectively) in the drought-tolerant type (Jinda 74) compared to the drought-sensitive soybean cultivar (Jinda 53) following treatment with 18% PEG, 150 mM NaCl, or 100 µM abscisic acid (ABA). GmZAT4 was ectopically over-expressed in A. thaliana to determine its role in abiotic stress tolerance. GmZAT4 overexpression enhanced the tolerance of A. thaliana to treatment with 20% PEG and 150 mM NaCl, and improved the germination rate following treatment with 1 µM or 2 µM ABA. The expression profiles of marker genes in the ABA signaling pathway, such as RD29A, RD29B, ABI, and RAD, indicated that GmZAT4 enhanced the abiotic stress tolerance of Arabidopsis. These results suggest that the C2H2-type ZFP encoded by GmZAT4 plays an important role in PEG and NaCl stress tolerance and ABA responses in soybean and A. thaliana.
Collapse
|
28
|
Bahari MNA, Sakeh NM, Abdullah SNA, Ramli RR, Kadkhodaei S. Transciptome profiling at early infection of Elaeis guineensis by Ganoderma boninense provides novel insights on fungal transition from biotrophic to necrotrophic phase. BMC PLANT BIOLOGY 2018; 18:377. [PMID: 30594134 PMCID: PMC6310985 DOI: 10.1186/s12870-018-1594-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/06/2018] [Indexed: 05/27/2023]
Abstract
BACKGROUND Basal stem rot (BSR) caused by hemibiotroph Ganoderma boninense is a devastating disease resulting in a major loss to the oil palm industry. Since there is no physical symptom in oil palm at the early stage of G. boninense infection, characterisation of molecular defense responses in oil palm during early interaction with the fungus is of the utmost importance. Oil palm (Elaeis guineensis) seedlings were artificially infected with G. boninense inoculums and root samples were obtained following a time-course of 0, 3, 7, and 11 days-post-inoculation (d.p.i) for RNA sequencing (RNA-seq) and identification of differentially expressed genes (DEGs). RESULTS The host counter-attack was evidenced based on fungal hyphae and Ganoderma DNA observed at 3 d.p.i which became significantly reduced at 7 and 11 d.p.i. DEGs revealed upregulation of multifaceted defense related genes such as PR-protein (EgPR-1), protease inhibitor (EgBGIA), PRR protein (EgLYK3) chitinase (EgCht) and expansin (EgEXPB18) at 3 d.p.i and 7 d.p.i which dropped at 11 d.p.i. Later stage involved highly expressed transcription factors EgERF113 and EgMYC2 as potential regulators of necrotrophic defense at 11 d.p.i. The reactive oxygen species (ROS) elicitor: peroxidase (EgPER) and NADPH oxidase (EgRBOH) were upregulated and maintained throughout the treatment period. Growth and nutrient distribution were probably compromised through suppression of auxin signalling and iron uptake genes. CONCLUSIONS Based on the analysis of oil palm gene expression, it was deduced that the biotrophic phase of Ganoderma had possibly occurred at the early phase (3 until 7 d.p.i) before being challenged by the fungus via switching its lifestyle into the necrotrophic phase at later stage (11 d.p.i) and finally succumbed the host. Together, the findings suggest the dynamic defense process in oil palm and potential candidates that can serve as phase-specific biomarkers at the early stages of oil palm-G. boninense interaction.
Collapse
Affiliation(s)
| | - Nurshafika Mohd Sakeh
- Institute of Plantation Studies, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Malaysia
| | - Siti Nor Akmar Abdullah
- Institute of Plantation Studies, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Malaysia
- Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Malaysia
| | - Redzyque Ramza Ramli
- Institute of Plantation Studies, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Malaysia
| | - Saied Kadkhodaei
- Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan, 84156-83111 Iran
| |
Collapse
|
29
|
Cheng Q, Dong L, Gao T, Liu T, Li N, Wang L, Chang X, Wu J, Xu P, Zhang S. The bHLH transcription factor GmPIB1 facilitates resistance to Phytophthora sojae in Glycine max. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2527-2541. [PMID: 29579245 PMCID: PMC5920285 DOI: 10.1093/jxb/ery103] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 03/16/2018] [Indexed: 05/07/2023]
Abstract
Phytophthora sojae Kaufmann and Gerdemann causes Phytophthora root rot, a destructive soybean disease worldwide. A basic helix-loop-helix (bHLH) transcription factor is thought to be involved in the response to P. sojae infection in soybean, as revealed by RNA sequencing (RNA-seq). However, the molecular mechanism underlying this response is currently unclear. Here, we explored the function and underlying mechanisms of a bHLH transcription factor in soybean, designated GmPIB1 (P. sojae-inducible bHLH transcription factor), during host responses to P. sojae. GmPIB1 was significantly induced by P. sojae in the resistant soybean cultivar 'L77-1863'. Analysis of transgenic soybean hairy roots with elevated or reduced expression of GmPIB1 demonstrated that GmPIB1 enhances resistance to P. sojae and reduces reactive oxygen species (ROS) accumulation. Quantitative reverse transcription PCR and chromatin immunoprecipitation-quantitative PCR assays revealed that GmPIB1 binds directly to the promoter of GmSPOD1 and represses its expression; this gene encodes a key enzyme in ROS production. Moreover, transgenic soybean hairy roots with GmSPOD1 silencing through RNA interference exhibited improved resistance to P. sojae and reduced ROS generation. These findings suggest that GmPIB1 enhances resistance to P. sojae by repressing the expression of GmSPOD1.
Collapse
Affiliation(s)
- Qun Cheng
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Lidong Dong
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Tianjiao Gao
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
| | - Tengfei Liu
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
| | - Ninghui Li
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
- Jiamusi Branch Academy of Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Le Wang
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
| | - Xin Chang
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
| | - Junjiang Wu
- Soybean Research Institute of Heilongjiang Academy of Agricultural Sciences, Key Laboratory of Soybean Cultivation of Ministry of Agriculture P. R. China, Harbin, China
| | - Pengfei Xu
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
| | - Shuzhen Zhang
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
| |
Collapse
|