1
|
Dev W, Sultana F, He S, Waqas M, Hu D, Aminu IM, Geng X, Du X. An insight into heat stress response and adaptive mechanism in cotton. JOURNAL OF PLANT PHYSIOLOGY 2024; 302:154324. [PMID: 39167998 DOI: 10.1016/j.jplph.2024.154324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024]
Abstract
The growing worldwide population is driving up demand for cotton fibers, but production is hampered by unpredictable temperature rises caused by shifting climatic conditions. Numerous research based on breeding and genomics have been conducted to increase the production of cotton in environments with high and low-temperature stress. High temperature (HT) is a major environmental stressor with global consequences, influencing several aspects of cotton plant growth and metabolism. Heat stress-induced physiological and biochemical changes are research topics, and molecular techniques are used to improve cotton plants' heat tolerance. To preserve internal balance, heat stress activates various stress-responsive processes, including repairing damaged proteins and membranes, through various molecular networks. Recent research has investigated the diverse reactions of cotton cultivars to temperature stress, indicating that cotton plant adaptation mechanisms include the accumulation of sugars, proline, phenolics, flavonoids, and heat shock proteins. To overcome the obstacles caused by heat stress, it is crucial to develop and choose heat-tolerant cotton cultivars. Food security and sustainable agriculture depend on the application of genetic, agronomic, and, biotechnological methods to lessen the impacts of heat stress on cotton crops. Cotton producers and the textile industry both benefit from increased heat tolerance. Future studies should examine the developmental responses of cotton at different growth stages, emphasize the significance of breeding heat-tolerant cultivars, and assess the biochemical, physiological, and molecular pathways involved in seed germination under high temperatures. In a nutshell, a concentrated effort is required to raise cotton's heat tolerance due to the rising global temperatures and the rise in the frequency of extreme weather occurrences. Furthermore, emerging advances in sequencing technologies have made major progress toward successfully se sequencing the complex cotton genome.
Collapse
Affiliation(s)
- Washu Dev
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Fahmida Sultana
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Shoupu He
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Muhammad Waqas
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Daowu Hu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, 57202, China
| | - Isah Mansur Aminu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaoli Geng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiongming Du
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, 57202, China.
| |
Collapse
|
2
|
Malik L, Hussain S, Shahid M, Mahmood F, Ali HM, Malik M, Sanaullah M, Zahid Z, Shahzad T. Co-applied biochar and drought tolerant PGPRs induced more improvement in soil quality and wheat production than their individual applications under drought conditions. PeerJ 2024; 12:e18171. [PMID: 39469591 PMCID: PMC11514766 DOI: 10.7717/peerj.18171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/03/2024] [Indexed: 10/30/2024] Open
Abstract
Background Plant growth and development can be greatly impacted by drought stress. Suitable plant growth promoting rhizobacteria (PGPR) or biochar (BC) application has been shown to alleviate drought stress for plants. However, their co-application has not been extensively explored in this regard. Methods We isolated bacterial strains from rhizospheric soils of plants from arid soils and characterized them for plant growth promoting characteristics like IAA production and phosphate solubilization as well as for drought tolerance. Three bacterial strains or so called PGPRs, identified as Bacillus thuringiensis, Bacillus tropicus, and Bacillus paramycoides based on their 16S rRNA, were screened for further experiments. Wheat was grown on normal, where soil moisture was maintained at 75% of water holding capacity (WHC), and induced-drought (25% WHC) stressed soil in pots. PGPRs were applied alone or in combination with a biochar derived from pyrolysis of tree wood. Results Drought stress substantially inhibited wheat growth. However, biochar addition under stressed conditions significantly improved the wheat growth and productivity. Briefly, it increased straw yield by 25%, 100-grain weight by 15% and grain yield by 10% compared to the control. Moreover, co-application of biochar with PGPRs B. thuringiensis, B. tropicus and B. paramycoides further enhanced straw yield by 37-41%, 100-grain weight by 30-36%, and grain yield by 22-22.57%, respectively. The co-application also enhanced soil quality by increasing plant-available phosphorus by 4-31%, microbial biomass by 33-45%, and soil K+/Na+ ratio by 41-44%. Conclusion Co-application of PGPRs and biochar alleviated plant drought stress by improving nutrient availability and absorption. Acting as a nutrient reservoir, biochar worked alongside PGPRs, who solubilized nutrients from the former and promoted wheat growth. We recommend that the co-application of suitable PGPRs and biochar is a better technology to produce wheat under drought conditions than using these enhancers separately.
Collapse
Affiliation(s)
- Laraib Malik
- Department of Environmental Sciences, Government College University, Faisalabad, Pakistan
| | - Sabir Hussain
- Department of Environmental Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Faisalabad, Pakistan
| | - Faisal Mahmood
- Department of Environmental Sciences, Government College University, Faisalabad, Pakistan
| | - Hayssam M. Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mehreen Malik
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Sanaullah
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Zubda Zahid
- Department of Agro environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
| | - Tanvir Shahzad
- Department of Environmental Sciences, Government College University, Faisalabad, Pakistan
| |
Collapse
|
3
|
Barve N, Ashraf U, Barve V, Cobos ME, Nuñez-Penichet C, Peterson AT. Revisiting plant hardiness zones to include multiple climatic stress dimensions. iScience 2024; 27:110824. [PMID: 39435139 PMCID: PMC11491728 DOI: 10.1016/j.isci.2024.110824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/13/2024] [Accepted: 08/22/2024] [Indexed: 10/23/2024] Open
Abstract
A tradition exists for delineating "hardiness zones" for important plants in horticulture and agriculture. However, these zones are typically based on surviving cold winter conditions, disregarding other stressors. Factors such as the effects of summer heat, aridity, or excessive humidity have been overlooked, limiting our understanding of challenges faced by plants associated with human activities, particularly in a time of rapid global-scale climate change. Annual plants not exposed to winter cold and heat-sensitive plants encountering early summer heat waves may experience significant difficulties. Here, we establish hardiness zone criteria for four climatic dimensions: heat, cold, dryness, and moisture. We explore how this expanded concept of hardiness zones could be implemented in the context of 872 tree species in the United States, as a step toward understanding stressors that plants experience in different climates. The aim is to provide insights that may be informative for horticultural and agricultural practices.
Collapse
Affiliation(s)
- Narayani Barve
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
| | - Uzma Ashraf
- Department of Land, Air and Water Resources, University of California, Davis, Davis, CA, USA
- Wild Energy Center, Energy and Efficiency Institute, University of California, Davis, Davis, CA, USA
| | - Vijay Barve
- Marine Biodiversity Center, Natural History Museum of Los Angeles Country, Los Angeles, CA, USA
| | - Marlon E. Cobos
- Department of Ecology and Evolutionary Biology & Biodiversity Institute, University of Kansas, Lawrence, KS, USA
| | - Claudia Nuñez-Penichet
- Department of Ecology and Evolutionary Biology & Biodiversity Institute, University of Kansas, Lawrence, KS, USA
| | - A. Townsend Peterson
- Department of Ecology and Evolutionary Biology & Biodiversity Institute, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
4
|
Han Y, Zhao Y, Wang J. Unveiling geospatial heterogeneity in climate's impacts on wheat production to advance spatially-matched climate-adaptive agricultural management in the North China plain. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122364. [PMID: 39236610 DOI: 10.1016/j.jenvman.2024.122364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/24/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
Influence of climate change on the geospatial heterogeneity in agricultural production remains poorly understood. In this study, heterogeneity in climate's impacts on wheat production across the North China Plain (NCP) was explored by integrating APSIM model, process-based factor-control quantitative approach, and geostatistical analyses. The results indicated that increased precipitation and minimum temperature boosted yields, while elevated maximum temperature and reduced radiation exerted adverse effects. The most pronounced negative impact arose from the coupling variation between maximum temperature and radiation, contributing to yields' variations of -5.84% from 2000 to 2010 and -5.22% from 2010 to 2020. In last two decades, climate change has augmented the overall geospatial heterogeneity degree in wheat yields. The chief factor contributing to yields' heterogeneity was the maximum temperature during anthesis-maturation stage, explaining an average of 37.6% of yields' heterogeneity, followed by precipitation throughout the whole growth period and the anthesis-maturation stage, explaining 36.1% and 34.5% respectively. A reciprocal enhancement mechanism exists between factors in driving yields' heterogeneity. Wheat yields in the southwestern NCP benefited more from increased precipitation and minimum temperature. Between 2000 and 2010, yields in the central NCP (junctions of Henan, Hebei, and Shandong) experienced the most pronounced adverse impact from increased maximum temperature. However, by 2010-2020, significant adverse impact shifted to western NCP, expanding spatially. During 2010-2020, the geospatial scope of radiation's significant negative impact expanded compared to the preceding decade, particularly affecting the yields in central and eastern NCP. The identified geospatial heterogeneity pattern of climate's impacts can guide spatially-matched climate-adaptive management adjustments. For instance, intensifying the defense against high-temperature's impacts in northwestern Henan, southern Hebei, and western Shandong, while improving the adaptation to radiation reduction in the central and eastern NCP. The findings are expected to advance regional-scale climate-smart agricultural development.
Collapse
Affiliation(s)
- Yang Han
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100000, China; Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, 453002, China.
| | - Yulong Zhao
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100000, China; Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, 453002, China
| | - Jinglei Wang
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, 453002, China.
| |
Collapse
|
5
|
Silva IP, Costa MGC, Costa-Pinto MFF, Silva MAA, Coelho Filho MA, Fancelli M. Volatile compounds in citrus in adaptation to water deficit and to herbivory by Diaphorina citri: How the secondary metabolism of the plant is modulated under concurrent stresses. A review. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112157. [PMID: 38871029 DOI: 10.1016/j.plantsci.2024.112157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
Citrus plants are grown in diverse regions of the world, from subtropical to semi-arid and humid tropical areas. Through mechanisms essential for their survival, they adapt to the environmental conditions to which they are subjected. Although there is vast literature on adaptation of citrus plants to individual stresses, plant responses to interaction among different types of stresses have not been clearly examined. Abiotic or biotic stresses, or a combination of these stresses, result in reorganization of plant energy resources for defense, whether it be for resistance, tolerance, or prevention of stress. Plants generally respond to these stress factors through production of secondary metabolites, such as volatile compounds, derived from different biosynthesis and degradation pathways, which are released through distinct routes. Volatile compounds vary among plant species, meeting the specific needs of the plant. Simultaneous exposure to the stress factors of water deficit and herbivory leads to responses such as qualitative and quantitative changes in the emission of secondary metabolites, and compounds may accumulate within the leaves or predispose the plant to more quickly respond to the stress brought about by the herbivore. The genetic makeup of citrus plants can contribute to a better response to stress factors; however, studies on the emission of volatile compounds in different citrus genotypes under simultaneous stresses are limited. This review examines the effects of abiotic stress due to water deficit and biotic stress due to herbivory by Diaphorina citri in citrus plants and examines their connection with volatile compounds. A summary is made of advances in knowledge regarding the performance of volatile compounds in plant defense against both stress factors, as well as the interaction between them and possible findings in citrus plants. In addition, throughout this review, we focus on how genetic variation of the citrus species is correlated with production of volatile compounds to improve stress tolerance.
Collapse
Affiliation(s)
- Indiara Pereira Silva
- Departamento de Biologia, Centro de Genética e Biologia Molecular, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | - Márcio Gilberto Cardoso Costa
- Departamento de Biologia, Centro de Genética e Biologia Molecular, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | | | - Monique Ayala Araújo Silva
- Departamento de Biologia, Centro de Genética e Biologia Molecular, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | | | | |
Collapse
|
6
|
Bavithra CMML, Murugan M, Balasubramani V, Harish S, Prakash K. Baseline susceptibility of an A1 quarantine pest - the South American tomato pinworm Tuta absoluta (Lepidoptera: Gelechiidae) to insecticides: past incidents and future probabilities in line to implementing successful pest management. FRONTIERS IN PLANT SCIENCE 2024; 15:1404250. [PMID: 39286840 PMCID: PMC11404364 DOI: 10.3389/fpls.2024.1404250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/18/2024] [Indexed: 09/19/2024]
Abstract
Tomato is a widely cultivated crop significant for its economic and nutritional benefits. The South American tomato pinworm, Tuta absoluta, originated in Peru South America and has invaded many nations, causing up to 100% yield loss in tomatoes. The pest was classified as a quarantine pest by the European Plant Protection Organization, before invading the Spain region. Later, this quarantine pest also invaded other regions of Europe, Africa and Asian countries. Invasive insect pests cause global economic losses of 70 billion dollars annually. Among the several management measures suggested against pests, insecticides are the primary method in practice among growers due to significant results, easier operations, and other crucial advantages. Anyhow, repeated application of insecticides has caused the pest to evolve resistance against most of the insecticides in vogue, resulting in a chain of events like management failures, using increased doses of insecticides, intensified chemical residues in the food chain, and irreparable environmental contamination. Major insecticides globally used to control T. absoluta belong to organophosphates, synthetic pyrethroids, neonicotinoids, diamides, avermectins, spinosyns, and oxadizines. Understanding the baseline susceptibility of pests to insecticides helps for better pest management options and is the same for T. absoluta populations to insecticides. The current review paper discusses the T. absoluta distribution, biology, spread, host range, baseline insecticide susceptibility, global insecticide resistance status, and possible management inputs based on our understanding of insecticide susceptibility. The pest can be managed with integrated insecticide resistance management including molecular approaches.
Collapse
Affiliation(s)
| | - Marimuthu Murugan
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, India
| | | | | | - Kolanchi Prakash
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, India
| |
Collapse
|
7
|
Wang L, Li Z, Li M, Chen Y, Zhang Y, Bao W, Wang X, Qi Z, Zhang W, Tao Y. Mechanisms of synthetic bacterial flora YJ-1 to enhance cucumber resistance under combined phthalate-disease stresses. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121564. [PMID: 38944953 DOI: 10.1016/j.jenvman.2024.121564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024]
Abstract
Biotic and abiotic stresses have emerged as major constraints to agricultural production, causing irreversible adverse impacts on agricultural production systems and thus posing a threat to food security. In this study, a new strain of Bacillus subtilis DNYB-S1 was isolated from soil contaminated with Fusarium wilt. It was found that artificially synthetic flora (YJ-1) [Enterobacter sp. DNB-S2 and Rhodococcus pyridinovorans DNHP-S2, DNYB-S1] could effectively mitigate both biotic (Fusarium wilt) and abiotic (phthalates) sources of stresses, with the inhibition rate of YJ-1 resistant to wilt being 71.25% and synergistic degradation of 500 mg/L PAEs was 91.23%. The adaptive difference of YJ-1 was 0.59 and the ecological niche overlap value was -0.05 as determined by Lotka-Volterra modeling. These results indicate that YJ-1 has good ecological stability. The major degradation intermediates included 2-ethylhexyl benzoate (EHBA), phthalic acid (PA), diisobutyl phthalate (DIBP), and butyl benzoate, suggesting that YJ-1 can provide a more efficient pathway for PAEs degradation. In addition, there was metabolic mutualism among the strains that will selectively utilize the provided carbon source (some metabolites of PAEs) for growth. The pot experiment showed that YJ-1 with cucumber reduced the incidence of cucumber wilt by 45.31%. YJ-1 could reduce the concentration of PAEs (DBP: DEHP = 1:1) in soil species from 30 mg/kg to 4.26 mg/kg within 35 d, with a degradation efficiency of 85.81%. Meanwhile, the concentration of PAEs in cucumber was reduced to 0.01 mg/kg, indicating that YJ-1 is directly involved in the degradation of soil PAEs and the enhancement of plant immunity. In conclusion, this study provides a new perspective for the development of customized microbiomes for phytoremediation under combined biotic-abiotic stresses in agricultural production processes.
Collapse
Affiliation(s)
- Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zhe Li
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - MingZe Li
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - YuXin Chen
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China.
| | - WenJing Bao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - XiaoDong Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - ZeWei Qi
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - WenQian Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| |
Collapse
|
8
|
Ogutu EA, Madahana SL, Bhavani S, Macharia G. Genotype × environment interaction: trade-offs between the agronomic performance and stability of durum ( Triticum turgidum) wheat to stem-rust resistance in Kenya. FRONTIERS IN PLANT SCIENCE 2024; 15:1427483. [PMID: 39119503 PMCID: PMC11306089 DOI: 10.3389/fpls.2024.1427483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/04/2024] [Indexed: 08/10/2024]
Abstract
Stem rust significantly threatens durum wheat production, often resulting in substantial yield losses. To better understand resistance mechanisms and the stability of durum lines in stem rust-prone environments, this study evaluated 49 durum genotypes over three seasons at the Kenya Agricultural and Livestock Research Organization in Njoro. Utilizing 7 × 7 alpha lattice design, we assessed adult-plant resistance, monitored disease progression through final disease score (FDS) and area under the disease progress curve (AUDPC), and evaluated agronomic performance. Statistical analyses revealed significant seasonal and genotypic effects on FDS, AUDPC, spike length, and grain yield (p≤0.01; p≤0.001), with important genotype-by-season interactions (p≤0.05; p≤0.001). Broad-sense heritability for AUDPC was high at 0.91 and moderate at 0.35 for kernels per spike, underscoring the genetic basis of these traits. Notably, we observed negative correlations between disease parameters and agronomic traits, suggesting potential trade-offs. GGE biplot analysis singled out the first season (main season of 2019) as crucial for evaluating stem rust resistance and identified several durum lines, such as G45 and G48, as consistently resistant across all conditions. Furthermore, this analysis highlighted G45, G48, G176 and G189 as the highest yielding and most stable lines. The discovery of these resistant and high-performing genotypes is critical for enhancing durum breeding programs, helping to mitigate the impact of stem rust and improve yield stability.
Collapse
Affiliation(s)
- Emmaculate A. Ogutu
- Kenya Agricultural and Livestock Research Organization (KALRO), Njoro, Kenya
| | - Sammy L. Madahana
- Kenya Agricultural and Livestock Research Organization (KALRO), Njoro, Kenya
| | - Sridhar Bhavani
- World Agroforestry Centre (ICRAF House), International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Godwin Macharia
- Kenya Agricultural and Livestock Research Organization (KALRO), Njoro, Kenya
| |
Collapse
|
9
|
Elhady A, Alghanmi L, Abd-Elgawad MMM, Heuer H, Saad MM, Hirt H. Plant-parasitic nematode research in the arid desert landscape: a systematic review of challenges and bridging interventions. FRONTIERS IN PLANT SCIENCE 2024; 15:1432311. [PMID: 39104847 PMCID: PMC11298362 DOI: 10.3389/fpls.2024.1432311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024]
Abstract
Plant-parasitic nematode research in the Middle East and North Africa (MENA) region faces significant challenges rooted in a need for proper assembly, diversity, and a unified and purpose-driven framework. This led to exacerbating their detrimental effects on crop production. This systematic review addresses the current situation and challenges that require targeted interventions to sustainably manage plant-parasitic nematodes and reduce their detrimental impact on agriculture production in the MENA region. We analyzed the nematode-related research conducted within the region over the past three decades to assess available resources and promote diverse research approaches beyond basic morphology-focused surveys. We show that crops are attacked by a diverse spectrum of plant-parasitic nematodes that exceed the global economic threshold limits. In particular, Meloidogyne species exceed the threshold limit by 8 - 14-fold, with a 100% frequency of occurrence in the collected soil samples, posing a catastrophic threat to crop production and the economy. We highlight detrimental agriculture practices in the MENA region, such as transferring soil from established fields to barren land, which enhances the dissemination of plant-parasitic nematodes, disrupting soil ecology and causing significant agricultural challenges in newly cultivated areas. Looking into the behavior of farmers, raising awareness must be accompanied by available solutions, as more practical alternatives are needed to gain the confidence of the farmers. We propose integrating microbial-based products and soil development practices in hygienic farming as resilient and sustainable solutions for nematode management. Increased emphasis is required to diversify the nematode-related research areas to bridge the gaps and facilitate the transition from fundamental knowledge to practical solutions. A cohesive network of nematologists and collaboration with national and international entities is crucial for exchanging knowledge related to legislation against invasive species.
Collapse
Affiliation(s)
- Ahmed Elhady
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Linah Alghanmi
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | - Holger Heuer
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | - Maged M. Saad
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Heribert Hirt
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
10
|
Mohanavel V, Muthu V, Kambale R, Palaniswamy R, Seeli P, Ayyenar B, Rajagopalan V, Manickam S, Rajasekaran R, Rahman H, Nallathambi J, Swaminathan M, Chellappan G, Vellingiri G, Muthurajan R. Marker-assisted breeding accelerates the development of multiple-stress-tolerant rice genotypes adapted to wider environments. FRONTIERS IN PLANT SCIENCE 2024; 15:1402368. [PMID: 39070911 PMCID: PMC11272538 DOI: 10.3389/fpls.2024.1402368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/03/2024] [Indexed: 07/30/2024]
Abstract
Introduction Rice, one of the major staple food crops is frequently affected by various biotic/abiotic stresses including drought, salinity, submergence, heat, Bacterial leaf blight, Brown plant hopper, Gall midge, Stem borer, Leaf folder etc. Sustained increase of yield growth is highly necessary to meet the projected demand in rice production during the year 2050. Hence, development of high yielding and multiple stress tolerant rice varieties adapted to wider environments will serve the need. Methods A systematic MAB approach was followed to pyramid eight major QTLs/genes controlling tolerance to major abiotic/biotic stresses viz., drought (qDTY1.1 and qDTY2.1), salinity (Saltol), submergence (Sub1), bacterial leaf blight (xa13 and Xa21), blast (Pi9) and gall midge (Gm4) in the genetic background of an elite rice culture CBMAS 14065 possessing high yield and desirable grain quality traits. Two advanced backcross derivatives of CBMAS 14065 possessing different combinations of target QTLs namely #27-1-39 (qDTY1.1+qDTY2.1+Sub1+xa13+Xa21+Gm4+Pi9) and #29-2-2 (qDTY1.1+qDTY2.1+Saltol+Xa21+Gm4+Pi9) were inter-mated. Results Inter-mated F1 progenies harboring all the eight target QTLs/genes were identified through foreground selection. Genotyping of the inter-mated F4 population identified 14 progenies possessing all eight target QTLs/genes under homozygous conditions. All the fourteen progenies were forwarded up to F8 generation and evaluated for their yield and tolerance to dehydration, salinity, submergence, blast and bacterial leaf blight. All the 14 progenies exhibited enhanced tolerance to dehydration and salinity stresses by registering lesser reduction in their chlorophyll content, relative water content, root length, root biomass etc., against their recurrent parent Improved White Ponni/CBMAS 14065. All the 14 progenies harboring Sub1 loci from FR13A exhibited enhanced survival (90 - 95%) under 2 weeks of submergence /flooding when compared to their recurrent parent CBMAS 14065 which showed 100% susceptibility The inter-mated population showed a enhanced level of resistance to bacterial leaf blight (Score = 0 to 2) against blast (Score - 0) whereas the susceptible check CO 39 and the recurrent parent CBMAS 14065 recorded high level of susceptibility (Score = 7 to 9). Conclusion or discussion Our study demonstrated the accelerated development of multiple stress tolerant rice genotypes through marker assisted pyramiding of target QTLs/genes using tightly linked markers. These multiple stress tolerant rice lines will serve as excellent genetic stocks for field testing/variety release and also as parental lines in future breeding programs for developing climate resilient super rice varieties.
Collapse
Affiliation(s)
- Vignesh Mohanavel
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Valarmathi Muthu
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Rohit Kambale
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Rakshana Palaniswamy
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Prisca Seeli
- Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Bharathi Ayyenar
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Veeraranjani Rajagopalan
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Sudha Manickam
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Raghu Rajasekaran
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Hifzur Rahman
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
- International Centre for Biosaline Agriculture, Dubai, United Arab Emirates
| | - Jagadeeshselvam Nallathambi
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Manonmani Swaminathan
- Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Gopalakrishnan Chellappan
- Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | | | - Raveendran Muthurajan
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
11
|
Verma N, Kaushal P, Sidhu AK. Harnessing biological synthesis: Zinc oxide nanoparticles for plant biotic stress management. Front Chem 2024; 12:1432469. [PMID: 39055042 PMCID: PMC11269107 DOI: 10.3389/fchem.2024.1432469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
Crop growth and yield are negatively impacted by increased biotic stress in the agricultural sector due to increasing global warming and changing climatic patterns. The host plant's machinery is exploited by biotic stress, which is caused by organisms like bacteria, fungi, viruses, insects, nematodes, and mites. This results in nutrient deprivation, increased reactive oxygen species and disturbances in physiological, morphological, and molecular processes. Although used widely, conventional disease management strategies like breeding, intercropping, and chemical fertilizers have drawbacks in terms of time commitment and environmental impact. An environmentally beneficial substitute is offered by the developing field of nanotechnology, where nanoparticles such as zinc oxide are gaining popularity due to their potential applications as antimicrobials and nano-fertilizers. This review delves into the biological synthesis of ZnO nanoparticles employing plants and microbes, function of ZnO nanoparticles in biotic stress mitigation, elucidating their effectiveness and toxicological implications in agricultural. This study supports a cautious approach, stressing the prudent application of ZnO nanoparticles to avoid possible toxicity, in line with the larger global agenda to end hunger, guarantee food security, and advance sustainable agriculture.
Collapse
Affiliation(s)
- Naveen Verma
- Department of Biotechnology, Khalsa College, Amritsar, India
| | - Priya Kaushal
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| | | |
Collapse
|
12
|
Serrie M, Ribeyre F, Brun L, Audergon JM, Quilot B, Roth M. Dare to be resilient: the key to future pesticide-free orchards? JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3835-3848. [PMID: 38634690 PMCID: PMC11233412 DOI: 10.1093/jxb/erae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/15/2024] [Indexed: 04/19/2024]
Abstract
Considering the urgent need for more sustainable fruit tree production, it is high time to find durable alternatives to the systematic use of phytosanitary products in orchards. To this end, resilience can deliver a number of benefits. Relying on a combination of tolerance, resistance, and recovery traits, disease resilience appears as a cornerstone to cope with the multiple pest and disease challenges over an orchard's lifetime. Here, we describe resilience as the capacity of a tree to be minimally affected by external disturbances or to rapidly bounce back to normal functioning after being exposed to these disturbances. Based on a literature survey largely inspired from research on livestock, we highlight different approaches for dissecting phenotypic and genotypic components of resilience. In particular, multisite experimental designs and longitudinal measures of so-called 'resilience biomarkers' are required. We identified a list of promising biomarkers relying on ecophysiological and digital measurements. Recent advances in high-throughput phenotyping and genomics tools will likely facilitate fine scale temporal monitoring of tree health, allowing identification of resilient genotypes with the calculation of specific resilience indicators. Although resilience could be considered as a 'black box' trait, we demonstrate how it could become a realistic breeding goal.
Collapse
Affiliation(s)
| | | | - Laurent Brun
- INRAE, UERI Gotheron, Saint-Marcel-Lès-Valence, France
| | | | | | | |
Collapse
|
13
|
Liu L, Gong Y, Yahaya BS, Chen Y, Shi D, Liu F, Gou J, Zhou Z, Lu Y, Wu F. Maize auxin response factor ZmARF1 confers multiple abiotic stresses resistances in transgenic Arabidopsis. PLANT MOLECULAR BIOLOGY 2024; 114:75. [PMID: 38878261 DOI: 10.1007/s11103-024-01470-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 05/12/2024] [Indexed: 06/29/2024]
Abstract
Prolonged exposure to abiotic stresses causes oxidative stress, which affects plant development and survival. In this research, the overexpression of ZmARF1 improved tolerance to low Pi, drought and salinity stresses. The transgenic plants manifested tolerance to low Pi by their superior root phenotypic traits: root length, root tips, root surface area, and root volume, compared to wide-type (WT) plants. Moreover, the transgenic plants exhibited higher root and leaf Pi content and upregulated the high affinity Pi transporters PHT1;2 and phosphorus starvation inducing (PSI) genes PHO2 and PHR1 under low Pi conditions. Transgenic Arabidopsis displayed tolerance to drought and salt stress by maintaining higher chlorophyll content and chlorophyll fluorescence, lower water loss rates, and ion leakage, which contributed to the survival of overexpression lines compared to the WT. Transcriptome profiling identified a peroxidase gene, POX, whose transcript was upregulated by these abiotic stresses. Furthermore, we confirmed that ZmARF1 bound to the auxin response element (AuxRE) in the promoter of POX and enhanced its transcription to mediate tolerance to oxidative stress imposed by low Pi, drought and salt stress in the transgenic seedlings. These results demonstrate that ZmARF1 has significant potential for improving the tolerance of crops to multiple abiotic stresses.
Collapse
Affiliation(s)
- Ling Liu
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, 644000, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Ying Gong
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Chengdu, Sichuan, China
| | - Baba Salifu Yahaya
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Chengdu, Sichuan, China
| | - Yushu Chen
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Chengdu, Sichuan, China
| | - Dengke Shi
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Chengdu, Sichuan, China
| | - Fangyuan Liu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Chengdu, Sichuan, China
| | - Junlin Gou
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Chengdu, Sichuan, China
| | - Zhanmei Zhou
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Chengdu, Sichuan, China
| | - Yanli Lu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China.
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Chengdu, Sichuan, China.
| | - Fengkai Wu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China.
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Chengdu, Sichuan, China.
| |
Collapse
|
14
|
Easwaran C, Christopher SR, Moorthy G, Mohan P, Marimuthu R, Koothan V, Nallusamy S. Nano hybrid fertilizers: A review on the state of the art in sustainable agriculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172533. [PMID: 38649050 DOI: 10.1016/j.scitotenv.2024.172533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
The advent of Nanohybrid (NH) fertilizers represents a groundbreaking advancement in the pursuit of precision and sustainable agriculture. This review abstract encapsulates the transformative potential of these innovative formulations in addressing key challenges faced by modern farming practices. By incorporating nanotechnology into traditional fertilizer matrices, nanohybrid formulations enable precise control over nutrient release, facilitating optimal nutrient uptake by crops. This enhanced precision not only fosters improved crop yields but also mitigates issues of over-fertilization, aligning with the principles of sustainable agriculture. Furthermore, nanohybrid fertilizers exhibit the promise of minimizing environmental impact. Their controlled release mechanisms significantly reduce nutrient runoff, thereby curbing water pollution and safeguarding ecosystems. This dual benefit of precision nutrient delivery and environmental sustainability positions nanohybrid fertilizers as a crucial tool in the arsenal of precision agriculture practices. The intricate processes of uptake, translocation, and biodistribution of nutrients within plants are examined in the context of nanohybrid fertilizers. The nanoscale features of these formulations play a pivotal role in governing the efficiency of nutrient absorption, internal transport, and distribution within plant tissues. Factors affecting the performance of nanohybrid fertilizers are scrutinized, encompassing aspects such as soil type, crop variety, and environmental conditions. Understanding these variables is crucial for tailoring nanohybrid formulations to specific agricultural contexts, and optimizing their impact on crop productivity and resource efficiency. Environmental considerations are integral to the review, assessing the broader implications of nanohybrid fertilizer application. This review offers a holistic overview of nanohybrid fertilizers in precision and sustainable agriculture. Exploring delivery mechanisms, synthesis methods, uptake dynamics, biodistribution patterns, influencing factors, and environmental implications, it provides a comprehensive understanding of the multifaceted role and implications of nanohybrid fertilizers in advancing modern agricultural practices.
Collapse
Affiliation(s)
- Cheran Easwaran
- Centre for Agricultural Nanotechnology, Directorate of Natural Resource Management, Tamil Nadu Agricultural University, 641003, India
| | - Sharmila Rahale Christopher
- Centre for Agricultural Nanotechnology, Directorate of Natural Resource Management, Tamil Nadu Agricultural University, 641003, India
| | - Gokulakrishnan Moorthy
- Indian Council of Agricultural Research - Indian Institute of Agricultural Biotechnology, Ranchi 834003, India
| | - Prasanthrajan Mohan
- Centre for Agricultural Nanotechnology, Directorate of Natural Resource Management, Tamil Nadu Agricultural University, 641003, India
| | - Raju Marimuthu
- Centre for Water and Geospatial Studies, Tamil Nadu Agricultural University, 641003, India
| | - Vanitha Koothan
- Department of Fruit Science, HC& RI, Tamil Nadu Agricultural University, 641003, India
| | - Saranya Nallusamy
- Department of Plant Molecular Biology and Bioinformatics, Tamil Nadu Agricultural University, 641003, India
| |
Collapse
|
15
|
Choudhary A, Senthil-Kumar M. Drought: A context-dependent damper and aggravator of plant diseases. PLANT, CELL & ENVIRONMENT 2024; 47:2109-2126. [PMID: 38409868 DOI: 10.1111/pce.14863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/04/2024] [Accepted: 02/10/2024] [Indexed: 02/28/2024]
Abstract
Drought dynamically influences the interactions between plants and pathogens, thereby affecting disease outbreaks. Understanding the intricate mechanistic aspects of the multiscale interactions among plants, pathogens, and the environment-known as the disease triangle-is paramount for enhancing the climate resilience of crop plants. In this review, we systematically compile and comprehensively analyse current knowledge on the influence of drought on the severity of plant diseases. We emphasise that studying these stresses in isolation is not sufficient to predict how plants respond to combined stress from both drought and pathogens. The impact of drought and pathogens on plants is complex and multifaceted, encompassing the activation of antagonistic signalling cascades in response to stress factors. The nature, intensity, and temporality of drought and pathogen stress occurrence significantly influence the outcome of diseases. We delineate the drought-sensitive nodes of plant immunity and highlight the emerging points of crosstalk between drought and defence signalling under combined stress. The limited mechanistic understanding of these interactions is acknowledged as a key research gap in this area. The information synthesised herein will be crucial for crafting strategies for the accurate prediction and mitigation of future crop disease risks, particularly in the context of a changing climate.
Collapse
|
16
|
Laxuman C, Naik YD, Desai BK, Kenganal M, Patil B, Reddy BS, Patil DH, Chakurte S, Kuchanur PH, K SK, Gaddi AK, Yogesh LN, Nidagundi J, Dodamani BM, Sunkad G, Thudi M, Varshney RK. Development and evaluation of Fusarium wilt-resistant and high-yielding chickpea advanced breeding line, KCD 11. THE PLANT GENOME 2024; 17:e20460. [PMID: 38773690 DOI: 10.1002/tpg2.20460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 05/24/2024]
Abstract
Fusarium wilt (FW) is the most severe soil-borne disease of chickpea that causes yield losses up to 100%. To improve FW resistance in JG 11, a high-yielding variety that became susceptible to FW, we used WR 315 as the donor parent and followed the pedigree breeding method. Based on disease resistance and yield performance, four lines were evaluated in station trials during 2017-2018 and 2018-2019 at Kalaburagi, India. Further, two lines, namely, Kalaburagi chickpea desi 5 (KCD 5) and KCD 11, which possesses the resistance allele for a specific single-nucleotide polymorphism marker linked with FW resistance, were evaluated across six different locations (Bidar, Kalaburagi, Raichur, Siruguppa, Bhimarayanagudi and Hagari) over a span of 3 years (2020-2021, 2021-2022 and 2022-2023). KCD 11 exhibited notable performance, showcasing yield advantages of 8.67%, 11.26% and 23.88% over JG 11, and the regional checks Super Annigeri 1 (SA 1) and Annigeri 1, respectively, with enhanced FW resistance in wilt sick plot. Further, KCD 11 outperformed JG 11, SA 1 and Annigeri 1 in multi-location trials conducted across three seasons in the North Eastern Transition Zone, North Eastern Dry Zone, and North Dry Zones of Karnataka. KCD 11 was also tested in trials conducted by All India Coordinated Research Project on chickpea and was also nominated for state varietal trials for its release as a FW-resistant and high-yielding variety. The selected line is anticipated to cater the needs of chickpea growers with the dual advantage of yield increment and disease resistance.
Collapse
Affiliation(s)
- C Laxuman
- Zonal Agricultural Research Station (ZARS), Kalaburagi, University of Agricultural Sciences-Raichur (UAS-R), Raichur, Karnataka, India
| | - Yogesh Dashrath Naik
- Department of Agricultural Biotechnology and Molecular Biology, Dr. Rajendra Prasad Central Agricultural University (RPCAU), Samastipur, Bihar, India
| | - B K Desai
- Department of Agronomy, University of Agricultural Sciences, Raichur, Karnataka, India
| | - Mallikarjun Kenganal
- Zonal Agricultural Research Station (ZARS), Kalaburagi, University of Agricultural Sciences-Raichur (UAS-R), Raichur, Karnataka, India
| | - Bharat Patil
- Department of Agronomy, University of Agricultural Sciences, Raichur, Karnataka, India
| | - B S Reddy
- Zonal Agricultural Research Station (ZARS), Kalaburagi, University of Agricultural Sciences-Raichur (UAS-R), Raichur, Karnataka, India
| | - D H Patil
- Zonal Agricultural Research Station (ZARS), Kalaburagi, University of Agricultural Sciences-Raichur (UAS-R), Raichur, Karnataka, India
| | - Sidramappa Chakurte
- Department of Genetics and Plant Breeding, Agricultural Research Station, UAS-R, Bidar, Karnataka, India
| | - P H Kuchanur
- Department of Genetics and Plant Breeding, Collage of Agriculture, UAS-R, Bheemarayanagudi, Karnataka, India
| | - Shiva Kumar K
- Department of Genetics and Plant Breeding, Main Agricultural Research Station (MARS), UAS-R, Raichur, Karnataka, India
| | - Ashok Kumar Gaddi
- Department of Soil Science, Agricultural Research Station, Sirguppa, UAS-R, Sirguppa, Karnataka, India
| | - L N Yogesh
- Department of Genetics and Plant Breeding, Agricultural Research Station, UAS-R, Hagari, Karnataka, India
| | - Jayaprakash Nidagundi
- Department of Genetics and Plant Breeding, Main Agricultural Research Station (MARS), UAS-R, Raichur, Karnataka, India
| | - B M Dodamani
- Zonal Agricultural Research Station (ZARS), Kalaburagi, University of Agricultural Sciences-Raichur (UAS-R), Raichur, Karnataka, India
| | - Gururaj Sunkad
- Department of Plant Pathology, University of Agricultural Sciences, Raichur, Karnataka, India
| | - Mahendar Thudi
- Centre for Crop Health and School of Agriculture and Environmental Science, University of Southern Queensland (UniSQ), Toowoomba, Queensland, Australia
- College of Agriculture, Family Sciences and Technology, Fort Valley State University, Fort Valley, Georgia, USA
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| | - Rajeev K Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
17
|
Kour D, Khan SS, Kumari S, Singh S, Khan RT, Kumari C, Kumari S, Dasila H, Kour H, Kaur M, Ramniwas S, Kumar S, Rai AK, Cheng WH, Yadav AN. Microbial nanotechnology for agriculture, food, and environmental sustainability: Current status and future perspective. Folia Microbiol (Praha) 2024; 69:491-520. [PMID: 38421484 DOI: 10.1007/s12223-024-01147-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024]
Abstract
The field of nanotechnology has the mysterious capacity to reform every subject it touches. Nanotechnology advancements have already altered a variety of scientific and industrial fields. Nanoparticles (NPs) with sizes ranging from 1 to 100 nm (nm) are of great scientific and commercial interest. Their functions and characteristics differ significantly from those of bulk metal. Commercial quantities of NPs are synthesized using chemical or physical methods. The use of the physical and chemical approaches remained popular for many years; however, the recognition of their hazardous effects on human well-being and conditions influenced serious world perspectives for the researchers. There is a growing need in this field for simple, non-toxic, clean, and environmentally safe nanoparticle production methods to reduce environmental impact and waste and increase energy productivity. Microbial nanotechnology is relatively a new field. Using various microorganisms, a wide range of nanoparticles with well-defined chemical composition, morphology, and size have been synthesized, and their applications in a wide range of cutting-edge technological areas have been investigated. Green synthesis of the nanoparticles is cost-efficient and requires low maintenance. The present review highlights the synthesis of the nanoparticles by different microbes, their characterization, and their biotechnological potential. It further deals with the applications in biomedical, food, and textile industries as well as its role in biosensing, waste recycling, and biofuel production.
Collapse
Affiliation(s)
- Divjot Kour
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmaur, 173101, Himachal Pradesh, India
| | - Sofia Sharief Khan
- Department of Biotechnology, Shri Mata Vaishno Devi University, Katra, 182320, Jammu and Kashmir, India
| | - Shilpa Kumari
- Department of Physics, IEC University, Baddi, 174103, Solan, Himachal Pradesh, India
| | - Shaveta Singh
- University School of Medical and Allied Sciences, Rayat Bahra University, Mohali, Chandigarh, India
| | - Rabiya Tabbassum Khan
- Department of Biotechnology, Shri Mata Vaishno Devi University, Katra, 182320, Jammu and Kashmir, India
| | - Chandresh Kumari
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Vill-Bhajhol 173229, Solan, Himachal Pradesh, India
| | - Swati Kumari
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Vill-Bhajhol 173229, Solan, Himachal Pradesh, India
| | - Hemant Dasila
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmaur, 173101, Himachal Pradesh, India
| | - Harpreet Kour
- Department of Botany, University of Jammu, Jammu, 180006, Jammu and Kashmir, India
| | - Manpreet Kaur
- Department of Physics, IEC University, Baddi, 174103, Solan, Himachal Pradesh, India
| | - Seema Ramniwas
- Department of Biotechnology, University Centre for Research and Development, Chandigarh University, Gharuan, 140413, Punjab, India
| | - Sanjeev Kumar
- Department of Genetics and Plant Breeding, Faculty of Agricultural Science, GLA University, Mathura, Uttar Pradesh, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Wan-Hee Cheng
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, Nilai 71800, Negeri Sembilan, Malaysia
| | - Ajar Nath Yadav
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India.
| |
Collapse
|
18
|
Menkir A, Dieng I, Gedil M, Mengesha W, Oyekunle M, Riberio PF, Adu GB, Yacoubou AM, Coulibaly M, Bankole FA, Derera J, Bossey B, Unachukwu N, Ilesanmi Y, Meseka S. Approaches and progress in breeding drought-tolerant maize hybrids for tropical lowlands in west and central Africa. THE PLANT GENOME 2024; 17:e20437. [PMID: 38379199 DOI: 10.1002/tpg2.20437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/12/2023] [Accepted: 01/18/2024] [Indexed: 02/22/2024]
Abstract
Drought represents a significant production challenge to maize farmers in West and Central Africa, causing substantial economic losses. Breeders at the International Institute of Tropical Agriculture have therefore been developing drought-tolerant maize varieties to attain high grain yields in rainfed maize production zones. The present review provides a historical overview of the approaches used and progress made in developing drought-tolerant hybrids over the years. Breeders made a shift from a wide area testing approach, to the use of managed screening sites, to precisely control the intensity, and timing of drought stress for developing drought-tolerant maize varieties. These sites coupled with the use of molecular markers allowed choosing suitable donors with drought-adaptive alleles for integration into existing elite maize lines to generate new drought-tolerant inbred lines. These elite maize inbred lines have then been used to develop hybrids with enhanced tolerance to drought. Genetic gains estimates were made using performance data of drought-tolerant maize hybrids evaluated in regional trials for 11 years under managed drought stress, well-watered conditions, and across diverse rainfed environments. The results found significant linear annual yield gains of 32.72 kg ha-1 under managed drought stress, 38.29 kg ha-1 under well-watered conditions, and 66.57 kg ha-1 across multiple rainfed field environments. Promising hybrids that deliver high grain yields were also identified for areas affected by drought and variable rainfed growing conditions. The significant genetic correlations found among the three growing conditions highlight the potential to exploit the available genetic resources and modern tools to further enhance tolerance to drought in hybrids.
Collapse
Affiliation(s)
- Abebe Menkir
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Ibnou Dieng
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Melaku Gedil
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Wende Mengesha
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Muhyideen Oyekunle
- Institute for Agricultural Research/Ahmadu Bello University, Zaria, Nigeria
| | | | | | | | | | | | - John Derera
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Bunmi Bossey
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Nnanna Unachukwu
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Yinka Ilesanmi
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Silvestro Meseka
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| |
Collapse
|
19
|
Rubilar-Hernández C, Álvarez-Maldini C, Pizarro L, Figueroa F, Villalobos-González L, Pimentel P, Fiore N, Pinto M. Nitric Oxide Mitigates the Deleterious Effects Caused by Infection of Pseudomonas syringae pv. syringae and Modulates the Carbon Assimilation Process in Sweet Cherry under Water Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:1361. [PMID: 38794433 PMCID: PMC11125257 DOI: 10.3390/plants13101361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024]
Abstract
Bacterial canker is an important disease of sweet cherry plants mainly caused by Pseudomonas syringae pv. syringae (Pss). Water deficit profoundly impairs the yield of this crop. Nitric oxide (NO) is a molecule that plays an important role in the plant defense mechanisms. To evaluate the protection exerted by NO against Pss infection under normal or water-restricted conditions, sodium nitroprusside (SNP), a NO donor, was applied to sweet cherry plants cv. Lapins, before they were exposed to Pss infection under normal or water-restricted conditions throughout two seasons. Well-watered plants treated with exogenous NO presented a lower susceptibility to Pss. A lower susceptibility to Pss was also induced in plants by water stress and this effect was increased when water stress was accompanied by exogenous NO. The lower susceptibility to Pss induced either by exogenous NO or water stress was accompanied by a decrease in the internal bacterial population. In well-watered plants, exogenous NO increased the stomatal conductance and the net CO2 assimilation. In water-stressed plants, NO induced an increase in the leaf membranes stability and proline content, but not an increase in the CO2 assimilation or the stomatal conductance.
Collapse
Affiliation(s)
- Carlos Rubilar-Hernández
- Laboratorio de Inmunidad Vegetal, Instituto de Ciencias Agroalimentarias, Animales y Ambientales, Universidad de O’Higgins, San Fernando 3070000, Chile; (C.R.-H.); (L.P.); (F.F.)
| | - Carolina Álvarez-Maldini
- Instituto de Ciencias Agroalimentarias, Animales y Ambientales, Universidad de O’Higgins, San Fernando 3070000, Chile;
- Departamento de Silvicultura, Facultad de Ciencias Forestales, Universidad de Concepción, Concepción 4070374, Chile
| | - Lorena Pizarro
- Laboratorio de Inmunidad Vegetal, Instituto de Ciencias Agroalimentarias, Animales y Ambientales, Universidad de O’Higgins, San Fernando 3070000, Chile; (C.R.-H.); (L.P.); (F.F.)
- Centro UOH de Biología de Sistemas Para la Sanidad Vegetal, Universidad de O’Higgins, San Fernando 3070000, Chile
| | - Franco Figueroa
- Laboratorio de Inmunidad Vegetal, Instituto de Ciencias Agroalimentarias, Animales y Ambientales, Universidad de O’Higgins, San Fernando 3070000, Chile; (C.R.-H.); (L.P.); (F.F.)
| | | | - Paula Pimentel
- Centro de Estudios Avanzados en Fruticultura (CEAF), Rengo 2940000, Chile; (L.V.-G.); (P.P.)
| | - Nicola Fiore
- Departamento de Sanidad Vegetal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago 8820808, Chile;
| | - Manuel Pinto
- Instituto de Ciencias Agroalimentarias, Animales y Ambientales, Universidad de O’Higgins, San Fernando 3070000, Chile;
| |
Collapse
|
20
|
Yan W, Sharif R, Sohail H, Zhu Y, Chen X, Xu X. Surviving a Double-Edged Sword: Response of Horticultural Crops to Multiple Abiotic Stressors. Int J Mol Sci 2024; 25:5199. [PMID: 38791235 PMCID: PMC11121501 DOI: 10.3390/ijms25105199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Climate change-induced weather events, such as extreme temperatures, prolonged drought spells, or flooding, pose an enormous risk to crop productivity. Studies on the implications of multiple stresses may vary from those on a single stress. Usually, these stresses coincide, amplifying the extent of collateral damage and contributing to significant financial losses. The breadth of investigations focusing on the response of horticultural crops to a single abiotic stress is immense. However, the tolerance mechanisms of horticultural crops to multiple abiotic stresses remain poorly understood. In this review, we described the most prevalent types of abiotic stresses that occur simultaneously and discussed them in in-depth detail regarding the physiological and molecular responses of horticultural crops. In particular, we discussed the transcriptional, posttranscriptional, and metabolic responses of horticultural crops to multiple abiotic stresses. Strategies to breed multi-stress-resilient lines have been presented. Our manuscript presents an interesting amount of proposed knowledge that could be valuable in generating resilient genotypes for multiple stressors.
Collapse
Affiliation(s)
- Wenjing Yan
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (W.Y.); (R.S.); (H.S.); (Y.Z.); (X.C.)
| | - Rahat Sharif
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (W.Y.); (R.S.); (H.S.); (Y.Z.); (X.C.)
| | - Hamza Sohail
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (W.Y.); (R.S.); (H.S.); (Y.Z.); (X.C.)
| | - Yu Zhu
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (W.Y.); (R.S.); (H.S.); (Y.Z.); (X.C.)
| | - Xuehao Chen
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (W.Y.); (R.S.); (H.S.); (Y.Z.); (X.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xuewen Xu
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (W.Y.); (R.S.); (H.S.); (Y.Z.); (X.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
21
|
Ahmad I, Mashwani ZUR, Zohaib Younas, Yousaf T, Ahmad A, Vladulescu C. Antioxidant activity, metabolic profiling, in-silico molecular docking and ADMET analysis of nano selenium treated sesame seed bioactive compounds as potential novel drug targets against cardiovascular disease related receptors. Heliyon 2024; 10:e27909. [PMID: 38571619 PMCID: PMC10987859 DOI: 10.1016/j.heliyon.2024.e27909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
Sesame (Sesamum indicum) is abundant in a diverse range of lignans, including sesamin, and γ-tocopherol, constituting a cluster of bioactive phenolic compound used for food and medicinal purposes. Cardiovascular diseases remain a leading global health challenge, demanding vigilant prevention and innovative treatments. This study was carried out to evaluate the effect of plant mediated SeNPs on sesame metabolic profile and to screen and check the effect bioactive compounds against CVD via molecular drug docking technique. Three sesame germplasms TS-5, TH-6 and Till-18 were treated with varying concentrations (10, 20, 30, 40 and 50 ppm) of plant-mediated selenium nanoparticles (SeNPs). There were three groups of treatments group-1 got only seed pretreatments of SeNPs, Group-2 with only foliar applications of SeNPs and Group-3 with both seed pretreatments and foliar applications of SeNPs. It was found that plants treated with 40 ppm of SeNPS in group 3 exhibited the highest total phenolic and flavonoid content. Total phenolic content at T4 was highest for TS-5 (134%), TH-6 (132%), and Till-18 (112%). LCMS analysis revealed a total of 276 metabolites, with phenolics, flavonoids, and free fatty acids being most abundant. KEGG analysis indicated enrichment in free fatty acid and phenylalanine tryptophan pathways. ADMET analysis and virtual screening resulted in total of five metabolic compounds as a potential ligand against Hemoglobin beta subunit. Lowest binding energy was achieved by Delta-Tocopherol (-6.98) followed by Lactoflavin (-6.20) and Sesamin (-5.00). Lipinski rule of five revealed that all the compounds completely safe to be used as drug against CVD and specifically for HBB. It was concluded that bioactive compounds from sesame could be an alternative source of drug for CVD related problems and especially for HBB.
Collapse
Affiliation(s)
- Ilyas Ahmad
- Department of Botany, Arid Agriculture University, Rawalpindi, Punjab, Pakistan
- Department of Food Science and Nutrition, College of Food, Agriculture and Natural Resources, University of Minnesota, Twin Cities, Minneapolis, USA
| | - Zia-ur-Rehman Mashwani
- Department of Botany, Arid Agriculture University, Rawalpindi, Punjab, Pakistan
- Pakistan Academy of Sciences, Islamabad 44010, Pakistan
| | - Zohaib Younas
- Department of Botany, Arid Agriculture University, Rawalpindi, Punjab, Pakistan
| | - Tayyaba Yousaf
- Department of Botany, Arid Agriculture University, Rawalpindi, Punjab, Pakistan
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Carmen Vladulescu
- Department of Biology and Environmental Engineering, University of Craiova, A. I Cuza 13, Craiva, 200585, Romania
| |
Collapse
|
22
|
Ang MCY, Saju JM, Porter TK, Mohaideen S, Sarangapani S, Khong DT, Wang S, Cui J, Loh SI, Singh GP, Chua NH, Strano MS, Sarojam R. Decoding early stress signaling waves in living plants using nanosensor multiplexing. Nat Commun 2024; 15:2943. [PMID: 38580637 PMCID: PMC10997764 DOI: 10.1038/s41467-024-47082-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 03/14/2024] [Indexed: 04/07/2024] Open
Abstract
Increased exposure to environmental stresses due to climate change have adversely affected plant growth and productivity. Upon stress, plants activate a signaling cascade, involving multiple molecules like H2O2, and plant hormones such as salicylic acid (SA) leading to resistance or stress adaptation. However, the temporal ordering and composition of the resulting cascade remains largely unknown. In this study we developed a nanosensor for SA and multiplexed it with H2O2 nanosensor for simultaneous monitoring of stress-induced H2O2 and SA signals when Brassica rapa subsp. Chinensis (Pak choi) plants were subjected to distinct stress treatments, namely light, heat, pathogen stress and mechanical wounding. Nanosensors reported distinct dynamics and temporal wave characteristics of H2O2 and SA generation for each stress. Based on these temporal insights, we have formulated a biochemical kinetic model that suggests the early H2O2 waveform encodes information specific to each stress type. These results demonstrate that sensor multiplexing can reveal stress signaling mechanisms in plants, aiding in developing climate-resilient crops and pre-symptomatic stress diagnoses.
Collapse
Affiliation(s)
- Mervin Chun-Yi Ang
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore, 138602, Singapore
| | - Jolly Madathiparambil Saju
- Temasek Life Sciences Laboratory Limited, 1 Research Link National University of Singapore, Singapore, 117604, Singapore
| | - Thomas K Porter
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Sayyid Mohaideen
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore, 138602, Singapore
| | - Sreelatha Sarangapani
- Temasek Life Sciences Laboratory Limited, 1 Research Link National University of Singapore, Singapore, 117604, Singapore
| | - Duc Thinh Khong
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore, 138602, Singapore
| | - Song Wang
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore, 138602, Singapore
| | - Jianqiao Cui
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Suh In Loh
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore, 138602, Singapore
| | - Gajendra Pratap Singh
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore, 138602, Singapore
| | - Nam-Hai Chua
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore, 138602, Singapore
- Temasek Life Sciences Laboratory Limited, 1 Research Link National University of Singapore, Singapore, 117604, Singapore
| | - Michael S Strano
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore, 138602, Singapore.
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| | - Rajani Sarojam
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore, 138602, Singapore.
- Temasek Life Sciences Laboratory Limited, 1 Research Link National University of Singapore, Singapore, 117604, Singapore.
| |
Collapse
|
23
|
González-León Y, De la Vega-Camarillo E, Ramírez-Vargas R, Anducho-Reyes MA, Mercado-Flores Y. Whole genome analysis of Bacillus velezensis 160, biological control agent of corn head smut. Microbiol Spectr 2024; 12:e0326423. [PMID: 38363138 PMCID: PMC10986511 DOI: 10.1128/spectrum.03264-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024] Open
Abstract
Corn head smut is a disease caused by the fungus Sporisorium reilianum. This phytosanitary problem has existed for several decades in the Mezquital Valley, an important corn-producing area in central Mexico. To combat the problem, a strain identified as Bacillus subtilis 160 was applied in the field, where it decreased disease incidence and increased crop productivity. In this study, the sequencing and analysis of the whole genome sequence of this strain were carried out to identify its genetic determinants for the production of antimicrobials. The B. subtilis 160 strain was found to be Bacillus velezensis. Its genome has a size of 4,297,348 bp, a GC content of 45.8%, and 4,174 coding sequences. Comparative analysis with the genomes of four other B. velezensis strains showed that they share 2,804 genes and clusters for the production of difficidin, bacillibactin, bacilysin, macrolantin, bacillaene, fengycin, butirosin A, locillomycin, and surfactin. For the latter metabolite, unlike the other strains that have only one cluster, B. velezensis 160 has three. A cluster for synthesizing laterocidine, an antimicrobial reported only in Brevibacillus laterosporus, was also identified. IMPORTANCE In this study, we performed sequencing and analysis of the complete genome of the strain initially identified as Bacillus subtilis 160 as part of its characterization. This bacterium has shown its ability to control corn head smut in the field, a disease caused by the basidiomycete fungus Sporisorium reilianum. Analyzing the complete genome sequence not only provides a more precise taxonomic identification but also sheds light on the genetic potential of this bacterium, especially regarding mechanisms that allow it to exert biological control. Employing molecular and bioinformatics tools in studying the genomes of agriculturally significant microorganisms offers insights into the development of biofungicides and bioinoculants. These innovations aim to enhance plant growth and pave the way for strategies that boost crop productivity.
Collapse
|
24
|
Das D, Chowdhury N, Sharma M, Suma R, Saikia B, Velmurugan N, Chikkaputtaiah C. Screening for brown-spot disease and drought stress response and identification of dual-stress responsive genes in rice cultivars of Northeast India. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:647-663. [PMID: 38737323 PMCID: PMC11087401 DOI: 10.1007/s12298-024-01447-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 05/14/2024]
Abstract
Rice cultivation in Northeast India (NEI) primarily relies on rainfed conditions, making it susceptible to severe drought spells that promote the onset of brown spot disease (BSD) caused by Bipolaris oryzae. This study investigates the response of prevalent rice cultivars of NEI to the combined stress of drought and B. oryzae infection. Morphological, physiological, biochemical, and molecular changes were recorded post-stress imposition. Qualitative assessment of reactive oxygen species through DAB (3,3-diaminobenzidine) assay confirmed the elicitation of plant defense responses. Based on drought scoring system and biochemical analyses, the cultivars were categorized into susceptible (Shasharang and Bahadur), moderately susceptible (Gitesh and Ranjit), and moderately tolerant (Kapilee and Mahsuri) groups. Antioxidant enzyme accumulation (catalase, guaiacol peroxidase) and osmolyte (proline) levels increased in all stressed plants, with drought-tolerant cultivars exhibiting higher enzyme activities, indicating stress mitigation efforts. Nevertheless, electrolyte leakage and lipid peroxidation rates increased in all stressed conditions, though variations were observed among stress types. Based on findings from a previous transcriptomic study, a total of nine genes were chosen for quantitative real-time PCR analysis. Among these, OsEBP89 appeared as a potential negative regulatory gene, demonstrating substantial upregulation in the susceptible cultivars at both 48 and 72 h post-treatment (hpt). This finding suggests that OsEBP89 may play a role in conferring drought-induced susceptibility to BSD in the rice cultivars being investigated. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01447-4.
Collapse
Affiliation(s)
- Debajit Das
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam 785006 India
| | - Naimisha Chowdhury
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam 785006 India
| | - Monica Sharma
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam 785006 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Remya Suma
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam 785006 India
| | - Banashree Saikia
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam 785006 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Natarajan Velmurugan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
- Branch Laboratory-Itanagar, Biological Sciences Division, CSIR-NEIST, Naharlagun, Arunachal Pradesh 791110 India
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam 785006 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
25
|
Grosu E, Singh Rathore D, Garcia Cabellos G, Enright AM, Mullins E. Ensifer adhaerens strain OV14 seed application enhances Triticum aestivum L. and Brassica napus L. development. Heliyon 2024; 10:e27142. [PMID: 38495150 PMCID: PMC10943344 DOI: 10.1016/j.heliyon.2024.e27142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/24/2024] [Accepted: 02/25/2024] [Indexed: 03/19/2024] Open
Abstract
Given the challenges imposed by climate change and societal challenges, the European Union established ambitious goals as part of its Farm to Fork (F2F) strategy. Focussed on accelerating the transition to systems of sustainable food production, processing and consumption, a key element of F2F is to reduce the use of fertilisers by at least 20% and plant protection products by up to 50% by 2030. In recent years, a substantial body of research has highlighted the potential impact of microbial-based applications to support crop production practices through both biotic/abiotic stresses via maintaining or even improving yields and reducing reliance on intensive chemical inputs. Here, we have characterised the ability of a new soil-borne free-living bacterium strain Ensifer adhaerens OV14 (EaOV14) to significantly enhance crop vigour index by up to 50% for monocot (wheat, Triticum aestivum L., p < 0.0001) and by up to 40% for dicot (oilseed rape, Brassica napus L., p < 0.0001) species under in-vitro conditions (n = 360 seedlings/treatment). The beneficial effect was further studied under controlled glasshouse growing conditions (n = 60 plants/treatment) where EaOV14 induced significantly increased seed yield of spring oilseed rape compared to the controls (p < 0.0001). Moreover, using bespoke rhizoboxes, enhanced root architecture (density, roots orientation, roots thickness etc.) was observed for spring oilseed rape and winter wheat, with the median number of roots 55% and 33% higher for oilseed rape and wheat respectively, following EaOV14 seed treatment compared to the control. In addition, EaOV14 treatment increased root tip formation and root volume, suggesting the formation of a more robust root system architecture post-seed treatment. However, like other microbial formulations, the trade-offs associated with field translation, such as loss or limited functionality due to inoculum formulation or environmental distress, need further investigation. Moreover, the delivery method requires further optimisation to identify the optimal inoculum formulation that will maximise the expected beneficial impact on yield under field growing conditions.
Collapse
Affiliation(s)
- Elena Grosu
- Crop Science Department, Teagasc, Oak Park, Carlow, Ireland
- EnviroCORE, South East Technological University Carlow, Kilkenny Road, Carlow, Ireland
| | | | | | - Anne-Marie Enright
- EnviroCORE, South East Technological University Carlow, Kilkenny Road, Carlow, Ireland
| | - Ewen Mullins
- Crop Science Department, Teagasc, Oak Park, Carlow, Ireland
| |
Collapse
|
26
|
Huang P, El-Soda M, Wolinska KW, Zhao K, Davila Olivas NH, van Loon JJA, Dicke M, Aarts MGM. Genome-wide association analysis reveals genes controlling an antagonistic effect of biotic and osmotic stress on Arabidopsis thaliana growth. MOLECULAR PLANT PATHOLOGY 2024; 25:e13436. [PMID: 38460112 PMCID: PMC10924621 DOI: 10.1111/mpp.13436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 03/11/2024]
Abstract
While the response of Arabidopsis thaliana to drought, herbivory or fungal infection has been well-examined, the consequences of exposure to a series of such (a)biotic stresses are not well studied. This work reports on the genetic mechanisms underlying the Arabidopsis response to single osmotic stress, and to combinatorial stress, either fungal infection using Botrytis cinerea or herbivory using Pieris rapae caterpillars followed by an osmotic stress treatment. Several small-effect genetic loci associated with rosette dry weight (DW), rosette water content (WC), and the projected rosette leaf area in response to combinatorial stress were mapped using univariate and multi-environment genome-wide association approaches. A single-nucleotide polymorphism (SNP) associated with DROUGHT-INDUCED 19 (DI19) was identified by both approaches, supporting its potential involvement in the response to combinatorial stress. Several SNPs were found to be in linkage disequilibrium with known stress-responsive genes such as PEROXIDASE 34 (PRX34), BASIC LEUCINE ZIPPER 25 (bZIP25), RESISTANCE METHYLATED GENE 1 (RMG1) and WHITE RUST RESISTANCE 4 (WRR4). An antagonistic effect between biotic and osmotic stress was found for prx34 and arf4 mutants, which suggests PRX34 and ARF4 play an important role in the response to the combinatorial stress.
Collapse
Affiliation(s)
- Pingping Huang
- Laboratory of Genetics, Wageningen University & Research, Wageningen, Netherlands
| | - Mohamed El-Soda
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Katarzyna W Wolinska
- Laboratory of Genetics, Wageningen University & Research, Wageningen, Netherlands
| | - Kaige Zhao
- Laboratory of Genetics, Wageningen University & Research, Wageningen, Netherlands
| | | | - Joop J A van Loon
- Laboratory of Entomology, Wageningen University & Research, Wageningen, Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University & Research, Wageningen, Netherlands
| | - Mark G M Aarts
- Laboratory of Genetics, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
27
|
Tiwari RK, Lal MK, Kumar R, Mangal V, Kumar A, Kumar R, Sharma S, Sagar V, Singh B. Salt stress influences the proliferation of Fusarium solani and enhances the severity of wilt disease in potato. Heliyon 2024; 10:e26718. [PMID: 38434015 PMCID: PMC10906416 DOI: 10.1016/j.heliyon.2024.e26718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
Soil salinity has emerged as a critical abiotic stress in potato production, whereas wilt disease, caused by Fusarium solani, is the significant biotic stress. An experiment was performed to decipher the occurrence of wilt incidence by F. solani FJ1 under the influence of salinity in both in vitroand pot culture conditions. High salt concentration negatively influenced root and shoot development in the variety "Kufri Jyoti" but positively affected the mycelial growth and sporulation behaviours of F. solani FJ1. There was abundant whitish mycelial growth with enhanced biomass and high sporulation (microconidia production) in F. solani FJ1 cultured on salt-supplemented media. Moreover, under high salinity conditions (EC 2-8 dS m-1), severe wilting and rotting of vascular bundles were observed in plants artificially inoculated with F. solani FJ1. The mortality rate of potato plants was significantly higher under individual and combined stresses as compared to control. The wilt index of individual and combined stressed plants was also substantially higher compared to the control. Additionally, compared to the control, there was a significant decrease in total chlorophyll content and membrane stability index of the leaves under combined stress. However, the total phenols were increased under stress conditions. The total sugar content of potato plants decreased in infected plants, but increased when exposed to salt stress or a combination of salt stress and pathogen infection. F. solani infection also increased the activity of peroxidase (POX) and decreased the activity of phenylalanine ammonia-lyase (PAL) and catalase (CAT). These results suggest that Fusarium wilt and dry rot will be a more severe disease for potato cultivation in saline soils.
Collapse
Affiliation(s)
- Rahul Kumar Tiwari
- Division of Plant Protection, ICAR-Central Potato Research Institute, Shimla, HP 171001, India
- Division of Crop Protection, ICAR-Indian Institute of Sugarcane Research, Lucknow, Uttar Pradesh 226002, India
| | - Milan Kumar Lal
- Division of CPB&PHT, ICAR-Central Potato Research Institute, Shimla, HP 171001, India
- Division of Crop Physiology and Biochemistry, ICAR-National Rice Research Institute, Cuttack 753006, Odisha, India
| | - Ravinder Kumar
- Division of Plant Protection, ICAR-Central Potato Research Institute, Shimla, HP 171001, India
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Vikas Mangal
- Division of Crop Improvement, ICAR-Central Potato Research Institute, Shimla, HP 171001, India
| | - Awadhesh Kumar
- Division of Crop Physiology and Biochemistry, ICAR-National Rice Research Institute, Cuttack 753006, Odisha, India
| | - Rakesh Kumar
- Division of Plant Protection, ICAR-Central Potato Research Institute, Shimla, HP 171001, India
| | - Sanjeev Sharma
- Division of Plant Protection, ICAR-Central Potato Research Institute, Shimla, HP 171001, India
| | - Vinay Sagar
- Division of Plant Protection, ICAR-Central Potato Research Institute, Shimla, HP 171001, India
| | - Brajesh Singh
- Division of CPB&PHT, ICAR-Central Potato Research Institute, Shimla, HP 171001, India
| |
Collapse
|
28
|
Zhao J, Yu X, Zhang C, Hou L, Wu N, Zhang W, Wang Y, Yao B, Delaplace P, Tian J. Harnessing microbial interactions with rice: Strategies for abiotic stress alleviation in the face of environmental challenges and climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168847. [PMID: 38036127 DOI: 10.1016/j.scitotenv.2023.168847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
Rice, which feeds more than half of the world's population, confronts significant challenges due to environmental and climatic changes. Abiotic stressors such as extreme temperatures, drought, heavy metals, organic pollutants, and salinity disrupt its cellular balance, impair photosynthetic efficiency, and degrade grain quality. Beneficial microorganisms from rice and soil microbiomes have emerged as crucial in enhancing rice's tolerance to these stresses. This review delves into the multifaceted impacts of these abiotic stressors on rice growth, exploring the origins of the interacting microorganisms and the intricate dynamics between rice-associated and soil microbiomes. We highlight their synergistic roles in mitigating rice's abiotic stresses and outline rice's strategies for recruiting these microorganisms under various environmental conditions, including the development of techniques to maximize their benefits. Through an in-depth analysis, we shed light on the multifarious mechanisms through which microorganisms fortify rice resilience, such as modulation of antioxidant enzymes, enhanced nutrient uptake, plant hormone adjustments, exopolysaccharide secretion, and strategic gene expression regulation, emphasizing the objective of leveraging microorganisms to boost rice's stress tolerance. The review also recognizes the growing prominence of microbial inoculants in modern rice cultivation for their eco-friendliness and sustainability. We discuss ongoing efforts to optimize these inoculants, providing insights into the rigorous processes involved in their formulation and strategic deployment. In conclusion, this review emphasizes the importance of microbial interventions in bolstering rice agriculture and ensuring its resilience in the face of rising environmental challenges.
Collapse
Affiliation(s)
- Jintong Zhao
- Gembloux Agro-Bio Tech, University of Liege, TERRA - Teaching & Research Center, Plant Sciences, 5030 Gembloux, Belgium; Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoxia Yu
- School of Water Resources & Environmental Engineering, East China University of Technology, Nanchang, Jiangxi 330000, China
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Sanya Institute, Hainan, Academy of Agricultural Sciences, Sanya 572000, China
| | - Ligang Hou
- Rice Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, Jilin 136100, China
| | - Ningfeng Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuan Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bin Yao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Pierre Delaplace
- Gembloux Agro-Bio Tech, University of Liege, TERRA - Teaching & Research Center, Plant Sciences, 5030 Gembloux, Belgium
| | - Jian Tian
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
29
|
Chiang CY, Chang CH, Tseng TY, Nguyen VAT, Su PY, Truong TTT, Chen JY, Huang CC, Huang HJ. Volatile Compounds Emitted by Plant Growth-Promoting Fungus Tolypocladium inflatum GT22 Alleviate Copper and Pathogen Stress. PLANT & CELL PHYSIOLOGY 2024; 65:199-215. [PMID: 37951591 DOI: 10.1093/pcp/pcad120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/17/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023]
Abstract
Previous studies on the intricate interactions between plants and microorganisms have revealed that fungal volatile compounds (VCs) can affect plant growth and development. However, the precise mechanisms underlying these actions remain to be delineated. In this study, we discovered that VCs from the soilborne fungus Tolypocladium inflatum GT22 enhance the growth of Arabidopsis. Remarkably, priming Arabidopsis with GT22 VCs caused the plant to display an enhanced immune response and mitigated the detrimental effects of both pathogenic infections and copper stress. Transcriptomic analyses of Arabidopsis seedlings treated with GT22 VCs for 3, 24 and 48 h revealed that 90, 83 and 137 genes were differentially expressed, respectively. The responsive genes are known to be involved in growth, hormone regulation, defense mechanisms and signaling pathways. Furthermore, we observed the induction of genes related to innate immunity, hypoxia, salicylic acid biosynthesis and camalexin biosynthesis by GT22 VCs. Among the VCs emitted by GT22, exposure of Arabidopsis seedlings to limonene promoted plant growth and attenuated copper stress. Thus, limonene appears to be a key mediator of the interaction between GT22 and plants. Overall, our findings provide evidence that fungal VCs can promote plant growth and enhance both biotic and abiotic tolerance. As such, our study suggests that exposure of seedlings to T. inflatum GT22 VCs may be a means of improving crop productivity. This study describes a beneficial interaction between T. inflatun GT22 and Arabidopsis. Our investigation of microorganism function in terms of VC activities allowed us to overcome the limitations of traditional microbial application methods. The importance of this study lies in the discovery of T. inflatun GT22 as a beneficial microorganism. This soilborne fungus emits VCs with plant growth-promoting effects and the ability to alleviate both copper and pathogenic stress. Furthermore, our study offers a valuable approach to tracking the activities of fungal VC components via transcriptomic analysis and sheds light on the mechanisms through which VCs promote plant growth and induce resistance. This research significantly advances our knowledge of VC applications and provides an example for further investigations within this field.
Collapse
Affiliation(s)
- Chih-Yun Chiang
- Department of Life Sciences, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan, R.O.C
| | - Ching-Han Chang
- Graduate Program in Translational Agricultural Sciences, National Cheng Kung University and Academia Sinica, No. 1, University Road, Tainan City 701, Taiwan, R.O.C
| | - Tzu-Yun Tseng
- Department of Life Sciences, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan, R.O.C
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan, R.O.C
| | - Van-Anh Thi Nguyen
- Department of Life Sciences, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan, R.O.C
| | - Pei-Yu Su
- Department of Life Sciences, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan, R.O.C
| | - Tu-Trinh Thi Truong
- Department of Life Sciences, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan, R.O.C
- Faculty of Technology, The University of Danang-Campus in Kontum, The University of Danang, 704 Phan Dinh Phung Street, Kontum City, Kontum Province, 580000 Vietnam
| | - Jing-Yu Chen
- Department of Life Sciences, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan, R.O.C
| | - Chung-Chih Huang
- Department of Life Sciences, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan, R.O.C
| | - Hao-Jen Huang
- Department of Life Sciences, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan, R.O.C
- Graduate Program in Translational Agricultural Sciences, National Cheng Kung University and Academia Sinica, No. 1, University Road, Tainan City 701, Taiwan, R.O.C
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan, R.O.C
| |
Collapse
|
30
|
Iwuala E, Olajide O, Abiodun I, Odjegba V, Utoblo O, Ajewole T, Oluwajobi A, Uzochukwu S. Silicon ameliorates cadmium (Cd) toxicity in pearl millet by inducing antioxidant defense system. Heliyon 2024; 10:e25514. [PMID: 38333779 PMCID: PMC10850601 DOI: 10.1016/j.heliyon.2024.e25514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024] Open
Abstract
Cadmium (Cd) stress is a significant environmental pollutant that can negatively impact crop yield and growth, and is a serious global issue. However, silicon (Si) has been shown to have a potential function in alleviating the effects of several abiotic stress conditions on crops, including Cd stress. This study investigated the effectiveness of applying silicon to soil as a method for reducing cadmium toxicity in pearl millet (IP14599) seedlings. Seeds of IP14599 were treated with Si + Cd element which cumulated to a combination of 9 treatments. Different Cd concentration of (0, 200, and 300 mg/kg-1) was taken and manually mixed into a sieved soil prior to planting and Si (0, 100 and 200 mg/kg-1) was selectively introduced till after attaining 12 days of seedling emergence. The physiochemical parameters of Cd stressed plants investigated includes chlorophyll, gas exchange attributes, proline, relative water contents, malondialdehyde (MDA) content and antioxidant enzymes (superoxide dismutase (SOD),catalase (CAT), ascorbate peroxidase (APX), peroxidase (POD). Our result revealed that the metal (Cd) caused serious oxidative impairment thereby reducing photosynthetic performance, increased activity of MDA and Cd content in the roots and leaves of IP14599.In addition, Si increased the growth pattern and antioxidant defense action thereby mitigating the Cd toxicity. The results revealed that at Si 200, Si significantly increased the chlorophyll, carotenoids and plant height at 122 %, 69 % and 128 % under the Cd 200 and Cd 300 mg/kg-1 treatment, respectively. The single treatment at Si100 and Si 200 decreased ROS by 29 %, and 37 % respectively and MDA decreased by 33 % and 43 % in contrast to Cd 200 and 300 treatments, respectively. However, Si200 showed significant increase in the activities of APX 97 %, SOD by 89 %, CAT 35 % and POD 86 % as compared to single Si, Cd or combine Cd + Si treatment. Also, a gradual decline in Cd level in both the leaf and root was present when exposed to high concentrations of Si at Si200 and 300 mg/kg-1. Our findings revealed that Si might significantly increase the capacity to tolerate Cd stress in crop plants. Therefore, the study revealed that Si has the potential to alleviate Cd-induced toxicity by reducing Cd assimilation and enhancing the growth attributes of IP14599 plants.
Collapse
Affiliation(s)
- Emmanuel Iwuala
- Department of Plant Science and Biotechnology, Federal University Oye Ekiti, Nigeria
| | - Olubunmi Olajide
- Department of Landscape and Horticulture, Ekiti State University, Ekiti, Nigeria
| | - Isaika Abiodun
- Department of Plant Science and Biotechnology, Federal University Oye Ekiti, Nigeria
| | - Victor Odjegba
- Department of Botany, University of Lagos, Akoka, Yaba, Lagos State, Nigeria
| | - Obaiya Utoblo
- Department of Plant Science and Biotechnology, University of Jos, Plateau State, Nigeria
| | - Tolulope Ajewole
- Department of Plant Science and Biotechnology, Federal University Oye Ekiti, Nigeria
| | - Ayoola Oluwajobi
- Department of Plant Science and Biotechnology, Federal University Oye Ekiti, Nigeria
| | - Sylvia Uzochukwu
- Department of Plant Science and Biotechnology, Federal University Oye Ekiti, Nigeria
| |
Collapse
|
31
|
Pandey P, Patil M, Priya P, Senthil-Kumar M. When two negatives make a positive: the favorable impact of the combination of abiotic stress and pathogen infection on plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:674-688. [PMID: 37864841 DOI: 10.1093/jxb/erad413] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 10/20/2023] [Indexed: 10/23/2023]
Abstract
Combined abiotic and biotic stresses modify plant defense signaling, leading to either the activation or suppression of defense responses. Although the majority of combined abiotic and biotic stresses reduce plant fitness, certain abiotic stresses reduce the severity of pathogen infection in plants. Remarkably, certain pathogens also improve the tolerance of some plants to a few abiotic stresses. While considerable research focuses on the detrimental impact of combined stresses on plants, the upside of combined stress remains hidden. This review succinctly discusses the interactions between abiotic stresses and pathogen infection that benefit plant fitness. Various factors that govern the positive influence of combined abiotic stress and pathogen infection on plant performance are also discussed. In addition, we provide a brief overview of the role of pathogens, mainly viruses, in improving plant responses to abiotic stresses. We further highlight the critical nodes in defense signaling that guide plant responses during abiotic stress towards enhanced resistance to pathogens. Studies on antagonistic interactions between abiotic and biotic stressors can uncover candidates in host plant defense that may shield plants from combined stresses.
Collapse
Affiliation(s)
- Prachi Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi 110067, India
| | - Mahesh Patil
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi 110067, India
| | - Piyush Priya
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi 110067, India
| | - Muthappa Senthil-Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi 110067, India
| |
Collapse
|
32
|
Siddique AB, Parveen S, Rahman MZ, Rahman J. Revisiting plant stress memory: mechanisms and contribution to stress adaptation. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:349-367. [PMID: 38623161 PMCID: PMC11016036 DOI: 10.1007/s12298-024-01422-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 02/04/2024] [Accepted: 02/22/2024] [Indexed: 04/17/2024]
Abstract
Highly repetitive adverse environmental conditions are encountered by plants multiple times during their lifecycle. These repetitive encounters with stresses provide plants an opportunity to remember and recall the experiences of past stress-associated responses, resulting in better adaptation towards those stresses. In general, this phenomenon is known as plant stress memory. According to our current understanding, epigenetic mechanisms play a major role in plants stress memory through DNA methylation, histone, and chromatin remodeling, and modulating non-coding RNAs. In addition, transcriptional, hormonal, and metabolic-based regulations of stress memory establishment also exist for various biotic and abiotic stresses. Plant memory can also be generated by priming the plants using various stressors that improve plants' tolerance towards unfavorable conditions. Additionally, the application of priming agents has been demonstrated to successfully establish stress memory. However, the interconnection of all aspects of the underlying mechanisms of plant stress memory is not yet fully understood, which limits their proper utilization to improve the stress adaptations in plants. This review summarizes the recent understanding of plant stress memory and its potential applications in improving plant tolerance towards biotic and abiotic stresses.
Collapse
Affiliation(s)
- Abu Bakar Siddique
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect, TAS 7250 Australia
| | - Sumaya Parveen
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207 Bangladesh
| | - Md Zahidur Rahman
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207 Bangladesh
| | - Jamilur Rahman
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207 Bangladesh
| |
Collapse
|
33
|
Bianchetti G, Clouet V, Legeai F, Baron C, Gazengel K, Vu BL, Baud S, To A, Manzanares-Dauleux MJ, Buitink J, Nesi N. Identification of transcriptional modules linked to the drought response of Brassica napus during seed development and their mitigation by early biotic stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14130. [PMID: 38842416 DOI: 10.1111/ppl.14130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 06/07/2024]
Abstract
In order to capture the drought impacts on seed quality acquisition in Brassica napus and its potential interaction with early biotic stress, seeds of the 'Express' genotype of oilseed rape were characterized from late embryogenesis to full maturity from plants submitted to reduced watering (WS) with or without pre-occurring inoculation by the telluric pathogen Plasmodiophora brassicae (Pb + WS or Pb, respectively), and compared to control conditions (C). Drought as a single constraint led to significantly lower accumulation of lipids, higher protein content and reduced longevity of the WS-treated seeds. In contrast, when water shortage was preceded by clubroot infection, these phenotypic differences were completely abolished despite the upregulation of the drought sensor RD20. A weighted gene co-expression network of seed development in oilseed rape was generated using 72 transcriptomes from developing seeds from the four treatments and identified 33 modules. Module 29 was highly enriched in heat shock proteins and chaperones that showed a stronger upregulation in Pb + WS compared to the WS condition, pointing to a possible priming effect by the early P. brassicae infection on seed quality acquisition. Module 13 was enriched with genes encoding 12S and 2S seed storage proteins, with the latter being strongly upregulated under WS conditions. Cis-element promotor enrichment identified PEI1/TZF6, FUS3 and bZIP68 as putative regulators significantly upregulated upon WS compared to Pb + WS. Our results provide a temporal co-expression atlas of seed development in oilseed rape and will serve as a resource to characterize the plant response towards combinations of biotic and abiotic stresses.
Collapse
Affiliation(s)
- Grégoire Bianchetti
- IGEPP, INRAE, Institut Agro Rennes-Angers, Université de Rennes, Le Rheu, France
| | - Vanessa Clouet
- IGEPP, INRAE, Institut Agro Rennes-Angers, Université de Rennes, Le Rheu, France
| | - Fabrice Legeai
- IGEPP, INRAE, Institut Agro Rennes-Angers, Université de Rennes, Le Rheu, France
| | - Cécile Baron
- IGEPP, INRAE, Institut Agro Rennes-Angers, Université de Rennes, Le Rheu, France
| | - Kévin Gazengel
- IGEPP, INRAE, Institut Agro Rennes-Angers, Université de Rennes, Le Rheu, France
| | - Benoit Ly Vu
- IRHS, INRAE, Institut Agro Rennes-Angers, Université d'Angers, France
| | | | | | | | - Julia Buitink
- IRHS, INRAE, Institut Agro Rennes-Angers, Université d'Angers, France
| | - Nathalie Nesi
- IGEPP, INRAE, Institut Agro Rennes-Angers, Université de Rennes, Le Rheu, France
| |
Collapse
|
34
|
Mehta N, Chawla A. Eco-physiological trait variation in widely occurring species of Western Himalaya along elevational gradients reveals their high adaptive potential in stressful conditions. PHOTOSYNTHESIS RESEARCH 2024; 159:29-59. [PMID: 38270813 DOI: 10.1007/s11120-023-01071-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024]
Abstract
Species distributed across a wide elevation range have broad environmental tolerance and adopt specific adaptation strategies to cope with varying climatic conditions. The aim of this study is to understand the patterns of variation in leaf eco-physiological traits that are related to the adaptation of species with a wide distribution in different climatic conditions. We studied the variability in eco-physiological traits of two co-occurring species of Western Himalaya (Rumex nepalensis and Taraxacum officinale), along elevational gradients. We conducted our study in elevations ranging from 1000 to 4000 m a.s.l. in three transects separated in an eco-region spanning 2.5° latitudes and 2.3° longitudes in the Western Himalaya. We hypothesized substantial variation in eco-physiological traits, especially increased net rate of photosynthesis (PN), Rubisco specific activity (RSA), and biochemicals at higher elevations, enabling species to adapt to varying environmental conditions. Therefore, the photosynthetic measurements along with leaf sampling were carried out during the months of June-August and the variations in photosynthetic performance and other leaf traits were assessed. Data was analyzed using a linear mixed effect model with 'species,' 'elevation' as fixed and 'transect' as random factor. Elevation had a significant effect on majority of traits. It was found that PN and maximum carboxylation rate of Rubisco (Vcmax) have unimodal or declining trend along increasing elevations. High RSA was observed at higher elevations in all the three transects. Trends for biochemical traits such as total soluble sugars, total soluble proteins, proline, and total phenolics content suggested an increase in these traits for the survival of plants in harsh environments of higher elevations. Our study reveals that although there is considerable variation in the eco-physiological traits of the two species across elevational gradients of different transects, there are certain similarities in the patterns that depict their high adaptive potential in varying climatic conditions.
Collapse
Affiliation(s)
- Nandita Mehta
- Environmental Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, H.P, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Amit Chawla
- Environmental Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, H.P, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
35
|
Derbali I, Derbali W, Gharred J, Manaa A, Slama I, Koyro HW. Mitigating Salinity Stress in Quinoa ( Chenopodium quinoa Willd.) with Biochar and Superabsorber Polymer Amendments. PLANTS (BASEL, SWITZERLAND) 2023; 13:92. [PMID: 38202399 PMCID: PMC10780479 DOI: 10.3390/plants13010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
In agriculture, soil amendments are applied to improve soil quality by increasing the water retention capacity and regulating the pH and ion exchange. Our study was carried out to investigate the impact of a commercial biochar (Bc) and a superabsorbent polymer (SAP) on the physiological and biochemical processes and the growth performance of Chenopodium quinoa (variety ICBA-5) when exposed to high salinity. Plants were grown for 25 days under controlled greenhouse conditions in pots filled with a soil mixture with or without 3% Bc or 0.2% SAP by volume before the initiation of 27 days of growth in hypersaline conditions, following the addition of 300 mM NaCl. Without the Bc or soil amendments, multiple negative effects of hypersalinity were detected on photosynthetic CO2 assimilation (Anet minus 70%) and on the production of fresh matter from the whole plant, leaves, stems and roots (respectively, 55, 46, 64 and 66%). Moreover, increased generation of reactive oxygen species (ROS) was indicated by higher levels of MDA (plus 142%), antioxidant activities and high proline levels (plus 311%). In the pots treated with 300 mM NaCl, the amendments Bc or SAP improved the plant growth parameters, including fresh matter production (by 10 and 17%), an increased chlorophyll content by 9 and 13% and Anet in plants (by 98 and 115%). Both amendments (Bc and SAP) resulted in significant salinity mitigation effects, decreasing proline and malondialdehyde (MDA) levels whilst increasing both the activity of enzymatic antioxidants and non-enzymatic antioxidants that reduce the levels of ROS. This study confirms how soil amendments can help to improve plant performance and expand the productive range into saline areas.
Collapse
Affiliation(s)
- Imed Derbali
- Institute of Plant Ecology, Justus Liebig University Giessen, 35392 Giessen, Germany; (I.D.); (W.D.); (J.G.)
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj Cedria, Hammam-Lif 2084, Tunisia; (A.M.); (I.S.)
- Faculty of Mathematical, Physical and Natural Sciences of Tunis, University of Tunis El-Manar, Tunis 1068, Tunisia
| | - Walid Derbali
- Institute of Plant Ecology, Justus Liebig University Giessen, 35392 Giessen, Germany; (I.D.); (W.D.); (J.G.)
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj Cedria, Hammam-Lif 2084, Tunisia; (A.M.); (I.S.)
- Faculty of Mathematical, Physical and Natural Sciences of Tunis, University of Tunis El-Manar, Tunis 1068, Tunisia
| | - Jihed Gharred
- Institute of Plant Ecology, Justus Liebig University Giessen, 35392 Giessen, Germany; (I.D.); (W.D.); (J.G.)
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj Cedria, Hammam-Lif 2084, Tunisia; (A.M.); (I.S.)
- Faculty of Mathematical, Physical and Natural Sciences of Tunis, University of Tunis El-Manar, Tunis 1068, Tunisia
| | - Arafet Manaa
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj Cedria, Hammam-Lif 2084, Tunisia; (A.M.); (I.S.)
| | - Inès Slama
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj Cedria, Hammam-Lif 2084, Tunisia; (A.M.); (I.S.)
| | - Hans-Werner Koyro
- Institute of Plant Ecology, Justus Liebig University Giessen, 35392 Giessen, Germany; (I.D.); (W.D.); (J.G.)
| |
Collapse
|
36
|
Mohammadi V, Gouton P, Rossé M, Katakpe KK. Design and Development of Large-Band Dual-MSFA Sensor Camera for Precision Agriculture. SENSORS (BASEL, SWITZERLAND) 2023; 24:64. [PMID: 38202927 PMCID: PMC10780810 DOI: 10.3390/s24010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
The optimal design and construction of multispectral cameras can remarkably reduce the costs of spectral imaging systems and efficiently decrease the amount of image processing and analysis required. Also, multispectral imaging provides effective imaging information through higher-resolution images. This study aimed to develop novel, multispectral cameras based on Fabry-Pérot technology for agricultural applications such as plant/weed separation, ripeness estimation, and disease detection. Two multispectral cameras were developed, covering visible and near-infrared ranges from 380 nm to 950 nm. A monochrome image sensor with a resolution of 1600 × 1200 pixels was used, and two multispectral filter arrays were developed and mounted on the sensors. The filter pitch was 4.5 μm, and each multispectral filter array consisted of eight bands. Band selection was performed using a genetic algorithm. For VIS and NIR filters, maximum RMS values of 0.0740 and 0.0986 were obtained, respectively. The spectral response of the filters in VIS was significant; however, in NIR, the spectral response of the filters after 830 nm decreased by half. In total, these cameras provided 16 spectral images in high resolution for agricultural purposes.
Collapse
Affiliation(s)
| | - Pierre Gouton
- ImViA Laboratory, UFR Sciences et Techniques, University of Burgundy, 21078 Dijon, France; (V.M.); (M.R.); (K.K.K.)
| | | | | |
Collapse
|
37
|
Porras R, Miguel-Rojas C, Lorite IJ, Pérez-de-Luque A, Sillero JC. Characterization of durum wheat resistance against leaf rust under climate change conditions of increasing temperature and [CO 2]. Sci Rep 2023; 13:22001. [PMID: 38081920 PMCID: PMC10713590 DOI: 10.1038/s41598-023-49118-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
Durum wheat cultivation in Mediterranean regions is threatened by abiotic factors, mainly related to the effects of climate change, and biotic factors such as the leaf rust disease. This situation requires an in-depth knowledge of how predicted elevated temperatures and [CO2] will affect durum wheat-leaf rust interactions. Therefore, we have characterised the response of one susceptible and two resistant durum wheat accessions against leaf rust under different environments in greenhouse assays, simulating the predicted conditions of elevated temperature and [CO2] in the far future period of 2070-2099 for the wheat growing region of Cordoba, Spain. Interestingly, high temperature alone or in combination with high [CO2] did not alter the external appearance of the rust lesions. However, through macro and microscopic evaluation, we found some host physiological and molecular responses to infection that would quantitatively reduce not only pustule formation and subsequent infection cycles of this pathogen, but also the host photosynthetic area under these predicted weather conditions, mainly expressed in the susceptible accession. Moreover, our results suggest that durum wheat responses to infection are mainly driven by temperature, being considered the most hampering abiotic stress. In contrast, leaf rust infection was greatly reduced when these weather conditions were also conducted during the inoculation process, resembling the effects of possible heat waves not only in disease development, but also in fungal germination and penetration success. Considering this lack of knowledge in plant-pathogen interactions combined with abiotic stresses, the present study is, to the best of our knowledge, the first to include the effects of the expected diurnal variation of maximum temperature and continuous elevated [CO2] in the durum wheat-leaf rust pathosystem.
Collapse
Affiliation(s)
- Rafael Porras
- Area of Plant Breeding and Biotechnology, IFAPA Alameda del Obispo, Avda. Menéndez Pidal S/N, 14004, Córdoba, Spain
| | - Cristina Miguel-Rojas
- Area of Plant Breeding and Biotechnology, IFAPA Alameda del Obispo, Avda. Menéndez Pidal S/N, 14004, Córdoba, Spain
| | - Ignacio J Lorite
- Area of Natural and Forest Resources, IFAPA Alameda del Obispo, Avda. Menéndez Pidal S/N, 14004, Córdoba, Spain
| | - Alejandro Pérez-de-Luque
- Area of Plant Breeding and Biotechnology, IFAPA Alameda del Obispo, Avda. Menéndez Pidal S/N, 14004, Córdoba, Spain.
| | - Josefina C Sillero
- Area of Plant Breeding and Biotechnology, IFAPA Alameda del Obispo, Avda. Menéndez Pidal S/N, 14004, Córdoba, Spain
| |
Collapse
|
38
|
Singh DP, Maurya S, Yerasu SR, Bisen MS, Farag MA, Prabha R, Shukla R, Chaturvedi KK, Farooqi MS, Srivastava S, Rai A, Sarma BK, Rai N, Behera TK. Metabolomics of early blight (Alternaria solani) susceptible tomato (Solanum lycopersicum) unfolds key biomarker metabolites and involved metabolic pathways. Sci Rep 2023; 13:21023. [PMID: 38030710 PMCID: PMC10687106 DOI: 10.1038/s41598-023-48269-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023] Open
Abstract
Tomato (Solanum lycopersicum) is among the most important commercial horticultural crops worldwide. The crop quality and production is largely hampered due to the fungal pathogen Alternaria solani causing necrotrophic foliage early blight disease. Crop plants usually respond to the biotic challenges with altered metabolic composition and physiological perturbations. We have deciphered altered metabolite composition, modulated metabolic pathways and identified metabolite biomarkers in A. solani-challenged susceptible tomato variety Kashi Aman using Liquid Chromatography-Mass Spectrometry (LC-MS) based metabolomics. Alteration in the metabolite feature composition of pathogen-challenged (m/z 9405) and non-challenged (m/z 9667) plant leaves including 8487 infection-exclusive and 8742 non-infection exclusive features was observed. Functional annotation revealed putatively annotated metabolites and pathway mapping indicated their enrichment in metabolic pathways, biosynthesis of secondary metabolites, ubiquinone and terpenoid-quinones, brassinosteroids, steroids, terpenoids, phenylpropanoids, carotenoids, oxy/sphingolipids and metabolism of biotin and porphyrin. PCA, multivariate PLS-DA and OPLS-DA analysis showed sample discrimination. Significantly up regulated 481 and down regulated 548 metabolite features were identified based on the fold change (threshold ≥ 2.0). OPLS-DA model based on variable importance in projection (VIP scores) and FC threshold (> 2.0) revealed 41 up regulated discriminant metabolite features annotated as sphingosine, fecosterol, melatonin, serotonin, glucose 6-phosphate, zeatin, dihydrozeatin and zeatin-β-D-glucoside. Similarly, 23 down regulated discriminant metabolites included histidinol, 4-aminobutyraldehyde, propanoate, tyramine and linalool. Melatonin and serotonin in the leaves were the two indoleamines being reported for the first time in tomato in response to the early blight pathogen. Receiver operating characteristic (ROC)-based biomarker analysis identified apigenin-7-glucoside, uridine, adenosyl-homocysteine, cGMP, tyrosine, pantothenic acid, riboflavin (as up regulated) and adenosine, homocyctine and azmaline (as down regulated) biomarkers. These results could aid in the development of metabolite-quantitative trait loci (mQTL). Furthermore, stress-induced biosynthetic pathways may be the potential targets for modifications through breeding programs or genetic engineering for improving crop performance in the fields.
Collapse
Affiliation(s)
| | - Sudarshan Maurya
- ICAR-Indian Institute of Vegetable Research, Varanasi, 221305, India
| | | | - Mansi Singh Bisen
- ICAR-Indian Institute of Vegetable Research, Varanasi, 221305, India
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Ratna Prabha
- ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, New Delhi, India
| | - Renu Shukla
- Indian Council of Agricultural Research, New Delhi, 110012, India
| | | | - Md Samir Farooqi
- ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, New Delhi, India
| | - Sudhir Srivastava
- ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, New Delhi, India
| | - Anil Rai
- ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, New Delhi, India
- Indian Council of Agricultural Research, New Delhi, 110012, India
| | - Birinchi Kumar Sarma
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Nagendra Rai
- ICAR-Indian Institute of Vegetable Research, Varanasi, 221305, India
| | | |
Collapse
|
39
|
Chen S, Wang Y, Gao J, Chen X, Qi J, Peng Z, Chen B, Pan H, Liang C, Liu J, Wang Y, Wei G, Jiao S. Agricultural tillage practice and rhizosphere selection interactively drive the improvement of soybean plant biomass. PLANT, CELL & ENVIRONMENT 2023; 46:3542-3557. [PMID: 37564021 DOI: 10.1111/pce.14694] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/30/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
Rhizosphere microbes play key roles in plant growth and productivity in agricultural systems. One of the critical issues is revealing the interaction of agricultural management (M) and rhizosphere selection effects (R) on soil microbial communities, root exudates and plant productivity. Through a field management experiment, we found that bacteria were more sensitive to the M × R interaction effect than fungi, and the positive effect of rhizosphere bacterial diversity on plant biomass existed in the bacterial three two-tillage system. In addition, inoculation experiments demonstrated that the nitrogen cycle-related isolate Stenotrophomonas could promote plant growth and alter the activities of extracellular enzymes N-acetyl- d-glucosaminidase and leucine aminopeptidase in rhizosphere soil. Microbe-metabolites network analysis revealed that hubnodes Burkholderia-Caballeronia-Paraburkholderia and Pseudomonas were recruited by specific root metabolites under the M × R interaction effect, and the inoculation of 10 rhizosphere-matched isolates further proved that these microbes could promote the growth of soybean seedlings. Kyoto Encyclopaedia of Genes and Genomes pathway analysis indicated that the growth-promoting mechanisms of these beneficial genera were closely related to metabolic pathways such as amino acid metabolism, melatonin biosynthesis, aerobactin biosynthesis and so on. This study provides field observation and experimental evidence to reveal the close relationship between beneficial rhizosphere microbes and plant productivity under the M × R interaction effect.
Collapse
Affiliation(s)
- Shi Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yang Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Jiamin Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Xingyu Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Jiejun Qi
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Ziheng Peng
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Beibei Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Haibo Pan
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Chunling Liang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Jiai Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yihe Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Shuo Jiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
40
|
Priya P, Patil M, Pandey P, Singh A, Babu VS, Senthil-Kumar M. Stress combinations and their interactions in plants database: a one-stop resource on combined stress responses in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1097-1117. [PMID: 37824297 DOI: 10.1111/tpj.16497] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/23/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023]
Abstract
We have developed a compendium and interactive platform, named Stress Combinations and their Interactions in Plants Database (SCIPDb; http://www.nipgr.ac.in/scipdb.php), which offers information on morpho-physio-biochemical (phenome) and molecular (transcriptome and metabolome) responses of plants to different stress combinations. SCIPDb is a plant stress informatics hub for data mining on phenome, transcriptome, trait-gene ontology, and data-driven research for advancing mechanistic understanding of combined stress biology. We analyzed global phenome data from 939 studies to delineate the effects of various stress combinations on yield in major crops and found that yield was substantially affected under abiotic-abiotic stresses. Transcriptome datasets from 36 studies hosted in SCIPDb identified novel genes, whose roles have not been earlier established in combined stress. Integretome analysis under combined drought-heat stress pinpointed carbohydrate, amino acid, and energy metabolism pathways as the crucial metabolic, proteomic, and transcriptional components in plant tolerance to combined stress. These examples illustrate the application of SCIPDb in identifying novel genes and pathways involved in combined stress tolerance. Further, we showed the application of this database in identifying novel candidate genes and pathways for combined drought and pathogen stress tolerance. To our knowledge, SCIPDb is the only publicly available platform offering combined stress-specific omics big data visualization tools, such as an interactive scrollbar, stress matrix, radial tree, global distribution map, meta-phenome analysis, search, BLAST, transcript expression pattern table, Manhattan plot, and co-expression network. These tools facilitate a better understanding of the mechanisms underlying plant responses to combined stresses.
Collapse
Affiliation(s)
- Piyush Priya
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi, 110067, India
| | - Mahesh Patil
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi, 110067, India
| | - Prachi Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi, 110067, India
| | - Anupriya Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi, 110067, India
| | - Vishnu Sudha Babu
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi, 110067, India
| | - Muthappa Senthil-Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi, 110067, India
| |
Collapse
|
41
|
Jevtić R, Župunski V. The challenge of managing yellow rust ( Puccinia striiformis f.sp. tritici) in winter wheat: how combined climate and pathogen stressors impact variability in genotype reactions. FRONTIERS IN PLANT SCIENCE 2023; 14:1270087. [PMID: 37929173 PMCID: PMC10623137 DOI: 10.3389/fpls.2023.1270087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023]
Abstract
Despite the ongoing evolution of wheat pathogens due to the selection pressures of agro-ecological conditions, many studies have often overlooked the combined impact of both biotic and abiotic factors on disease occurrence. From 2016 to 2023, a comprehensive screening of obligate pathogens, including B. graminis f. sp. tritici, P. graminis f. sp. tritici, P. triticina, and P. striiformis f. sp. tritici, was carried out. This screening was conducted on a phenotyping platform encompassing 2715 winter wheat genotypes and their wild relatives, both with and without resistant genes (Lr, Yr, and Sr) for rust diseases. The data were analyzed using PCAmix, best subsets regression, and linear regression modeling. The findings from this study reveal that the plant reactions to leaf and yellow rust infections is far from straightforward. It is heavily influenced not only by prevalent rust races and climatic factors that impact pathogen life cycles but also by variations in the susceptibility reactions of wheat genotypes to the broader agro-ecological conditions. We also observed a tendency for leaf rust and yellow rust to coexist within the same host plant, even though yellow rust is typically considered more aggressive. We reported for the first time genes related to yellow rust resistance breakdown in Serbia in 2023. Lastly, we underscored the importance of investigating resistance responses to rust diseases not exclusively through the interrelation between resistance genes and pathogen virulence, but also by considering how plants respond to the combined stresses of abiotic and biotic factors. Consequently, our study sets the groundwork for further research into how plants respond to multiple stressors and contributes for further investigations related with effective integrated rust management.
Collapse
Affiliation(s)
- Radivoje Jevtić
- Laboratory for Phytopathology, Small Grains Department, Institute of Field and Vegetable Crops, Novi Sad, Serbia
| | | |
Collapse
|
42
|
Bennis M, Kaddouri K, Badaoui B, Bouhnik O, Chaddad Z, Perez-Tapia V, Lamin H, Alami S, Lamrabet M, Abdelmoumen H, Bedmar EJ, Missbah El Idrissi M. Plant growth promoting activities of Pseudomonas sp. and Enterobacter sp. isolated from the rhizosphere of Vachellia gummifera in Morocco. FEMS Microbiol Ecol 2023; 99:fiad114. [PMID: 37742210 DOI: 10.1093/femsec/fiad114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/22/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023] Open
Abstract
The Moroccan endemic Vachellia gummifera grows wild under extreme desert conditions. This plant could be used as an alternative fodder for goats, and camels, in order to protect the Argan forests against overgrazing in Central and Southwestern Moroccan semiarid areas. With the aim to improve the V. gummifera population's density in semiarid areas, we proposed its inoculation with performing plant growth-promoting bacteria. Hence, 500 bacteria were isolated from the plant rhizosphere. From these, 291 isolates were retained for plant growth-promoting (PGP) activities assessment. A total of 44 isolates showed the best phosphates solubilization potential, as well as siderophore and auxin production. The combination of REP-PCR (repetitive extragenic palindromic-polymerase chain reaction) fingerprinting, PGP activities, and phenotypic properties, allowed the selection of three strains for the inoculation experiments. The three selected strains' 16S rRNA sequencing showed that they are members of the Enterobacter and Pseudomonas genera. The inoculation with three strains had diverse effects on V. gummifera growth parameters. All single and combined inoculations improved the plant shoot weight by more than 200%, and the root length by up to 139%, while some combinations further improved protein and chlorophyll content, thereby improving the plant's forage value. The three selected strains constitute an effective inoculum for use in the arid and semiarid zones of southern Morocco.
Collapse
Affiliation(s)
- Meryeme Bennis
- Equipe de Microbiologie et Biologie Moléculaire, Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, B.P. 1014 RP, Rabat 10080, Morocco
| | - Koutar Kaddouri
- Equipe de Microbiologie et Biologie Moléculaire, Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, B.P. 1014 RP, Rabat 10080, Morocco
| | - Bouabid Badaoui
- Laboratoire de Zoologie et de Biologie Générale, Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, B.P. 1014 RP, Rabat 10080, Morocco
| | - Omar Bouhnik
- Equipe de Microbiologie et Biologie Moléculaire, Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, B.P. 1014 RP, Rabat 10080, Morocco
| | - Zohra Chaddad
- Equipe de Microbiologie et Biologie Moléculaire, Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, B.P. 1014 RP, Rabat 10080, Morocco
| | - Vicente Perez-Tapia
- Departamento de Microbiología del Suelo y Sistemas Simbíoticos Estacíon Experimental del Zaidín, CSIC, Apartado Postal 419, 18008 Granada, Spain
| | - Hanane Lamin
- Equipe de Microbiologie et Biologie Moléculaire, Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, B.P. 1014 RP, Rabat 10080, Morocco
| | - Soufiane Alami
- Equipe de Microbiologie et Biologie Moléculaire, Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, B.P. 1014 RP, Rabat 10080, Morocco
| | - Mouad Lamrabet
- Equipe de Microbiologie et Biologie Moléculaire, Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, B.P. 1014 RP, Rabat 10080, Morocco
| | - Hanaa Abdelmoumen
- Equipe de Microbiologie et Biologie Moléculaire, Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, B.P. 1014 RP, Rabat 10080, Morocco
| | - Eulogio J Bedmar
- Departamento de Microbiología del Suelo y Sistemas Simbíoticos Estacíon Experimental del Zaidín, CSIC, Apartado Postal 419, 18008 Granada, Spain
| | - Mustapha Missbah El Idrissi
- Equipe de Microbiologie et Biologie Moléculaire, Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, B.P. 1014 RP, Rabat 10080, Morocco
| |
Collapse
|
43
|
Singh A, Rajput VD, Sharma R, Ghazaryan K, Minkina T. Salinity stress and nanoparticles: Insights into antioxidative enzymatic resistance, signaling, and defense mechanisms. ENVIRONMENTAL RESEARCH 2023; 235:116585. [PMID: 37437867 DOI: 10.1016/j.envres.2023.116585] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/13/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
Salinized land is slowly spreading across the world. Reduced crop yields and quality due to salt stress threaten the ability to feed a growing population. We discussed the mechanisms behind nano-enabled antioxidant enzyme-mediated plant tolerance, such as maintaining reactive oxygen species (ROS) homeostasis, enhancing the capacity of plants to retain K+ and eliminate Na+, increasing the production of nitric oxide, involving signaling pathways, and lowering lipoxygenase activities to lessen oxidative damage to membranes. Frequently used techniques were highlighted like protecting cells from oxidative stress and keeping balance in ionic state. Salt tolerance in plants enabled by nanotechnology is also discussed, along with the potential role of physiobiochemical and molecular mechanisms. As a whole, the goal of this review is meant to aid researchers in fields as diverse as plant science and nanoscience in better-comprehending potential with novel solutions to addressing salinity issues for sustainable agriculture.
Collapse
Affiliation(s)
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | | | | | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| |
Collapse
|
44
|
Wang JY, Jamil M, AlOtaibi TS, Abdelaziz ME, Ota T, Ibrahim OH, Berqdar L, Asami T, Ahmed Mousa MA, Al-Babili S. Zaxinone mimics (MiZax) efficiently promote growth and production of potato and strawberry plants under desert climate conditions. Sci Rep 2023; 13:17438. [PMID: 37838798 PMCID: PMC10576822 DOI: 10.1038/s41598-023-42478-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/11/2023] [Indexed: 10/16/2023] Open
Abstract
Climate changes and the rapid expanding human population have become critical concerns for global food security. One of the promising solutions is the employment of plant growth regulators (PGRs) for increasing crop yield and overcoming adverse growth conditions, such as desert climate. Recently, the apocarotenoid zaxinone and its two mimics (MiZax3 and MiZax5) have shown a promising growth-promoting activity in cereals and vegetable crops under greenhouse and field conditions. Herein, we further investigated the effect of MiZax3 and MiZax5, at different concentrations (5 and 10 µM in 2021; 2.5 and 5 µM in 2022), on the growth and yield of the two valuable vegetable crops, potato and strawberry, in the Kingdom of Saudi of Arabia. Application of both MiZax significantly increased plant agronomic traits, yield components and total yield, in five independent field trials from 2021 to 2022. Remarkably, the amount of applied MiZax was far less than humic acid, a widely applied commercial compound used here for comparison. Hence, our results indicate that MiZax are very promising PGRs that can be applied to promote the growth and yield of vegetable crops even under desert conditions and at relatively low concentrations.
Collapse
Affiliation(s)
- Jian You Wang
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia
| | - Muhammad Jamil
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia
| | - Turki S AlOtaibi
- Department of Agriculture, Faculty of Environmental Sciences, King Abdulaziz University (KAU), 21589, Jeddah, Saudi Arabia
| | - Mohamed E Abdelaziz
- Department of Vegetable Crops, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
- The National Research and Development Center for Sustainable Agriculture (Estidamah), Riyadh, Kingdom of Saudi Arabia
| | - Tsuyoshi Ota
- Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| | - Omer H Ibrahim
- Department of Agriculture, Faculty of Environmental Sciences, King Abdulaziz University (KAU), 21589, Jeddah, Saudi Arabia
- Department of Ornamental Crops, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt
| | - Lamis Berqdar
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia
| | - Tadao Asami
- Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| | - Magdi Ali Ahmed Mousa
- Department of Agriculture, Faculty of Environmental Sciences, King Abdulaziz University (KAU), 21589, Jeddah, Saudi Arabia
- Department of Vegetable Crops, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt
| | - Salim Al-Babili
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia.
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia.
| |
Collapse
|
45
|
Santás-Miguel V, Arias-Estévez M, Rodríguez-Seijo A, Arenas-Lago D. Use of metal nanoparticles in agriculture. A review on the effects on plant germination. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122222. [PMID: 37482337 DOI: 10.1016/j.envpol.2023.122222] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/09/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
Agricultural nanotechnology has become a powerful tool to help crops and improve agricultural production in the context of a growing world population. However, its application can have some problems with the development of harvests, especially during germination. This review evaluates nanoparticles with essential (Cu, Fe, Ni and Zn) and non-essential (Ag and Ti) elements on plant germination. In general, the effect of nanoparticles depends on several factors (dose, treatment time, application method, type of nanoparticle and plant). In addition, pH and ionic strength are relevant when applying nanoparticles to the soil. In the case of essential element nanoparticles, Fe nanoparticles show better results in improving nutrient uptake, improving germination, and the possibility of magnetic properties could favor their use in the removal of pollutants. In the case of Cu and Zn nanoparticles, they can be beneficial at low concentrations, while their excess presents toxicity and negatively affects germination. About nanoparticles of non-essential elements, both Ti and Ag nanoparticles can be helpful for nutrient uptake. However, their potential effects depend highly on the crop type, particle size and concentration. Overall, nanotechnology in agriculture is still in its early stages of development, and more research is needed to understand potential environmental and public health impacts.
Collapse
Affiliation(s)
- Vanesa Santás-Miguel
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Área de Edafoloxía e Química Agrícola. Facultade de Ciencias, Universidade de Vigo, As Lagoas s/n, 32004, Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA). Universidade de Vigo - Campus Auga, 32004, Ourense, Spain; Department of Biology, Microbial Ecology, Lund University, Ecology Building, Lund, SE-223 62, Sweden.
| | - Manuel Arias-Estévez
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Área de Edafoloxía e Química Agrícola. Facultade de Ciencias, Universidade de Vigo, As Lagoas s/n, 32004, Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA). Universidade de Vigo - Campus Auga, 32004, Ourense, Spain.
| | - Andrés Rodríguez-Seijo
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Área de Edafoloxía e Química Agrícola. Facultade de Ciencias, Universidade de Vigo, As Lagoas s/n, 32004, Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA). Universidade de Vigo - Campus Auga, 32004, Ourense, Spain.
| | - Daniel Arenas-Lago
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Área de Edafoloxía e Química Agrícola. Facultade de Ciencias, Universidade de Vigo, As Lagoas s/n, 32004, Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA). Universidade de Vigo - Campus Auga, 32004, Ourense, Spain.
| |
Collapse
|
46
|
Kulkarni CC, Cholin SS, Bajpai AK, Ondrasek G, Mesta RK, Rathod S, Patil HB. Comparative Root Transcriptome Profiling and Gene Regulatory Network Analysis between Eastern and Western Carrot ( Daucus carota L.) Cultivars Reveals Candidate Genes for Vascular Tissue Patterning. PLANTS (BASEL, SWITZERLAND) 2023; 12:3449. [PMID: 37836190 PMCID: PMC10575051 DOI: 10.3390/plants12193449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
Carrot (Daucus carota L.) is a highly consumed vegetable rich in carotenoids, known for their potent antioxidant, anti-inflammatory, and immune-protecting properties. While genetic and molecular studies have largely focused on wild and Western carrot cultivars (cvs), little is known about the evolutionary interactions between closely related Eastern and Western cvs. In this study, we conducted comparative transcriptome profiling of root tissues from Eastern (UHSBC-23-1) and Western (UHSBC-100) carrot cv. to better understand differentially expressed genes (DEGs) associated with storage root development and vascular cambium (VC) tissue patterning. Through reference-guided TopHat mapping, we achieved an average mapping rate of 73.87% and identified a total of 3544 DEGs (p < 0.05). Functional annotation and gene ontology classification revealed 97 functional categories, including 33 biological processes, 19 cellular components, 45 metabolic processes, and 26 KEGG pathways. Notably, Eastern cv. exhibited enrichment in cell wall, plant-pathogen interaction, and signal transduction terms, while Western cv. showed dominance in photosynthesis, metabolic process, and carbon metabolism terms. Moreover, constructed gene regulatory network (GRN) for both cvs. obtained orthologs with 1222 VC-responsive genes of Arabidopsis thaliana. In Western cv, GRN revealed VC-responsive gene clusters primarily associated with photosynthetic processes and carbon metabolism. In contrast, Eastern cv. exhibited a higher number of stress-responsive genes, and transcription factors (e.g., MYB15, WRKY46, AP2/ERF TF connected via signaling pathways with NAC036) were identified as master regulators of xylem vessel differentiation and secondary cell wall thickening. By elucidating the comparative transcriptome profiles of Eastern and Western cvs. for the first time, our study provides valuable insights into the differentially expressed genes involved in root development and VC tissue patterning. The identification of key regulatory genes and their roles in these processes represents a significant advancement in our understanding of the evolutionary relations and molecular mechanisms underlying secondary growth of carrot and regulation by vascular cambium.
Collapse
Affiliation(s)
- Chaitra C. Kulkarni
- Plant Molecular Biology Lab (DBT-BIOCARe), Department of Biotechnology & Crop Improvement, College of Horticulture, University of Horticultural Sciences, Bagalkot 587103, Karnataka, India;
- Kittur Rani Chennamma College of Horticulture, Arabhavi, Gokak 591218, Belgaum Dt., Karnataka, India
- University of Horticultural Sciences, Bagalkot 587103, Karnataka, India
| | - Sarvamangala S. Cholin
- Plant Molecular Biology Lab (DBT-BIOCARe), Department of Biotechnology & Crop Improvement, College of Horticulture, University of Horticultural Sciences, Bagalkot 587103, Karnataka, India;
- University of Horticultural Sciences, Bagalkot 587103, Karnataka, India
| | - Akhilesh K. Bajpai
- Shodhaka Life Sciences Pvt. Ltd., Electronic City, Phase-I, Bengaluru 560100, Karnataka, India
| | - Gabrijel Ondrasek
- Department of Soil Amelioration, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - R. K. Mesta
- University of Horticultural Sciences, Bagalkot 587103, Karnataka, India
| | - Santosha Rathod
- Indian Institute of Rice Research, Hyderabad 500030, Telangana, India
| | - H. B. Patil
- University of Horticultural Sciences, Bagalkot 587103, Karnataka, India
| |
Collapse
|
47
|
Liu S, Zenda T, Tian Z, Huang Z. Metabolic pathways engineering for drought or/and heat tolerance in cereals. FRONTIERS IN PLANT SCIENCE 2023; 14:1111875. [PMID: 37810398 PMCID: PMC10557149 DOI: 10.3389/fpls.2023.1111875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 09/04/2023] [Indexed: 10/10/2023]
Abstract
Drought (D) and heat (H) are the two major abiotic stresses hindering cereal crop growth and productivity, either singly or in combination (D/+H), by imposing various negative impacts on plant physiological and biochemical processes. Consequently, this decreases overall cereal crop production and impacts global food availability and human nutrition. To achieve global food and nutrition security vis-a-vis global climate change, deployment of new strategies for enhancing crop D/+H stress tolerance and higher nutritive value in cereals is imperative. This depends on first gaining a mechanistic understanding of the mechanisms underlying D/+H stress response. Meanwhile, functional genomics has revealed several stress-related genes that have been successfully used in target-gene approach to generate stress-tolerant cultivars and sustain crop productivity over the past decades. However, the fast-changing climate, coupled with the complexity and multigenic nature of D/+H tolerance suggest that single-gene/trait targeting may not suffice in improving such traits. Hence, in this review-cum-perspective, we advance that targeted multiple-gene or metabolic pathway manipulation could represent the most effective approach for improving D/+H stress tolerance. First, we highlight the impact of D/+H stress on cereal crops, and the elaborate plant physiological and molecular responses. We then discuss how key primary metabolism- and secondary metabolism-related metabolic pathways, including carbon metabolism, starch metabolism, phenylpropanoid biosynthesis, γ-aminobutyric acid (GABA) biosynthesis, and phytohormone biosynthesis and signaling can be modified using modern molecular biotechnology approaches such as CRISPR-Cas9 system and synthetic biology (Synbio) to enhance D/+H tolerance in cereal crops. Understandably, several bottlenecks hinder metabolic pathway modification, including those related to feedback regulation, gene functional annotation, complex crosstalk between pathways, and metabolomics data and spatiotemporal gene expressions analyses. Nonetheless, recent advances in molecular biotechnology, genome-editing, single-cell metabolomics, and data annotation and analysis approaches, when integrated, offer unprecedented opportunities for pathway engineering for enhancing crop D/+H stress tolerance and improved yield. Especially, Synbio-based strategies will accelerate the development of climate resilient and nutrient-dense cereals, critical for achieving global food security and combating malnutrition.
Collapse
Affiliation(s)
- Songtao Liu
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Tinashe Zenda
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Zaimin Tian
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Zhihong Huang
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| |
Collapse
|
48
|
Carlier A, Dandrifosse S, Dumont B, Mercatoris B. To What Extent Does Yellow Rust Infestation Affect Remotely Sensed Nitrogen Status? PLANT PHENOMICS (WASHINGTON, D.C.) 2023; 5:0083. [PMID: 37681000 PMCID: PMC10482323 DOI: 10.34133/plantphenomics.0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 08/03/2023] [Indexed: 09/09/2023]
Abstract
The utilization of high-throughput in-field phenotyping systems presents new opportunities for evaluating crop stress. However, existing studies have primarily focused on individual stresses, overlooking the fact that crops in field conditions frequently encounter multiple stresses, which can display similar symptoms or interfere with the detection of other stress factors. Therefore, this study aimed to investigate the impact of wheat yellow rust on reflectance measurements and nitrogen status assessment. A multi-sensor mobile platform was utilized to capture RGB and multispectral images throughout a 2-year fertilization-fungicide trial. To identify disease-induced damage, the SegVeg approach, which combines a U-NET architecture and a pixel-wise classifier, was applied to RGB images, generating a mask capable of distinguishing between healthy and damaged areas of the leaves. The observed proportion of damage in the images demonstrated similar effectiveness to visual scoring methods in explaining grain yield. Furthermore, the study discovered that the disease not only affected reflectance through leaf damage but also influenced the reflectance of healthy areas by disrupting the overall nitrogen status of the plants. This emphasizes the importance of incorporating disease impact into reflectance-based decision support tools to account for its effects on spectral data. This effect was successfully mitigated by employing the NDRE vegetation index calculated exclusively from the healthy portions of the leaves or by incorporating the proportion of damage into the model. However, these findings also highlight the necessity for further research specifically addressing the challenges presented by multiple stresses in crop phenotyping.
Collapse
Affiliation(s)
- Alexis Carlier
- Biosystems Dynamics and Exchanges, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech,
University of Liège, 5030 Gembloux, Belgium
| | - Sebastien Dandrifosse
- Biosystems Dynamics and Exchanges, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech,
University of Liège, 5030 Gembloux, Belgium
| | - Benjamin Dumont
- Plant Sciences, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech,
University of Liège, 5030 Gembloux, Belgium
| | - Benoît Mercatoris
- Biosystems Dynamics and Exchanges, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech,
University of Liège, 5030 Gembloux, Belgium
| |
Collapse
|
49
|
Sheela HS, Vennapusa AR, Melmaiee K, Prasad TG, Reddy CP. Pyramiding of transcription factor, PgHSF4, and stress-responsive genes of p68, Pg47, and PsAKR1 impart multiple abiotic stress tolerance in rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1233248. [PMID: 37692421 PMCID: PMC10492517 DOI: 10.3389/fpls.2023.1233248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023]
Abstract
Abiotic stresses such as drought, salinity, and heat stress significantly affect rice crop growth and production. Under uncertain climatic conditions, the concurrent multiple abiotic stresses at different stages of rice production became a major challenge for agriculture. Hence, improving rice's multiple abiotic stress tolerance is essential to overcome unprecedented challenges under adverse environmental conditions. A significant challenge for rice breeding programs in improving abiotic stress tolerance involves multiple traits and their complexity. Multiple traits must be targeted to improve multiple stress tolerance in rice and uncover the mechanisms. With this hypothesis, in the present study gene stacking approach is used to integrate multiple traits involved in stress tolerance. The multigene transgenics co-expressing Pennisetum glaucum 47 (Pg47), Pea 68 (p68), Pennisetum glaucum Heat Shock Factor 4(PgHSF4), and Pseudomonas Aldo Keto Reductase 1 (PsAKR1) genes in the rice genotype (AC39020) were developed using the in-planta transformation method. The promising transgenic lines maintained higher yields under semi-irrigated aerobic cultivation (moisture stress). These 15 promising transgenic rice seedlings showed improved shoot and root growth traits under salinity, accelerating aging, temperature, and oxidative stress. They showed better physiological characteristics, such as chlorophyll content, membrane stability, and lower accumulation of reactive oxygen species, under multiple abiotic stresses than wild-type. Enhanced expression of transgenes and other stress-responsive downstream genes such as HSP70, SOD, APX, SOS, PP2C, and P5CS in transgenic lines suggest the possible molecular mechanism for imparting the abiotic stress tolerance. This study proved that multiple genes stacking as a novel strategy induce several mechanisms and responsible traits to overcome multiple abiotic stresses. This multigene combination can potentially improve tolerance to multiple abiotic stress conditions and pave the way for developing climate-resilient crops.
Collapse
Affiliation(s)
- H. S. Sheela
- Department of Crop Physiology, University of Agricultural Sciences, Gandhi Krishi Vigyana Kendra (GKVK), Bengaluru, KA, India
| | - Amaranatha R. Vennapusa
- Department of Crop Physiology, University of Agricultural Sciences, Gandhi Krishi Vigyana Kendra (GKVK), Bengaluru, KA, India
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE, United States
| | - Kalpalatha Melmaiee
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE, United States
| | - T. G. Prasad
- Department of Crop Physiology, University of Agricultural Sciences, Gandhi Krishi Vigyana Kendra (GKVK), Bengaluru, KA, India
| | - Chandrashekar P. Reddy
- Department of Crop Physiology, University of Agricultural Sciences, Gandhi Krishi Vigyana Kendra (GKVK), Bengaluru, KA, India
| |
Collapse
|
50
|
Miller ST, Wright S, Stewart JE. The role of stress factors in severity of Cytospora plurivora in greenhouse and field plantings of 13 peach ( Prunus persica) cultivars. FRONTIERS IN PLANT SCIENCE 2023; 14:1228493. [PMID: 37636082 PMCID: PMC10452880 DOI: 10.3389/fpls.2023.1228493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023]
Abstract
Understanding the host-pathogen-environmental interactions in a pathosystem is essential for management of diseases and diminished crop yields. Abiotic stressors such as cold damage, water deficit, and high pH soils can be major limiting factors to tree fruit production. Along with decreased yields, these abiotic factors can have direct implications for disease severity within orchards. Cytospora plurivora is a ubiquitous fungal canker pathogen in western Colorado, USA and is a major focus in integrated pest management strategies. This research evaluated the influence of biotic and abiotic stress factors on peach tree health. Thirteen peach cultivars were placed under abiotic stress and inoculated with C. plurivora in greenhouse and field conditions. Under deficit irrigation, C. plurivora infections were significantly larger and more severe in both the greenhouse and field trials when compared with those under the full-irrigation controls. In controlled greenhouse conditions, a positive correlation between lesion size and water potential was evident, but no trend of cultivar tolerance was observed. Furthermore, increase in irrigation water pH, through additions of sodium carbonate and bicarbonate, in the greenhouse trials resulted in decreased leaf water potentials and increased pathogen necrotic tissue volumes (mm3). In field trials, there was no positive relationship between lesion size and water potential; trees with the most negative water potentials had the smallest lesions sizes that did not correspond to cultivar, suggesting that other abiotic or biotic factors may be shielding water stressed trees from increased pathogen aggression. This research highlights the importance of proper irrigation and soil pH management as tools for the management of Cytospora canker in peach orchards.
Collapse
Affiliation(s)
| | | | - Jane E. Stewart
- Colorado State University, Department of Agricultural Biology, Fort Collins, CO, United States
| |
Collapse
|