1
|
Witte CP, Herde M. Nucleotides and nucleotide derivatives as signal molecules in plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6918-6938. [PMID: 39252595 DOI: 10.1093/jxb/erae377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/09/2024] [Indexed: 09/11/2024]
Abstract
In reaction to a stimulus, signaling molecules are made, generate a response, and are then degraded. Nucleotides are classically associated with central metabolism and nucleic acid biosynthesis, but there are a number of nucleotides and nucleotide derivatives in plants to which this simple definition of a signaling molecule applies in whole or at least in part. These include cytokinins and chloroplast guanosine tetraposphate (ppGpp), as well as extracellular canonical nucleotides such as extracellular ATP (eATP) and NAD+ (eNAD+). In addition, there is a whole series of compounds derived from NAD+ such as ADP ribose (ADPR), and ATP-ADPR dinucleotides and their hydrolysis products (e.g. pRib-AMP) together with different variants of cyclic ADPR (cADPR, 2´-cADPR, 3´-cADPR), and also cyclic nucleotides such as 3´,5´-cAMP and 2´,3´-cyclic nucleoside monophosphates. Interestingly, some of these compounds have recently been shown to play a central role in pathogen defense. In this review, we highlight these exciting new developments. We also review nucleotide derivatives that are considered as candidates for signaling molecules, for example purine deoxynucleosides, and discuss more controversial cases.
Collapse
Affiliation(s)
- Claus-Peter Witte
- Molecular Nutrition and Biochemistry of Plants, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Marco Herde
- Molecular Nutrition and Biochemistry of Plants, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| |
Collapse
|
2
|
Pérez-Henríquez P, Nagawa S, Liu Z, Pan X, Michniewicz M, Tang W, Rasmussen C, Van Norman J, Strader L, Yang Z. PIN2-mediated self-organizing transient auxin flow contributes to auxin maxima at the tip of Arabidopsis cotyledons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.599792. [PMID: 38979163 PMCID: PMC11230289 DOI: 10.1101/2024.06.24.599792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Directional auxin transport and formation of auxin maxima are critical for embryogenesis, organogenesis, pattern formation, and growth coordination in plants, but the mechanisms underpinning the initiation and establishment of these auxin dynamics are not fully understood. Here we show that a self-initiating and -terminating transient auxin flow along the marginal cells (MCs) contributes to the formation of an auxin maximum at the tip of Arabidopsis cotyledon that globally coordinates the interdigitation of puzzle-shaped pavement cells in the cotyledon epidermis. Prior to the interdigitation, indole butyric acid (IBA) is converted to indole acetic acid (IAA) to induce PIN2 accumulation and polarization in the marginal cells, leading to auxin flow toward and accumulation at the cotyledon tip. When IAA levels at the cotyledon tip reaches a maximum, it activates pavement cell interdigitation as well as the accumulation of the IBA transporter TOB1 in MCs, which sequesters IBA to the vacuole and reduces IBA availability and IAA levels. The reduction of IAA levels results in PIN2 down-regulation and cessation of the auxin flow. Hence, our results elucidate a self-activating and self-terminating transient polar auxin transport system in cotyledons, contributing to the formation of localized auxin maxima that spatiotemporally coordinate pavement cell interdigitation.
Collapse
Affiliation(s)
- Patricio Pérez-Henríquez
- Institute of Integrated Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shingo Nagawa
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhongchi Liu
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen, Guangdong, China
- The Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Xue Pan
- Institute of Integrated Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
- Department of Biological Sciences, University of Toronto-Scarborough, Toronto, ON M1C1A4, Canada
| | | | - Wenxin Tang
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Carolyn Rasmussen
- Institute of Integrated Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Jaimie Van Norman
- Institute of Integrated Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Lucia Strader
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Zhenbiao Yang
- Institute of Integrated Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen, Guangdong, China
- The Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Kim D, Chen D, Ahsan N, Jorge GL, Thelen JJ, Stacey G. The Raf-like MAPKKK INTEGRIN-LINKED KINASE 5 regulates purinergic receptor-mediated innate immunity in Arabidopsis. THE PLANT CELL 2023; 35:1572-1592. [PMID: 36762404 PMCID: PMC10118279 DOI: 10.1093/plcell/koad029] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/31/2023] [Indexed: 06/17/2023]
Abstract
Mitogen-activated protein (MAP) kinase signaling cascades play important roles in eukaryotic defense against various pathogens. Activation of the extracellular ATP (eATP) receptor P2K1 triggers MAP kinase 3 and 6 (MPK3/6) phosphorylation, which leads to an elevated plant defense response. However, the mechanism by which P2K1 activates the MAPK cascade is unclear. In this study, we show that in Arabidopsis thaliana, P2K1 phosphorylates the Raf-like MAP kinase kinase kinase (MAPKKK) INTEGRIN-LINKED KINASE 5 (ILK5) on serine 192 in the presence of eATP. The interaction between P2K1 and ILK5 was confirmed both in vitro and in planta and their interaction was enhanced by ATP treatment. Similar to P2K1 expression, ILK5 expression levels were highly induced by treatment with ATP, flg22, Pseudomonas syringae pv. tomato DC3000, and various abiotic stresses. ILK5 interacts with and phosphorylates the MAP kinase MKK5. Moreover, phosphorylation of MPK3/6 was significantly reduced upon ATP treatment in ilk5 mutant plants, relative to wild-type (WT). The ilk5 mutant plants showed higher susceptibility to P. syringae pathogen infection relative to WT plants. Plants expressing only the mutant ILK5S192A protein, with decreased kinase activity, did not activate the MAPK cascade upon ATP addition. These results suggest that eATP activation of P2K1 results in transphosphorylation of the Raf-like MAPKKK ILK5, which subsequently triggers the MAPK cascade, culminating in activation of MPK3/6 associated with an elevated innate immune response.
Collapse
Affiliation(s)
- Daewon Kim
- Division of Plant Science and Technology, C.S. Bond Life Science Center, University of Missouri, Columbia, MO 65211, USA
| | - Dongqin Chen
- Division of Plant Science and Technology, C.S. Bond Life Science Center, University of Missouri, Columbia, MO 65211, USA
| | - Nagib Ahsan
- Division of Biochemistry, C.S. Bond Life Science Center, University of Missouri, Columbia, MO 65211, USA
| | - Gabriel Lemes Jorge
- Division of Biochemistry, C.S. Bond Life Science Center, University of Missouri, Columbia, MO 65211, USA
| | - Jay J Thelen
- Division of Biochemistry, C.S. Bond Life Science Center, University of Missouri, Columbia, MO 65211, USA
| | - Gary Stacey
- Division of Plant Science and Technology, C.S. Bond Life Science Center, University of Missouri, Columbia, MO 65211, USA
- Division of Biochemistry, C.S. Bond Life Science Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
4
|
Oelmüller R, Tseng YH, Gandhi A. Signals and Their Perception for Remodelling, Adjustment and Repair of the Plant Cell Wall. Int J Mol Sci 2023; 24:ijms24087417. [PMID: 37108585 PMCID: PMC10139151 DOI: 10.3390/ijms24087417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
The integrity of the cell wall is important for plant cells. Mechanical or chemical distortions, tension, pH changes in the apoplast, disturbance of the ion homeostasis, leakage of cell compounds into the apoplastic space or breakdown of cell wall polysaccharides activate cellular responses which often occur via plasma membrane-localized receptors. Breakdown products of the cell wall polysaccharides function as damage-associated molecular patterns and derive from cellulose (cello-oligomers), hemicelluloses (mainly xyloglucans and mixed-linkage glucans as well as glucuronoarabinoglucans in Poaceae) and pectins (oligogalacturonides). In addition, several types of channels participate in mechanosensing and convert physical into chemical signals. To establish a proper response, the cell has to integrate information about apoplastic alterations and disturbance of its wall with cell-internal programs which require modifications in the wall architecture due to growth, differentiation or cell division. We summarize recent progress in pattern recognition receptors for plant-derived oligosaccharides, with a focus on malectin domain-containing receptor kinases and their crosstalk with other perception systems and intracellular signaling events.
Collapse
Affiliation(s)
- Ralf Oelmüller
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Yu-Heng Tseng
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Akanksha Gandhi
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, 07743 Jena, Germany
| |
Collapse
|
5
|
Matthus E, Ning Y, Shafiq F, Davies JM. Phosphate-deprivation and damage signalling by extracellular ATP. FRONTIERS IN PLANT SCIENCE 2023; 13:1098146. [PMID: 36714742 PMCID: PMC9879614 DOI: 10.3389/fpls.2022.1098146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
Phosphate deprivation compromises plant productivity and modulates immunity. DAMP signalling by extracellular ATP (eATP) could be compromised under phosphate deprivation by the lowered production of cytosolic ATP and the need to salvage eATP as a nutritional phosphate source. Phosphate-starved roots of Arabidopsis can still sense eATP, indicating robustness in receptor function. However, the resultant cytosolic free Ca2+ signature is impaired, indicating modulation of downstream components. This perspective on DAMP signalling by extracellular ATP (eATP) addresses the salvage of eATP under phosphate deprivation and its promotion of immunity, how Ca2+ signals are generated and how the Ca2+ signalling pathway could be overcome to allow beneficial fungal root colonization to fulfill phosphate demands. Safe passage for an endophytic fungus allowing root colonization could be achieved by its down-regulation of the Ca2+ channels that act downstream of the eATP receptors and by also preventing ROS accumulation, thus further impairing DAMP signalling.
Collapse
Affiliation(s)
- Elsa Matthus
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Youzheng Ning
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Fahad Shafiq
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Punjab, Pakistan
| | - Julia M. Davies
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
6
|
Xu J, Han L, Xia S, Zhu R, Kang E, Shang Z. ATANN3 Is Involved in Extracellular ATP-Regulated Auxin Distribution in Arabidopsis thaliana Seedlings. PLANTS (BASEL, SWITZERLAND) 2023; 12:330. [PMID: 36679043 PMCID: PMC9867528 DOI: 10.3390/plants12020330] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/07/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Extracellular ATP (eATP) plays multiple roles in plant growth and development, and stress responses. It has been revealed that eATP suppresses growth and alters the growth orientation of the root and hypocotyl of Arabidopsis thaliana by affecting auxin transport and localization in these organs. However, the mechanism of the eATP-stimulated auxin distribution remains elusive. Annexins are involved in multiple aspects of plant cellular metabolism, while their role in response to apoplastic signals remains unclear. Here, by using the loss-of-function mutations, we investigated the role of AtANN3 in the eATP-regulated root and hypocotyl growth. Firstly, the inhibitory effects of eATP on root and hypocotyl elongation were weakened or impaired in the AtANN3 null mutants (atann3-1 and atann3-2). Meanwhile, the distribution of DR5-GUS and DR5-GFP indicated that the eATP-induced asymmetric distribution of auxin in the root tips or hypocotyl cells occurred in wild-type control plants, while in atann3-1 mutant seedlings, it was not observed. Further, the eATP-induced asymmetric distribution of PIN2-GFP in root-tip cells or that of PIN3-GFP in hypocotyl cells was reduced in atann3-1 seedlings. Finally, the eATP-induced asymmetric distribution of cytoplasmic vesicles in root-tip cells was impaired in atann3-1 seedlings. Based on these results, we suggest that AtANN3 may be involved in eATP-regulated seedling growth by regulating the distribution of auxin and auxin transporters in vegetative organs.
Collapse
Affiliation(s)
| | | | | | | | - Erfang Kang
- Correspondence: (E.K.); (Z.S.); Tel.: +86-(311)-8078-7565 (E.K.); +86-(311)-8078-7570 (Z.S.)
| | - Zhonglin Shang
- Correspondence: (E.K.); (Z.S.); Tel.: +86-(311)-8078-7565 (E.K.); +86-(311)-8078-7570 (Z.S.)
| |
Collapse
|
7
|
Jewell JB, Berim A, Tripathi D, Gleason C, Olaya C, Pappu HR, Gang DR, Tanaka K. Activation of indolic glucosinolate pathway by extracellular ATP in Arabidopsis. PLANT PHYSIOLOGY 2022; 190:1574-1578. [PMID: 36000925 PMCID: PMC9614461 DOI: 10.1093/plphys/kiac393] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Jeremy B Jewell
- Department of Plant Pathology, Washington State University, Pullman, Washington 99164, USA
| | - Anna Berim
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, USA
| | - Diwaker Tripathi
- Department of Biology, University of Washington, Seattle, Washington 98195, USA
| | - Cynthia Gleason
- Department of Plant Pathology, Washington State University, Pullman, Washington 99164, USA
| | - Cristian Olaya
- Department of Plant Pathology, Washington State University, Pullman, Washington 99164, USA
| | - Hanu R Pappu
- Department of Plant Pathology, Washington State University, Pullman, Washington 99164, USA
| | - David R Gang
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, USA
| | - Kiwamu Tanaka
- Department of Plant Pathology, Washington State University, Pullman, Washington 99164, USA
| |
Collapse
|
8
|
Bello-Bello E, López-Arredondo D, Rico-Chambrón TY, Herrera-Estrella L. Conquering compacted soils: uncovering the molecular components of root soil penetration. TRENDS IN PLANT SCIENCE 2022; 27:814-827. [PMID: 35525799 DOI: 10.1016/j.tplants.2022.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Global agriculture and food security face paramount challenges due to climate change and land degradation. Human-induced soil compaction severely affects soil fertility, impairing root system development and crop yield. There is a need to design compaction-resilient crops that can thrive in degraded soils and maintain high yields. To address plausible solutions to this challenging scenario, we discuss current knowledge on plant root penetration ability and delineate potential approaches based on root-targeted genetic engineering (RGE) and genomics-assisted breeding (GAB) for developing crops with enhanced root system penetrability (RSP) into compacted soils. Such approaches could lead to crops with improved resilience to climate change and marginal soils, which can help to boost CO2 sequestration and storage in deeper soil strata.
Collapse
Affiliation(s)
- Elohim Bello-Bello
- Unidad de Genómica Avanzada/LANGEBIO, Centro de Investigación y de Estudios Avanzados, Irapuato, México
| | - Damar López-Arredondo
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Thelma Y Rico-Chambrón
- Unidad de Genómica Avanzada/LANGEBIO, Centro de Investigación y de Estudios Avanzados, Irapuato, México
| | - Luis Herrera-Estrella
- Unidad de Genómica Avanzada/LANGEBIO, Centro de Investigación y de Estudios Avanzados, Irapuato, México; Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
9
|
Matthus E, Wilkins KA, Mohammad-Sidik A, Ning Y, Davies JM. Spatial origin of the extracellular ATP-induced cytosolic calcium signature in Arabidopsis thaliana roots: wave formation and variation with phosphate nutrition. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:863-873. [PMID: 35395136 DOI: 10.1111/plb.13427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Extracellular ATP (eATP) increases cytosolic free calcium ([Ca2+ ]cyt ) as a specific second messenger 'signature' through the plasma membrane DORN1/P2K1 receptor. Previous studies revealed a biphasic signature in Arabidopsis thaliana roots that is altered by inorganic phosphate (Pi) deprivation. The relationship between the two phases of the signature and possible wave formation have been tested as a function of Pi nutrition. The bioluminescent aequorin and intensiometric GCaMP3 reporters were used to resolve the spatial origin of the eATP [Ca2+ ]cyt signature in Arabidopsis root tips. Application of eATP only to the root apex allowed [Ca2+ ]cyt wave resolution without the confounding effects of eATP delivery by superfusion. The first apical millimetre of the root generates the first [Ca2+ ]cyt increase by eATP, regardless of nutritional status. The second increase occurs sub-apically in the root hair zone, has some autonomy and is significantly reduced in Pi-starved roots. A significant component of the Pi-replete signature does not require DORN1/P2K1, but Pi-starved roots appear to have an absolute requirement for that receptor. Application of eATP specifically to the root apex provides evidence for cell-to-cell propagation of a [Ca2+ ]cyt wave that diminishes sub-apically. The apex maintains a robust [Ca2+ ]cyt increase (even under Pi starvation) that is the basis of a propagative wave, with implications for the ability of the root's eATP signalling systems to signal systemically. Partial autonomy of the sub-apical region may be relevant to the perception of eATP from microbes. eATP-induced [Ca2+ ]cyt increase may not have always have an obligate requirement for DORN1/P2K1.
Collapse
Affiliation(s)
- E Matthus
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - K A Wilkins
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - A Mohammad-Sidik
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Y Ning
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - J M Davies
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
10
|
Brenya E, Pervin M, Chen ZH, Tissue DT, Johnson S, Braam J, Cazzonelli CI. Mechanical stress acclimation in plants: Linking hormones and somatic memory to thigmomorphogenesis. PLANT, CELL & ENVIRONMENT 2022; 45:989-1010. [PMID: 34984703 DOI: 10.1111/pce.14252] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
A single event of mechanical stimulation is perceived by mechanoreceptors that transduce rapid transient signalling to regulate gene expression. Prolonged mechanical stress for days to weeks culminates in cellular changes that strengthen the plant architecture leading to thigmomorphogenesis. The convergence of multiple signalling pathways regulates mechanically induced tolerance to numerous biotic and abiotic stresses. Emerging evidence showed prolonged mechanical stimulation can modify the baseline level of gene expression in naive tissues, heighten gene expression, and prime disease resistance upon a subsequent pathogen encounter. The phenotypes of thigmomorphogenesis can persist throughout growth without continued stimulation, revealing somatic-stress memory. Epigenetic processes regulate TOUCH gene expression and could program transcriptional memory in differentiating cells to program thigmomorphogenesis. We discuss the early perception, gene regulatory and phytohormone pathways that facilitate thigmomorphogenesis and mechanical stress acclimation in Arabidopsis and other plant species. We provide insights regarding: (1) the regulatory mechanisms induced by single or prolonged events of mechanical stress, (2) how mechanical stress confers transcriptional memory to induce cross-acclimation to future stress, and (3) why thigmomorphogenesis might resemble an epigenetic phenomenon. Deeper knowledge of how prolonged mechanical stimulation programs somatic memory and primes defence acclimation could transform solutions to improve agricultural sustainability in stressful environments.
Collapse
Affiliation(s)
- Eric Brenya
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Mahfuza Pervin
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Zhong-Hua Chen
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
- School of Science, Western Sydney University, Richmond, New South Wales, Australia
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Scott Johnson
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Janet Braam
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Christopher I Cazzonelli
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| |
Collapse
|
11
|
P2K1 Receptor, Heterotrimeric Gα Protein and CNGC2/4 Are Involved in Extracellular ATP-Promoted Ion Influx in the Pollen of Arabidopsis thaliana. PLANTS 2021; 10:plants10081743. [PMID: 34451790 PMCID: PMC8400636 DOI: 10.3390/plants10081743] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 11/17/2022]
Abstract
As an apoplastic signal, extracellular ATP (eATP) is involved in plant growth and development. eATP promotes tobacco pollen germination (PG) and pollen tube growth (PTG) by stimulating Ca2+ or K+ absorption. Nevertheless, the mechanisms underlying eATP-stimulated ion uptake and their role in PG and PTG are still unclear. Here, ATP addition was found to modulate PG and PTG in 34 plant species and showed a promoting effect in most of these species. Furthermore, by using Arabidopsis thaliana as a model, the role of several signaling components involved in eATP-promoted ion (Ca2+, K+) uptake, PG, and PTG were investigated. ATP stimulated while apyrase inhibited PG and PTG. Patch-clamping results showed that ATP promoted K+ and Ca2+ influx into pollen protoplasts. In loss-of-function mutants of P2K1 (dorn1-1 and dorn1-3), heterotrimeric G protein α subunit (gpa1-1, gpa1-2), or cyclic nucleotide gated ion channel (cngc2, cngc4), eATP-stimulated PG, PTG, and ion influx were all impaired. Our results suggest that these signaling components may be involved in eATP-promoted PG and PTG by regulating Ca2+ or K+ influx in Arabidopsis pollen grains.
Collapse
|
12
|
Research Advances in Heterotrimeric G-Protein α Subunits and Uncanonical G-Protein Coupled Receptors in Plants. Int J Mol Sci 2021; 22:ijms22168678. [PMID: 34445383 PMCID: PMC8395518 DOI: 10.3390/ijms22168678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 12/22/2022] Open
Abstract
As crucial signal transducers, G-proteins and G-protein-coupled receptors (GPCRs) have attracted increasing attention in the field of signal transduction. Research on G-proteins and GPCRs has mainly focused on animals, while research on plants is relatively rare. The mode of action of G-proteins is quite different from that in animals. The G-protein α (Gα) subunit is the most essential member of the G-protein signal cycle in animals and plants. The G-protein is activated when Gα releases GDP and binds to GTP, and the relationships with the GPCR and the downstream signal are also achieved by Gα coupling. It is important to study the role of Gα in the signaling pathway to explore the regulatory mechanism of G-proteins. The existence of a self-activated Gα in plants makes it unnecessary for the canonical GPCR to activate the G-protein by exchanging GDP with GTP. However, putative GPCRs have been found and proven to play important roles in G-protein signal transduction. The unique mode of action of G-proteins and the function of putative GPCRs in plants suggest that the same definition used in animal research cannot be used to study uncanonical GPCRs in plants. This review focuses on the different functions of the Gα and the mode of action between plants and animals as well as the functions of the uncanonical GPCR. This review employs a new perspective to define uncanonical GPCRs in plants and emphasizes the role of uncanonical GPCRs and Gα subunits in plant stress resistance and agricultural production.
Collapse
|
13
|
Smith SJ, Goodman H, Kroon JTM, Brown AP, Simon WJ, Chivasa S. Isolation of Arabidopsis extracellular ATP binding proteins by affinity proteomics and identification of PHOSPHOLIPASE C-LIKE 1 as an extracellular protein essential for fumonisin B1 toxicity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1387-1400. [PMID: 33735457 DOI: 10.1111/tpj.15243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 02/18/2021] [Accepted: 03/08/2021] [Indexed: 05/21/2023]
Abstract
ATP is secreted to the extracellular matrix, where it activates plasma membrane receptors for controlling plant growth and stress-adaptive processes. DOES NOT RESPOND TO NUCLEOTIDES 1 (DORN1), was the first plant ATP receptor to be identified but key downstream proteins remain sought after. Here, we identified 120 proteins secreted by Arabidopsis cell cultures and screened them for putative stress-responsive proteins using ATP-affinity purification. We report three Arabidopsis proteins isolated by ATP-affinity: PEROXIDASE 52, SUBTILASE-LIKE SERINE PROTEASE 1.7 and PHOSPHOLIPASE C-LIKE 1. In wild-type Arabidopsis, the expression of genes encoding all three proteins responded to fumonisin B1, a cell death-activating mycotoxin. The expression of PEROXIDASE 52 and PHOSPHOLIPASE C-LIKE 1 was altered in fumonisin B1-resistant salicylic acid induction-deficient (sid2) mutants. Exposure to fumonisin B1 suppressed PHOSPHOLIPASE C-LIKE 1 expression in sid2 mutants, suggesting that the inactivation of this gene might provide mycotoxin tolerance. Accordingly, gene knockout mutants of PHOSPHOLIPASE C-LIKE 1 were resistant to fumonisin B1-induced death. The activation of PHOSPHOLIPASE C-LIKE 1 gene expression by exogenous ATP was not blocked in dorn1 loss-of-function mutants, indicating that DORN1 is not required. Furthermore, exogenous ATP rescued both the wild type and the dorn1 mutants from fumonisin-B1 toxicity, suggesting that different ATP receptor(s) are operational in this process. Our results point to the existence of additional plant ATP receptor(s) and provide crucial downstream targets for use in designing screens to identify these receptors. Finally, PHOSPHOLIPASE C-LIKE 1 serves as a convergence point for fumonisin B1 and extracellular ATP signalling, and functions in the Arabidopsis stress response to fumonisin B1.
Collapse
Affiliation(s)
- Sarah J Smith
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Heather Goodman
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Johan T M Kroon
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Adrian P Brown
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - William J Simon
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Stephen Chivasa
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| |
Collapse
|
14
|
Mohammad-Sidik A, Sun J, Shin R, Song Z, Ning Y, Matthus E, Wilkins KA, Davies JM. Annexin 1 Is a Component of eATP-Induced Cytosolic Calcium Elevation in Arabidopsis thaliana Roots. Int J Mol Sci 2021; 22:ijms22020494. [PMID: 33419052 PMCID: PMC7825420 DOI: 10.3390/ijms22020494] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 12/18/2022] Open
Abstract
Extracellular ATP (eATP) has long been established in animals as an important signalling molecule but this is less understood in plants. The identification of Arabidopsis thaliana DORN1 (Does Not Respond to Nucleotides) as the first plant eATP receptor has shown that it is fundamental to the elevation of cytosolic free Ca2+ ([Ca2+]cyt) as a possible second messenger. eATP causes other downstream responses such as increase in reactive oxygen species (ROS) and nitric oxide, plus changes in gene expression. The plasma membrane Ca2+ influx channels involved in eATP-induced [Ca2+]cyt increase remain unknown at the genetic level. Arabidopsis thaliana Annexin 1 has been found to mediate ROS-activated Ca2+ influx in root epidermis, consistent with its operating as a transport pathway. In this study, the loss of function Annexin 1 mutant was found to have impaired [Ca2+]cyt elevation in roots in response to eATP or eADP. Additionally, this annexin was implicated in modulating eATP-induced intracellular ROS accumulation in roots as well as expression of eATP-responsive genes.
Collapse
Affiliation(s)
- Amirah Mohammad-Sidik
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK; (A.M.-S.); (Y.N.); (E.M.); (K.A.W.)
| | - Jian Sun
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China;
| | - Ryoung Shin
- RIKEN Centre for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan;
| | - Zhizhong Song
- School of Agriculture, Ludong University, Yantai 264205, China;
| | - Youzheng Ning
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK; (A.M.-S.); (Y.N.); (E.M.); (K.A.W.)
| | - Elsa Matthus
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK; (A.M.-S.); (Y.N.); (E.M.); (K.A.W.)
| | - Katie A. Wilkins
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK; (A.M.-S.); (Y.N.); (E.M.); (K.A.W.)
| | - Julia M. Davies
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK; (A.M.-S.); (Y.N.); (E.M.); (K.A.W.)
- Correspondence: ; Tel.: +44-1223-333-939
| |
Collapse
|
15
|
Shah AN, Tanveer M, Abbas A, Fahad S, Baloch MS, Ahmad MI, Saud S, Song Y. Targeting salt stress coping mechanisms for stress tolerance in Brassica: A research perspective. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:53-64. [PMID: 33296846 DOI: 10.1016/j.plaphy.2020.11.044] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/18/2020] [Indexed: 05/02/2023]
Abstract
Brassica genus comprises numerous cultivated brassica species with various economic importance. Salt stress is an overwhelming problem causing serious losses in Brassica species (e.g. B. napus, B. rapa, B. oleracea, B. juncea) growth and grain yield production by inducing ionic and ROS toxicity. Given that a significant variation exists in salt tolerance level in Brassica genus, Brassica species exhibited numerous salt tolerance mechanisms which were either overlooked or given less importance to improve and understand innate salt stress tolerance mechanism in Brassica species. In this review, we tried to highlight the importance and recent findings relating to some overlooked and potential mechanisms such as role of neurotransmitters, and role of cytosolic Ca2+ and ROS as signaling elements to enhance salt stress tolerance. Studies revealed that salt tolerant brassica species retained more K+ in leaf mesophyll which confers overall salinity tolerance in salt tolerance brassica species. Neurotransmitter such as melatonin, dopamiane and eATP regulates K+ and Ca2+ permeable ion channels and plays a very crucial role in ionic homeostasis under salinity stress in brassica. At the end, the numerous possible salt stress agronomic strategies were also discussed to mitigate the severity of the salt stress in Brassica species.
Collapse
Affiliation(s)
- Adnan Noor Shah
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Mohsin Tanveer
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
| | - Asad Abbas
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, China; Department of Agronomy, The University of Haripur, Haripur, 22620, Pakistan
| | - Mohammad Safdar Baloch
- Department of Agronomy, Faculty of Agriculture, Gomal University, Dera Ismail Khan, 29050, KPK, Pakistan
| | | | - Shah Saud
- Department of Horticulture, Northeast Agricultural University, Harbin, 150030, China
| | - Youhong Song
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
16
|
Sun J, Ning Y, Wang L, Wilkins KA, Davies JM. Damage Signaling by Extracellular Nucleotides: A Role for Cyclic Nucleotides in Elevating Cytosolic Free Calcium? FRONTIERS IN PLANT SCIENCE 2021; 12:788514. [PMID: 34925428 PMCID: PMC8675005 DOI: 10.3389/fpls.2021.788514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/10/2021] [Indexed: 05/04/2023]
Abstract
Extracellular ATP (eATP) is now held to be a constitutive damage-associated molecular pattern (DAMP) that is released by wounding, herbivory or pathogen attack. The concentration of eATP must be tightly regulated as either depletion or overload leads to cell death. In Arabidopsis thaliana, sensing of eATP is by two plasma membrane legume-like lectin serine-threonine receptor kinases (P2K1 and P2K2), although other receptors are postulated. The transcriptional response to eATP is dominated by wound- and defense-response genes. Wounding and pathogen attack can involve the cyclic nucleotides cyclic AMP (cAMP) and cyclic GMP (cGMP) which, in common with eATP, can increase cytosolic-free Ca2+ as a second messenger. This perspective on DAMP signaling by eATP considers the possibility that the eATP pathway involves production of cyclic nucleotides to promote opening of cyclic nucleotide-gated channels and so elevates cytosolic-free Ca2+. In silico analysis of P2K1 and P2K2 reveals putative adenylyl and guanylyl kinase sequences that are the hallmarks of "moonlighting" receptors capable of cAMP and cGMP production. Further, an Arabidopsis loss of function cngc mutant was found to have an impaired increase in cytosolic-free Ca2+ in response to eATP. A link between eATP, cyclic nucleotides, and Ca2+ signaling therefore appears credible.
Collapse
Affiliation(s)
- Jian Sun
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Youzheng Ning
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Limin Wang
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Katie A. Wilkins
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Julia M. Davies
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Julia M. Davies,
| |
Collapse
|
17
|
Dong X, Zhu R, Kang E, Shang Z. RRFT1 (Redox Responsive Transcription Factor 1) is involved in extracellular ATP-regulated gene expression in Arabidopsis thaliana seedlings. PLANT SIGNALING & BEHAVIOR 2020; 15:1748282. [PMID: 32248742 PMCID: PMC7238875 DOI: 10.1080/15592324.2020.1748282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
As an apoplast signal molecule, extracellular ATP (eATP) is involved in the growth regulation of Arabidopsis thaliana seedlings. Recently, RRFT1 was revealed to be involved in eATP- regulated seedling growth. To further verify the role of RRTF1 in seedlings' eATP response, expression of 20 eATP-responsive genes in wild type (Col-0) and RRTF1 null mutant (rrtf1-1) seedlings were investigated by using realtime quantitative PCR. After 0.5 mM ATP stimulation, the response of these genes' expression in rrtf1-1 seedlings was significantly different from that in Col-0 seedlings. Proteins which are encoded by these genes include transcription factors, plasma membrane receptors like kinases, ion influx/efflux transporters and hormone signaling components. The results indicated that RRTF1 may be involved in eATP regulated physiological responses via regulating the expression of some functional genes.
Collapse
Affiliation(s)
- Xiaoxia Dong
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Ruojia Zhu
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Erfang Kang
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Zhonglin Shang
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| |
Collapse
|
18
|
Zhu R, Dong X, Xue Y, Xu J, Zhang A, Feng M, Zhao Q, Xia S, Yin Y, He S, Li Y, Liu T, Kang E, Shang Z. Redox-Responsive Transcription Factor 1 (RRFT1) Is Involved in Extracellular ATP-Regulated Arabidopsis thaliana Seedling Growth. PLANT & CELL PHYSIOLOGY 2020; 61:685-698. [PMID: 32049334 DOI: 10.1093/pcp/pcaa014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/31/2020] [Indexed: 05/21/2023]
Abstract
Extracellular adenosine triphosphate (eATP) is an apoplastic signaling molecule that plays an essential role in the growth and development of plants. Arabidopsis seedlings have been reported to respond to eATP; however, the downstream signaling components are still not well understood. In this study, we report that an ethylene-responsive factor, Redox-Responsive Transcription Factor 1 (RRTF1), is involved in eATP-regulated Arabidopsis thaliana seedling growth. Exogenous adenosine triphosphate inhibited green seedling root growth and induced hypocotyl bending of etiolated seedlings. RRTF1 loss-of-function mutant (rrtf1) seedlings showed decreased responses to eATP, while its complementation or overexpression led to recovered or increased eATP responsiveness. RRTF1 was expressed rapidly after eATP stimulation and then migrated into the nuclei of root tip cells. eATP-induced auxin accumulation in root tip or hypocotyl cells was impaired in rrtf1. Chromatin immunoprecipitation and high-throughput sequencing results indicated that eATP induced some genes related to cell growth and development in wild type but not in rrtf1 cells. These results suggest that RRTF1 may be involved in eATP signaling by regulating functional gene expression and cell metabolism in Arabidopsis seedlings.
Collapse
Affiliation(s)
- Ruojia Zhu
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Xiaoxia Dong
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
- Department of Chemistry Engineering and Biological Technology, Xingtai University, Xingtai 054001, Hebei, China
| | - Yingying Xue
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Jiawei Xu
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Aiqi Zhang
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Meng Feng
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Qing Zhao
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Shuyan Xia
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Yahong Yin
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Shihua He
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Yuke Li
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Ting Liu
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Erfang Kang
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Zhonglin Shang
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| |
Collapse
|
19
|
Pietrowska-Borek M, Dobrogojski J, Sobieszczuk-Nowicka E, Borek S. New Insight into Plant Signaling: Extracellular ATP and Uncommon Nucleotides. Cells 2020; 9:E345. [PMID: 32024306 PMCID: PMC7072326 DOI: 10.3390/cells9020345] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 12/15/2022] Open
Abstract
New players in plant signaling are described in detail in this review: extracellular ATP (eATP) and uncommon nucleotides such as dinucleoside polyphosphates (NpnN's), adenosine 5'-phosphoramidate (NH2-pA), and extracellular NAD+ and NADP+ (eNAD(P)+). Recent molecular, physiological, and biochemical evidence implicating concurrently the signaling role of eATP, NpnN's, and NH2-pA in plant biology and the mechanistic events in which they are involved are discussed. Numerous studies have shown that they are often universal signaling messengers, which trigger a signaling cascade in similar reactions and processes among different kingdoms. We also present here, not described elsewhere, a working model of the NpnN' and NH2-pA signaling network in a plant cell where these nucleotides trigger induction of the phenylpropanoid and the isochorismic acid pathways yielding metabolites protecting the plant against various types of stresses. Through these signals, the plant responds to environmental stimuli by intensifying the production of various compounds, such as anthocyanins, lignin, stilbenes, and salicylic acid. Still, more research needs to be performed to identify signaling networks that involve uncommon nucleotides, followed by omic experiments to define network elements and processes that are controlled by these signals.
Collapse
Affiliation(s)
- Małgorzata Pietrowska-Borek
- Department of Biochemistry and Biotechnology, Faculty of Agronomy and Bioengineering, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland;
| | - Jędrzej Dobrogojski
- Department of Biochemistry and Biotechnology, Faculty of Agronomy and Bioengineering, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland;
| | - Ewa Sobieszczuk-Nowicka
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (E.S.-N.); (S.B.)
| | - Sławomir Borek
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (E.S.-N.); (S.B.)
| |
Collapse
|
20
|
Matthus E, Sun J, Wang L, Bhat MG, Mohammad-Sidik AB, Wilkins KA, Leblanc-Fournier N, Legué V, Moulia B, Stacey G, Davies JM. DORN1/P2K1 and purino-calcium signalling in plants: making waves with extracellular ATP. ANNALS OF BOTANY 2020; 124:1227-1242. [PMID: 31904093 PMCID: PMC6943698 DOI: 10.1093/aob/mcz135] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND AIMS Extracellular ATP governs a range of plant functions, including cell viability, adaptation and cross-kingdom interactions. Key functions of extracellular ATP in leaves and roots may involve an increase in cytosolic free calcium as a second messenger ('calcium signature'). The main aim here was to determine to what extent leaf and root calcium responses require the DORN1/P2K1 extracellular ATP receptor in Arabidopsis thaliana. The second aim was to test whether extracellular ATP can generate a calcium wave in the root. METHODS Leaf and root responses to extracellular ATP were reviewed for their possible links to calcium signalling and DORN1/P2K1. Leaves and roots of wild type and dorn1 plants were tested for cytosolic calcium increase in response to ATP, using aequorin. The spatial abundance of DORN1/P2K1 in the root was estimated using green fluorescent protein. Wild type roots expressing GCaMP3 were used to determine the spatial variation of cytosolic calcium increase in response to extracellular ATP. KEY RESULTS Leaf and root ATP-induced calcium signatures differed markedly. The leaf signature was only partially dependent on DORN1/P2K1, while the root signature was fully dependent. The distribution of DORN1/P2K1 in the root supports a key role in the generation of the apical calcium signature. Root apical and sub-apical calcium signatures may operate independently of each other but an apical calcium increase can drive a sub-apical increase, consistent with a calcium wave. CONCLUSION DORN1 could underpin several calcium-related responses but it may not be the only receptor for extracellular ATP in Arabidopsis. The root has the capacity for a calcium wave, triggered by extracellular ATP at the apex.
Collapse
Affiliation(s)
- Elsa Matthus
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Jian Sun
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Limin Wang
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Madhura G Bhat
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | | | - Katie A Wilkins
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | | | - Valérie Legué
- Université Clermont Auvergne, INRA, PIAF, Clermont-Ferrand, France
| | - Bruno Moulia
- Université Clermont Auvergne, INRA, PIAF, Clermont-Ferrand, France
| | - Gary Stacey
- Divisions of Plant Science and Biochemistry, University of Missouri, Columbia, MO, USA
| | - Julia M Davies
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
- For correspondence. E-mail
| |
Collapse
|
21
|
Tanveer M, Shabala S. Neurotransmitters in Signalling and Adaptation to Salinity Stress in Plants. NEUROTRANSMITTERS IN PLANT SIGNALING AND COMMUNICATION 2020. [DOI: 10.1007/978-3-030-54478-2_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Wang L, Stacey G, Leblanc-Fournier N, Legué V, Moulia B, Davies JM. Early Extracellular ATP Signaling in Arabidopsis Root Epidermis: A Multi-Conductance Process. FRONTIERS IN PLANT SCIENCE 2019; 10:1064. [PMID: 31552068 PMCID: PMC6737080 DOI: 10.3389/fpls.2019.01064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/06/2019] [Indexed: 05/13/2023]
Abstract
Adenosine 5'-triphosphate (ATP) is an important extracellular signaling agent, operating in growth regulation, stomatal conductance, and wound response. With the first receptor for extracellular ATP now identified in plants (P2K1/DORN1) and a plasma membrane NADPH oxidase revealed as its target, the search continues for the components of the signaling cascades they command. The Arabidopsis root elongation zone epidermal plasma membrane has recently been shown to contain cation transport pathways (channel conductances) that operate downstream of P2K1 and could contribute to extracellular ATP (eATP) signaling. Here, patch clamp electrophysiology has been used to delineate two further conductances from the root elongation zone epidermal plasma membrane that respond to eATP, including one that would permit chloride transport. This perspective addresses how these conductances compare to those previously characterized in roots and how they might operate together to enable early events in eATP signaling, including elevation of cytosolic-free calcium as a second messenger. The role of the reactive oxygen species (ROS) that could arise from eATP's activation of NADPH oxidases is considered in a qualitative model that also considers the regulation of plasma membrane potential by the concerted action of the various cation and anion conductances. The molecular identities of the channel conductances in eATP signaling remain enigmatic but may yet be found in the multigene families of glutamate receptor-like channels, cyclic nucleotide-gated channels, annexins, and aluminum-activated malate transporters.
Collapse
Affiliation(s)
- Limin Wang
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Gary Stacey
- Divisions of Plant Science and Biochemistry, University of Missouri, Columbia, MO, United States
| | | | - Valérie Legué
- Université Clermont Auvergne, INRA, PIAF, Clermont-Ferrand, France
| | - Bruno Moulia
- Université Clermont Auvergne, INRA, PIAF, Clermont-Ferrand, France
| | - Julia M. Davies
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Julia M. Davies,
| |
Collapse
|
23
|
Clark G, Roux SJ. Role of Ca 2+ in Mediating Plant Responses to Extracellular ATP and ADP. Int J Mol Sci 2018; 19:E3590. [PMID: 30441766 PMCID: PMC6274673 DOI: 10.3390/ijms19113590] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 11/08/2018] [Indexed: 12/30/2022] Open
Abstract
Among the most recently discovered chemical regulators of plant growth and development are extracellular nucleotides, especially extracellular ATP (eATP) and extracellular ADP (eADP). Plant cells release ATP into their extracellular matrix under a variety of different circumstances, and this eATP can then function as an agonist that binds to a specific receptor and induces signaling changes, the earliest of which is an increase in the concentration of cytosolic calcium ([Ca2+]cyt). This initial change is then amplified into downstream-signaling changes that include increased levels of reactive oxygen species and nitric oxide, which ultimately lead to major changes in the growth rate, defense responses, and leaf stomatal apertures of plants. This review presents and discusses the evidence that links receptor activation to increased [Ca2+]cyt and, ultimately, to growth and diverse adaptive changes in plant development. It also discusses the evidence that increased [Ca2+]cyt also enhances the activity of apyrase (nucleoside triphosphate diphosphohydrolase) enzymes that function in multiple subcellular locales to hydrolyze ATP and ADP, and thus limit or terminate the effects of these potent regulators.
Collapse
Affiliation(s)
- Greg Clark
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA.
| | - Stanley J Roux
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
24
|
Wang L, Wilkins KA, Davies JM. Arabidopsis DORN1 extracellular ATP receptor; activation of plasma membrane K + -and Ca 2+ -permeable conductances. THE NEW PHYTOLOGIST 2018; 218:1301-1304. [PMID: 29574778 DOI: 10.1111/nph.15111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Affiliation(s)
- Limin Wang
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Katie A Wilkins
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Julia M Davies
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| |
Collapse
|
25
|
Baluška F, Mancuso S. Plant Cognition and Behavior: From Environmental Awareness to Synaptic Circuits Navigating Root Apices. MEMORY AND LEARNING IN PLANTS 2018. [DOI: 10.1007/978-3-319-75596-0_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|