1
|
Göbel M, Dulal S, Sommer L, Weinmann M, Mamun AA, Ahmed A, Sujeeth N, Mai K, Neumann G, Müller T, Bradáčová K. Protective potential of selected microbial and non-microbial biostimulants against Zymoseptoria tritici leaf blotch in winter wheat as affected by the form of N supply. FRONTIERS IN PLANT SCIENCE 2024; 15:1407585. [PMID: 39399536 PMCID: PMC11467867 DOI: 10.3389/fpls.2024.1407585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/21/2024] [Indexed: 10/15/2024]
Abstract
Introduction The production of high-quality food for the growing world population on the one hand and the reduction of chemical-synthetic pesticides on the other hand represents a major challenge for agriculture worldwide. The effectiveness of a combination of microbial and non-microbial biostimulants (BSs) with various nitrogen (N) forms in pathogen defense is discussed as a promising, but still poorly understood bio-based alternative for crop protection. Methods For this reason, nitrate and stabilized ammonium fertilizer both combined with a consortium of Pseudomonas brassicacearum, Bacillus amyloliquefaciens, and Trichoderma harzianum as soil treatment or with a mixture of seaweed extract (Ascophyllum nodosum) together with chitosan-amended micronutrient fertilizer as foliar spray application were compared under controlled greenhouse conditions. Furthermore, a combination of microbial and different non-microbial BSs (seaweed extracts + chitosan) and micronutrients with nitrate or with stabilized ammonium fertilizer was tested under field conditions to improve nutrient availability, promote plant growth, and suppress Zymoseptoria tritici (Zt) in winter wheat. Results and discussion While plant-protective effects against Zt by the microbial consortium application could be observed particularly under ammonium fertilization, the application of seaweed extract-chitosan mixture expressed plant defense against Zt more strongly under nitrate fertilization. In the field trial, the combination of microbial consortium with the seaweed extract-chitosan mixture together with micronutrients zinc (Zn) and manganese (Mn) showed positive effects against Zt under ammonium fertilization, associated with increased levels of defense metabolites. Furthermore, the additional input of Zn and copper (Cu) from the chitosan application improved the micronutrient status by minimizing the risk of Zn and Cu deficiency under controlled and field conditions. The use of BSs and the inoculation of Zt did not show any effects on plant growth and yield neither under controlled greenhouse conditions nor in the field. Summarized, microbial and non-microbial BSs separately applied or even combined together as one treatment did not influence plant growth or yield but made a positive contribution to an N form-dependent promotion of pathogen defense.
Collapse
Affiliation(s)
- Markus Göbel
- Institute of Crop Science, Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart, Germany
| | - Samiksha Dulal
- Institute of Crop Science, Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart, Germany
| | - Lea Sommer
- Institute of Crop Science, Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart, Germany
| | - Markus Weinmann
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, Germany
| | - Abdullah Al Mamun
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, Germany
| | - Aneesh Ahmed
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, Germany
| | - Neerakkal Sujeeth
- BioAtlantis Ltd., Clash Industrial Estate, Tralee, County Kerry, Ireland
| | - Karin Mai
- SP Sourcon Padena GmbH, Research and Development, Tübingen, Germany
| | - Günter Neumann
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, Germany
| | - Torsten Müller
- Institute of Crop Science, Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart, Germany
| | - Klára Bradáčová
- Institute of Crop Science, Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
2
|
Behr JH, Kuhl-Nagel T, Sommermann L, Moradtalab N, Chowdhury SP, Schloter M, Windisch S, Schellenberg I, Maccario L, Sørensen SJ, Rothballer M, Geistlinger J, Smalla K, Ludewig U, Neumann G, Grosch R, Babin D. Long-term conservation tillage with reduced nitrogen fertilization intensity can improve winter wheat health via positive plant-microorganism feedback in the rhizosphere. FEMS Microbiol Ecol 2024; 100:fiae003. [PMID: 38224956 PMCID: PMC10847717 DOI: 10.1093/femsec/fiae003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/21/2023] [Accepted: 01/12/2024] [Indexed: 01/17/2024] Open
Abstract
Microbiome-based solutions are regarded key for sustainable agroecosystems. However, it is unclear how agricultural practices affect the rhizosphere microbiome, plant-microorganism interactions and crop performance under field conditions. Therefore, we installed root observation windows in a winter wheat field cultivated either under long-term mouldboard plough (MP) or cultivator tillage (CT). Each tillage practice was also compared at two nitrogen (N) fertilization intensities, intensive (recommended N-supply with pesticides/growth regulators) or extensive (reduced N-supply, no fungicides/growth regulators). Shoot biomass, root exudates and rhizosphere metabolites, physiological stress indicators, and gene expression were analyzed together with the rhizosphere microbiome (bacterial/archaeal 16S rRNA gene, fungal ITS amplicon, and shotgun metagenome sequencing) shortly before flowering. Compared to MP, the rhizosphere of CT winter wheat contained more primary and secondary metabolites, especially benzoxazinoid derivatives. Potential copiotrophic and plant-beneficial taxa (e.g. Bacillus, Devosia, and Trichoderma) as well as functional genes (e.g. siderophore production, trehalose synthase, and ACC deaminase) were enriched in the CT rhizosphere, suggesting that tillage affected belowground plant-microorganism interactions. In addition, physiological stress markers were suppressed in CT winter wheat compared to MP. In summary, tillage practice was a major driver of crop performance, root deposits, and rhizosphere microbiome interactions, while the N-fertilization intensity was also relevant, but less important.
Collapse
Affiliation(s)
- Jan Helge Behr
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Plant-Microbe Systems, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
| | - Theresa Kuhl-Nagel
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Plant-Microbe Systems, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
| | - Loreen Sommermann
- Anhalt University of Applied Sciences, Department of Agriculture
, Ecotrophology and Landscape Development, Strenzfelder Allee 28, 06406 Bernburg, Germany
| | - Narges Moradtalab
- University of Hohenheim, Institute of Crop Science (340 h), Fruwirthstraße 20, 70599 Stuttgart, Germany
| | - Soumitra Paul Chowdhury
- Institute of Network Biology
, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis
(COMI), Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Saskia Windisch
- University of Hohenheim, Institute of Crop Science (340 h), Fruwirthstraße 20, 70599 Stuttgart, Germany
| | - Ingo Schellenberg
- Anhalt University of Applied Sciences, Department of Agriculture
, Ecotrophology and Landscape Development, Strenzfelder Allee 28, 06406 Bernburg, Germany
| | - Lorrie Maccario
- University of Copenhagen, Department of Biology, Section of Microbiology, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Søren J Sørensen
- University of Copenhagen, Department of Biology, Section of Microbiology, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Michael Rothballer
- Institute of Network Biology
, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Joerg Geistlinger
- Anhalt University of Applied Sciences, Department of Agriculture
, Ecotrophology and Landscape Development, Strenzfelder Allee 28, 06406 Bernburg, Germany
| | - Kornelia Smalla
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany
| | - Uwe Ludewig
- University of Hohenheim, Institute of Crop Science (340 h), Fruwirthstraße 20, 70599 Stuttgart, Germany
| | - Günter Neumann
- University of Hohenheim, Institute of Crop Science (340 h), Fruwirthstraße 20, 70599 Stuttgart, Germany
| | - Rita Grosch
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Plant-Microbe Systems, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
| | - Doreen Babin
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany
| |
Collapse
|
3
|
Asgher M, Rehaman A, Nazar Ul Islam S, Khan NA. Multifaceted roles of silicon nano particles in heavy metals-stressed plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122886. [PMID: 37952923 DOI: 10.1016/j.envpol.2023.122886] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/16/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
Heavy metal (HM) contamination has emerged as one of the most damaging abiotic stress factors due to their prominent release into the environment through industrialization and urbanization worldwide. The increase in HMs concentration in soil and the environment has invited attention of researchers/environmentalists to minimize its' impact by practicing different techniques such as application of phytohormones, gaseous molecules, metalloids, and essential nutrients etc. Silicon (Si) although not considered as the essential nutrient, has received more attention in the last few decades due to its involvement in the amelioration of wide range of abiotic stress factors. Silicon is the second most abundant element after oxygen on earth, but is relatively lesser available for plants as it is taken up in the form of mono-silicic acid, Si(OH)4. The scattered information on the influence of Si on plant development and abiotic stress adaptation has been published. Moreover, the use of nanoparticles for maintenance of plant functions under limited environmental conditions has gained momentum. The current review, therefore, summarizes the updated information on Si nanoparticles (SiNPs) synthesis, characterization, uptake and transport mechanism, and their effect on plant growth and development, physiological and biochemical processes and molecular mechanisms. The regulatory connect between SiNPs and phytohormones signaling in counteracting the negative impacts of HMs stress has also been discussed.
Collapse
Affiliation(s)
- Mohd Asgher
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Baba Ghulam Shah Badshah University, Rajouri, 185234, India
| | - Abdul Rehaman
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Baba Ghulam Shah Badshah University, Rajouri, 185234, India
| | - Syed Nazar Ul Islam
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Baba Ghulam Shah Badshah University, Rajouri, 185234, India
| | - Nafees A Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
4
|
Ahmad W, Coffman L, Weerasooriya AD, Crawford K, Khan AL. The silicon regulates microbiome diversity and plant defenses during cold stress in Glycine max L. FRONTIERS IN PLANT SCIENCE 2024; 14:1280251. [PMID: 38269137 PMCID: PMC10805835 DOI: 10.3389/fpls.2023.1280251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 12/14/2023] [Indexed: 01/26/2024]
Abstract
Introduction With climate change, frequent exposure of bioenergy and food crops, specifically soybean (Glycine max L.), to low-temperature episodes is a major obstacle in maintaining sustainable plant growth at early growth stages. Silicon (Si) is a quasi-essential nutrient that can help to improve stress tolerance; however, how Si and a combination of cold stress episodes influence plant growth, plant physiology, and microbiome diversity has yet to be fully discovered. Methods The soybean plants were exposed to cold stress (8-10°C) with or without applying Si, and the different plant organs (shoot and root) and rhizospheric soil were subjected to microbiome analysis. The plant growth, physiology, and gene expression analysis of plant defenses during stress and Si were investigated. Results and discussion We showed that cold stress significantly retarded soybean plants' growth and biomass, whereas, Si-treated plants showed ameliorated negative impacts on plant growth at early seedling stages. The beneficial effects of Si were also evident from significantly reduced antioxidant activities - suggesting lower cold-induced oxidative stress. Interestingly, Si also downregulated critical genes of the abscisic acid pathway and osmotic regulation (9-cis-epoxy carotenoid dioxygenase and dehydration-responsive element binding protein) during cold stress. Si positively influenced alpha and beta diversities of bacterial and fungal microbiomes with or without cold stress. Results showed significant variation in microbiome composition in the rhizosphere (root and soil) and phyllosphere (shoot) in Si-treated plants with or without cold stress exposures. Among microbiome phyla, Proteobacteria, Bacteroidota, and Ascomycota were significantly more abundant in Si treatments in cold stress than in control conditions. For the core microbiome, we identified 179 taxa, including 88 unique bacterial genera in which Edaphobacter, Haliangium, and Streptomyces were highly abundant. Enhanced extracellular enzyme activities in the cold and Si+cold treatments, specifically phosphatase and glucosidases, also reflected the microbiome abundance. In conclusion, this work elucidates cold-mediated changes in microbiome diversity and plant growth, including the positive impact Si can have on cold tolerance at early soybean growth stages - a step toward understanding crop productivity and stress tolerance.
Collapse
Affiliation(s)
- Waqar Ahmad
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugar Land, TX, United States
- Department of Biology and Biochemistry, College of Natural Science & Mathematics, University of Houston, Houston, TX, United States
| | - Lauryn Coffman
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugar Land, TX, United States
| | - Aruna D Weerasooriya
- Cooperative Agricultural Research Center, College of Agriculture & Human Sciences, Prairie View A&M University, Prairie View, TX, United States
| | - Kerri Crawford
- Department of Biology and Biochemistry, College of Natural Science & Mathematics, University of Houston, Houston, TX, United States
| | - Abdul Latif Khan
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugar Land, TX, United States
- Department of Biology and Biochemistry, College of Natural Science & Mathematics, University of Houston, Houston, TX, United States
| |
Collapse
|
5
|
Pandey P, Tripathi A, Dwivedi S, Lal K, Jhang T. Deciphering the mechanisms, hormonal signaling, and potential applications of endophytic microbes to mediate stress tolerance in medicinal plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1250020. [PMID: 38034581 PMCID: PMC10684941 DOI: 10.3389/fpls.2023.1250020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
The global healthcare market in the post-pandemic era emphasizes a constant pursuit of therapeutic, adaptogenic, and immune booster drugs. Medicinal plants are the only natural resource to meet this by supplying an array of bioactive secondary metabolites in an economic, greener and sustainable manner. Driven by the thrust in demand for natural immunity imparting nutraceutical and life-saving plant-derived drugs, the acreage for commercial cultivation of medicinal plants has dramatically increased in recent years. Limited resources of land and water, low productivity, poor soil fertility coupled with climate change, and biotic (bacteria, fungi, insects, viruses, nematodes) and abiotic (temperature, drought, salinity, waterlogging, and metal toxicity) stress necessitate medicinal plant productivity enhancement through sustainable strategies. Plants evolved intricate physiological (membrane integrity, organelle structural changes, osmotic adjustments, cell and tissue survival, reclamation, increased root-shoot ratio, antibiosis, hypersensitivity, etc.), biochemical (phytohormones synthesis, proline, protein levels, antioxidant enzymes accumulation, ion exclusion, generation of heat-shock proteins, synthesis of allelochemicals. etc.), and cellular (sensing of stress signals, signaling pathways, modulating expression of stress-responsive genes and proteins, etc.) mechanisms to combat stresses. Endophytes, colonizing in different plant tissues, synthesize novel bioactive compounds that medicinal plants can harness to mitigate environmental cues, thus making the agroecosystems self-sufficient toward green and sustainable approaches. Medicinal plants with a host set of metabolites and endophytes with another set of secondary metabolites interact in a highly complex manner involving adaptive mechanisms, including appropriate cellular responses triggered by stimuli received from the sensors situated on the cytoplasm and transmitting signals to the transcriptional machinery in the nucleus to withstand a stressful environment effectively. Signaling pathways serve as a crucial nexus for sensing stress and establishing plants' proper molecular and cellular responses. However, the underlying mechanisms and critical signaling pathways triggered by endophytic microbes are meager. This review comprehends the diversity of endophytes in medicinal plants and endophyte-mediated plant-microbe interactions for biotic and abiotic stress tolerance in medicinal plants by understanding complex adaptive physiological mechanisms and signaling cascades involving defined molecular and cellular responses. Leveraging this knowledge, researchers can design specific microbial formulations that optimize plant health, increase nutrient uptake, boost crop yields, and support a resilient, sustainable agricultural system.
Collapse
Affiliation(s)
- Praveen Pandey
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Arpita Tripathi
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Faculty of Education, Teerthanker Mahaveer University, Moradabad, India
| | - Shweta Dwivedi
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kanhaiya Lal
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Tripta Jhang
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| |
Collapse
|
6
|
Biju S, Fuentes S, Gupta D. Novel insights into the mechanism(s) of silicon-induced drought stress tolerance in lentil plants revealed by RNA sequencing analysis. BMC PLANT BIOLOGY 2023; 23:498. [PMID: 37848813 PMCID: PMC10580624 DOI: 10.1186/s12870-023-04492-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/27/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Lentil is an essential cool-season food legume that offers several benefits in human nutrition and cropping systems. Drought stress is the major environmental constraint affecting lentil plants' growth and productivity by altering various morphological, physiological, and biochemical traits. Our previous research provided physiological and biochemical evidence showing the role of silicon (Si) in alleviating drought stress in lentil plants, while the molecular mechanisms are still unidentified. Understanding the molecular mechanisms of Si-mediated drought stress tolerance can provide fundamental information to enhance our knowledge of essential gene functions and pathways modulated by Si during drought stress in plants. Thus, the present study compared the transcriptomic characteristics of two lentil genotypes (drought tolerant-ILL6002; drought sensitive-ILL7537) under drought stress and investigated the gene expression in response to Si supplementation using high-throughput RNA sequencing. RESULTS This study identified 7164 and 5576 differentially expressed genes (DEGs) from drought-stressed lentil genotypes (ILL 6002 and ILL 7537, respectively), with Si treatment. RNA sequencing results showed that Si supplementation could alter the expression of genes related to photosynthesis, osmoprotection, antioxidant systems and signal transduction in both genotypes under drought stress. Furthermore, these DEGs from both genotypes were found to be associated with the metabolism of carbohydrates, lipids and proteins. The identified DEGs were also linked to cell wall biosynthesis and vasculature development. Results suggested that Si modulated the dynamics of biosynthesis of alkaloids and flavonoids and their metabolism in drought-stressed lentil genotypes. Drought-recovery-related DEGs identified from both genotypes validated the role of Si as a drought stress alleviator. This study identified different possible defense-related responses mediated by Si in response to drought stress in lentil plants including cellular redox homeostasis by reactive oxygen species (ROS), cell wall reinforcement by the deposition of cellulose, lignin, xyloglucan, chitin and xylan, secondary metabolites production, osmotic adjustment and stomatal closure. CONCLUSION Overall, the results suggested that a coordinated interplay between various metabolic pathways is required for Si to induce drought tolerance. This study identified potential genes and different defence mechanisms involved in Si-induced drought stress tolerance in lentil plants. Si supplementation altered various metabolic functions like photosynthesis, antioxidant defence system, osmotic balance, hormonal biosynthesis, signalling, amino acid biosynthesis and metabolism of carbohydrates and lipids under drought stress. These novel findings validated the role of Si in drought stress mitigation and have also provided an opportunity to enhance our understanding at the genomic level of Si's role in alleviating drought stress in plants.
Collapse
Affiliation(s)
- Sajitha Biju
- School of Agriculture, Food and Ecosystem Sciences (SAFES), Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Sigfredo Fuentes
- School of Agriculture, Food and Ecosystem Sciences (SAFES), Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Dorin Gupta
- School of Agriculture, Food and Ecosystem Sciences (SAFES), Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
7
|
Fernández G, Rodríguez C. Antagonistic effects of grazers and shrubs on the emergence and establishment of seedlings in a sub-humid grassland of South America. Oecologia 2023; 203:219-229. [PMID: 37839062 DOI: 10.1007/s00442-023-05464-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 10/01/2023] [Indexed: 10/17/2023]
Abstract
Biotic interactions are key processes that strongly affect the performance of seedlings in plant communities. In this work, we evaluated the effect of grazing and shrubs on the emergence and establishment of seedlings with different life-forms (dicotyledonous and monocotyledonous) in a sub-humid grassland community. We delimited five areas of 25 m2 in which we established four permanent plots of 1.0 m2. Two plots were centered at shrubs (beneath the canopy) and two in open spaces (without shrubs). Half of the shrubs and open plots were fenced to avoid grazing. During two consecutive years we marked all emerged seedlings and followed their fate. Grazing promoted dicotyledonous seedling emergence but reduced establishment. On the contrary, shrubs reduced dicotyledonous emergence but enhanced establishment. We did not detect any effect of shrubs or grazing on the emergence of monocotyledonous seedlings. Most seedlings emerged during fall and winter and died during spring and summer. Recruitment from seeds in this grassland is rare and complex, involving biotic and abiotic factors, with different responses to grazing and shrubs depending on seedling life-form and ontogeny.
Collapse
Affiliation(s)
- Gastón Fernández
- Departamento de Sistemas Agrarios y Paisajes Culturales, Centro Universitario Regional del Este, Universidad de la República, Ruta 8 km 282, 33000, Treinta y Tres, Uruguay.
| | - Claudia Rodríguez
- Instituto de Ecología y Ciencias Ambientales, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| |
Collapse
|
8
|
Hafiz FB, Geistlinger J, Al Mamun A, Schellenberg I, Neumann G, Rozhon W. Tissue-Specific Hormone Signalling and Defence Gene Induction in an In Vitro Assembly of the Rapeseed Verticillium Pathosystem. Int J Mol Sci 2023; 24:10489. [PMID: 37445666 DOI: 10.3390/ijms241310489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/11/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Priming plants with beneficial microbes can establish rapid and robust resistance against numerous pathogens. Here, compelling evidence is provided that the treatment of rapeseed plants with Trichoderma harzianum OMG16 and Bacillus velezensis FZB42 induces defence activation against Verticillium longisporum infection. The relative expressions of the JA biosynthesis genes LOX2 and OPR3, the ET biosynthesis genes ACS2 and ACO4 and the SA biosynthesis and signalling genes ICS1 and PR1 were analysed separately in leaf, stem and root tissues using qRT-PCR. To successfully colonize rapeseed roots, the V. longisporum strain 43 pathogen suppressed the biosynthesis of JA, ET and SA hormones in non-primed plants. Priming led to fast and strong systemic responses of JA, ET and SA biosynthesis and signalling gene expression in each leaf, stem and root tissue. Moreover, the quantification of plant hormones via UHPLC-MS analysis revealed a 1.7- and 2.6-fold increase in endogenous JA and SA in shoots of primed plants, respectively. In roots, endogenous JA and SA levels increased up to 3.9- and 2.3-fold in Vl43-infected primed plants compared to non-primed plants, respectively. Taken together, these data indicate that microbial priming stimulates rapeseed defence responses against Verticillium infection and presumably transduces defence signals from the root to the upper parts of the plant via phytohormone signalling.
Collapse
Affiliation(s)
- Fatema Binte Hafiz
- Department of Agriculture, Ecotrophology, and Landscape Development, Anhalt University of Applied Sciences, 06406 Bernburg, Germany
| | - Joerg Geistlinger
- Department of Agriculture, Ecotrophology, and Landscape Development, Anhalt University of Applied Sciences, 06406 Bernburg, Germany
| | - Abdullah Al Mamun
- Institute of Crop Sciences, University of Hohenheim, 70593 Stuttgart, Germany
| | - Ingo Schellenberg
- Department of Agriculture, Ecotrophology, and Landscape Development, Anhalt University of Applied Sciences, 06406 Bernburg, Germany
| | - Günter Neumann
- Institute of Crop Sciences, University of Hohenheim, 70593 Stuttgart, Germany
| | - Wilfried Rozhon
- Department of Agriculture, Ecotrophology, and Landscape Development, Anhalt University of Applied Sciences, 06406 Bernburg, Germany
| |
Collapse
|
9
|
Kopecká R, Kameniarová M, Černý M, Brzobohatý B, Novák J. Abiotic Stress in Crop Production. Int J Mol Sci 2023; 24:ijms24076603. [PMID: 37047573 PMCID: PMC10095105 DOI: 10.3390/ijms24076603] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
The vast majority of agricultural land undergoes abiotic stress that can significantly reduce agricultural yields. Understanding the mechanisms of plant defenses against stresses and putting this knowledge into practice is, therefore, an integral part of sustainable agriculture. In this review, we focus on current findings in plant resistance to four cardinal abiotic stressors—drought, heat, salinity, and low temperatures. Apart from the description of the newly discovered mechanisms of signaling and resistance to abiotic stress, this review also focuses on the importance of primary and secondary metabolites, including carbohydrates, amino acids, phenolics, and phytohormones. A meta-analysis of transcriptomic studies concerning the model plant Arabidopsis demonstrates the long-observed phenomenon that abiotic stressors induce different signals and effects at the level of gene expression, but genes whose regulation is similar under most stressors can still be traced. The analysis further reveals the transcriptional modulation of Golgi-targeted proteins in response to heat stress. Our analysis also highlights several genes that are similarly regulated under all stress conditions. These genes support the central role of phytohormones in the abiotic stress response, and the importance of some of these in plant resistance has not yet been studied. Finally, this review provides information about the response to abiotic stress in major European crop plants—wheat, sugar beet, maize, potatoes, barley, sunflowers, grapes, rapeseed, tomatoes, and apples.
Collapse
Affiliation(s)
- Romana Kopecká
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Michaela Kameniarová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Jan Novák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| |
Collapse
|
10
|
Guo J, Wang Z, Wei Q, Li G, Yang H, Lu D. Response of waxy maize ( Zea mays L. var. ceratina Kulesh) leaf photosynthesis to low temperature during the grain-filling stage. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:335-346. [PMID: 36894514 DOI: 10.1071/fp22252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Low temperature (LT) during the grain-filling stage is an important factor that affects the source-sink relationship and leads to yield loss in maize (Zea mays L). In this study, field and pot trials were conducted to investigate the effects of LT during the grain-filling stage on leaf photosynthesis, antioxidant system, hormones, and grain yield of waxy maize cultivars Suyunuo 5 (S5) and Yunuo 7 (Y7). The results showed that LT treatment inhibited the chlorophyll biosynthesis and reduced the photosynthetic pigment levels during grain-filling stage. Ribulose-1,5-bisphosphate carboxylase and phosphoenolpyruvate carboxylase activities, photosynthetic rate, transpiration rate, and stomatal conductance decreased under LT treatment during the grain-filling stage. Furthermore, LT treatment increased the contents of malondialdehyde and reactive oxygen species, and decreased the activities of catalase, superoxide dismutase, peroxidase, and ascorbate peroxidase in the ear leaves, which accelerated the oxidative damage of leaf. The LT treatment also raised abscisic acid content and reduced indole acetic acid content in the ear leaves during grain-filling stage. The results of field and pot trials were verified by each other, but the field effect was greater than that of pot. Overall, LT treatment reduced the waxy maize dry matter accumulation after silking by affecting the physiological and biochemical processes of leaves, and ultimately decreased grain yield.
Collapse
Affiliation(s)
- Jian Guo
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Agricultural College, Yangzhou University, Yangzhou 225009, P. R. China; and Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, P. R. China
| | - Zitao Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Agricultural College, Yangzhou University, Yangzhou 225009, P. R. China
| | - Qi Wei
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Agricultural College, Yangzhou University, Yangzhou 225009, P. R. China
| | - Guanghao Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Agricultural College, Yangzhou University, Yangzhou 225009, P. R. China; and Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, P. R. China
| | - Huan Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Agricultural College, Yangzhou University, Yangzhou 225009, P. R. China; and Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, P. R. China
| | - Dalei Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Agricultural College, Yangzhou University, Yangzhou 225009, P. R. China; and Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, P. R. China; and Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, P. R. China
| |
Collapse
|
11
|
Bilal S, Khan T, Asaf S, Khan NA, Saad Jan S, Imran M, Al-Rawahi A, Khan AL, Lee IJ, Al-Harrasi A. Silicon-Induced Morphological, Biochemical and Molecular Regulation in Phoenix dactylifera L. under Low-Temperature Stress. Int J Mol Sci 2023; 24:ijms24076036. [PMID: 37047009 PMCID: PMC10094002 DOI: 10.3390/ijms24076036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
Climate changes abruptly affect optimum growth temperatures, leading to a negative influence on plant physiology and productivity. The present study aimed to investigate the extent of low-temperature stress effects on date palm growth and physiological indicators under the exogenous application of silicon (Si). Date palm seedlings were treated with Si (1.0 mM) and exposed to different temperature regimes (5, 15, and 30 °C). It was observed that the application of Si markedly improved fresh and dry biomass, photosynthetic pigments (chlorophyll and carotenoids), plant morphology, and relative water content by ameliorating low-temperature-induced oxidative stress. Low-temperature stress (5 and 15 °C), led to a substantial upregulation of ABA-signaling-related genes (NCED-1 and PyL-4) in non Si treated plants, while Si treated plants revealed an antagonistic trend. However, jasmonic acid and salicylic acid accumulation were markedly elevated in Si treated plants under stress conditions (5 and 15 °C) in comparison with non Si treated plants. Interestingly, the upregulation of low temperature stress related plant plasma membrane ATPase (PPMA3 and PPMA4) and short-chain dehydrogenases/reductases (SDR), responsible for cellular physiology, stomatal conductance and nutrient translocation under silicon applications, was observed in Si plants under stress conditions in comparison with non Si treated plants. Furthermore, a significant expression of LSi-2 was detected in Si plants under stress, leading to the significant accumulation of Si in roots and shoots. In contrast, non Si plants demonstrated a low expression of LSi-2 under stress conditions, and thereby, reduced level of Si accumulation were observed. Less accumulation of oxidative stress was evident from the expression of superoxide dismutase (SOD) and catalase (CAT). Additionally, Si plants revealed a significant exudation of organic acids (succinic acid and citric acid) and nutrient accumulation (K and Mg) in roots and shoots. Furthermore, the application of Si led to substantial upregulation of the low temperature stress related soybean cold regulated gene (SRC-2) and ICE-1 (inducer of CBF expression 1), involved in the expression of CBF/DREB (C-repeat binding factor/dehydration responsive element binding factor) gene family under stress conditions in comparison with non Si plants. The current research findings are crucial for exploring the impact on morpho-physio-biochemical attributes of date palms under low temperature and Si supplementation, which may provide an efficient strategy for growing plants in low-temperature fields.
Collapse
Affiliation(s)
- Saqib Bilal
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Taimoor Khan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Sajjad Asaf
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Nasir Ali Khan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA
| | - Syed Saad Jan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Muhammad Imran
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, 80 Dahak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Ahmed Al-Rawahi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Abdul Latif Khan
- Department of Engineering Technology, University of Houston, Sugar Land, TX 77479, USA
| | - In-Jung Lee
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, 80 Dahak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| |
Collapse
|
12
|
Soualiou S, Duan F, Li X, Zhou W. CROP PRODUCTION UNDER COLD STRESS: An understanding of plant responses, acclimation processes, and management strategies. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 190:47-61. [PMID: 36099808 DOI: 10.1016/j.plaphy.2022.08.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
In the context of climate change, the magnitude and frequency of temperature extremes (low and high temperatures) are increasing worldwide. Changes to the lower extremes of temperature, known as cold stress (CS), are one of the recurrent stressors in many parts of the world, severely limiting agricultural production. A series of plant reactions to CS could be generalized into morphological, physiological, and biochemical responses based on commonalities among crop plants. However, the differing originality of crops revealed varying degrees of sensitivity to cold and, therefore, exhibited large differences in these responses among the crops. This review discusses the vegetative and reproductive growth effects of CS and highlights the species-specific aspect of each growth stage whereby the reproductive growth CS appears more detrimental in rice and wheat, with marginal yield losses. To mitigate CS negative effects, crop plants have evolved cold-acclimation mechanisms (with differing capability), characterized by specific protein accumulation, membrane modification, regulation of signaling pathways, osmotic regulation, and induction of endogenous hormones. In addition, we reviewed a comprehensive account of management strategies for regulating tolerance mechanisms of crop plants under CS.
Collapse
Affiliation(s)
- Soualihou Soualiou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fengying Duan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xia Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenbin Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
13
|
Guo Z, Ma W, Cai L, Guo T, Liu H, Wang L, Liu J, Ma B, Feng Y, Liu C, Pan G. Comparison of anther transcriptomes in response to cold stress at the reproductive stage between susceptible and resistant Japonica rice varieties. BMC PLANT BIOLOGY 2022; 22:500. [PMID: 36284279 PMCID: PMC9597962 DOI: 10.1186/s12870-022-03873-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Rice is one of the most important cereal crops in the world but is susceptible to cold stress (CS). In this study, we carried out parallel transcriptomic analysis at the reproductive stage on the anthers of two Japonica rice varieties with contrasting CS resistance: cold susceptible Longjing11 (LJ11) and cold resistant Longjing25 (LJ25). RESULTS According to the obtained results, a total of 16,762 differentially expressed genes (DEGs) were identified under CS, including 7,050 and 14,531 DEGs in LJ25 and LJ11, respectively. Examining gene ontology (GO) enrichment identified 35 up- and 39 down-regulated biological process BP GO terms were significantly enriched in the two varieties, with 'response to heat' and 'response to cold' being the most enriched. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified 33 significantly enriched pathways. Only the carbon metabolism and amino acid biosynthesis pathways with down-regulated DEGs were enriched considerably in LJ11, while the plant hormone signal transduction pathway (containing 153 DEGs) was dramatically improved. Eight kinds of plant hormones were detected in the pathway, while auxin, abscisic acid (ABA), salicylic acid (SA), and ethylene (ETH) signaling pathways were found to be the top four pathways with the most DEGs. Furthermore, the protein-protein interaction (PPI) network analysis identified ten hub genes (co-expressed gene number ≥ 30), including six ABA-related genes. Various DEGs (such as OsDREB1A, OsICE1, OsMYB2, OsABF1, OsbZIP23, OsCATC, and so on) revealed distinct expression patterns among rice types when the DEGs between LJ11 and LJ25 were compared, indicating that they are likely responsible for CS resistance of rice in cold region. CONCLUSION Collectively, our findings provide comprehensive insights into complex molecular mechanisms of CS response and can aid in CS resistant molecular breeding of rice in cold regions.
Collapse
Affiliation(s)
- Zhenhua Guo
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, 154026, Jiamusi, Heilongjiang, China
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, 510642, Guangzhou, Guangdong, China
| | - Wendong Ma
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, 154026, Jiamusi, Heilongjiang, China
| | - Lijun Cai
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, 154007, Jiamusi, Heilongjiang, China.
| | - Tao Guo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, 510642, Guangzhou, Guangdong, China
| | - Hao Liu
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, 510640, Guangzhou, Guangdong, China
| | - Linan Wang
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, 154026, Jiamusi, Heilongjiang, China
| | - Junliang Liu
- Jiamusi Longjing Seed Industry Co., LTD, 154026, Jiamusi, Heilongjiang, China
| | - Bo Ma
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, 161006, Qiqihar, Heilongjiang, China
| | - Yanjiang Feng
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, 154026, Jiamusi, Heilongjiang, China.
| | - Chuanxue Liu
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, 154026, Jiamusi, Heilongjiang, China.
| | - Guojun Pan
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, 154026, Jiamusi, Heilongjiang, China.
| |
Collapse
|
14
|
Sun S, Yang Z, Song Z, Wang N, Guo N, Niu J, Liu A, Bai B, Ahammed GJ, Chen S. Silicon enhances plant resistance to Fusarium wilt by promoting antioxidant potential and photosynthetic capacity in cucumber ( Cucumis sativus L.). FRONTIERS IN PLANT SCIENCE 2022; 13:1011859. [PMID: 36311065 PMCID: PMC9608603 DOI: 10.3389/fpls.2022.1011859] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/16/2022] [Indexed: 06/07/2023]
Abstract
Fusarium wilt, caused by Fusarium oxysporum f. sp. cucumerinum (Fo), is a severe soil-borne disease affecting cucumber production worldwide, particularly under monocropping in greenhouses. Silicon (Si) plays an important role in improving the resistance of crops to Fusarium wilt, but the underlying mechanism is largely unclear. Here, an in vitro study showed that 3 mmol·l-1 Si had the best inhibitory effect on the mycelial growth of F. oxysporum in potato dextrose agar (PDA) culture for 7 days. Subsequently, the occurrence of cucumber wilt disease and its mechanisms were investigated upon treatments with exogenous silicon under soil culture. The plant height, stem diameter, root length, and root activity under Si+Fo treatment increased significantly by 39.53%, 94.87%, 74.32%, and 95.11% compared with Fo only. Importantly, the control efficiency of Si+Fo was 69.31% compared with that of Fo treatment. Compared with Fo, the activities of peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) significantly increased by 148.92%, 26.47%, and 58.54%, while the contents of H2O2, O 2 · - , and malondialdehyde (MDA) notably decreased by 21.67%, 59.67%, and 38.701%, respectively, in roots of cucumber plants treated with Si + Fo. Compared with Fo treatment, the net photosynthesis rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), maximum RuBisCO carboxylation rates (Vcmax), maximum RuBP regeneration rates (Jmax), and activities of ribulose-1,5-bisphosphate carboxylase (RuBisCO), fructose-1,6-bisphosphatase (FBPase), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the expression of FBPA, TPI, SBPase, and FBPase in Si+Fo treatment increased significantly. Furthermore, Si alleviated stomatal closure and enhanced endogenous silicon content compared with only Fo inoculation. The study results suggest that exogenous silicon application improves cucumber resistance to Fusarium wilt by stimulating the antioxidant system, photosynthetic capacity, and stomatal movement in cucumber leaves. This study brings new insights into the potential of Si application in boosting cucumber resistance against Fusarium wilt with a bright prospect for Si use in cucumber production under greenhouse conditions.
Collapse
Affiliation(s)
- Shuangsheng Sun
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Zhengkun Yang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Zhiyu Song
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Nannan Wang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Ning Guo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Jinghan Niu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Airong Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Bing Bai
- Wageningen Seed Science Centre, Laboratory of Plant Physiology, Wageningen University, Wageningen, Netherlands
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
- Henan International Joint Laboratory of Stress Resistance Regulation and Safe Production of Protected Vegetables, Luoyang, China
- Henan Engineering Technology Research Center for Horticultural Crop safety and Disease Control, Luoyang, China
| | - Shuangchen Chen
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
- Henan International Joint Laboratory of Stress Resistance Regulation and Safe Production of Protected Vegetables, Luoyang, China
- Henan Engineering Technology Research Center for Horticultural Crop safety and Disease Control, Luoyang, China
| |
Collapse
|
15
|
Shahzadi E, Nawaz M, Adrees M, Asghar MJ, Iqbal N. Elevated ozone phytotoxicity ameliorations in mung bean {Vigna radiata (L.) Wilczek} by foliar nebulization of silicic acid and ascorbic acid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69680-69690. [PMID: 35576036 DOI: 10.1007/s11356-022-20549-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
The present work provides an insight into the development of biochemical adaptations in mung beans against ozone (O3) toxicity. The study aims to explore the O3 stress tolerance potential of mung bean genotypes under exogenous application of growth regulators. The seeds of twelve mung bean genotypes were grown in plastic pots under controlled conditions in the glasshouse. Six treatments, control (ambient ozone level 40-45 ppb), ambient O3 with ascorbic acid, ambient ozone with silicic acid, elevated ozone (120 ppb), elevated O3 with ascorbic acid (10 mM), and elevated ozone with silicic acid (0.1 mM) were applied. The O3 fumigation was carried out using an O3 generator. The results revealed that ascorbic acid and silicic acid application decreased the number of plants with foliar O3 injury symptoms in different degrees, i.e., zero, first, second, third, and fourth degrees; whereas 0-4 degree symptoms represent, no symptoms, symptoms occupying < 1/4, 1/4-1/2, 1/2-3/4, and > 3/4 of the total foliage area, respectively. Application of ascorbic acid and silicic acid also prevented the plants from the negative effects of O3 in terms of fresh as well as dry matter production, leaf chlorophyll, carotenoids, soluble proteins and ascorbic acid, proline, and malondialdehyde (MDA) contents. Overall, silicic acid application proved more effective in reducing the negative effects of O3 on mung bean genotypes as compared to that of the ascorbic acid. Three mung bean genotypes (NM 20-21, NM-2006, and NM-2016) were identified to have a better adaptive mechanism for O3 toxicity tolerance and may be good candidates for future variety development programs.
Collapse
Affiliation(s)
- Eram Shahzadi
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Nawaz
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Adrees
- Department of Environmental Sciences & Engineering, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | | | - Naeem Iqbal
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| |
Collapse
|
16
|
Mukarram M, Petrik P, Mushtaq Z, Khan MMA, Gulfishan M, Lux A. Silicon nanoparticles in higher plants: Uptake, action, stress tolerance, and crosstalk with phytohormones, antioxidants, and other signalling molecules. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119855. [PMID: 35940485 DOI: 10.1016/j.envpol.2022.119855] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/06/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Silicon is absorbed as uncharged mono-silicic acid by plant roots through passive absorption of Lsi1, an influx transporter belonging to the aquaporin protein family. Lsi2 then actively effluxes silicon from root cells towards the xylem from where it is exported by Lsi6 for silicon distribution and accumulation to other parts. Recently, it was proposed that silicon nanoparticles (SiNPs) might share a similar route for their uptake and transport. SiNPs then initiate a cascade of morphophysiological adjustments that improve the plant physiology through regulating the expression of many photosynthetic genes and proteins along with photosystem I (PSI) and PSII assemblies. Subsequent improvement in photosynthetic performance and stomatal behaviour correspond to higher growth, development, and productivity. On many occasions, SiNPs have demonstrated a protective role during stressful environments by improving plant-water status, source-sink potential, reactive oxygen species (ROS) metabolism, and enzymatic profile. The present review comprehensively discusses the crop improvement potential of SiNPs stretching their role during optimal and abiotic stress conditions including salinity, drought, temperature, heavy metals, and ultraviolet (UV) radiation. Moreover, in the later section of this review, we offered the understanding that most of these upgrades can be explained by SiNPs intricate correspondence with phytohormones, antioxidants, and signalling molecules. SiNPs can modulate the endogenous phytohormones level such as abscisic acid (ABA), auxins (IAAs), cytokinins (CKs), ethylene (ET), gibberellins (GAs), and jasmonic acid (JA). Altered phytohormones level affects plant growth, development, and productivity at various organ and tissue levels. Similarly, SiNPs regulate the activities of catalase (CAT), ascorbate peroxidase (APX), superoxide dismutase (SOD), and ascorbate-glutathione (AsA-GSH) cycle leading to an upgraded defence system. At the cellular and subcellular levels, SiNPs crosstalk with various signalling molecules such as Ca2+, K+, Na+, nitric oxide (NO), ROS, soluble sugars, and transcription factors (TFs) was also explained.
Collapse
Affiliation(s)
- Mohammad Mukarram
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India; Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, T. G. Masaryka 24, 96001, Zvolen, Slovakia.
| | - Peter Petrik
- Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic
| | - Zeenat Mushtaq
- Environmental Physiology Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - M Masroor A Khan
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Mohd Gulfishan
- Glocal School of Agricultural Science, Glocal University, Saharanpur, 247121, India
| | - Alexander Lux
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, Bratislava, Slovakia; Institute of Chemistry, Slovak Academy of Sciences, Dubravska Cesta 9, Bratislava, Slovakia
| |
Collapse
|
17
|
Ganz P, Porras-Murillo R, Ijato T, Menz J, Straub T, Stührwohldt N, Moradtalab N, Ludewig U, Neuhäuser B. Abscisic acid influences ammonium transport via regulation of kinase CIPK23 and ammonium transporters. PLANT PHYSIOLOGY 2022; 190:1275-1288. [PMID: 35762968 PMCID: PMC9516733 DOI: 10.1093/plphys/kiac315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/10/2022] [Indexed: 06/12/2023]
Abstract
Ammonium uptake at plant roots is regulated at the transcriptional, posttranscriptional, and posttranslational levels. Phosphorylation by the protein kinase calcineurin B-like protein (CBL)-interacting protein kinase 23 (CIPK23) transiently inactivates ammonium transporters (AMT1s), but the phosphatases activating AMT1s remain unknown. Here, we identified the PP2C phosphatase abscisic acid (ABA) insensitive 1 (ABI1) as an activator of AMT1s in Arabidopsis (Arabidopsis thaliana). We showed that high external ammonium concentrations elevate the level of the stress phytohormone ABA, possibly by de-glycosylation. Active ABA was sensed by ABI1-PYR1-like () complexes followed by the inactivation of ABI1, in turn activating CIPK23. Under favorable growth conditions, ABI1 reduced AMT1;1 and AMT1;2 phosphorylation, both by binding and inactivating CIPK23. ABI1 further directly interacted with AMT1;1 and AMT1;2, which would be a prerequisite for dephosphorylation of the transporter by ABI1. Thus, ABI1 is a positive regulator of ammonium uptake, coupling nutrient acquisition to abiotic stress signaling. Elevated ABA reduces ammonium uptake during stress situations, such as ammonium toxicity, whereas ABI1 reactivates AMT1s under favorable growth conditions.
Collapse
Affiliation(s)
- Pascal Ganz
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart D-70593, Germany
| | - Romano Porras-Murillo
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart D-70593, Germany
| | - Toyosi Ijato
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart D-70593, Germany
| | - Jochen Menz
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart D-70593, Germany
| | - Tatsiana Straub
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart D-70593, Germany
| | - Nils Stührwohldt
- Institute of Biology, Plant Physiology and Biochemistry, University of Hohenheim, Stuttgart D-70593, Germany
| | - Narges Moradtalab
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart D-70593, Germany
| | - Uwe Ludewig
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart D-70593, Germany
| | | |
Collapse
|
18
|
Gao H, Yu W, Yang X, Liang J, Sun X, Sun M, Xiao Y, Peng F. Silicon enhances the drought resistance of peach seedlings by regulating hormone, amino acid, and sugar metabolism. BMC PLANT BIOLOGY 2022; 22:422. [PMID: 36045325 PMCID: PMC9434905 DOI: 10.1186/s12870-022-03785-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Drought is one of the main concerns worldwide and restricts the development of agriculture. Silicon improves the drought resistance of plants, but the underlying mechanism remains unclear. RESULTS We sequenced the transcriptomes of both control and silicon-treated peach seedlings under drought stress to identify genes or gene networks that could be managed to increase the drought tolerance of peach seedlings. Peach (Prunus persica) seedlings were used to analyse the effects of silicon on plant growth and physiological indexes related to drought resistance under drought stress. The results showed that silicon addition improved the water use efficiency, antioxidant capacity, and net photosynthetic rate, inhibition of stomatal closure, promoted the development of roots, and further regulated the synthesis of hormones, amino acids and sugars in peach seedlings. A comparative transcriptome analysis identified a total of 2275 genes that respond to silicon under drought stress. These genes were mainly involved in ion transport, hormone and signal transduction, biosynthetic and metabolic processes, stress and defence responses and other processes. We analysed the effects of silicon on the modulation of stress-related hormonal crosstalk and amino acid and sugar metabolism. The results showed that silicon promotes zeatin, gibberellin, and auxin biosynthesis, inhibits the synthesis of abscisic acid, then promote lateral root development and inhibit stomatal closure, and regulates the signal transduction of auxin, cytokinin, gibberellin and salicylic acid. Silicon also regulates the metabolism of various amino acids and promotes the accumulation of sucrose and glucose to improve drought resistance of peach seedlings. CONCLUSIONS Silicon enhanced the drought resistance of peach seedlings by regulating stress-related hormone synthesis and signal transduction, and regulating amino acid and sugar metabolism.
Collapse
Affiliation(s)
- Huaifeng Gao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China
| | - Wenying Yu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China
| | - Xiaoqing Yang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China
| | - Jiahui Liang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China
| | - Xiwu Sun
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China
| | - Maoxiang Sun
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China
| | - Yuansong Xiao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China.
| | - Futian Peng
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China.
| |
Collapse
|
19
|
Han Y, Yang R, Wang Q, Wang B, Prusky D. Sodium silicate promotes wound healing by inducing the deposition of suberin polyphenolic and lignin in potato tubers. FRONTIERS IN PLANT SCIENCE 2022; 13:942022. [PMID: 36092440 PMCID: PMC9453558 DOI: 10.3389/fpls.2022.942022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Wound healing is a postharvest characteristic of potato tubers through accumulating suberin and lignin, which could reduce decay and water loss during storage. This study aimed to explore the impact and mechanisms of sodium silicate on wound healing of potatoes. After being wounded, "Atlantic" potato tubers were treated with water or 50 mM sodium silicate. The results showed that sodium silicate treatment accelerated the formation of wound healing structures and significantly reduced the weight loss and disease index of tubers. Furthermore, sodium silicate induced the genes expression and enzyme activity of phenylalanine ammonia lyase (PAL), 4-coumarate: coenzyme A ligase (4CL), and cinnamyl alcohol dehydrogenase (CAD) involved in the phenylpropane metabolism, enhancing the synthesis of the main precursors of suberin polyphenolic (SPP) and lignin, such as coniferyl alcohol, sinapyl alcohol, and cinnamyl alcohol. Meanwhile, the gene expression of StPOD and StNOX was activated, and the production of O2- and H2O2 was promoted, which could be used for injury signal transmission and oxidative crosslinking of SPP monomers and lignin precursors. Besides, antimicrobial compounds, total phenolics, and flavonoids were also induced. We suggest that sodium silicate could promote wound healing by inducing the deposition of SPP, lignin, and antimicrobial compounds in potato tubers.
Collapse
Affiliation(s)
- Ye Han
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Ruirui Yang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Qihui Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Bin Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Dov Prusky
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Rishon LeZion, Israel
| |
Collapse
|
20
|
Chilling Tolerance in Maize: Insights into Advances—Toward Physio-Biochemical Responses’ and QTL/Genes’ Identification. PLANTS 2022; 11:plants11162082. [PMID: 36015386 PMCID: PMC9415788 DOI: 10.3390/plants11162082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/06/2022] [Accepted: 08/07/2022] [Indexed: 12/04/2022]
Abstract
Maize, a major staple cereal crop in global food supply, is a thermophilic and short-day C4 plant sensitive to low-temperature stress. A low temperature is among the most severe agro-meteorological hazards in maize-growing areas. This review covers the latest research and progress in the field of chilling tolerance in maize in the last 40 years. It mainly focuses on how low-temperature stress affects the maize membrane and antioxidant systems, photosynthetic physiology, osmoregulatory substances and hormone levels. In addition, the research progress in identifying cold-tolerance QTLs (quantitative trait loci) and genes to genetically improve maize chilling toleranceis comprehensively discussed. Based on previous research, this reviewprovides anoutlook on potential future research directions and offers a reference for researchers in the maize cold-tolerance-related field.
Collapse
|
21
|
Oliveira KS, de Mello Prado R, Checchio MV, Gratão PL. Interaction of silicon and manganese in nutritional and physiological aspects of energy cane with high fiber content. BMC PLANT BIOLOGY 2022; 22:374. [PMID: 35902800 PMCID: PMC9335997 DOI: 10.1186/s12870-022-03766-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/20/2022] [Indexed: 05/17/2023]
Abstract
BACKGROUND Silicon (Si) is a multiple stress attenuator element in plants, however more research is needed to elucidate the actions in the plants defense system with low nutrition of manganese (Mn) for a prolonged period, and the attenuation mechanisms involved in the effects of Mn deficiency on energy cane with high fiber content. Thus, the objective of this study was to evaluate whether Si reduces the oxidative stress of the energy cane grown in low Mn in nutrient solution, to mitigate the effects of Mn deficiency, improving enzymatic and non-enzymatic defense, uptake of Mn the plant growth. METHODS An experiment was carried out with pre-sprouted seedlings of Saccharum spontaneum L. in a 2 × 2 factorial scheme in five replications in which the plants were grown under sufficiency (20.5 μmol L-1) and deficiency (0.1 μmol L-1) of Mn combined with the absence and presence of Si (2.0 mmol L-1) for 160 days from the application of the treatments. The following parameters were evaluated: accumulation of Mn and Si, H2O2, MDA, activity of SOD and GPOX, total phenol content, pigments, and quantum efficiency of PSII. RESULTS Mn deficiency induced the oxidative stress for increase the H2O2 and MDA content in leaves of plants and reduce the activity of antioxidant enzymes and total phenols causing damage to quantum efficiency of photosystem II and pigment content. Si attenuated the effects of Mn deficiency even for a longer period of stress by reducing H2O2 (18%) and MDA (32%) content, and increased the Mn uptake efficiency (53%), SOD activity (23%), GPOX (76%), phenol contents, thus improving growth. CONCLUSIONS The supply of Si promoted great nutritional and physiological improvements in energy cane with high fiber content in Mn deficiency. The results of this study propose the supply of Si via fertirrigation as a new sustainable strategy for energy cane cultivation in low Mn environments.
Collapse
Affiliation(s)
- Kamilla Silva Oliveira
- Department of Agricultural Production Sciences, Sector of Soils and Fertilizers, Laboratory of Plant Nutrition, São Paulo State University (UNESP), Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal, São Paulo, 14884-900, Brazil.
| | - Renato de Mello Prado
- Department of Agricultural Production Sciences, Sector of Soils and Fertilizers, Laboratory of Plant Nutrition, São Paulo State University (UNESP), Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal, São Paulo, 14884-900, Brazil
| | - Mirela Vantini Checchio
- Department of Biology Applied to Agriculture, Laboratory of Plant Physiology, São Paulo State University (UNESP), Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal, São Paulo, 14884900, Brazil
| | - Priscila Lupino Gratão
- Department of Biology Applied to Agriculture, Laboratory of Plant Physiology, São Paulo State University (UNESP), Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal, São Paulo, 14884900, Brazil
| |
Collapse
|
22
|
Pan T, Wang L, Peng Z, Tian J, Cai K. Silicon enhances the submergence tolerance of rice by regulating quiescence strategy and alleviating oxidative damage. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 182:124-132. [PMID: 35490638 DOI: 10.1016/j.plaphy.2022.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/24/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
The safety of rice production under submergence is one of the research hotspots worldwide. Although the effects of silicon (Si) on enhancing plant stress tolerance have been widely investigated, the underlying mechanisms mediated by Si under submergence remains poorly understood. In this study, wild type (WT) and Si-defective mutant (lsi1) rice were chosen to investigate the mechanisms of Si-mediated rice resistance to submergence. Our results showed that Si addition effectively mitigated oxidative damages under submergence by reducing the content of hydrogen peroxide (H2O2) and superoxide (O2.-) in WT rice plants. Moreover, Si treatment increased rice yield by 21.5% for WT rice under submergence. The application of Si significantly inhibited the elongation and internode length in WT rice under submergence, through the synergistic regulation of endogenous hormones ethylene (ET), gibberellic acid (GA) and jasmonic acid (JA). Further investigation showed that the ethylene-responsive factor (ERF) SUB1A gene was expressed under submergence in WT and lsi1 rice, but Si addition did not influence the expression of SUB1A. Interestingly, exogenous Si down-regulated the relative expression levels of Si transporter genes Lsi1 and Lsi2 in WT rice roots by 51.7% and 48.0%, respectively. However, the physiological characteristics and genes expression of lsi1 rice were not affected by Si application regardless of submergence. The present study indicated that Si enhances the submergence tolerance and reduce the adverse effects of yield loss through the removal of reactive oxygen species and the adjustment of quiescence strategy.
Collapse
Affiliation(s)
- Taowen Pan
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, 510642, PR China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China; Key Laboratory of Tropical Agro-Environment, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, PR China
| | - Lei Wang
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, 510642, PR China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China; Key Laboratory of Tropical Agro-Environment, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, PR China
| | - Zhenni Peng
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, 510642, PR China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China; Key Laboratory of Tropical Agro-Environment, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, PR China
| | - Jihui Tian
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, 510642, PR China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China; Key Laboratory of Tropical Agro-Environment, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, PR China
| | - Kunzheng Cai
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, 510642, PR China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China; Key Laboratory of Tropical Agro-Environment, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, PR China.
| |
Collapse
|
23
|
Singhal RK, Fahad S, Kumar P, Choyal P, Javed T, Jinger D, Singh P, Saha D, MD P, Bose B, Akash H, Gupta NK, Sodani R, Dev D, Suthar DL, Liu K, Harrison MT, Saud S, Shah AN, Nawaz T. Beneficial elements: New Players in improving nutrient use efficiency and abiotic stress tolerance. PLANT GROWTH REGULATION 2022. [PMID: 0 DOI: 10.1007/s10725-022-00843-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
|
24
|
Mir RA, Bhat BA, Yousuf H, Islam ST, Raza A, Rizvi MA, Charagh S, Albaqami M, Sofi PA, Zargar SM. Multidimensional Role of Silicon to Activate Resilient Plant Growth and to Mitigate Abiotic Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:819658. [PMID: 35401625 PMCID: PMC8984490 DOI: 10.3389/fpls.2022.819658] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/31/2022] [Indexed: 05/16/2023]
Abstract
Sustainable agricultural production is critically antagonistic by fluctuating unfavorable environmental conditions. The introduction of mineral elements emerged as the most exciting and magical aspect, apart from the novel intervention of traditional and applied strategies to defend the abiotic stress conditions. The silicon (Si) has ameliorating impacts by regulating diverse functionalities on enhancing the growth and development of crop plants. Si is categorized as a non-essential element since crop plants accumulate less during normal environmental conditions. Studies on the application of Si in plants highlight the beneficial role of Si during extreme stressful conditions through modulation of several metabolites during abiotic stress conditions. Phytohormones are primary plant metabolites positively regulated by Si during abiotic stress conditions. Phytohormones play a pivotal role in crop plants' broad-spectrum biochemical and physiological aspects during normal and extreme environmental conditions. Frontline phytohormones include auxin, cytokinin, ethylene, gibberellin, salicylic acid, abscisic acid, brassinosteroids, and jasmonic acid. These phytohormones are internally correlated with Si in regulating abiotic stress tolerance mechanisms. This review explores insights into the role of Si in enhancing the phytohormone metabolism and its role in maintaining the physiological and biochemical well-being of crop plants during diverse abiotic stresses. Moreover, in-depth information about Si's pivotal role in inducing abiotic stress tolerance in crop plants through metabolic and molecular modulations is elaborated. Furthermore, the potential of various high throughput technologies has also been discussed in improving Si-induced multiple stress tolerance. In addition, a special emphasis is engrossed in the role of Si in achieving sustainable agricultural growth and global food security.
Collapse
Affiliation(s)
- Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | | | - Henan Yousuf
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | | | - Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | | | - Sidra Charagh
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Science, Hangzhou, China
| | - Mohammed Albaqami
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Parvaze A. Sofi
- Division of Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Srinagar, India
| |
Collapse
|
25
|
Zhou X, Muhammad I, Lan H, Xia C. Recent Advances in the Analysis of Cold Tolerance in Maize. FRONTIERS IN PLANT SCIENCE 2022; 13:866034. [PMID: 35498657 PMCID: PMC9039722 DOI: 10.3389/fpls.2022.866034] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/21/2022] [Indexed: 05/19/2023]
Abstract
Maize (Zea mays L.) is an annual grass that originated in tropical and subtropical regions of the New World. Maize is highly sensitive to cold stress during seed gemination and the seedling phase, which can lead to reductions in plant vigor and grain production. There are large differences in the morphological and physiological changes caused by cold stress among maize varieties. In general, cold tolerant varieties have a stronger ability to maintain such changes in traits related to seed germination, root phenotypes, and shoot photosynthesis. These morphological and physiological characteristics have been widely used to evaluate the cold tolerance of maize varieties in genetic analyses. In recent years, considerable progress has been made in elucidating the mechanisms of maize in response to cold tolerance. Several QTL, GWAS, and transcriptomic analyses have been conducted on various maize genotypes and populations that show large variations in cold tolerance, resulting in the discovery of hundreds of candidate cold regulation genes. Nevertheless, only a few candidate genes have been functionally characterized. In the present review, we summarize recent progress in molecular, physiological, genetic, and genomic analyses of cold tolerance in maize. We address the advantages of joint analyses that combine multiple genetic and genomic approaches to improve the accuracy of identifying cold regulated genes that can be further used in molecular breeding. We also discuss the involvement of long-distance signaling in plant cold tolerance. These novel insights will provide a better mechanistic understanding of cold tolerance in maize.
Collapse
Affiliation(s)
- Xuemei Zhou
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Imran Muhammad
- Department of Chemistry, Punjab College of Science, Faisalabad, Pakistan
| | - Hai Lan
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Resource Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Hai Lan
| | - Chao Xia
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Chao Xia
| |
Collapse
|
26
|
Brown VS, Erickson TE, Merritt DJ, Madsen MD, Hobbs RJ, Ritchie AL. A global review of seed enhancement technology use to inform improved applications in restoration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149096. [PMID: 34340083 DOI: 10.1016/j.scitotenv.2021.149096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/01/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Seed-based restoration often experiences poor success due to a range of edaphic and biotic issues. Seed enhancement technologies (SETs) are a novel approach that can alleviate these pressures and improve restoration success. Broadly, SETs have been reviewed for agricultural and horticultural purposes, for specific types of SETs such as coating or priming, or for focal ecosystems. However, information is lacking for SETs within a restoration focused context, and how they are being used to alleviate certain barriers. This review aimed to synthesise the current literature on SETs to understand what SETs are being tested, in which sectors and locations they are being tested, what issues are faced within restoration using SETs, and how SETs are being used to approach these issues. Priming was highlighted as the main SET investigated. Inoculation, pesticide application and magnetic fields were also commonly tested (SETs we termed 'prospective techniques'). SET research mainly occurred in the agricultural sector. More recently, other sectors, such as restoration and rangeland management, have increased efforts into SET research. The restoration sector has focused on extruded pelleting and coating (with activated carbon), in combination with herbicide application, to overcome invasive species, and coating with certain additives to alleviate edaphic issues. Other sectors outside restoration were largely focused on evaluating priming for overcoming these barriers. The majority of priming research has been completed on crop species and differences between these species and ecosystems must be considered in future restoration efforts that focus on native seed use. Generally, SETs require further refinement, including identifying ideal additives and their optimum concentrations to target certain issues, refining formulations for coating and extruded pelleting and developing flash flaming. A bet-hedging approach using multiple SETs and/or combinations of SETs may be advantageous in overcoming a wide range of barriers in seed-based restoration.
Collapse
Affiliation(s)
- Vanessa S Brown
- School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, Western Australia 6009, Australia; Kings Park Science, Department of Biodiversity Conservation and Attractions, 2 Kattidj Close, Kings Park, Western Australia, 6005, Australia.
| | - Todd E Erickson
- School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, Western Australia 6009, Australia; Kings Park Science, Department of Biodiversity Conservation and Attractions, 2 Kattidj Close, Kings Park, Western Australia, 6005, Australia
| | - David J Merritt
- School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, Western Australia 6009, Australia; Kings Park Science, Department of Biodiversity Conservation and Attractions, 2 Kattidj Close, Kings Park, Western Australia, 6005, Australia
| | - Matthew D Madsen
- Department of Plant and Wildlife Sciences, Brigham Young University, 701 East University Parkway, Provo, UT 84602, United States of America
| | - Richard J Hobbs
- School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, Western Australia 6009, Australia
| | - Alison L Ritchie
- School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, Western Australia 6009, Australia; Kings Park Science, Department of Biodiversity Conservation and Attractions, 2 Kattidj Close, Kings Park, Western Australia, 6005, Australia
| |
Collapse
|
27
|
Lv Y, Li Y, Liu X, Xu K. Effect of soil sulfamethoxazole on strawberry (Fragaria ananassa): Growth, health risks and silicon mitigation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117321. [PMID: 33975211 DOI: 10.1016/j.envpol.2021.117321] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/29/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
The negative impact of antibiotic pollution on the agricultural system and human health is a hot issue in the world. However, little information is available on the antibiotics toxicity mechanism and the role of silicon (Si) to alleviate the antibiotics toxicity. In this study, strawberry (Fragaria ananassa) showed excitatory response to low-dose SMZ (1 mg L-1), but strawberry root and photosynthetic efficiency were damaged under high level. When SMZ level exceeded 10 mg L-1, H202, O2-, MDA and relative conductivity increased, while SOD and CAT activities first increased and then decreased. SMZ accumulated more in roots and fruits, but less in stems, and the accumulation increased with the increase of SMZ-dose. Under 1 mg L-1 SMZ, the SMZ accumulation in fruits was 110.54 μg kg-1, which exceeded the maximum residue limit. SMZ can induce the expression of sul1, sul2 and intI1, and intI1 had the highest abundance. Exogenous application of Si alleviated the toxicity of SMZ, which is mainly related to the degradation of SMZ in soil and the reduction of SMZ absorption by strawberry. In addition, Si relieved root damage, promoted the increase of photosynthetic efficiency, and improved the antioxidant system to resist SMZ toxicity.
Collapse
Affiliation(s)
- Yao Lv
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong Taian, 271018, China; Key Laboratory of Biology of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Taian, 271018, China; State Key Laboratory of Crop Biology, Taian, 271018, China
| | - Yanyan Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Xiaohui Liu
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Kun Xu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong Taian, 271018, China; Key Laboratory of Biology of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Taian, 271018, China; State Key Laboratory of Crop Biology, Taian, 271018, China.
| |
Collapse
|
28
|
Arif Y, Singh P, Bajguz A, Alam P, Hayat S. Silicon mediated abiotic stress tolerance in plants using physio-biochemical, omic approach and cross-talk with phytohormones. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:278-289. [PMID: 34146783 DOI: 10.1016/j.plaphy.2021.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 06/03/2021] [Indexed: 05/28/2023]
Abstract
Silicon (Si) is the second most abundant element present on the lithosphere and a quasi-essential element for plants' cellular and developmental processes. Si is associated with augmented germination, growth, photosynthesis, gas exchange, photosystem efficiency, and yield attributes in unstressed and stressed plants. The exogenous application of Si facilitates morpho-physiological and biochemical traits. It triggers the content of compatible osmolyte and enzymatic and non-enzymatic antioxidants, which decreases reactive oxygen species like hydrogen peroxide and superoxide. Uptake and transport of Si in plants are discussed in this review. Furthermore, the potent roles of Si in plants are emphasized. The cross-talk of Si with phytohormones such as auxins, cytokinins, gibberellins, abscisic acid, brassinosteroids, salicylic acid, nitric oxide, jasmonic acid, and ethylene is also presented. Moreover, attempts have been made to cover the contribution of Si mediated enhancement in 'omics' (genomic, transcriptomic, proteomic, metabolomic, and ionomic) approach that is useful in diminishing stress. This review aims to provide Si integration with phytohormone and utilization of 'omic approaches' to understand the role of Si in plants. This review also underlines the need for future research to evaluate the role of Si during abiotic stress in plants and the identification of gaps in understanding this process as a whole at a broader level.
Collapse
Affiliation(s)
- Yamshi Arif
- Aligarh Muslim University, Faculty of Life Sciences, Department of Botany, Plant Physiology Section, Aligarh, 202002, India
| | - Priyanka Singh
- Aligarh Muslim University, Faculty of Life Sciences, Department of Botany, Plant Physiology Section, Aligarh, 202002, India
| | - Andrzej Bajguz
- University of Bialystok, Faculty of Biology, Department of Biology and Plant Ecology, Konstantego Ciolkowskiego 1J, 15-245, Bialystok, Poland
| | - Pravej Alam
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Shamsul Hayat
- Aligarh Muslim University, Faculty of Life Sciences, Department of Botany, Plant Physiology Section, Aligarh, 202002, India.
| |
Collapse
|
29
|
Silicon via nutrient solution modulates deficient and sufficient manganese sugar and energy cane antioxidant systems. Sci Rep 2021; 11:16900. [PMID: 34413411 PMCID: PMC8376992 DOI: 10.1038/s41598-021-96427-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 08/10/2021] [Indexed: 11/24/2022] Open
Abstract
Manganese (Mn) is highly demanded by Poaceae, and its deficiency induces physiological and biochemical responses in plants. Silicon (Si), which is beneficial to plants under various stress conditions, may also play an important role in plants without stress. However, the physiological and nutritional mechanisms of Si to improve Mn nutrition in sugarcane and energy cane, in addition to mitigating deficiency stress, are still unclear. The objective of this study is to evaluate whether the mechanisms of action of Si are related to the nutrition of Mn by modulating the antioxidant defense system of sugarcane plants and energy cane plants cultivated in nutrient solution, favoring the physiological and growth factors of plants cultivated under Mn deficiency or sufficiency. Two experiments were carried out with pre-sprouted seedlings of Saccharum officinarum L. and Saccharum spontaneum L. grown in the nutrient solution. Treatments were arranged in a 2 × 2 factorial design. Plants were grown under Mn sufficiency (20.5 µmol L−1) and the deficiency (0.1 µmol L−1) associated with the absence and presence of Si (2.0 mmol L−1). Mn deficiency caused oxidative stress by increasing lipid peroxidation and decreasing GPOX activity, contents of phenols, pigments, and photosynthetic efficiency, and led to the growth of both studied species. Si improved the response of both species to Mn supply. The attenuation of the effects of Mn deficiency by Si depends on species, with a higher benefit for Saccharum spontaneum. Its performance is involved in reducing the degradation of cells by reactive oxygen species (21%), increasing the contents of phenols (18%), carotenoids (64%), proteins, modulating SOD activity, and improving photosynthetic and growth responses.
Collapse
|
30
|
Devanna BN, Mandlik R, Raturi G, Sudhakaran SS, Sharma Y, Sharma S, Rana N, Bansal R, Barvkar V, Tripathi DK, Shivaraj SM, Deshmukh R. Versatile role of silicon in cereals: Health benefits, uptake mechanism, and evolution. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 165:173-186. [PMID: 34044226 DOI: 10.1016/j.plaphy.2021.03.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Silicon (Si) is an omnipresent and second most abundant element in the soil lithosphere after oxygen. Silicon being a beneficial element imparts several benefits to the plants and animals. In many plant species, including the cereals the uptake of Si from the soil even exceeds the uptake of essential nutrients. Cereals are the monocots which are known to accumulate a high amount of Si, and reaping maximum benefits associated with it. Cereals contribute a high amount of Si to the human diet compared to other food crops. In the present review, we have summarized distribution of the dietary Si in cereals and its role in the animal and human health. The Si derived benefits in cereals, specifically with respect to biotic and abiotic stress tolerance has been described. We have also discussed the molecular mechanism involved in the Si uptake in cereals, evolution of the Si transport mechanism and genetic variation in the Si concentration among different cultivars of the same species. Various genetic mutants deficient in the Si uptake have been developed and many QTLs governing the Si accumulation have been identified in cereals. The existing knowledge about the Si biology and available resources needs to be explored to understand and improve the Si accumulation in crop plants to achieve sustainability in agriculture.
Collapse
Affiliation(s)
- B N Devanna
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | - Rushil Mandlik
- National Agri-Food Biotechnology Institute (NABI) Mohali, Punjab, India; Department of Biotechnology Panjab University, Chandigarh, India
| | - Gaurav Raturi
- National Agri-Food Biotechnology Institute (NABI) Mohali, Punjab, India; Department of Biotechnology Panjab University, Chandigarh, India
| | - Sreeja S Sudhakaran
- National Agri-Food Biotechnology Institute (NABI) Mohali, Punjab, India; Department of Biotechnology Panjab University, Chandigarh, India
| | - Yogesh Sharma
- National Agri-Food Biotechnology Institute (NABI) Mohali, Punjab, India
| | - Shivani Sharma
- National Agri-Food Biotechnology Institute (NABI) Mohali, Punjab, India
| | - Nitika Rana
- National Agri-Food Biotechnology Institute (NABI) Mohali, Punjab, India; Department of Biotechnology Panjab University, Chandigarh, India
| | - Ruchi Bansal
- National Agri-Food Biotechnology Institute (NABI) Mohali, Punjab, India; Department of Biotechnology Panjab University, Chandigarh, India
| | - Vitthal Barvkar
- Department of Botany, Savitribai Phule Pune University, Pune, India
| | - Durgesh K Tripathi
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, AUUP Campus Sector-125, Noida, India
| | - S M Shivaraj
- National Agri-Food Biotechnology Institute (NABI) Mohali, Punjab, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI) Mohali, Punjab, India.
| |
Collapse
|
31
|
Zhou Y, Sommer ML, Hochholdinger F. Cold response and tolerance in cereal roots. JOURNAL OF EXPERIMENTAL BOTANY 2021:erab334. [PMID: 34270744 DOI: 10.1093/jxb/erab334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 05/02/2023]
Abstract
Cold stress adversely affects plant growth and is a limiting factor in crop productivity. Temperature volatility as a consequence of climate change will increase the effects of cold stress on crop cultivation. Low temperatures frequently occur early after planting in temperate climates and severely affect root development in cereals. In this review we address the question how cereal root systems respond to cold on different scales. First, we summarize the morphological, physiological and cellular responses of cereal roots to cold stress and how these processes are regulated by phytohormones. Subsequently, we highlight the status of the genetic and molecular dissection of cold tolerance with emphasis on the role of cold-responsive genes in improving cold tolerance in cereal roots. Finally, we discuss the role of beneficial microorganisms and mineral nutrients in ameliorating the effects of cold stress in cereal roots. A comprehensive knowledge of the molecular mechanisms underlying cold tolerance will ensure yield stability by enabling the generation of cold-tolerant crop genotypes.
Collapse
Affiliation(s)
- Yaping Zhou
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113 Bonn, Germany
| | - Mauritz Leonard Sommer
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113 Bonn, Germany
| | - Frank Hochholdinger
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113 Bonn, Germany
| |
Collapse
|
32
|
Khan MIR, Ashfaque F, Chhillar H, Irfan M, Khan NA. The intricacy of silicon, plant growth regulators and other signaling molecules for abiotic stress tolerance: An entrancing crosstalk between stress alleviators. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:36-47. [PMID: 33667965 DOI: 10.1016/j.plaphy.2021.02.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/01/2021] [Indexed: 05/28/2023]
Abstract
Unfavorable environmental conditions are the critical inimical to the sustainable agriculture. Among various novel strategies designed to protect plants from abiotic stress threats, use of mineral elements as 'stress mitigators' has emerged as the most crucial and interesting aspect. Silicon (Si) is a quasi-essential nutrient that mediates plant growth and development and interacts with plant growth regulators (PGRs) and signaling molecules to combat abiotic stress induced adversities in plants and increase stress tolerance. PGRs are one of the most important chemical messengers that mediate plant growth and development during stressful conditions. However, the individual roles of Si and PGRs have extensively defined but their exquisite crosstalk with each other to mediate plant stress responses is still indiscernible. The present review is an upfront effort to delineate an intricate crosstalk/interaction between Si and PGRs to reduce abiotic stress adversities. The combined effects of interaction of Si with other signaling molecules such as reactive oxygen species (ROS), nitric oxide (NO) and calcium (Ca2+) for the survival of plants under stress and optimal conditions are also discussed.
Collapse
Affiliation(s)
| | - Farha Ashfaque
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
| | | | - Mohammad Irfan
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, New Jersey, USA
| | - Nafees A Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India.
| |
Collapse
|
33
|
Tripathi DK, Vishwakarma K, Singh VP, Prakash V, Sharma S, Muneer S, Nikolic M, Deshmukh R, Vaculík M, Corpas FJ. Silicon crosstalk with reactive oxygen species, phytohormones and other signaling molecules. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124820. [PMID: 33516974 DOI: 10.1016/j.jhazmat.2020.124820] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/20/2020] [Accepted: 12/08/2020] [Indexed: 05/28/2023]
Abstract
Exogenous applications of silicon (Si) can initiate cellular defence pathways to enhance plant resistance to abiotic and biotic stresses. Plant Si accumulation is regulated by several transporters of silicic acid (e.g. Lsi1, Lsi2, and Lsi6), but the precise mechanisms involved in overall Si transport and its beneficial effects remains unclear. In stressed plants, the accumulation of Si leads to a defence mechanism involving the formation of amorphous or hydrated silicic acid caused by their polymerization and interaction with other organic substances. Silicon also regulates plant ionic homeostasis, which involves the nutrient acquisition, availability, and replenishment in the soil through biogeochemical cycles. Furthermore, Si is implicated in modulating ethylene-dependent and jasmonate pathways, as well as other phytohormones, particularly under stress conditions. Crosstalk between Si and phytohormones could lead to improvements in Si-mediated crop growth, especially when plants are exposed to stress. The integration of Si with reactive oxygen species (ROS) metabolism appears to be a part of the signaling cascade that regulates plant phytohormone homeostasis, as well as morphological, biochemical, and molecular responses. This review aims to provide an update on Si interplays with ROS, phytohormones, and other signaling molecules that regulate plant development under stress conditions.
Collapse
Affiliation(s)
- Durgesh Kumar Tripathi
- Amity Institute of Organic Agriculture (AIOA), Amity University Uttar Pradesh, Sector-125, Noida, India
| | - Kanchan Vishwakarma
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Sector-125, Noida, India
| | - Vijay Pratap Singh
- Department of Botany, C.M.P. Degree College, A Constituent PG College of University of Allahabad, Prayagraj, India
| | - Ved Prakash
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Sowbiya Muneer
- School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Miroslav Nikolic
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Marek Vaculík
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, Mlynská dolina, Bratislava, Slovakia; Institute of Botany, Plant Science. and Biodiversity Centre, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, Slovakia
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry and Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda, Granada, Spain.
| |
Collapse
|
34
|
Ghassemi S, Delangiz N, Asgari Lajayer B, Saghafi D, Maggi F. Review and future prospects on the mechanisms related to cold stress resistance and tolerance in medicinal plants. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.chnaes.2020.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
35
|
Alamri S, Hu Y, Mukherjee S, Aftab T, Fahad S, Raza A, Ahmad M, Siddiqui MH. Silicon-induced postponement of leaf senescence is accompanied by modulation of antioxidative defense and ion homeostasis in mustard (Brassica juncea) seedlings exposed to salinity and drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 157:47-59. [PMID: 33075710 DOI: 10.1016/j.plaphy.2020.09.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/28/2020] [Indexed: 05/25/2023]
Abstract
Soil salinity and drought stress (DS) are the massive problem for worldwide agriculture. Both stresses together become more toxic to the plant growth and development. Silicon (Si) being the second most abundant element in the earth's crust, exerts beneficial effects on plants under both stress and non-stress conditions. However, limited information is available to substantiate the beneficial role of Si in delaying the premature leaf senescence and imparting tolerance of mustard (Brassica juncea L.) plants to salinity and DS. Therefore, the present study aimed to explore the role of Si (source K2SiO3) in chlorophyll (Chl) biosynthesis, nutrients uptake, relative water content (RWC), proline (Pro) metabolism, antioxidant system and delaying of premature leaf senescence in mustard plants under sodium chloride (NaCl) and DS conditions. Results of this study show that exogenous Si (1.7 mM) significantly delayed the salt plus DS-induced premature leaf senescence. This was further accompanied by the enhanced nutrients accumulation and activity of chlorophyll metabolizing enzymes [δ-aminolevulinic acid (δ-ALA) dehydratase and porphobilinogen deaminase] and levels of δ-ALA, and Chls a and b and also by decreased the Chl degradation and Chl degrading enzymes (Chlorophyllase, Chl-degrading peroxidase, pheophytinase) activity. Exogenous Si treatment induced redox homoeostasis in B. juncea L. plants, which is evident by a reduced generation of reactive oxygen species (ROS) resulting due to suppressed activity of their generating enzymes (glycolate oxidase and NADPH oxidase) and enhanced defence system. Furthermore, application of Si inhibited the activity of protease and triggered the activity of antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase) and plasma membrane H+-ATPase activity. In conclusion, all these results reveal that Si could help in the modulation of Chl metabolism, redox hemostasis, and the regulation of nutrients (nitrogen, phosphorus, Si and potassium) uptake in the mustard plants that lead to the postponement of premature leaf senescence under salinity plus DS.
Collapse
Affiliation(s)
- Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Yanbo Hu
- Northeast Forestry University, 26# Hexing Road, Xiangfang District, Harbin City, 150040, PR China
| | - Soumya Mukherjee
- Department of Botany, Jangipur College, University of Kalyani, West Bengal, 742213, India
| | - Tariq Aftab
- Department of Botany, Plant Physiology Section, Aligarh Muslim University, Aligarh, 202002, India
| | - Shah Fahad
- Department of Agronomy, The University of Haripur, 22620, Haripur, Pakistan; Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
| | - Ali Raza
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, 430062, China
| | - Manzoor Ahmad
- Department of Agriculture, Bacha Khan University, Charsadda, Pakistan
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia.
| |
Collapse
|
36
|
Silicon Alleviates Temperature Stresses in Poinsettia by Regulating Stomata, Photosynthesis, and Oxidative Damages. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10091419] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The effects of silicon (Si) on temperature stresses were investigated in poinsettia. Well-rooted cuttings supplemented with and without Si were exposed to 40 °C, and plants treated with or without Si during cutting propagation and cultivation were subjected to 4 °C. The results showed that almost all the stomata of cuttings without Si supplementation were closed, while some of them were still open in cuttings supplemented with Si under a high temperature stress. However, Si was not able to alleviate stomatal closure of poinsettia under low temperature stress. The increased epicuticular wax might contribute to enhanced resistance of poinsettia to low temperature stresses. In addition, poinsettia maintained a higher photosynthetic rate and lower malonaldehyde and hydrogen sulfide concentrations when supplemented with Si under high and low temperature stresses, which might contribute to lower APX activities. Overall, temperature stresses had negative impacts on the physiological characteristics of poinsettia, while Si could alleviate some effects of temperature stresses.
Collapse
|
37
|
Hajiboland R, Sadeghzadeh N, Moradtalab N, Aliasgharzad N, Schweikert K, Poschenrieder C. The arbuscular mycorrhizal mycelium from barley differentially influences various defense parameters in the non-host sugar beet under co-cultivation. MYCORRHIZA 2020; 30:647-661. [PMID: 32691151 DOI: 10.1007/s00572-020-00978-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
The interactions between arbuscular mycorrhizal fungi (AMF) and non-host species are poorly studied. Particularly scarce is information on members of the Amaranthaceae/Chenopodiaceae family. Sugar beet (Beta vulgaris) plants were co-cultivated with a host species (Hordeum vulgare) in the presence (+AMF) or absence of Rhizophagus intraradices to explore the hypothesis that the presence of an active, pre-established AMF mycelium induces defense responses in the non-host species. Biomass of sugar beet did not respond to the +AMF treatment, while its root exudation of organic acids and phenolic acids was drastically decreased upon co-cultivation with +AMF barley. The most conspicuous effect was observed on a wide range of potential defense parameters being differentially influenced by the +AMF treatment in this non-host species. Antioxidant defense enzymes were activated and the level of endogenous jasmonic acid was elevated accompanied by nitric oxide accumulation and lignin deposition in the roots after long-term +AMF treatment. In contrast, significant reductions in the levels of endogenous salicylic acid and tissue concentration and exudation of phenolic acids indicated that AM fungus hyphae in the substrate did not induce a hypersensitive-type response in the sugar beet roots and downregulated certain chemical defenses. Our results imply that the fitness of this non-host species is not reduced when grown in the presence of an AMF mycelium because of balanced defense costs. Further studies should address the question of whether or not such modulation of defense pattern influences the pest resistance of sugar beet plants under field conditions.
Collapse
Affiliation(s)
- Roghieh Hajiboland
- Department of Plant Science, Faculty of Natural Science, University of Tabriz, Tabriz, 51666-16471, Iran.
| | - Noushin Sadeghzadeh
- Department of Plant Science, Faculty of Natural Science, University of Tabriz, Tabriz, 51666-16471, Iran
| | - Narges Moradtalab
- Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | | | | | - Charlotte Poschenrieder
- Plant Physiology Laboratory, Bioscience Faculty, Universidad Autónoma de Barcelona, Barcelona, Spain
| |
Collapse
|
38
|
Moradtalab N, Ahmed A, Geistlinger J, Walker F, Höglinger B, Ludewig U, Neumann G. Synergisms of Microbial Consortia, N Forms, and Micronutrients Alleviate Oxidative Damage and Stimulate Hormonal Cold Stress Adaptations in Maize. FRONTIERS IN PLANT SCIENCE 2020; 11:396. [PMID: 32391028 PMCID: PMC7193188 DOI: 10.3389/fpls.2020.00396] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/19/2020] [Indexed: 05/04/2023]
Abstract
AIMS Low soil temperature in spring is a major constraint for the cultivation of tropical crops in temperate climates. This study aims at the exploitation of synergistic interactions of micronutrients, consortia of plant growth-promoting microorganisms and N forms as cold-stress protectants. METHODS Maize seedlings were exposed for two weeks to low root zone temperatures at 8-14°C under controlled conditions on a silty clay-loam soil (pH 6.9) collected from a maize field cultivation site. A pre-selection trial with fungal and bacterial PGPM strains revealed superior cold-protective performance for a microbial consortium of Trichoderma harzianum OMG16 and Bacillus spp. with Zn/Mn supplementation (CombiA+), particularly in combination with N-ammonium as a starting point for the characterization of the underlying physiological and molecular mechanisms. RESULTS In nitrate-treated plants, the cold stress treatment increased oxidative leaf damage by 133% and reduced the shoot biomass by 25%, related with reduced acquisition of phosphate (P), zinc (Zn) and manganese (Mn). The supplying of N as ammonium improved the Zn and Mn nutritional status and increased the ABA shoot concentration by 33%, as well as moderately increased detoxification of reactive oxygen species (ROS). Moreover, use of N as ammonium also increased the root auxin (IAA) concentration (+76%), with increased expression of auxin-responsive genes, involved in IAA synthesis (ZmTSA), transport (ZmPIN1a), and perception (ZmARF12). Additional inoculation with the microbial consortium promoted root colonization with the inoculant strain T. harzianum OMG16 in combination with ammonium fertilization (+140%). An increased ABA/cytokinin ratio and increased concentrations of jasmonic (JA) and salicylic acids (SA) were related to a further increase in enzymatic and non-enzymatic ROS detoxification. Additional supplementation with Zn and Mn further increased shoot IAA, root length and total antioxidants, resulting in the highest shoot biomass production and the lowest leaf damage by oxidative chemical species. CONCLUSION Our results suggest the mitigation of cold stress and reduction of stress priming effects on maize plants due to improved ROS detoxification and induction of hormonal stress adaptations relying on the strategic combination of stress-protective nutrients with selected microbial inoculants.
Collapse
Affiliation(s)
- Narges Moradtalab
- Institute of Crop Science (340h), University of Hohenheim, Stuttgart, Germany
| | - Aneesh Ahmed
- Institute of Crop Science (340h), University of Hohenheim, Stuttgart, Germany
| | - Joerg Geistlinger
- Institute of Bioanalytical Sciences, Anhalt University of Applied Sciences, Bernburg, Germany
| | - Frank Walker
- Institute of Phytomedicine (360), University of Hohenheim, Stuttgart, Germany
| | - Birgit Höglinger
- Institute of Phytomedicine (360), University of Hohenheim, Stuttgart, Germany
| | - Uwe Ludewig
- Institute of Crop Science (340h), University of Hohenheim, Stuttgart, Germany
| | - Günter Neumann
- Institute of Crop Science (340h), University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
39
|
Ma XH, Xu JY, Han D, Huang WX, Dang BJ, Jia W, Xu ZC. Combination of β-Aminobutyric Acid and Ca 2+ Alleviates Chilling Stress in Tobacco ( Nicotiana tabacum L.). FRONTIERS IN PLANT SCIENCE 2020; 11:556. [PMID: 32477386 PMCID: PMC7237732 DOI: 10.3389/fpls.2020.00556] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/14/2020] [Indexed: 05/08/2023]
Abstract
Chilling is a major abiotic factor limiting the growth, development, and productivity of plants. β-aminobutyric acid (BABA), a new environmentally friendly agent, is widely used to induce plant resistance to biotic and abiotic stress. Calcium, as a signaling substance, participates in various physiological activities in cells and plays a positive role in plant defense against cold conditions. In this study, we used tobacco as a model plant to determine whether BABA could alleviate chilling stress and further to explore the relationship between BABA and Ca2+. The results showed that 0.2 mM BABA significantly reduced the damage to tobacco seedlings from chilling stress, as evidenced by an increase in photosynthetic pigments, the maintenance of cell structure, and upregulated expression of NtLDC1, NtERD10B, and NtERD10D. Furthermore, 0.2 mM BABA combined with 10 mM Ca2+ increased the fresh and dry weights of both roots and shoots markedly. Compared to that with single BABA treatment, adding Ca2+ reduced cold injury to the plant cell membrane, decreased ROS production, and increased antioxidant enzyme activities and antioxidant contents. The combination of BABA and Ca2+ also improved abscisic acid and auxin contents in tobacco seedlings under chilling stress, whereas ethylene glycol-bis (β-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) reversed the effects of BABA. These findings suggested that BABA enhances the cold tolerance of tobacco and is closely related to the state of Ca2+ signaling.
Collapse
Affiliation(s)
- Xiao-Han Ma
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Jia-Yang Xu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Dan Han
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Wu-Xing Huang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Bing-Jun Dang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Wei Jia
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Wei Jia,
| | - Zi-Cheng Xu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
- Zi-Cheng Xu,
| |
Collapse
|
40
|
Hartung J, Wagener J, Ruser R, Piepho HP. Blocking and re-arrangement of pots in greenhouse experiments: which approach is more effective? PLANT METHODS 2019; 15:143. [PMID: 31798669 PMCID: PMC6882062 DOI: 10.1186/s13007-019-0527-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 11/14/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Observations measured in field and greenhouse experiments always contain errors. These errors can arise from measurement error, local or positional conditions of the experimental units, or from the randomization of experimental units. In statistical analysis errors can be modelled as independent effects or as spatially correlated effects with an appropriate variance-covariance structure. Using a suitable experimental design, a part of the variance can be captured through blocking of the experimental units. If experimental units (e.g. pots within a greenhouse) are mobile, they can be re-arranged during the experiment. This re-arrangement enables a separation of variation due to time-invariant position effects and variation due to the experimental units. If re-arrangement is successful, the time-invariant positional effect can average out for experimental units moved between different positions during the experiment. While re-arrangement is commonly done in greenhouse experiments, data to quantify its usefulness is limited. RESULTS A uniformity greenhouse experiment with barley (Hordeum vulgare L.) to compare re-arrangement of pots with a range of designs under fixed-position arrangement showed that both methods can reduce the residual variance and the average standard error of a difference. All designs with fixed-position arrangement, which accounted for the known north-south gradient in the greenhouse, outperformed re-arrangement. An α-design with block size four performed best across seven plant growth traits. CONCLUSION Blocking with a fixed-position arrangement was more efficient in improving precision of greenhouse experiments than re-arrangement of pots and hence can be recommended for comparable greenhouse experiments.
Collapse
Affiliation(s)
- Jens Hartung
- Institute of Crop Science, Biostatistics Unit, University of Hohenheim, Stuttgart, Germany
| | - Juliane Wagener
- Institute of Crop Science, Biostatistics Unit, University of Hohenheim, Stuttgart, Germany
| | - Reiner Ruser
- Institute of Crop Science, Department Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart, Germany
| | - Hans-Peter Piepho
- Institute of Crop Science, Biostatistics Unit, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
41
|
Leroy N, Tombeur FD, Walgraffe Y, Cornélis JT, Verheggen FJ. Silicon and Plant Natural Defenses against Insect Pests: Impact on Plant Volatile Organic Compounds and Cascade Effects on Multitrophic Interactions. PLANTS 2019; 8:plants8110444. [PMID: 31652861 PMCID: PMC6918431 DOI: 10.3390/plants8110444] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/11/2019] [Accepted: 10/17/2019] [Indexed: 11/20/2022]
Abstract
Environmental factors controlling silicon (Si) accumulation in terrestrial plant are key drivers to alleviate plant biotic stresses, including insect herbivory. While there is a general agreement on the ability of Si-enriched plant to better resist insect feeding, recent studies suggest that Si also primes biochemical defense pathways in various plant families. In this review, we first summarize how soil parameters and climate variables influence Si assimilation in plants. Then, we describe recent evidences on the ability of Si to modulate plant volatile emissions, with potential cascade effects on phytophagous insects and higher trophic levels. Even though the mechanisms still need to be elucidated, Si accumulation in plants leads to contrasting effects on the levels of the three major phytohormones, namely jasmonic acid, salicylic acid and ethylene, resulting in modified emissions of plant volatile organic compounds. Herbivore-induced plant volatiles would be particularly impacted by Si concentration in plant tissues, resulting in a cascade effect on the attraction of natural enemies of pests, known to locate their prey or hosts based on plant volatile cues. Since seven of the top 10 most important crops in the world are Si-accumulating Poaceae species, it is important to discuss the potential of Si mobility in soil-plant systems as a novel component of an integrated pest management.
Collapse
Affiliation(s)
- Nicolas Leroy
- Gembloux Agro-Bio Tech, TERRA, University of Liège, Avenue de la Faculté d'Agronomie 2, 5030 Gembloux, Belgium.
| | - Félix de Tombeur
- Water-Soil-Plant Exchanges, Gembloux Agro-Bio Tech, University of Liège, Avenue Maréchal Juin 27, 5030 Gembloux, Belgium.
| | - Yseult Walgraffe
- Gembloux Agro-Bio Tech, TERRA, University of Liège, Avenue de la Faculté d'Agronomie 2, 5030 Gembloux, Belgium.
| | - Jean-Thomas Cornélis
- Water-Soil-Plant Exchanges, Gembloux Agro-Bio Tech, University of Liège, Avenue Maréchal Juin 27, 5030 Gembloux, Belgium.
| | - François J Verheggen
- Gembloux Agro-Bio Tech, TERRA, University of Liège, Avenue de la Faculté d'Agronomie 2, 5030 Gembloux, Belgium.
| |
Collapse
|
42
|
Bradáčová K, Sittinger M, Tietz K, Neuhäuser B, Kandeler E, Berger N, Ludewig U, Neumann G. Maize Inoculation with Microbial Consortia: Contrasting Effects on Rhizosphere Activities, Nutrient Acquisition and Early Growth in Different Soils. Microorganisms 2019; 7:microorganisms7090329. [PMID: 31500269 PMCID: PMC6780557 DOI: 10.3390/microorganisms7090329] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/27/2019] [Accepted: 09/05/2019] [Indexed: 12/18/2022] Open
Abstract
The benefit of plant growth-promoting microorganisms (PGPMs) as plant inoculants is influenced by a wide range of environmental factors. Therefore, microbial consortia products (MCPs) based on multiple PGPM strains with complementary functions, have been proposed as superior, particularly under challenging environmental conditions and for restoration of beneficial microbial communities in disturbed soil environments. To test this hypothesis, the performance of a commercial MCP inoculant based on 22 PGPM strains was investigated in greenhouse experiments with maize on three soils with contrasting pH, organic matter content and microbial activity, under different P and N fertilization regimes. Interestingly, the MCP inoculant stimulated root and shoot growth and improved the acquisition of macronutrients only on a freshly collected field soil with high organic matter content, exclusively in combination with stabilized ammonium fertilization. This was associated with transiently increased expression of AuxIAA5 in the root tissue, a gene responsive to exogenous auxin supply, suggesting root growth promotion by microbial auxin production as a major mode of action of the MCP inoculant. High microbial activity was indicated by intense expression of soil enzyme activities involved in C, N and P cycling in the rhizosphere (cellulase, leucine peptidase, alkaline and acid phosphatases) but without MCP effects. By contrast, the MCP inoculation did not affect maize biomass production or nutrient acquisition on soils with very little Corg and low microbial activity, although moderate stimulation of rhizosphere enzymes involved in N and P cycling was recorded. There was also no indication for MCP-induced solubilization of Ca-phosphates on a calcareous sub-soil fertilized with rock-phosphate. The results demonstrate that the combination of multiple PGPM strains with complementary properties as MCP inoculants does not necessarily translate into plant benefits in challenging environments. Thus, a better understanding of the conditions determining successful MCP application is mandatory.
Collapse
Affiliation(s)
- Klára Bradáčová
- Institute of Crop Science (340h), Universität Hohenheim, Fruwirthstraße 20, 70593 Stuttgart, Germany.
| | - Maximilian Sittinger
- Julius Kühn-Institut, Institute for Biological Control, Heinrichstraße 243, 64287 Darmstadt, Germany.
| | - Katharina Tietz
- Institute of Crop Science (340h), Universität Hohenheim, Fruwirthstraße 20, 70593 Stuttgart, Germany.
| | - Benjamin Neuhäuser
- Institute of Crop Science (340h), Universität Hohenheim, Fruwirthstraße 20, 70593 Stuttgart, Germany.
| | - Ellen Kandeler
- Institute of Soil Science and Land Evaluation, Soil Biology Department, Universität Hohenheim, Emil-Wolff-Straße 27, 70593 Stuttgart, Germany.
| | | | - Uwe Ludewig
- Institute of Crop Science (340h), Universität Hohenheim, Fruwirthstraße 20, 70593 Stuttgart, Germany.
| | - Günter Neumann
- Institute of Crop Science (340h), Universität Hohenheim, Fruwirthstraße 20, 70593 Stuttgart, Germany.
| |
Collapse
|
43
|
Fibroin Delays Chilling Injury of Postharvest Banana Fruit via Enhanced Antioxidant Capability during Cold Storage. Metabolites 2019; 9:metabo9070152. [PMID: 31340556 PMCID: PMC6680957 DOI: 10.3390/metabo9070152] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 12/13/2022] Open
Abstract
storage Banana fruit after harvest is susceptible to chilling injury, which is featured by peel browning during cold, and it easily loses its nutrition and economic values. This study investigated the role of fibroin treatment in delaying peel browning in association with the antioxidant capability of postharvest banana fruit during cold storage. Compared to the control fruit, fibroin-treated fruit contained higher amounts of Pro and Cys during overall storage as well as higher glutathione (GSH) during the middle of storage. Conversely, fibroin-treated fruit exhibited a lower peel browning index and reactive oxygen species (ROS) level during overall storage as well as lower contents of hexadecanoic acid and octadecanoic acid by the end of storage compared to control fruit. In addition, fibroin-treated banana fruit showed higher activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX) in relation to upregulation SOD, CAT, and GR as well as peroxiredoxins (MT3 and GRX) during the middle of storage. These results highlighted the role of fibroin treatment in reducing peel browning by enhancing the antioxidant capability of harvested banana fruit during cold storage.
Collapse
|
44
|
Soil Silicon Amendment Increases Phyllostachys praecox Cold Tolerance in a Pot Experiment. FORESTS 2019. [DOI: 10.3390/f10050405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cultivated bamboos are occasionally subjected to cold stress in winter, and silicon could improve their cold tolerance. However, evidence of the effect of Si on bamboos is still limited. Therefore, a batch and pot experiment was conducted for six months to investigate the effects of different Si fertilizer application rates (0, 0.5, 1.0, 2.0, 4.0, and 8.0 g kg−1 of soil weight) on the physiological responses and photosynthesis parameters of Phyllostachys praecox under a simulated cold stress condition. The cold temperature was set to 5 °C, 0 °C, and −5 °C, successively. The bamboo biomass increased significantly when the Si amendment rate was at least 2.0 g kg−1 (P = 0.002), and the highest biomass increase and root-to-canopy ratio were obtained with the 4.0 g kg−1 Si amendment. Furthermore, the Si contents in all organs of the bamboos increased with the increase of the Si amendment rate. The highest content of Si among the other organs was observed in the leaf, and the content was 68.95 mg kg−1 with the treatment of 4.0 g kg−1. With the application of Si, the photosynthesis rate of bamboo leaves was significantly increased (P = 0.008). The Si-amended bamboo exhibited a cold tolerance that was associated with stimulating antioxidant systems, and the enzyme activities of superoxide dismutase, peroxidase, and catalase increased with the increase of the Si amendment rate, whereas the malondialdehyde content and cell membrane permeability decreased with all Si treatments. A low temperature of −5 °C exerted effects on the bamboo leaf chloroplasts, but the ultrastructures of the chloroplasts remained intact after Si treatment. These findings suggest that Si fertilizer enhances bamboo growth and the tolerance of bamboo plants to cold stress. However, a high application rate (8.0 g kg−1) caused a decline in the bamboo biomass, compared to T4. Thus, a Si fertilization rate of 2.0~8.0 g kg−1 is recommended for bamboos under cold conditions.
Collapse
|
45
|
Silicon and the Association with an Arbuscular-Mycorrhizal Fungus (Rhizophagus clarus) Mitigate the Adverse Effects of Drought Stress on Strawberry. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9010041] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Silicon (Si) is a beneficial element that alleviates the effects of stress factors including drought (D). Strawberry is a Si-accumulator species sensitive to D; however, the function of Si in this species is obscure. This study was conducted to examine the effect of Si and inoculation with an arbuscular mycorrhizal fungus (AMF) on physiological and biochemical responses of strawberry plants under D. Plants were grown for six weeks in perlite and irrigated with a nutrient solution. The effect of Si (3 mmol L‒1), AMF (Rhizophagus clarus) and D (mild and severe D) was studied on growth, water relations, mycorrhization, antioxidative defense, osmolytes concentration, and micronutrients status. Si and AMF significantly enhanced plant biomass production by increasing photosynthesis rate, water content and use efficiency, antioxidant enzyme defense, and the nutritional status of particularly Zn. In contrast to the roots, osmotic adjustment did not contribute to the increase of leaf water content suggesting a different strategy of both Si and AMF for improving water status in the leaves and roots. Our results demonstrated a synergistic effect of AMF and Si on improving the growth of strawberry not only under D but also under control conditions.
Collapse
|
46
|
Chen BJW, Hajiboland R, Bahrami-Rad S, Moradtalab N, Anten NPR. Presence of Belowground Neighbors Activates Defense Pathways at the Expense of Growth in Tobacco Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:751. [PMID: 31263473 PMCID: PMC6584819 DOI: 10.3389/fpls.2019.00751] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 05/22/2019] [Indexed: 05/20/2023]
Abstract
Plants can detect the presence of their neighbors belowground, often responding with changes in root growth for resource competition. Recent evidence also implies that perception of neighbors may also elicit defense responses, however, the associated metabolic activities are unclear. We investigated primary and defense-related secondary metabolisms and hormone expressions in tobaccos (Nicotiana rustica) grown either with own roots or roots of another conspecifics in hydroponic condition. The results showed that non-self root interaction significantly reduced photosynthetic activity and assimilate production, leading to a reduction of growth. Non-self interaction also modified plant phenylpropanoids metabolism, yielding higher lignin content (i.e., structural resistance) at whole plant level and higher phenolics accumulation (i.e., chemical defense) in roots. All these metabolic responses were associated with enhanced expressions of phytohormones, particularly jasmonic acid, salicylic acid and cytokinin in roots and abscisic acid in leaves, at the early stage of non-self interaction. Since the presence of neighbors often increase the probability of attacks from, e.g., pathogens and pests, this defense activation may act as an adaptation of plants to these possible upcoming attacks.
Collapse
Affiliation(s)
- Bin J. W. Chen
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Roghieh Hajiboland
- Department of Plant Science, University of Tabriz, Tabriz, Iran
- *Correspondence: Roghieh Hajiboland,
| | | | - Narges Moradtalab
- Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | - Niels P. R. Anten
- Centre for Crop Systems Analysis, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
47
|
Mager S, Schönberger B, Ludewig U. The transcriptome of zinc deficient maize roots and its relationship to DNA methylation loss. BMC PLANT BIOLOGY 2018; 18:372. [PMID: 30587136 PMCID: PMC6307195 DOI: 10.1186/s12870-018-1603-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/12/2018] [Indexed: 05/17/2023]
Abstract
BACKGROUND Zinc (Zn) is an essential micronutrient of all organisms. Deficiency of zinc causes disturbance in crucial plant functions, as a high number of enzymes, including transcription factors, depend on zinc for proper performance. The plant responses to zinc deficiency are associated with increased high affinity Zn uptake and translocation, as well as efficient usage of the remaining zinc, but have not been characterized in molecular detail in maize. RESULTS The high affinity transporter genes ZmZIP3,4,5,7 and 8 and nicotianamine synthases, primarily ZmNAS5, were identified as primary up-regulated in maize roots upon prolonged Zn deficiency. In addition to down-regulation of genes encoding enzymes involved in pathways regulating reactive oxygen species and cell wall-related genes, a massive up-regulation of the sucrose efflux channel genes SWEET13a,c was identified, despite that in -Zn sugar is known to accumulate in shoots. In addition, enzymes involved in DNA maintenance methylation tended to be repressed, which coincided with massively reduced DNA methylation in Zn-deficient roots. Reduced representation bisulfate sequencing, which revealed base-specific methylation patterns in ~ 14% of the maize genome, identified a major methylation loss in -Zn, mostly in transposable elements. However, hypermethylated genome regions in -Zn were also identified, especially in both symmetrical cytosine contexts. Differential methylation was partially associated with differentially expressed genes, their promoters, or transposons close to regulated genes. However, hypomethylation was associated with about equal number of up- or down-regulated genes, questioning a simple mechanistic relationship to gene expression. CONCLUSIONS The transcriptome of Zn-deficient roots identified genes and pathways to cope with the deficiency and a major down-regulation of reactive oxygen metabolism. Interestingly, a nutrient-specific loss of DNA methylation, partially related to gene expression in a context-specific manner, may play a role in long-term stress adaptation.
Collapse
Affiliation(s)
- Svenja Mager
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Fruwirthstr. 20, 70593 Stuttgart, Germany
| | - Brigitte Schönberger
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Fruwirthstr. 20, 70593 Stuttgart, Germany
| | - Uwe Ludewig
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Fruwirthstr. 20, 70593 Stuttgart, Germany
| |
Collapse
|