1
|
de Lima JF, de Oliveira DC, Kuster VC, Moreira ASFP. Aerial and terrestrial root habits influence the composition of the cell walls of Vanilla phaeantha (Orchidaceae). PROTOPLASMA 2025; 262:87-98. [PMID: 39207504 DOI: 10.1007/s00709-024-01980-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
In response to the restrictions imposed by their epiphytic habit, orchids have developed structural traits that allow greater efficiency in water uptake and use, such as a complex adventitious root system with velamen. The composition of cell wall of this specialized epidermis can be altered according to the substrate to which it is fixed, influencing wall permeability, absorption, and storage of water in roots. The current study aimed to evaluate the cell wall composition of adventitious roots of Vanilla phaeantha (Orchidaceae) that grow attached to the phorophyte, fixed in the soil, or hung free. Immunocytochemical analyses were used to determine the protein, hemicellulose, and pectin composition of the cell walls of aerial and terrestrial roots. We observed that pectins are present in the different tissues of the aerial roots, while in the terrestrial roots, they are concentrated in the cortical parenchyma. The deposition of xyloglucans, extensins, and arabinogalactans was greater in the epidermis of the free side of the roots attached to the phorophyte. The strong labeling of pectins in aerial roots may be related to the influx of water and nutrients, which are generally scarce in this environment. The arrangement of hemicelluloses and proteins with the pectins may be associated with increased cell rigidity and sustainability, a feature of interest for the aerial roots. In summary, the habit of roots can interfere with the non-cellulosic composition of the cell walls of V. phaeantha, possibly related to changes in cell functionality.
Collapse
Affiliation(s)
- Jéssica Ferreira de Lima
- Instituto de Biologia, Universidade Federal de Uberlândia, Rua Ceará S/N, Bloco 2D, Campus Umuarama, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Denis Coelho de Oliveira
- Instituto de Biologia, Universidade Federal de Uberlândia, Rua Ceará S/N, Bloco 2D, Campus Umuarama, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Vinícius Coelho Kuster
- Instituto de Biociências, Universidade Federal de Jataí, Campus Cidade Universitária, BR 364, Km 195, No. 3800, Jataí, Goiás, 75801-615, Brazil
| | - Ana Silvia Franco Pinheiro Moreira
- Instituto de Biologia, Universidade Federal de Uberlândia, Rua Ceará S/N, Bloco 2D, Campus Umuarama, Uberlândia, Minas Gerais, 38400-902, Brazil.
| |
Collapse
|
2
|
Starke MD, Kapusta M, Płachno BJ, Bohdanowicz J. Immunolocalization of Extensin and Pectin Epitopes in Liparis loeselii Protocorm and Protocorm-like Bodies. Cells 2024; 13:1985. [PMID: 39682733 DOI: 10.3390/cells13231985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/21/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Liparis loeselii (L.) Rich, an endangered member of the Orchidaceae family, is found in alkaline fens. With the declining populations of L. loeselii, there is a pressing need to reintroduce this species in Central Europe. As in vitro germination is a crucial tool for obtaining plants for introduction into the environment, we looked at the morphological changes occurring during the early stages of L. loeselii development in vitro. As the early stages of orchid development, especially the protocorm stage, are thought to be responsible for SAM formation and the initiation of symbiotic association, we focused on cell wall elements whose epitopes have been found in similar processes in other species: the extensin and pectin rhamnogalacturonan I (RG-I) side chain epitopes. We addressed the following questions: Does the cell wall of L. loeselii change its composition during the early stages of development, as noted in other species? Are there noticeable similarities in the cell wall to organs of different species whose function is to contact microorganisms? Are there regularities that allow the recognition of individual structures on this basis? Immunolocalization revealed changes in the distribution of certain extensins (JIM11 and JIM20) and RG-I (LM5 and LM6) side chain epitopes. Extensins, a type of cell wall protein, were observed during the initial stages of the formation of PLB and the shoot apical meristem of protocorms and PLBs. RG-I, on the other hand, was found to play a significant role in the development of the protocorm and PLB. In pseudobulbs, which appeared on the protocorms, extensins occurred in their storage part. However, RG-I side chains (1→4)-β-galactans (LM5), and (1→5)-α-L-arabinans (LM6) were not found in pseudobulbs. We revealed that a common feature of protocorms and PLBs was an increased amount of extensins, which were detected with the JIM11 antibody, and pectins, which were detected with the LM5 antibody, that were present together, which may prove helpful in determining the identity of the induced structures and distinguishing them from pseudobulbs. Thus, our study unveiled the role of extensins and RG-I during the growth of protocorms and PLBs. We suggest that PLBs may mimic the wall remodelling that occurs in protocorms, which indicates that using cell wall components is an invitation to be colonised by a fungal partner. However, this needs to be tested in future research. The findings of this research can help interpret future studies on the propagation, acclimatisation, and introduction of L. loeselii into the natural environment.
Collapse
Affiliation(s)
- Michał D Starke
- Laboratory of Plant Cytology and Embryology, Department of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza St., 80-308 Gdansk, Poland
| | - Małgorzata Kapusta
- Bioimaging Laboratory, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza St., 80-308 Gdansk, Poland
| | - Bartosz J Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 9 Gronostajowa St., 30-387 Cracow, Poland
| | - Jerzy Bohdanowicz
- Laboratory of Plant Cytology and Embryology, Department of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza St., 80-308 Gdansk, Poland
| |
Collapse
|
3
|
Moreira D, Kaur D, Fourbert-Mendes S, Showalter AM, Coimbra S, Pereira AM. Eight hydroxyproline-O-galactosyltransferases play essential roles in female reproductive development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112231. [PMID: 39154893 DOI: 10.1016/j.plantsci.2024.112231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
In angiosperms, ovules give rise to seeds upon fertilization. Thus, seed formation is dependent on both successful ovule development and tightly controlled communication between female and male gametophytes. During establishment of these interactions, cell walls play a pivotal role, especially arabinogalactan-proteins (AGPs). AGPs are highly glycosylated proteins decorated by arabinogalactan side chains, representing 90 % of the AGP molecule. AGP glycosylation is initiated by a reaction catalysed by hydroxyproline-O-galactosyltransferases (Hyp-GALTs), specifically eight of them (GALT2-9), which add the first galactose to Hyp residues. Five Hyp-GALTs (GALT2, 5, 7, 8 and 9) were previously described as essential for AGP functions in pollen and ovule development, pollen-pistil interactions, and seed morphology. In the present work, a higher order Hyp-GALT mutant (23456789) was studied, with a high degree of under-glycosylated AGPs, to gain deeper insight into the crucial roles of these eight enzymes in female reproductive tissues. Notably, the 23456789 mutant demonstrated a high quantity of unfertilized ovules, displaying abnormal callose accumulation both at the micropylar region and, sometimes, throughout the entire embryo sac. Additionally, this mutant displayed ovules with abnormal embryo sacs, had a disrupted spatiotemporal distribution of AGPs in female reproductive tissues, and showed abnormal seed and embryo development, concomitant with a reduction in AGP-GlcA levels. This study revealed that at least three more enzymes exhibit Hyp-O-GALT activity in Arabidopsis (GALT3, 4 and 6), and reinforces the crucial importance of AGP carbohydrates in carrying out the biological functions of AGPs during plant reproduction.
Collapse
Affiliation(s)
- Diana Moreira
- LAQV Requimte, Sustainable Chemistry, Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto 4169-007, Portugal
| | - Dasmeet Kaur
- Department of Environmental & Plant Biology, Ohio University, Athens, OH 45701-2979, USA; Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701-2979, USA
| | - Sara Fourbert-Mendes
- LAQV Requimte, Sustainable Chemistry, Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto 4169-007, Portugal
| | - Allan M Showalter
- Department of Environmental & Plant Biology, Ohio University, Athens, OH 45701-2979, USA; Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701-2979, USA
| | - Sílvia Coimbra
- LAQV Requimte, Sustainable Chemistry, Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto 4169-007, Portugal
| | - Ana Marta Pereira
- LAQV Requimte, Sustainable Chemistry, Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto 4169-007, Portugal.
| |
Collapse
|
4
|
Luo P, Zhao Z, Yang F, Zhang L, Li S, Qiao Y, Zhang L, Yang M, Zhou X, Zhao L, Yang Y, Tang X, Shi C. Stress-Induced Autophagy Is Essential for Microspore Cell Fate Transition to the Initial Cell of Androgenesis. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39267528 DOI: 10.1111/pce.15158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/23/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024]
Abstract
The isolated microspores can be reprogrammed towards embryogenesis via stress treatment during in vitro culture, and produce (doubled) haploid plants as a breeding source of new genetic variability. However, the mechanism underlying the cell fate transition from gametogenesis to embryogenesis remains largely unknown. Here, we report that autophagy plays a key role in cell fate transition for microspore embryogenesis (referred to as androgenesis) in Nicotiana tabacum. Immunofluorescence and transmission electronic microscopy detection unveiled that autophagy was triggered in microspores following exposure to inductive stress, and a transient wave of the numerous autophagy-related genes (ATGs) expression occurred before the initiation of microspore embryogenesis. Suppression or promotion of the original autophagy levels could inhibit microspore embryogenesis, indicating that stress-induced autophagic homeostasis is essential for cell fate transition. Furthermore, quantitative proteomics analysis revealed that autophagy might be involved in lignin biosynthesis and chromatin decondensation for promoting reprogramming for androgenesis initiation. Altogether, we reveal an essential role of autophagy in the microspore cell fate transition and androgenesis initiation, providing novel insight for understanding this critical developmental process.
Collapse
Affiliation(s)
- Pan Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Science, Hubei University, Wuhan, China
| | - Zifu Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fan Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Science, Hubei University, Wuhan, China
| | - Lai Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Science, Hubei University, Wuhan, China
| | - Siyuan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Science, Hubei University, Wuhan, China
| | - Ying Qiao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Science, Hubei University, Wuhan, China
| | - Liangxinyi Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Science, Hubei University, Wuhan, China
| | - Mingchun Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Science, Hubei University, Wuhan, China
| | - Xiaotong Zhou
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Science, Hubei University, Wuhan, China
| | - Linlin Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yong Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Science, Hubei University, Wuhan, China
| | - Xingchun Tang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Science, Hubei University, Wuhan, China
| | - Ce Shi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Kutyrieva-Nowak N, Leszczuk A, Zdunek A. A practical guide to in situ and ex situ characterisation of arabinogalactan proteins (AGPs) in fruits. PLANT METHODS 2023; 19:117. [PMID: 37915041 PMCID: PMC10621164 DOI: 10.1186/s13007-023-01100-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Arabinogalactan proteins (AGPs) are plant cell components found in the extracellular matrix that play crucial roles in fruit growth and development. AGPs demonstrate structural diversity due to the presence of a protein domain and an expanded carbohydrate moiety. Considering their molecular structure, the modification of glycosylation is a primary factor contributing to the functional variety of AGPs. MAIN BODY Immunocytochemical methods are used for qualitative and quantitative analyses of AGPs in fruit tissues. These include in situ techniques such as immunofluorescence and immunogold labelling for visualising AGP distribution at different cellular levels and ex situ methods such as Western blotting and enzyme-linked immunoenzymatic assays (ELISA) for molecular characterisation and quantitative detection of isolated AGPs. The presented techniques were modified by considering the structure of AGPs and the changes that occur in fruit tissues during the development and ripening processes. These methods are based on antibodies that recognise carbohydrate chains, which are the only commercially available highly AGP-specific tools. These probes recognise AGP epitopes and identify structural modifications and changes in spatio-temporal distribution, shedding light on their functions in fruit. CONCLUSION This paper provides a concise overview of AGP research methods, emphasising their use in fruit tissue analysis and demonstrating the accessibility gaps in other tools used in such research (e.g. antibodies against protein moieties). It underscores fruit tissue as a valuable source of AGPs and emphasises the potential for future research to understand of AGP synthesis, degradation, and their roles in various physiological processes. Moreover, the application of advanced probes for AGP visualisation is a milestone in obtaining more detailed insights into the localisation and function of these proteins within fruit.
Collapse
Affiliation(s)
| | - Agata Leszczuk
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland.
| | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland
| |
Collapse
|
6
|
Yang Z, Fan H, Li R, Li B, Fan J, Ge J, Xu X, Pan S, Liu F. Potential role of cell wall pectin polysaccharides, water state, and cellular structure on twice "increase-decrease" texture changes during kohlrabi pickling process. Food Res Int 2023; 173:113308. [PMID: 37803613 DOI: 10.1016/j.foodres.2023.113308] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 10/08/2023]
Abstract
Pickled kohlrabi is a traditional and favored vegetable product in China. During pickling, the hardness, springiness, and chewiness of kohlrabi all experienced a typical change with twice "increase-decrease" trend. However, little is known about its mechanism. In this study, in situ analysis including immunofluorescence, low field nuclear magnetic, and transmission electron microscopy were used to explore the effects of cell wall pectin, water state, and cellular structure on kohlrabi texture changes during pickling. Results revealed that at the early stage, due to the rapid loss of water after three times salting, the cells shrank and the interstitial space reduced, resulting in the first increase on kohlrabi texture. Subsequently, the dehydration-rehydration caused by the first brine processing resulted in the first decrease on kohlrabi texture. Then under the action of PME enzyme, more low-esterified pectin was produced, and chelate-soluble pectin with more branched structure was further formed, leading to another elevation of the sample texture. As the pickling continued, under the combined action of PG and PME, the molecular weight of pectin was decreased and the rigidity of the cell tissue was destroyed, caused kohlrabi texture continued to decline. These researches could provide important information and guidance for better maintaining the texture of pickled vegetables during processing.
Collapse
Affiliation(s)
- Zhixuan Yang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei, PR China
| | - Hekai Fan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei, PR China
| | - Ruoxuan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei, PR China
| | - Bowen Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei, PR China
| | - Jiangtao Fan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei, PR China
| | - Jinjiang Ge
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei, PR China
| | - Xiaoyun Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei, PR China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei, PR China
| | - Fengxia Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei, PR China.
| |
Collapse
|
7
|
Hesami M, Pepe M, de Ronne M, Yoosefzadeh-Najafabadi M, Adamek K, Torkamaneh D, Jones AMP. Transcriptomic Profiling of Embryogenic and Non-Embryogenic Callus Provides New Insight into the Nature of Recalcitrance in Cannabis. Int J Mol Sci 2023; 24:14625. [PMID: 37834075 PMCID: PMC10572465 DOI: 10.3390/ijms241914625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Differential gene expression profiles of various cannabis calli including non-embryogenic and embryogenic (i.e., rooty and embryonic callus) were examined in this study to enhance our understanding of callus development in cannabis and facilitate the development of improved strategies for plant regeneration and biotechnological applications in this economically valuable crop. A total of 6118 genes displayed significant differential expression, with 1850 genes downregulated and 1873 genes upregulated in embryogenic callus compared to non-embryogenic callus. Notably, 196 phytohormone-related genes exhibited distinctly different expression patterns in the calli types, highlighting the crucial role of plant growth regulator (PGRs) signaling in callus development. Furthermore, 42 classes of transcription factors demonstrated differential expressions among the callus types, suggesting their involvement in the regulation of callus development. The evaluation of epigenetic-related genes revealed the differential expression of 247 genes in all callus types. Notably, histone deacetylases, chromatin remodeling factors, and EMBRYONIC FLOWER 2 emerged as key epigenetic-related genes, displaying upregulation in embryogenic calli compared to non-embryogenic calli. Their upregulation correlated with the repression of embryogenesis-related genes, including LEC2, AGL15, and BBM, presumably inhibiting the transition from embryogenic callus to somatic embryogenesis. These findings underscore the significance of epigenetic regulation in determining the developmental fate of cannabis callus. Generally, our results provide comprehensive insights into gene expression dynamics and molecular mechanisms underlying the development of diverse cannabis calli. The observed repression of auxin-dependent pathway-related genes may contribute to the recalcitrant nature of cannabis, shedding light on the challenges associated with efficient cannabis tissue culture and regeneration protocols.
Collapse
Affiliation(s)
- Mohsen Hesami
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.H.)
| | - Marco Pepe
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.H.)
| | - Maxime de Ronne
- Département de Phytologie, Université Laval, Quebec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec, QC G1V 0A6, Canada
- Centre de Recherche et d’innovation sur les Végétaux (CRIV), Université Laval, Quebec, QC G1V 0A6, Canada
| | | | - Kristian Adamek
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.H.)
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Quebec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec, QC G1V 0A6, Canada
- Centre de Recherche et d’innovation sur les Végétaux (CRIV), Université Laval, Quebec, QC G1V 0A6, Canada
- Institut Intelligence et Données (IID), Université Laval, Quebec, QC G1V 0A6, Canada
| | | |
Collapse
|
8
|
Chen Y, Xie D, Ma X, Xue X, Liu M, Xiao X, Lai C, Xu X, Chen X, Chen Y, Zhang Z, XuHan X, Lai Z, Lin Y. Genome-wide high-throughput chromosome conformation capture analysis reveals hierarchical chromatin interactions during early somatic embryogenesis. PLANT PHYSIOLOGY 2023; 193:555-577. [PMID: 37313777 DOI: 10.1093/plphys/kiad348] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/04/2023] [Accepted: 05/23/2023] [Indexed: 06/15/2023]
Abstract
Somatic embryogenesis (SE), like zygotic embryo development, is a progressive process. Early SE is the beginning of a switch from a somatic to an embryogenic state and is an important stage for initiating chromatin reprogramming of SE. Previous studies suggest that changes in chromatin accessibility occur during early SE, although information on the 3D structure of chromatin is not yet available. Here, we present a chromosome-level genome assembly of longan (Dimocarpus longan) using PacBio combined with high-through chromosome conformation capture scaffolding, which resulted in a 446 Mb genome assembly anchored onto 15 scaffolds. During early SE, chromatin was concentrated and then decondensed, and a large number of long terminal repeat retrotransposons (LTR-RTs) were enriched in the local chromatin interaction region, suggesting LTR-RTs were involved in chromatin reorganization. Early SE was accompanied by the transformation from A to B compartments, and the interactions between B compartments were enhanced. Results from chromatin accessibility, monomethylation of histone H3 at lysine 4 (H3K4me1) modification, and transcription analyses further revealed a gene regulatory network for cell wall thickening during SE. Particularly, we found that the H3K4me1 differential peak binding motif showed abnormal activation of ethylene response factor transcription factors and participation in SE. The chromosome-level genomic and multiomics analyses revealed the 3D conformation of chromatin during early SE, providing insight into the molecular mechanisms underlying cell wall thickening and the potential regulatory networks of TFs during early SE in D. longan. These results provide additional clues for revealing the molecular mechanisms of plant SE.
Collapse
Affiliation(s)
- Yan Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Dejian Xie
- Beijing Research Center, Wuhan Frasergen Bioinformatics Co., Ltd, Beijing 100081, China
| | - Xiangwei Ma
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiaodong Xue
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Mengyu Liu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xuechen Xiao
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Chunwang Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiaoping Xu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiaohui Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yukun Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zihao Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xu XuHan
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Institut de la Recherche Interdisciplinaire de Toulouse, IRIT-ARI, Toulouse 31300, France
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
9
|
Pedrosa LDF, Nascimento KR, Soares CG, Oliveira DPD, de Vos P, Fabi JP. Unveiling Plant-Based Pectins: Exploring the Interplay of Direct Effects, Fermentation, and Technological Applications in Clinical Research with a Focus on the Chemical Structure. PLANTS (BASEL, SWITZERLAND) 2023; 12:2750. [PMID: 37514364 PMCID: PMC10384513 DOI: 10.3390/plants12142750] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Pectin, a plant-derived polysaccharide, possesses immense technological and biological application value. Several variables influence pectin's physicochemical aspects, resulting in different fermentations, interactions with receptors, and other functional properties. Some of those variables are molecular weight, degree of methylation and blockiness, and monosaccharide composition. Cancer cell cytotoxicity, important fermentation-related byproducts, immunomodulation, and technological application were found in cell culture, animal models, and preclinical and clinical assessments. One of the greater extents of recent pectin technological usage involves nanoencapsulation methods for many different compounds, ranging from chemotherapy and immunotherapy to natural extracts from fruits and other sources. Structural modification (modified pectin) is also utilized to enhance the use of dietary fiber. Although pectin is already recognized as a component of significant importance, there is still a need for a comprehensive review that delves into its intricate relationships with biological effects, which depend on the source and structure of pectin. This review covers all levels of clinical research, including cell culture, animal studies, and clinical trials, to understand how the plant source and pectin structures influence the biological effects in humans and some technological applications of pectin regarding human health.
Collapse
Affiliation(s)
- Lucas de Freitas Pedrosa
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Karen Rebouças Nascimento
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Caroline Giacomelli Soares
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Débora Preceliano de Oliveira
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Paul de Vos
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo 05508-000, SP, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo 05508-080, SP, Brazil
| |
Collapse
|
10
|
Kurczynska E, Godel-Jędrychowska K. Apoplastic and Symplasmic Markers of Somatic Embryogenesis. PLANTS (BASEL, SWITZERLAND) 2023; 12:1951. [PMID: 37653868 PMCID: PMC10224393 DOI: 10.3390/plants12101951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 09/02/2023]
Abstract
Somatic embryogenesis (SE) is a process that scientists have been trying to understand for many years because, on the one hand, it is a manifestation of the totipotency of plant cells, so it enables the study of the mechanisms regulating this process, and, on the other hand, it is an important method of plant propagation. Using SE in basic research and in practice is invaluable. This article describes the latest, but also historical, information on changes in the chemical composition of the cell wall during the transition of cells from the somatic to embryogenic state, and the importance of symplasmic communication during SE. Among wall chemical components, different pectic, AGP, extensin epitopes, and lipid transfer proteins have been discussed as potential apoplastic markers of explant cells during the acquisition of embryogenic competence. The role of symplasmic communication/isolation during SE has also been discussed, paying particular attention to the formation of symplasmic domains within and between cells that carry out different developmental processes. Information about the number and functionality of plasmodesmata (PD) and callose deposition as the main player in symplasmic isolation has also been presented.
Collapse
Affiliation(s)
- Ewa Kurczynska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, ul. Bankowa 9, 40-007 Katowice, Poland
| | - Kamila Godel-Jędrychowska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, ul. Bankowa 9, 40-007 Katowice, Poland
| |
Collapse
|
11
|
Tian R, Jiang J, Bo S, Zhang H, Zhang X, Hearne SJ, Tang J, Ding D, Fu Z. Multi-omic characterization of the maize GPI synthesis mutant gwt1 with defects in kernel development. BMC PLANT BIOLOGY 2023; 23:191. [PMID: 37038106 PMCID: PMC10084604 DOI: 10.1186/s12870-023-04188-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Glycosylphosphatidylinositol (GPI) and GPI-anchored proteins (GAPs) are important for cell wall formation and reproductive development in Arabidopsis. However, monocot counterparts that function in kernel endosperm development have yet to be discovered. Here, we performed a multi-omic analysis to explore the function of GPI related genes on kernel development in maize. RESULTS In maize, 48 counterparts of human GPI synthesis and lipid remodeling genes were identified, in which null mutation of the glucosaminyl-phosphatidylinositol O-acyltransferase1 gene, ZmGWT1, caused a kernel mutant (named gwt1) with defects in the basal endosperm transport layer (BETL). We performed plasma membrane (PM) proteomics to characterize the potential GAPs involved in kernel development. In total, 4,981 proteins were successfully identified in 10-DAP gwt1 kernels of mutant and wild-type (WT), including 1,638 membrane-anchored proteins with different posttranslational modifications. Forty-seven of the 256 predicted GAPs were differentially accumulated between gwt1 and WT. Two predicted BETL-specific GAPs (Zm00001d018837 and Zm00001d049834), which kept similar abundance at general proteome but with significantly decreased abundance at membrane proteome in gwt1 were highlighted. CONCLUSIONS Our results show the importance of GPI and GAPs for endosperm development and provide candidate genes for further investigation of the regulatory network in which ZmGWT1 participates.
Collapse
Affiliation(s)
- Runmiao Tian
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jianjun Jiang
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Shirong Bo
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Hui Zhang
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xuehai Zhang
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Sarah Jane Hearne
- CIMMYT, KM 45 Carretera Mexico-Veracruz, El Batan, Texcoco, Edo. De Mexico, 56237, Mexico
| | - Jihua Tang
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
- The Shennong Laboratory, Zhengzhou, 450002, China
| | - Dong Ding
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Zhiyuan Fu
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
12
|
Three types of genes underlying the Gametophyte factor1 locus cause unilateral cross incompatibility in maize. Nat Commun 2022; 13:4498. [PMID: 35922428 PMCID: PMC9349285 DOI: 10.1038/s41467-022-32180-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/20/2022] [Indexed: 11/19/2022] Open
Abstract
Unilateral cross incompatibility (UCI) occurs between popcorn and dent corn, and represents a critical step towards speciation. It has been reported that ZmGa1P, encoding a pectin methylesterase (PME), is a male determinant of the Ga1 locus. However, the female determinant and the genetic relationship between male and female determinants at this locus are unclear. Here, we report three different types, a total of seven linked genes underlying the Ga1 locus, which control UCI phenotype by independently affecting pollen tube growth in both antagonistic and synergistic manners. These include five pollen-expressed PME genes (ZmGa1Ps-m), a silk-expressed PME gene (ZmPME3), and another silk-expressed gene (ZmPRP3), encoding a pathogenesis-related (PR) proteins. ZmGa1Ps-m confer pollen compatibility. Presence of ZmPME3 causes silk to reject incompatible pollen. ZmPRP3 promotes incompatibility pollen tube growth and thereby breaks the blocking effect of ZmPME3. In addition, evolutionary genomics analyses suggest that the divergence of the Ga1 locus existed before maize domestication and continued during breeding improvement. The knowledge gained here deepen our understanding of the complex regulation of cross incompatibility. Unilateral cross incompatibility (UCI) is a type of prezygotic reproductive isolation, which is associated with multiple loci in maize. Here, the authors use genetic analysis to separate the Ga1 locus into two functional components and identify seven linked genes encoding three types of proteins.
Collapse
|
13
|
Li WJ, Wu N, Chen C, Zhao YP, Hou YX. Identification and expression analysis of arabinogalactan protein genes in cotton reveal the function of GhAGP15 in Verticillium dahliae resistance. Gene 2022; 822:146336. [PMID: 35182675 DOI: 10.1016/j.gene.2022.146336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/13/2022] [Accepted: 02/11/2022] [Indexed: 11/04/2022]
Abstract
Verticillium wilt, primarily caused by the fungal pathogen Verticillium dahliae, is a serious disease in cotton. Arabinogalactan proteins (AGPs), a class of hydroxyproline-rich glycoproteins, have been widely implicated in plant growth and environmental adaptation. The purpose of this study is to identify and characterize AGP members in cotton plants and explore their roles in responding to environmental stressors. In total, 65 GhAGP members were identified in upland cotton (Gossypium hirsutum), along with 43, 35, and 37 AGP members that were also identified in G. barbadense, G. arboreum, and G. raimondii, respectively. According to gene structure and protein domains analysis, GhAGP genes in upland cotton are highly conserved. Meanwhile, tandem duplication events have occurred frequently throughout cotton's evolutionary history. Expression analysis showed that GhAGP genes were widely expressed during growth and development and in response to abiotic stressors. Many cis-elements related to hormonal responses and environmental stressors were detected in GhAGP promoter regions. GhAGP genes participate in responding to cold, drought, and salt stress, and were sensitive to ET signaling. Furthermore, the expression level of GhAGP15 was elevated during V. dahliae infection and resistance against V. dahliae in upland cotton was significantly weakened by silencing GhAGP15 using a virus-induced gene silencing (VIGS) approach. Our results further suggest that the function of GhAGP15 in V. dahliae resistance might be involved in regulation of the JA, SA, and reactive oxygen species (ROS) pathways. The comprehensive analysis of AGP genes in cotton performed in this study provides a basic framework for further functional research of these genes.
Collapse
Affiliation(s)
- Wen-Jie Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, Zhengzhou 450001, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Na Wu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, Zhengzhou 450001, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Chen Chen
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, Zhengzhou 450001, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Yan-Peng Zhao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, Zhengzhou 450001, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Yu-Xia Hou
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, Zhengzhou 450001, China; College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
14
|
Coculo D, Lionetti V. The Plant Invertase/Pectin Methylesterase Inhibitor Superfamily. FRONTIERS IN PLANT SCIENCE 2022; 13:863892. [PMID: 35401607 PMCID: PMC8990755 DOI: 10.3389/fpls.2022.863892] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/02/2022] [Indexed: 05/08/2023]
Abstract
Invertases (INVs) and pectin methylesterases (PMEs) are essential enzymes coordinating carbohydrate metabolism, stress responses, and sugar signaling. INVs catalyzes the cleavage of sucrose into glucose and fructose, exerting a pivotal role in sucrose metabolism, cellulose biosynthesis, nitrogen uptake, reactive oxygen species scavenging as well as osmotic stress adaptation. PMEs exert a dynamic control of pectin methylesterification to manage cell adhesion, cell wall porosity, and elasticity, as well as perception and signaling of stresses. INV and PME activities can be regulated by specific proteinaceous inhibitors, named INV inhibitors (INVIs) and PME Inhibitors (PMEIs). Despite targeting different enzymes, INVIs and PMEIs belong to the same large protein family named "Plant Invertase/Pectin Methylesterase Inhibitor Superfamily." INVIs and PMEIs, while showing a low aa sequence identity, they share several structural properties. The two inhibitors showed mainly alpha-helices in their secondary structure and both form a non-covalent 1:1 complex with their enzymatic counterpart. Some PMEI members are organized in a gene cluster with specific PMEs. Although the most important physiological information was obtained in Arabidopsis thaliana, there are now several characterized INVI/PMEIs in different plant species. This review provides an integrated and updated overview of this fascinating superfamily, from the specific activity of characterized isoforms to their specific functions in plant physiology. We also highlight INVI/PMEIs as biotechnological tools to control different aspects of plant growth and defense. Some isoforms are discussed in view of their potential applications to improve industrial processes. A review of the nomenclature of some isoforms is carried out to eliminate confusion about the identity and the names of some INVI/PMEI member. Open questions, shortcoming, and opportunities for future research are also presented.
Collapse
Affiliation(s)
| | - Vincenzo Lionetti
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
15
|
Hale B, Ferrie AMR, Chellamma S, Samuel JP, Phillips GC. Androgenesis-Based Doubled Haploidy: Past, Present, and Future Perspectives. FRONTIERS IN PLANT SCIENCE 2022; 12:751230. [PMID: 35069615 PMCID: PMC8777211 DOI: 10.3389/fpls.2021.751230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/22/2021] [Indexed: 05/03/2023]
Abstract
Androgenesis, which entails cell fate redirection within the microgametophyte, is employed widely for genetic gain in plant breeding programs. Moreover, androgenesis-responsive species provide tractable systems for studying cell cycle regulation, meiotic recombination, and apozygotic embryogenesis within plant cells. Past research on androgenesis has focused on protocol development with emphasis on temperature pretreatments of donor plants or floral buds, and tissue culture optimization because androgenesis has different nutritional requirements than somatic embryogenesis. Protocol development for new species and genotypes within responsive species continues to the present day, but slowly. There is more focus presently on understanding how protocols work in order to extend them to additional genotypes and species. Transcriptomic and epigenetic analyses of induced microspores have revealed some of the cellular and molecular responses required for or associated with androgenesis. For example, microRNAs appear to regulate early microspore responses to external stimuli; trichostatin-A, a histone deacetylase inhibitor, acts as an epigenetic additive; ά-phytosulfokine, a five amino acid sulfated peptide, promotes androgenesis in some species. Additionally, present work on gene transfer and genome editing in microspores suggest that future endeavors will likely incorporate greater precision with the genetic composition of microspores used in doubled haploid breeding, thus likely to realize a greater impact on crop improvement. In this review, we evaluate basic breeding applications of androgenesis, explore the utility of genomics and gene editing technologies for protocol development, and provide considerations to overcome genotype specificity and morphogenic recalcitrance in non-model plant systems.
Collapse
Affiliation(s)
- Brett Hale
- Molecular Biosciences Graduate Program, Arkansas State University, Jonesboro, AR, United States
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR, United States
| | | | | | | | - Gregory C. Phillips
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR, United States
- College of Agriculture, Arkansas State University, Jonesboro, AR, United States
- Agricultural Experiment Station, University of Arkansas System Division of Agriculture, Jonesboro, AR, United States
| |
Collapse
|
16
|
Livingston SJ, Bae EJ, Unda F, Hahn MG, Mansfield SD, Page JE, Samuels AL. Cannabis Glandular Trichome Cell Walls Undergo Remodeling to Store Specialized Metabolites. PLANT & CELL PHYSIOLOGY 2021; 62:1944-1962. [PMID: 34392368 DOI: 10.1093/pcp/pcab127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/09/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
The valuable cannabinoid and terpenoid metabolites of Cannabis sativa L. are produced by floral glandular trichomes. The trichomes consist of secretory disk cells, which produce the abundant lipidic metabolites, and an extracellular storage cavity. The mechanisms of apoplastic cavity formation to accumulate and store metabolites in cannabis glandular trichomes remain wholly unexplored. Here, we identify key wall components and how they change during cannabis trichome development. While glycome and monosaccharide analyses revealed that glandular trichomes have loosely bound xyloglucans and pectic polysaccharides, quantitative immunolabeling with wall-directed antibodies revealed precise spatiotemporal distributions of cell wall epitopes. An epidermal-like identity of early trichome walls matured into specialized wall domains over development. Cavity biogenesis was marked by separation of the subcuticular wall from the underlying surface wall in a homogalacturonan and α-1,5 arabinan epitope-rich zone and was associated with a reduction in fucosylated xyloglucan epitopes. As the cavity filled, a matrix with arabinogalactan and α-1,5 arabinan epitopes enclosed the metabolite droplets. At maturity, the disk cells' apical wall facing the storage cavity accumulated rhamnogalacturonan-I epitopes near the plasma membrane. Together, these data indicate that cannabis glandular trichomes undergo spatiotemporal remodeling at specific wall subdomains to facilitate storage cavity formation and metabolite storage.
Collapse
Affiliation(s)
- Samuel J Livingston
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T1Z4, Canada
| | - Eun Jeong Bae
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T1Z4, Canada
| | - Faride Unda
- Department of Wood Science, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T1Z4, Canada
| | - Michael G Hahn
- The Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602, USA
| | - Shawn D Mansfield
- Department of Wood Science, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T1Z4, Canada
| | - Jonathan E Page
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T1Z4, Canada
| | - A Lacey Samuels
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T1Z4, Canada
| |
Collapse
|
17
|
Martín-Pizarro C, Vallarino JG, Osorio S, Meco V, Urrutia M, Pillet J, Casañal A, Merchante C, Amaya I, Willmitzer L, Fernie AR, Giovannoni JJ, Botella MA, Valpuesta V, Posé D. The NAC transcription factor FaRIF controls fruit ripening in strawberry. THE PLANT CELL 2021; 33:1574-1593. [PMID: 33624824 PMCID: PMC8254488 DOI: 10.1093/plcell/koab070] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/20/2021] [Indexed: 05/02/2023]
Abstract
In contrast to climacteric fruits such as tomato, the knowledge on key regulatory genes controlling the ripening of strawberry, a nonclimacteric fruit, is still limited. NAC transcription factors (TFs) mediate different developmental processes in plants. Here, we identified and characterized Ripening Inducing Factor (FaRIF), a NAC TF that is highly expressed and induced in strawberry receptacles during ripening. Functional analyses based on stable transgenic lines aimed at silencing FaRIF by RNA interference, either from a constitutive promoter or the ripe receptacle-specific EXP2 promoter, as well as overexpression lines showed that FaRIF controls critical ripening-related processes such as fruit softening and pigment and sugar accumulation. Physiological, metabolome, and transcriptome analyses of receptacles of FaRIF-silenced and overexpression lines point to FaRIF as a key regulator of strawberry fruit ripening from early developmental stages, controlling abscisic acid biosynthesis and signaling, cell-wall degradation, and modification, the phenylpropanoid pathway, volatiles production, and the balance of the aerobic/anaerobic metabolism. FaRIF is therefore a target to be modified/edited to control the quality of strawberry fruits.
Collapse
Affiliation(s)
- Carmen Martín-Pizarro
- Laboratorio de Bioquímica y Biotecnología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
- Unidad Asociada de I+D+i IFAPA-CSIC Biotecnología y Mejora en Fresa, Málaga, Spain
| | - José G Vallarino
- Laboratorio de Bioquímica y Biotecnología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
- Unidad Asociada de I+D+i IFAPA-CSIC Biotecnología y Mejora en Fresa, Málaga, Spain
| | - Sonia Osorio
- Laboratorio de Bioquímica y Biotecnología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
- Unidad Asociada de I+D+i IFAPA-CSIC Biotecnología y Mejora en Fresa, Málaga, Spain
| | - Victoriano Meco
- Laboratorio de Bioquímica y Biotecnología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
- Unidad Asociada de I+D+i IFAPA-CSIC Biotecnología y Mejora en Fresa, Málaga, Spain
| | - María Urrutia
- Laboratorio de Bioquímica y Biotecnología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
- Unidad Asociada de I+D+i IFAPA-CSIC Biotecnología y Mejora en Fresa, Málaga, Spain
| | - Jeremy Pillet
- Laboratorio de Bioquímica y Biotecnología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
| | - Ana Casañal
- Laboratorio de Bioquímica y Biotecnología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
| | - Catharina Merchante
- Laboratorio de Bioquímica y Biotecnología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
| | - Iraida Amaya
- Unidad Asociada de I+D+i IFAPA-CSIC Biotecnología y Mejora en Fresa, Málaga, Spain
- Laboratorio de Genómica y Biotecnología, Centro IFAPA de Málaga, Instituto Andaluz de Investigación y Formación Agraria y Pesquera, 29140 Málaga, Spain
| | - Lothar Willmitzer
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 144776, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 144776, Germany
| | - James J Giovannoni
- United States Department of Agriculture and Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853, USA
| | - Miguel A Botella
- Laboratorio de Bioquímica y Biotecnología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
- Unidad Asociada de I+D+i IFAPA-CSIC Biotecnología y Mejora en Fresa, Málaga, Spain
| | - Victoriano Valpuesta
- Laboratorio de Bioquímica y Biotecnología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
- Unidad Asociada de I+D+i IFAPA-CSIC Biotecnología y Mejora en Fresa, Málaga, Spain
- Author for correspondence: ,
| | - David Posé
- Laboratorio de Bioquímica y Biotecnología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
- Unidad Asociada de I+D+i IFAPA-CSIC Biotecnología y Mejora en Fresa, Málaga, Spain
- Author for correspondence: ,
| |
Collapse
|
18
|
Berenguer E, Minina EA, Carneros E, B�r�ny I, Bozhkov PV, Testillano PS. Suppression of Metacaspase- and Autophagy-Dependent Cell Death Improves Stress-Induced Microspore Embryogenesis in Brassica napus. PLANT & CELL PHYSIOLOGY 2021; 61:2097-2110. [PMID: 33057654 PMCID: PMC7861468 DOI: 10.1093/pcp/pcaa128] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/29/2020] [Indexed: 05/12/2023]
Abstract
Microspore embryogenesis is a biotechnological process that allows us to rapidly obtain doubled-haploid plants for breeding programs. The process is initiated by the application of stress treatment, which reprograms microspores to embark on embryonic development. Typically, a part of the microspores undergoes cell death that reduces the efficiency of the process. Metacaspases (MCAs), a phylogenetically broad group of cysteine proteases, and autophagy, the major catabolic process in eukaryotes, are critical regulators of the balance between cell death and survival in various organisms. In this study, we analyzed the role of MCAs and autophagy in cell death during stress-induced microspore embryogenesis in Brassica napus. We demonstrate that this cell death is accompanied by the transcriptional upregulation of three BnMCA genes (BnMCA-Ia, BnMCA-IIa and BnMCA-IIi), an increase in MCA proteolytic activity and the activation of autophagy. Accordingly, inhibition of autophagy and MCA activity, either individually or in combination, suppressed cell death and increased the number of proembryos, indicating that both components play a pro-cell death role and account for decreased efficiency of early embryonic development. Therefore, MCAs and/or autophagy can be used as new biotechnological targets to improve in vitro embryogenesis in Brassica species and doubled-haploid plant production in crop breeding and propagation programs.
Collapse
Affiliation(s)
- Eduardo Berenguer
- Microbial and Plant Biotechnology Department, Pollen Biotechnology of Crop Plants Laboratory, Margarita Salas Center of Biological Research, CIB Margarita Salas-CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Elena A Minina
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO Box 7015, Uppsala 75007, Sweden
| | - Elena Carneros
- Microbial and Plant Biotechnology Department, Pollen Biotechnology of Crop Plants Laboratory, Margarita Salas Center of Biological Research, CIB Margarita Salas-CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Ivett B�r�ny
- Microbial and Plant Biotechnology Department, Pollen Biotechnology of Crop Plants Laboratory, Margarita Salas Center of Biological Research, CIB Margarita Salas-CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Peter V Bozhkov
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO Box 7015, Uppsala 75007, Sweden
| | - Pilar S Testillano
- Microbial and Plant Biotechnology Department, Pollen Biotechnology of Crop Plants Laboratory, Margarita Salas Center of Biological Research, CIB Margarita Salas-CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain
| |
Collapse
|
19
|
Hromadová D, Soukup A, Tylová E. Arabinogalactan Proteins in Plant Roots - An Update on Possible Functions. FRONTIERS IN PLANT SCIENCE 2021; 12:674010. [PMID: 34079573 PMCID: PMC8165308 DOI: 10.3389/fpls.2021.674010] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/19/2021] [Indexed: 05/05/2023]
Abstract
Responsiveness to environmental conditions and developmental plasticity of root systems are crucial determinants of plant fitness. These processes are interconnected at a cellular level with cell wall properties and cell surface signaling, which involve arabinogalactan proteins (AGPs) as essential components. AGPs are cell-wall localized glycoproteins, often GPI-anchored, which participate in root functions at many levels. They are involved in cell expansion and differentiation, regulation of root growth, interactions with other organisms, and environmental response. Due to the complexity of cell wall functional and regulatory networks, and despite the large amount of experimental data, the exact molecular mechanisms of AGP-action are still largely unknown. This dynamically evolving field of root biology is summarized in the present review.
Collapse
|
20
|
Du J, Kirui A, Huang S, Wang L, Barnes WJ, Kiemle SN, Zheng Y, Rui Y, Ruan M, Qi S, Kim SH, Wang T, Cosgrove DJ, Anderson CT, Xiao C. Mutations in the Pectin Methyltransferase QUASIMODO2 Influence Cellulose Biosynthesis and Wall Integrity in Arabidopsis. THE PLANT CELL 2020; 32:3576-3597. [PMID: 32883711 PMCID: PMC7610292 DOI: 10.1105/tpc.20.00252] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/27/2020] [Accepted: 08/31/2020] [Indexed: 02/05/2023]
Abstract
Pectins are abundant in the cell walls of dicotyledonous plants, but how they interact with other wall polymers and influence wall integrity and cell growth has remained mysterious. Here, we verified that QUASIMODO2 (QUA2) is a pectin methyltransferase and determined that QUA2 is required for normal pectin biosynthesis. To gain further insight into how pectin affects wall assembly and integrity maintenance, we investigated cellulose biosynthesis, cellulose organization, cortical microtubules, and wall integrity signaling in two mutant alleles of Arabidopsis (Arabidopsis thaliana) QUA2, qua2 and tsd2 In both mutants, crystalline cellulose content is reduced, cellulose synthase particles move more slowly, and cellulose organization is aberrant. NMR analysis shows higher mobility of cellulose and matrix polysaccharides in the mutants. Microtubules in mutant hypocotyls have aberrant organization and depolymerize more readily upon treatment with oryzalin or external force. The expression of genes related to wall integrity, wall biosynthesis, and microtubule stability is dysregulated in both mutants. These data provide insights into how homogalacturonan is methylesterified upon its synthesis, the mechanisms by which pectin functionally interacts with cellulose, and how these interactions are translated into intracellular regulation to maintain the structural integrity of the cell wall during plant growth and development.
Collapse
Affiliation(s)
- Juan Du
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, People's Republic of China
| | - Alex Kirui
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Shixin Huang
- Center for Lignocellulose Structure and Formation, Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Lianglei Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, People's Republic of China
| | - William J Barnes
- Center for Lignocellulose Structure and Formation, Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Sarah N Kiemle
- Center for Lignocellulose Structure and Formation, Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Yunzhen Zheng
- Center for Lignocellulose Structure and Formation, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Yue Rui
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Mei Ruan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, People's Republic of China
| | - Shiqian Qi
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu 610041, People's Republic of China
| | - Seong H Kim
- Center for Lignocellulose Structure and Formation, Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Daniel J Cosgrove
- Center for Lignocellulose Structure and Formation, Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Charles T Anderson
- Center for Lignocellulose Structure and Formation, Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Chaowen Xiao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, People's Republic of China
| |
Collapse
|
21
|
Kuczak M, Kurczyńska E. Cell Wall Composition as a Marker of the Reprogramming of the Cell Fate on the Example of a Daucus carota (L.) Hypocotyl in Which Somatic Embryogenesis Was Induced. Int J Mol Sci 2020; 21:E8126. [PMID: 33143222 PMCID: PMC7662930 DOI: 10.3390/ijms21218126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 12/18/2022] Open
Abstract
Changes in the composition of the cell walls are postulated to accompany changes in the cell's fate. We check whether there is a relationship between the presence of selected pectic, arabinogalactan proteins (AGPs), and extensins epitopes and changes in cell reprogramming in order to answer the question of whether they can be markers accompanying changes of cell fate. Selected antibodies were used for spatio-temporal immunolocalization of wall components during the induction of somatic embryogenesis. Based on the obtained results, it can be concluded that (1) the LM6 (pectic), LM2 (AGPs) epitopes are positive markers, but the LM5, LM19 (pectic), JIM8, JIM13 (AGPs) epitopes are negative markers of cells reprogramming to the meristematic/pluripotent state; (2) the LM8 (pectic), JIM8, JIM13, LM2 (AGPs) and JIM11 (extensin) epitopes are positive markers, but LM6 (pectic) epitope is negative marker of cells undergoing detachment; (3) JIM4 (AGPs) is a positive marker, but LM5 (pectic), JIM8, JIM13, LM2 (AGPs) are negative markers for pericycle cells on the xylem pole; (4) LM19, LM20 (pectic), JIM13, LM2 (AGPs) are constitutive wall components, but LM6, LM8 (pectic), JIM4, JIM8, JIM16 (AGPs), JIM11, JIM12 and JIM20 (extensins) are not constitutive wall components; (5) the extensins do not contribute to the cell reprogramming.
Collapse
Affiliation(s)
- Michał Kuczak
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia in Katowice, 9 Szkolna St, 40–006 Katowice, Poland;
| | - Ewa Kurczyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska St, 40–032 Katowice, Poland
| |
Collapse
|
22
|
Musseau C, Jorly J, Gadin S, Sørensen I, Deborde C, Bernillon S, Mauxion JP, Atienza I, Moing A, Lemaire-Chamley M, Rose JKC, Chevalier C, Rothan C, Fernandez-Lochu L, Gévaudant F. The Tomato Guanylate-Binding Protein SlGBP1 Enables Fruit Tissue Differentiation by Maintaining Endopolyploid Cells in a Non-Proliferative State. THE PLANT CELL 2020; 32:3188-3205. [PMID: 32753430 PMCID: PMC7534463 DOI: 10.1105/tpc.20.00245] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/06/2020] [Accepted: 07/31/2020] [Indexed: 05/12/2023]
Abstract
Cell fate maintenance is an integral part of plant cell differentiation and the production of functional cells, tissues, and organs. Fleshy fruit development is characterized by the accumulation of water and solutes in the enlarging cells of parenchymatous tissues. In tomato (Solanum lycopersicum), this process is associated with endoreduplication in mesocarp cells. The mechanisms that preserve this developmental program, once initiated, remain unknown. We show here that analysis of a previously identified tomato ethyl methanesulfonate-induced mutant that exhibits abnormal mesocarp cell differentiation could help elucidate determinants of fruit cell fate maintenance. We identified and validated the causal locus through mapping-by-sequencing and gene editing, respectively, and performed metabolic, cellular, and transcriptomic analyses of the mutant phenotype. The data indicate that disruption of the SlGBP1 gene, encoding GUANYLATE BINDING PROTEIN1, induces early termination of endoreduplication followed by late divisions of polyploid mesocarp cells, which consequently acquire the characteristics of young proliferative cells. This study reveals a crucial role of plant GBPs in the control of cell cycle genes, and thus, in cell fate maintenance. We propose that SlGBP1 acts as an inhibitor of cell division, a function conserved with the human hGBP-1 protein.
Collapse
Affiliation(s)
- Constance Musseau
- Université de Bordeaux, Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Biologie du Fruit et Pathologie, Unité Mixte de Recherche 1332, 33140 Villenave d'Ornon, France
| | - Joana Jorly
- Université de Bordeaux, Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Biologie du Fruit et Pathologie, Unité Mixte de Recherche 1332, 33140 Villenave d'Ornon, France
| | - Stéphanie Gadin
- Université de Bordeaux, Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Biologie du Fruit et Pathologie, Unité Mixte de Recherche 1332, 33140 Villenave d'Ornon, France
| | - Iben Sørensen
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | - Catherine Deborde
- Université de Bordeaux, Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Biologie du Fruit et Pathologie, Unité Mixte de Recherche 1332, 33140 Villenave d'Ornon, France
- PMB-Metabolome, Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement, Unité Mixte de Recherche 2018, Bordeaux Metabolome Facility, 33140 Villenave d'Ornon, France
| | - Stéphane Bernillon
- Université de Bordeaux, Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Biologie du Fruit et Pathologie, Unité Mixte de Recherche 1332, 33140 Villenave d'Ornon, France
- PMB-Metabolome, Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement, Unité Mixte de Recherche 2018, Bordeaux Metabolome Facility, 33140 Villenave d'Ornon, France
| | - Jean-Philippe Mauxion
- Université de Bordeaux, Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Biologie du Fruit et Pathologie, Unité Mixte de Recherche 1332, 33140 Villenave d'Ornon, France
| | - Isabelle Atienza
- Université de Bordeaux, Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Biologie du Fruit et Pathologie, Unité Mixte de Recherche 1332, 33140 Villenave d'Ornon, France
| | - Annick Moing
- Université de Bordeaux, Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Biologie du Fruit et Pathologie, Unité Mixte de Recherche 1332, 33140 Villenave d'Ornon, France
- PMB-Metabolome, Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement, Unité Mixte de Recherche 2018, Bordeaux Metabolome Facility, 33140 Villenave d'Ornon, France
| | - Martine Lemaire-Chamley
- Université de Bordeaux, Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Biologie du Fruit et Pathologie, Unité Mixte de Recherche 1332, 33140 Villenave d'Ornon, France
| | - Jocelyn K C Rose
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | - Christian Chevalier
- Université de Bordeaux, Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Biologie du Fruit et Pathologie, Unité Mixte de Recherche 1332, 33140 Villenave d'Ornon, France
| | - Christophe Rothan
- Université de Bordeaux, Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Biologie du Fruit et Pathologie, Unité Mixte de Recherche 1332, 33140 Villenave d'Ornon, France
| | - Lucie Fernandez-Lochu
- Université de Bordeaux, Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Biologie du Fruit et Pathologie, Unité Mixte de Recherche 1332, 33140 Villenave d'Ornon, France
| | - Frédéric Gévaudant
- Université de Bordeaux, Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Biologie du Fruit et Pathologie, Unité Mixte de Recherche 1332, 33140 Villenave d'Ornon, France
| |
Collapse
|
23
|
Du B, Zhang Q, Cao Q, Xing Y, Qin L, Fang K. Changes of cell wall components during embryogenesis of Castanea mollissima. JOURNAL OF PLANT RESEARCH 2020; 133:257-270. [PMID: 32036472 DOI: 10.1007/s10265-020-01170-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
The Chinese chestnut (Castanea mollissima Blume) 'Huaihuang' was chosen as the experimental material to observe embryogenesis and the dynamic changes of cell wall components during this process. Various developmental stages of embryos, including globular embryos, heart embryos, torpedo embryos and cotyledon embryos, were observed. The results showed that during embryogenesis, cellulose increased, and callose rapidly degraded. In the cell walls of developing embryos, pectic homogalacturonan (HG), especially low-esterified HG, was abundant, suggesting rapid synthesis and de-methyl-esterification of HG. Extensin and galactan increased with the development of the embryos. In contrast, the arabinan epitopes decreased in developing embryos but were more abundant than galactan epitopes at all stages. Xylan epitopes showed explicit boundaries between the outer epidermal wall and the rest of the inner tissues, and the fluorescence intensity of the outer epidermal wall was significantly higher than that of the inner tissues. Furthermore, the results indicated that the outer epidermal wall contained high amounts of cellulose, HG pectin and hemicellulose, especially arabinan and xylan. These results suggested the presence of rapid pectin metabolism, cellulose synthesis, rapid degradation of callose, different distributive patterns and dynamic changes of hemicellulose (galactan, arabinan and xylan) and extensin during embryogenesis. Various cell wall components exist in different tissues of the embryo, and dynamic changes in cell wall components are involved in the embryonic development process.
Collapse
Affiliation(s)
- Bingshuai Du
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, China
- College of Landscape Architecture, Beijing University of Agriculture, No. 7 Road Beinong, Changping District, Beijing, 102206, China
| | - Qing Zhang
- Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Road Beinong, Changping District, Beijing, 102206, China
| | - Qingqin Cao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, China
- Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Road Beinong, Changping District, Beijing, 102206, China
| | - Yu Xing
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, China
- Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Road Beinong, Changping District, Beijing, 102206, China
| | - Ling Qin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, China.
- Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Road Beinong, Changping District, Beijing, 102206, China.
| | - Kefeng Fang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, China.
- College of Landscape Architecture, Beijing University of Agriculture, No. 7 Road Beinong, Changping District, Beijing, 102206, China.
- Key Laboratory of Urban Agriculture (North China Ministry of Agriculture P. R. China), Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
24
|
Pegg T, Edelmann RR, Gladish DK. Immunoprofiling of Cell Wall Carbohydrate Modifications During Flooding-Induced Aerenchyma Formation in Fabaceae Roots. FRONTIERS IN PLANT SCIENCE 2020; 10:1805. [PMID: 32117353 PMCID: PMC7008352 DOI: 10.3389/fpls.2019.01805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/24/2019] [Indexed: 05/12/2023]
Abstract
Understanding plant adaptation mechanisms to prolonged water immersion provides options for genetic modification of existing crops to create cultivars more tolerant of periodic flooding. An important advancement in understanding flooding adaptation would be to elucidate mechanisms, such as aerenchyma air-space formation induced by hypoxic conditions, consistent with prolonged immersion. Lysigenous aerenchyma formation occurs through programmed cell death (PCD), which may entail the chemical modification of polysaccharides in root tissue cell walls. We investigated if a relationship exists between modification of pectic polysaccharides through de-methyl esterification (DME) and the formation of root aerenchyma in select Fabaceae species. To test this hypothesis, we first characterized the progression of aerenchyma formation within the vascular stele of three different legumes-Pisum sativum, Cicer arietinum, and Phaseolus coccineus-through traditional light microscopy histological staining and scanning electron microscopy. We assessed alterations in stele morphology, cavity dimensions, and cell wall chemistry. Then we conducted an immunolabeling protocol to detect specific degrees of DME among species during a 48-hour flooding time series. Additionally, we performed an enzymatic pretreatment to remove select cell wall polymers prior to immunolabeling for DME pectins. We were able to determine that all species possessed similar aerenchyma formation mechanisms that begin with degradation of root vascular stele metaxylem cells. Immunolabeling results demonstrated DME occurs prior to aerenchyma formation and prepares vascular tissues for the beginning of cavity formation in flooded roots. Furthermore, enzymatic pretreatment demonstrated that removal of cellulose and select hemicellulosic carbohydrates unmasks additional antigen binding sites for DME pectin antibodies. These results suggest that additional carbohydrate modification may be required to permit DME and subsequent enzyme activity to form aerenchyma. By providing a greater understanding of cell wall pectin remodeling among legume species, we encourage further investigation into the mechanism of carbohydrate modifications during aerenchyma formation and possible avenues for flood-tolerance improvement of legume crops.
Collapse
Affiliation(s)
- Timothy Pegg
- Department of Biology, Miami University, Oxford, OH, United States
| | - Richard R. Edelmann
- Department of Biology, Miami University, Oxford, OH, United States
- Center for Advance Microscopy & Imaging, Miami University, Oxford, OH, United States
| | | |
Collapse
|
25
|
Tvorogova VE, Krasnoperova EY, Kudriashov AA, Kuznetsova KA, Potsenkovskaya EA, Fedorova YA, Lutova LA. Transcriptomic analysis of Medicago truncatula calli with MtWOX9-1 overexpression. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- V. E. Tvorogova
- St. Petersburg State University, Department of Genetics and Biotechnology
| | - E. Y. Krasnoperova
- St. Petersburg State University, Department of Genetics and Biotechnology
| | - A. A. Kudriashov
- St. Petersburg State University, Department of Genetics and Biotechnology
| | - K. A. Kuznetsova
- St. Petersburg State University, Department of Genetics and Biotechnology
| | | | - Y. A. Fedorova
- St. Petersburg State University, Department of Genetics and Biotechnology
| | - L. A. Lutova
- St. Petersburg State University, Department of Genetics and Biotechnology
| |
Collapse
|
26
|
Losada JM, Herrero M. Arabinogalactan proteins mediate intercellular crosstalk in the ovule of apple flowers. PLANT REPRODUCTION 2019; 32:291-305. [PMID: 31049682 DOI: 10.1007/s00497-019-00370-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/23/2019] [Indexed: 05/29/2023]
Abstract
AGP-rich glycoproteins mediate pollen-ovule interactions and cell patterning in the embryo sac of apple before and after fertilization. Glycoproteins are significant players in the dialog that takes place between growing pollen tubes and the stigma and style in the angiosperms. Yet, information is scarce on their possible involvement in the ovule, a sporophytic organ that hosts the female gametophyte. Apple flowers have a prolonged lapse of time between pollination and fertilization, offering a great system to study the developmental basis of glycoprotein secretion and their putative role during the last stages of the progamic phase and early seed initiation. For this purpose, the sequential pollen tube elongation within the ovary was examined in relation to changes in arabinogalactan proteins (AGPs) in the tissues of the ovule before and after fertilization. To evaluate what of these changes are developmentally regulated, unpollinated and pollinated flowers were compared. AGPs paved the pollen tube pathway in the ovules along the micropylar canal, and the nucellus entrance toward the synergids, which also developmentally accumulated AGPs at the filiform apparatus. Glycoproteins vanished from all these tissues following pollen tube passage, strongly suggesting a role in pollen-ovule interaction. In addition, AGPs marked the primary cell walls of the haploid cells of the female gametophyte, and they further built up in the cell walls of the embryo sac and developing embryo, layering the interactive walls of the three generations hosted in the ovule, the maternal sporophytic tissues, the female gametophyte, and the developing embryo.
Collapse
Affiliation(s)
- Juan M Losada
- Pomology Department, Aula Dei Experimental Station-CSIC, Avda Montañana 1005, 50059, Saragossa, Spain.
- Arnold Arboretum of Harvard University, 1300 Centre St., Boston, MA, 02131, USA.
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora-CSIC-UMA, Avda. Dr. Wienberg s/n. Algarrobo-Costa, 29750, Málaga, Spain.
| | - María Herrero
- Pomology Department, Aula Dei Experimental Station-CSIC, Avda Montañana 1005, 50059, Saragossa, Spain
| |
Collapse
|
27
|
Proteases with caspase 3-like activity participate in cell death during stress-induced microspore embryogenesis of Brassica napus. EUROBIOTECH JOURNAL 2019. [DOI: 10.2478/ebtj-2019-0018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Abstract
Microspore embryogenesis is a model system of plant cell reprogramming, totipotency acquisition, stress response and embryogenesis initiation. This in vitro system constitutes an important biotechnological tool for haploid and doubled-haploid plant production, very useful for crop breeding. In this process, microspores (cells that produce pollen grains in planta) are reprogrammed toward embryogenesis by specific stress treatment, but many microspores die after the stress. The occurrence of cell death is a serious limiting problem that greatly reduces microspore embryogenesis yield. In animals, increasing evidence has revealed caspase proteolytic activities as essential executioners of programmed cell death (PCD) processes, however, less is known in plants. Although plant genomes do not contain caspase homologues, caspase-like proteolytic activities have been detected in many plant PCD processes. In the present study, we have analysed caspase 3-like activity and its involvement in stress-induced cell death during initial stages of microspore embryogenesis of Brassica napus. After stress treatment to induce embryogenesis, isolated microspore cultures showed high levels of cell death and caspase 3-like proteolytic activity was induced. Treatments with specific inhibitor of caspase 3-like activity reduced cell death and increased embryogenesis induction efficiency. Our findings indicate the involvement of proteases with caspase 3-like activity in the initiation and/or execution of cell death at early microspore embryogenesis in B. napus, giving new insights into the pathways of stress-induced cell death in plants and opening a new way to improve in vitro embryogenesis efficiency by using chemical modulators of cell death proteases.
Collapse
|
28
|
Testillano PS. Microspore embryogenesis: targeting the determinant factors of stress-induced cell reprogramming for crop improvement. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2965-2978. [PMID: 30753698 DOI: 10.1093/jxb/ery464] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/17/2018] [Indexed: 05/17/2023]
Abstract
Under stress, isolated microspores are reprogrammed in vitro towards embryogenesis, producing doubled haploid plants that are useful biotechnological tools in plant breeding as a source of new genetic variability, fixed in homozygous plants in only one generation. Stress-induced cell death and low rates of cell reprogramming are major factors that reduce yield. Knowledge gained in recent years has revealed that initiation and progression of microspore embryogenesis involve a complex network of factors, whose roles are not yet well understood. Here, I review recent findings on the determinant factors underlying stress-induced microspore embryogenesis, focusing on the role of autophagy, cell death, auxin, chromatin modifications, and the cell wall. Autophagy and cell death proteases are crucial players in the response to stress, while cell reprogramming and acquisition of totipotency are regulated by hormonal and epigenetic mechanisms. Auxin biosynthesis, transport, and action are required for microspore embryogenesis. Initial stages involve DNA hypomethylation, H3K9 demethylation, and H3/H4 acetylation. Cell wall remodelling, with pectin de-methylesterification and arabinogalactan protein expression, is necessary for embryo development. Recent reports show that treatments with small modulators of autophagy, proteases, and epigenetic marks reduce cell death and enhance embryogenesis initiation in several crops, opening up new possibilities for improving in vitro embryo production in breeding programmes.
Collapse
Affiliation(s)
- Pilar S Testillano
- Pollen Biotechnology of Crop Plants group, Biological Research Center, CIB-CSIC, Ramiro de Maeztu, Madrid, Spain
| |
Collapse
|