1
|
Duan X, Liu L, Lu T, Wang S, Wang C, Qiu G. Mechanism for Fe(III) to decrease cadmium uptake of wheat plant: Rhizosphere passivation, competitive absorption and physiological regulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172907. [PMID: 38703846 DOI: 10.1016/j.scitotenv.2024.172907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/28/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
The presence of dissolved Fe(III) and Fe(III)-containing minerals has been found to alleviate cadmium (Cd) accumulation in wheat plants grown in Cd-contaminated soils, but the specific mechanism remains elusive. In this work, hydroponic experiments were conducted to dissect the mechanism for dissolved Fe(III) (0-2000 μmol L-1) to decrease Cd uptake of wheat plants and study the influence of Fe(III) concentration and Cd(II) pollution level (0-20 μmol L-1) on the Cd uptake process. The results indicated that dissolved Fe(III) significantly decreased Cd uptake through rhizosphere passivation, competitive absorption, and physiological regulation. The formation of poorly crystalline Fe(III) oxides facilitated the adsorption and immobilization of Cd(II) on the rhizoplane (over 80.4 %). In wheat rhizosphere, the content of CaCl2-extractable Cd decreased by 52.7 % when Fe(III) concentration was controlled at 2000 μmol L-1, and the presence of Fe(III) may reduce the formation of Cd(II)-organic acid complexes (including malic acid and succinic acid secreted by wheat roots), which could be attributed to competitive reactions. Down-regulation of Cd uptake genes (TaNramp5-a and TaNramp5-b) and transport genes (TaHMA3-a, TaHMA3-b and TaHMA2), along with up-regulation of the Cd efflux gene TaPDR8-4A7A, contributed much to the reduction of Cd accumulation in wheat plants in the presence of Fe(III). The inhibitory effect of Fe(III) on Cd uptake and transport in wheat plants declined with increasing Cd(II) concentration, particularly at 20 μmol L-1. This work provides important implications for remediating Cd-contaminated farmland soil and ensuring the safe production of wheat by using dissolved Fe(III) and Fe(III)-containing minerals.
Collapse
Affiliation(s)
- Xianjie Duan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Ling Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Tao Lu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Sheliang Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Chuang Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agriculture Genomics Institute at Shenzhen, Chinese Academy of Agriculture Science, Shenzhen 518000, China
| | - Guohong Qiu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agriculture Genomics Institute at Shenzhen, Chinese Academy of Agriculture Science, Shenzhen 518000, China.
| |
Collapse
|
2
|
Cong Y, Chen X, Xing J, Li X, Pang S, Liu H. Nitric oxide signal is required for glutathione-induced enhancement of photosynthesis in salt-stressed S olanum lycopersicum L. FRONTIERS IN PLANT SCIENCE 2024; 15:1413653. [PMID: 38952846 PMCID: PMC11215142 DOI: 10.3389/fpls.2024.1413653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/31/2024] [Indexed: 07/03/2024]
Abstract
Reduced glutathione (γ-glutamyl-cysteinyl-glycine, GSH), the primary non-protein sulfhydryl group in organisms, plays a pivotal role in the plant salt stress response. This study aimed to explore the impact of GSH on the photosynthetic apparatus, and carbon assimilation in tomato plants under salt stress, and then investigate the role of nitric oxide (NO) in this process. The investigation involved foliar application of 5 mM GSH, 0.1% (w/v) hemoglobin (Hb, a nitric oxide scavenger), and GSH+Hb on the endogenous NO levels, rapid chlorophyll fluorescence, enzyme activities, and gene expression related to the Calvin cycle in tomato seedlings (Solanum lycopersicum L. cv. 'Zhongshu No. 4') subjected short-term salt stress (100 mM NaCl) for 24, 48 and 72 hours. GSH treatment notably boosted nitrate reductase (NR) and NO synthase (NOS) activities, elevating endogenous NO signaling in salt-stressed tomato seedling leaves. It also mitigated chlorophyll fluorescence (OJIP) curve distortion and damage to the oxygen-evolving complex (OEC) induced by salt stress. Furthermore, GSH improved photosystem II (PSII) electron transfer efficiency, reduced QA - accumulation, and countered salt stress effects on photosystem I (PSI) redox properties, enhancing the light energy absorption index (PIabs). Additionally, GSH enhanced key enzyme activities in the Calvin cycle and upregulated their genes. Exogenous GSH optimized PSII energy utilization via endogenous NO, safeguarded the photosynthetic reaction center, improved photochemical and energy efficiency, and boosted carbon assimilation, ultimately enhancing net photosynthetic efficiency (Pn) in salt-stressed tomato seedling leaves. Conversely, Hb hindered Pn reduction and NO signaling under salt stress and weakened the positive effects of GSH on NO levels, photosynthetic apparatus, and carbon assimilation in tomato plants. Thus, the positive regulation of photosynthesis in tomato seedlings under salt stress by GSH requires the involvement of NO.
Collapse
Affiliation(s)
- Yundan Cong
- Department of Horticulture, Agricultural College, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Shihezi, Xinjiang, China
| | - Xianjun Chen
- School of Life and Health Science, Kaili University, Kaili, Guizhou, China
| | - Jiayi Xing
- Department of Horticulture, Agricultural College, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Shihezi, Xinjiang, China
| | - Xuezhen Li
- Department of Horticulture, Agricultural College, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Shihezi, Xinjiang, China
| | - Shengqun Pang
- Department of Horticulture, Agricultural College, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Shihezi, Xinjiang, China
| | - Huiying Liu
- Department of Horticulture, Agricultural College, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Shihezi, Xinjiang, China
| |
Collapse
|
3
|
Jamra G, Ghosh S, Singh N, Tripathy MK, Aggarwal A, Singh RDR, Srivastava AK, Kumar A, Pandey GK. Ectopic overexpression of Eleusine coracana CAX3 confers tolerance to metal and ion stress in yeast and Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108613. [PMID: 38696868 DOI: 10.1016/j.plaphy.2024.108613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/22/2024] [Accepted: 04/05/2024] [Indexed: 05/04/2024]
Abstract
Ionic and metal toxicity in plants is still a global problem for the environment, agricultural productivity and ultimately poses human health threats when these metal ions accumulate in edible organs of plants. Metal and ion transport from cytosol to the vacuole is considered an important component of metal and ion tolerance and a plant's potential utility in phytoremediation. Finger millet (Eleusine coracana) is an orphan crop but has prominent nutritional value in comparison to other cereals. Previous transcriptomic studies suggested that one of the calcium/proton exchanger (EcCAX3) is strongly upregulated during different developmental stages of spikes development in plant. This finding led us to speculate that high calcium accumulation in the grain might be because of CAX3 function. Moreover, phylogenetic analysis shows that EcCAX3 is more closely related to foxtail millet, sorghum and rice CAX3 protein. To decipher the functional role of EcCAX3, we have adopted complementation of yeast triple mutant K677 (Δpmc1Δvcx1Δcnb1), which has defective calcium transport machinery. Furthermore, metal tolerance assay shows that EcCAX3 expression conferred tolerance to different metal stresses in yeast. The gain-of-function study suggests that EcCAX3 overexpressing Arabidopsis plants shows better tolerance to higher concentration of different metal ions as compared to wild type Col-0 plants. EcCAX3-overexpression transgenic lines exhibits abundance of metal transporters and cation exchanger transporter transcripts under metal stress conditions. Furthermore, EcCAX3-overexpression lines have higher accumulation of macro- and micro-elements under different metal stress. Overall, this finding highlights the functional role of EcCAX3 in the regulation of metal and ion homeostasis and this could be potentially utilized to engineer metal fortification and generation of stress tolerant crops in near future.
Collapse
Affiliation(s)
- Gautam Jamra
- Dept. of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India; Dept. of Molecular Biology and Genetic Engineering, GBPUAT, Pantnagar Uttarakhand, 263145, India
| | - Soma Ghosh
- Dept. of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Nidhi Singh
- Dept. of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Manas Kumar Tripathy
- Dept. of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Aparna Aggarwal
- Dept. of Molecular Biology and Genetic Engineering, GBPUAT, Pantnagar Uttarakhand, 263145, India
| | - Reema Devi Rajan Singh
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Anil Kumar
- Dept. of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India; Dept. of Molecular Biology and Genetic Engineering, GBPUAT, Pantnagar Uttarakhand, 263145, India; Director Education, Rani Lakshmi Bai Central Agriculture University, Jhansi, NH-75, Near Pahuj Dam, Gwalior Road, Jhansi, Uttar Pradesh, 284003, India.
| | - Girdhar K Pandey
- Dept. of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
4
|
Qi Y, Lu C, Pang C, Huang Y, Yu Y, Yang H, Dong CH, Yu Y. The Arabidopsis RTH plays an important role in regulation of iron (Fe) absorption and transport. PLANT CELL REPORTS 2024; 43:133. [PMID: 38687356 DOI: 10.1007/s00299-024-03214-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024]
Abstract
KEY MESSAGE RTH may activate Fe assimilation related genes to promote Fe absorption, transport and accumulation in Arabidopsis. Iron (Fe) is an important nutrient element. The Fe absorption and transport in plants are well investigated over the past decade. Our previous work indicated that RTE1-HOMOLOG (RTH), the homologous gene of reversion-to-ethylene sensitivity 1 (RTE1), plays a role in ethylene signaling pathway. However, its function in Fe absorption and transport is largely unknown. In the present study, we found that RTH was expressed in absorptive tissue and conducting tissue, including root hairs, root vascular bundle, and leaf veins. Under high Fe concentration, the seedling growth of rth-1 mutant was better, while the RTH overexpression lines were retarded compared to the wild type (Col-0). When treated with EDTA-Fe3+ (400 μM), the chlorophyll content and ion leakage rate were higher and lower in rth-1 than those of Col-0, respectively. By contrast, the chlorophyll contents and ion leakage rates of RTH overexpression lines were decreased and hastened compared with Col-0, respectively. Fe measurement indicated that the Fe contents of rth-1 were lower than those of Col-0, whereas those of RTH overexpression lines were comparably higher. Gene expression analysis revealed that Fe absorption and transport genes AHA2, IRT1, FIT, FPN1, and YSL1 decreased in rth-1 but increased in RTH overexpression lines compared with Col-0. Additionally, Y2H (yeast two-hybrid) and BiFC (bimolecular fluorescence complementation) assays showed that RTH can physically interact with hemoglobin 1 (HB1) and HB2. All these findings suggest that RTH may play an important role in regulation of Fe absorption, transport, and accumulation in Arabidopsis.
Collapse
Affiliation(s)
- Yanan Qi
- Shandong Key Laboratory of Plant Biotechnology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chen Lu
- Shandong Key Laboratory of Plant Biotechnology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Cuijing Pang
- Shandong Key Laboratory of Plant Biotechnology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Youju Huang
- Shandong Key Laboratory of Plant Biotechnology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yongbo Yu
- Shandong Key Laboratory of Plant Biotechnology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hongbing Yang
- Shandong Key Laboratory of Plant Biotechnology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chun-Hai Dong
- Shandong Key Laboratory of Plant Biotechnology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yanchong Yu
- Shandong Key Laboratory of Plant Biotechnology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
5
|
Chiang CY, Chang CH, Tseng TY, Nguyen VAT, Su PY, Truong TTT, Chen JY, Huang CC, Huang HJ. Volatile Compounds Emitted by Plant Growth-Promoting Fungus Tolypocladium inflatum GT22 Alleviate Copper and Pathogen Stress. PLANT & CELL PHYSIOLOGY 2024; 65:199-215. [PMID: 37951591 DOI: 10.1093/pcp/pcad120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/17/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023]
Abstract
Previous studies on the intricate interactions between plants and microorganisms have revealed that fungal volatile compounds (VCs) can affect plant growth and development. However, the precise mechanisms underlying these actions remain to be delineated. In this study, we discovered that VCs from the soilborne fungus Tolypocladium inflatum GT22 enhance the growth of Arabidopsis. Remarkably, priming Arabidopsis with GT22 VCs caused the plant to display an enhanced immune response and mitigated the detrimental effects of both pathogenic infections and copper stress. Transcriptomic analyses of Arabidopsis seedlings treated with GT22 VCs for 3, 24 and 48 h revealed that 90, 83 and 137 genes were differentially expressed, respectively. The responsive genes are known to be involved in growth, hormone regulation, defense mechanisms and signaling pathways. Furthermore, we observed the induction of genes related to innate immunity, hypoxia, salicylic acid biosynthesis and camalexin biosynthesis by GT22 VCs. Among the VCs emitted by GT22, exposure of Arabidopsis seedlings to limonene promoted plant growth and attenuated copper stress. Thus, limonene appears to be a key mediator of the interaction between GT22 and plants. Overall, our findings provide evidence that fungal VCs can promote plant growth and enhance both biotic and abiotic tolerance. As such, our study suggests that exposure of seedlings to T. inflatum GT22 VCs may be a means of improving crop productivity. This study describes a beneficial interaction between T. inflatun GT22 and Arabidopsis. Our investigation of microorganism function in terms of VC activities allowed us to overcome the limitations of traditional microbial application methods. The importance of this study lies in the discovery of T. inflatun GT22 as a beneficial microorganism. This soilborne fungus emits VCs with plant growth-promoting effects and the ability to alleviate both copper and pathogenic stress. Furthermore, our study offers a valuable approach to tracking the activities of fungal VC components via transcriptomic analysis and sheds light on the mechanisms through which VCs promote plant growth and induce resistance. This research significantly advances our knowledge of VC applications and provides an example for further investigations within this field.
Collapse
Affiliation(s)
- Chih-Yun Chiang
- Department of Life Sciences, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan, R.O.C
| | - Ching-Han Chang
- Graduate Program in Translational Agricultural Sciences, National Cheng Kung University and Academia Sinica, No. 1, University Road, Tainan City 701, Taiwan, R.O.C
| | - Tzu-Yun Tseng
- Department of Life Sciences, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan, R.O.C
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan, R.O.C
| | - Van-Anh Thi Nguyen
- Department of Life Sciences, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan, R.O.C
| | - Pei-Yu Su
- Department of Life Sciences, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan, R.O.C
| | - Tu-Trinh Thi Truong
- Department of Life Sciences, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan, R.O.C
- Faculty of Technology, The University of Danang-Campus in Kontum, The University of Danang, 704 Phan Dinh Phung Street, Kontum City, Kontum Province, 580000 Vietnam
| | - Jing-Yu Chen
- Department of Life Sciences, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan, R.O.C
| | - Chung-Chih Huang
- Department of Life Sciences, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan, R.O.C
| | - Hao-Jen Huang
- Department of Life Sciences, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan, R.O.C
- Graduate Program in Translational Agricultural Sciences, National Cheng Kung University and Academia Sinica, No. 1, University Road, Tainan City 701, Taiwan, R.O.C
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan, R.O.C
| |
Collapse
|
6
|
Pang B, Zuo D, Yang T, Yu J, Zhou L, Hou Y, Yu J, Ye L, Gu L, Wang H, Du X, Liu Y, Zhu B. BcaSOD1 enhances cadmium tolerance in transgenic Arabidopsis by regulating the expression of genes related to heavy metal detoxification and arginine synthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108299. [PMID: 38150840 DOI: 10.1016/j.plaphy.2023.108299] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/19/2023] [Indexed: 12/29/2023]
Abstract
Cadmium (Cd), which is a nonessential heavy metal element for organisms, can have a severe impact on the growth and development of organisms that absorb excessive Cd. Studies have shown that Brassica carinata, a semiwild oil crop, has strong tolerance to various abiotic stresses, and RNA-seq has revealed that the B. carinata superoxide dismutase gene (BcaSOD1) likely responds to Cd stress. To elucidate the BcaSOD1 function involved in tolerance of Cd stress, we cloned the coding sequences of BcaSOD1 from a purple B. carinata accession and successfully transferred it into Arabidopsis thaliana. The subcellular localization results demonstrated that BcaSOD1 was primarily located in the plasma membrane, mitochondria and nucleus. Overexpression of BcaSOD1 in transgenic Arabidopsis (OE) effectively decreased the toxicity caused by Cd stress. Compared to the WT (wild type lines), the OE lines exhibited significantly increased activities of antioxidant enzymes (APX, CAT, POD, and SOD) after exposure to 2.5 mM CdCl2. The Cd content of underground (root) in the OE line was dominantly higher than that in the WT; however, the Cd content of aboveground (shoot) was comparable between the OE and WT types. Moreover, the qRT‒PCR results showed that several heavy metal detoxification-related genes (AtIREG2, AtMTP3, AtHMA3, and AtNAS4) were significantly upregulated in the roots of OE lines under Cd treatment, suggesting that these genes are likely involved in Cd absorption in the roots of OE lines. In addition, both comparable transcriptome and qRT-PCR analyses revealed that exogenous BcaSOD1 noticeably facilitates detoxification by stimulating the expression of two arginine (Arg) biosynthesis genes (AtGDH1 and AtGDH2) while inhibiting the expression of AtARGAH1, a negative regulator in biosynthesis of Arg. The Arg content was subsequently confirmed to be significantly enhanced in OE lines under Cd treatment, indicating that BcaSOD1 likely strengthened Cd tolerance by regulating the expression of Arg-related genes. This study demonstrates that BcaSOD1 can enhance Cd tolerance and reveals the molecular mechanism of this gene, providing valuable insights into the molecular mechanism of Cd tolerance in plants.
Collapse
Affiliation(s)
- Biao Pang
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Dan Zuo
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Tinghai Yang
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Junxing Yu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Lizhou Zhou
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Yunyan Hou
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Jie Yu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Lvlan Ye
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Lei Gu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Hongcheng Wang
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Xuye Du
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Yingliang Liu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China.
| | - Bin Zhu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
7
|
Ni WJ, Mubeen S, Leng XM, He C, Yang Z. Molecular-Assisted Breeding of Cadmium Pollution-Safe Cultivars. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37923701 DOI: 10.1021/acs.jafc.3c04967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Cadmium (Cd) contamination in edible agricultural products, especially in crops intended for consumption, has raised worldwide concerns regarding food safety. Breeding of Cd pollution-safe cultivars (Cd-PSCs) is an effective solution to preventing the entry of Cd into the food chain from contaminated agricultural soil. Molecular-assisted breeding methods, based on molecular mechanisms for cultivar-dependent Cd accumulation and bioinformatic tools, have been developed to accelerate and facilitate the breeding of Cd-PSCs. This review summarizes the recent progress in the research of the low Cd accumulation traits of Cd-PSCs in different crops. Furthermore, the application of molecular-assisted breeding methods, including transgenic approaches, genome editing, marker-assisted selection, whole genome-wide association analysis, and transcriptome, has been highlighted to outline the breeding of Cd-PSCs by identifying critical genes and molecular biomarkers. This review provides a comprehensive overview of the development of Cd-PSCs and the potential future for breeding Cd-PSC using modern molecular technologies.
Collapse
Affiliation(s)
- Wen-Juan Ni
- School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Samavia Mubeen
- School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiao-Min Leng
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Chuntao He
- School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
- School of Agriculture, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhongyi Yang
- School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
8
|
Sandalio LM, Espinosa J, Shabala S, León J, Romero-Puertas MC. Reactive oxygen species- and nitric oxide-dependent regulation of ion and metal homeostasis in plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5970-5988. [PMID: 37668424 PMCID: PMC10575707 DOI: 10.1093/jxb/erad349] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/04/2023] [Indexed: 09/06/2023]
Abstract
Deterioration and impoverishment of soil, caused by environmental pollution and climate change, result in reduced crop productivity. To adapt to hostile soils, plants have developed a complex network of factors involved in stress sensing, signal transduction, and adaptive responses. The chemical properties of reactive oxygen species (ROS) and reactive nitrogen species (RNS) allow them to participate in integrating the perception of external signals by fine-tuning protein redox regulation and signal transduction, triggering specific gene expression. Here, we update and summarize progress in understanding the mechanistic basis of ROS and RNS production at the subcellular level in plants and their role in the regulation of ion channels/transporters at both transcriptional and post-translational levels. We have also carried out an in silico analysis of different redox-dependent modifications of ion channels/transporters and identified cysteine and tyrosine targets of nitric oxide in metal transporters. Further, we summarize possible ROS- and RNS-dependent sensors involved in metal stress sensing, such as kinases and phosphatases, as well as some ROS/RNS-regulated transcription factors that could be involved in metal homeostasis. Understanding ROS- and RNS-dependent signaling events is crucial to designing new strategies to fortify crops and improve plant tolerance of nutritional imbalance and metal toxicity.
Collapse
Affiliation(s)
- Luisa M Sandalio
- Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Granada, Spain
| | - Jesús Espinosa
- Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Granada, Spain
| | - Sergey Shabala
- School of Biological Science, University of Western Australia, Crawley, WA 6009, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
| | - José León
- Institute of Plant Molecular and Cellular Biology (CSIC-UPV), Valencia, Spain
| | - María C Romero-Puertas
- Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Granada, Spain
| |
Collapse
|
9
|
Terrón-Camero LC, Molina-Moya E, Peláez-Vico MÁ, Sandalio LM, Romero-Puertas MC. Nitric Oxide and Globin Glb1 Regulate Fusarium oxysporum Infection of Arabidopsis thaliana. Antioxidants (Basel) 2023; 12:1321. [PMID: 37507861 PMCID: PMC10376111 DOI: 10.3390/antiox12071321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/05/2023] [Accepted: 06/18/2023] [Indexed: 07/30/2023] Open
Abstract
Plants continuously interact with fungi, some of which, such as Fusarium oxysporum, are lethal, leading to reduced crop yields. Recently, nitric oxide (NO) has been found to play a regulatory role in plant responses to F. oxysporum, although the underlying mechanisms involved are poorly understood. In this study, we show that Arabidopsis mutants with altered levels of phytoglobin 1 (Glb1) have a higher survival rate than wild type (WT) after infection with F. oxysporum, although all the genotypes analyzed exhibited a similar fungal burden. None of the defense responses that were analyzed in Glb1 lines, such as phenols, iron metabolism, peroxidase activity, or reactive oxygen species (ROS) production, appear to explain their higher survival rates. However, the early induction of the PR genes may be one of the reasons for the observed survival rate of Glb1 lines infected with F. oxysporum. Furthermore, while PR1 expression was induced in Glb1 lines very early on the response to F. oxysporum, this induction was not observed in WT plants.
Collapse
Affiliation(s)
- Laura C Terrón-Camero
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008 Granada, Spain
| | - Eliana Molina-Moya
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008 Granada, Spain
| | - M Ángeles Peláez-Vico
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008 Granada, Spain
| | - Luisa M Sandalio
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008 Granada, Spain
| | - María C Romero-Puertas
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008 Granada, Spain
| |
Collapse
|
10
|
Kumar K, Shinde A, Aeron V, Verma A, Arif NS. Genetic engineering of plants for phytoremediation: advances and challenges. JOURNAL OF PLANT BIOCHEMISTRY AND BIOTECHNOLOGY 2023; 32:12-30. [PMID: 0 DOI: 10.1007/s13562-022-00776-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/22/2022] [Indexed: 05/27/2023]
|
11
|
Tang Z, Wang HQ, Chen J, Chang JD, Zhao FJ. Molecular mechanisms underlying the toxicity and detoxification of trace metals and metalloids in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:570-593. [PMID: 36546407 DOI: 10.1111/jipb.13440] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Plants take up a wide range of trace metals/metalloids (hereinafter referred to as trace metals) from the soil, some of which are essential but become toxic at high concentrations (e.g., Cu, Zn, Ni, Co), while others are non-essential and toxic even at relatively low concentrations (e.g., As, Cd, Cr, Pb, and Hg). Soil contamination of trace metals is an increasing problem worldwide due to intensifying human activities. Trace metal contamination can cause toxicity and growth inhibition in plants, as well as accumulation in the edible parts to levels that threatens food safety and human health. Understanding the mechanisms of trace metal toxicity and how plants respond to trace metal stress is important for improving plant growth and food safety in contaminated soils. The accumulation of excess trace metals in plants can cause oxidative stress, genotoxicity, programmed cell death, and disturbance in multiple physiological processes. Plants have evolved various strategies to detoxify trace metals through cell-wall binding, complexation, vacuolar sequestration, efflux, and translocation. Multiple signal transduction pathways and regulatory responses are involved in plants challenged with trace metal stresses. In this review, we discuss the recent progress in understanding the molecular mechanisms involved in trace metal toxicity, detoxification, and regulation, as well as strategies to enhance plant resistance to trace metal stresses and reduce toxic metal accumulation in food crops.
Collapse
Affiliation(s)
- Zhong Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Han-Qing Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jia-Dong Chang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
12
|
Hafsi C, Collado-Arenal AM, Wang H, Sanz-Fernández M, Sahrawy M, Shabala S, Romero-Puertas MC, Sandalio LM. The role of NADPH oxidases in regulating leaf gas exchange and ion homeostasis in Arabidopsis plants under cadmium stress. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128217. [PMID: 35077969 DOI: 10.1016/j.jhazmat.2022.128217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/23/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
NADPH oxidase, an enzyme associated with the plasma membrane, constitutes one of the main sources of reactive oxygen species (ROS) which regulate different developmental and adaptive responses in plants. In this work, the involvement of NADPH oxidases in the regulation of photosynthesis and cell ionic homeostasis in response to short cadmium exposure was compared between wild type (WT) and three RBOHs (Respiratory Burst Oxidase Homologues) Arabidopsis mutants (AtrbohC, AtrbohD, and AtrbohF). Plants were grown under hydroponic conditions and supplemented with 50 µM CdCl2 for 24 h. Cadmium treatment differentially affected photosynthesis, stomatal conductance, transpiration, and antioxidative responses in WT and Atrbohs mutants. The loss of function of RBOH isoforms resulted in higher Cd2+ influx, mainly in the elongation zone of roots, which was more evident in AtrbohD and AtrbohF mutants. In the mature zone, the highest Cd2+ influx was observed in rbohC mutant. The lack of functional RBOH isoforms also resulted in altered patterns of net K+ transport across cellular membranes, both in the root epidermis and leaf mesophyll. The analysis of expression of metal transporters by qPCR demonstrated that a loss of functional RBOH isoforms has altered transcript levels for metal NRAMP3, NRAMP6 and IRT1 and the K+ transporters outward-rectifying K+ efflux GORK channel, while RBOHD specifically regulated transcripts for high-affinity K+ transporters KUP8 and HAK5, and IRT1 and RBOHD and F regulated the transcription factors TGA3 and TGA10. It is concluded that RBOH-dependent H2O2 regulation of ion homeostasis and Cd is a highly complex process involving multilevel regulation from transpirational water flow to transcriptional and posttranslational modifications of K/metals transporters.
Collapse
Affiliation(s)
- Chokri Hafsi
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cedria, P. O. Box 901 - 2050, Hammam-Lif, Tunisia; Higher Institute of Biotechnology of Beja (ISBB), University of Jendouba, Habib Bourguiba avenue P. O. Box 382 - 9000, Beja, Tunisia
| | - Aurelio M Collado-Arenal
- Department of Plant Biochemistry, Cellular and Molecular Biology. Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - Haiyang Wang
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - María Sanz-Fernández
- Department of Plant Biochemistry, Cellular and Molecular Biology. Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - Mariam Sahrawy
- Department of Plant Biochemistry, Cellular and Molecular Biology. Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania 7001, Australia; International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
| | - María C Romero-Puertas
- Department of Plant Biochemistry, Cellular and Molecular Biology. Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - Luisa M Sandalio
- Department of Plant Biochemistry, Cellular and Molecular Biology. Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008 Granada, Spain.
| |
Collapse
|
13
|
Zamora-Ballesteros C, Martín-García J, Suárez-Vega A, Diez JJ. Genome-wide identification and characterization of Fusarium circinatum-responsive lncRNAs in Pinus radiata. BMC Genomics 2022; 23:194. [PMID: 35264109 PMCID: PMC8908662 DOI: 10.1186/s12864-022-08408-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 02/14/2022] [Indexed: 12/14/2022] Open
Abstract
Background One of the most promising strategies of Pine Pitch Canker (PPC) management is the use of reproductive plant material resistant to the disease. Understanding the complexity of plant transcriptome that underlies the defence to the causal agent Fusarium circinatum, would greatly facilitate the development of an accurate breeding program. Long non-coding RNAs (lncRNAs) are emerging as important transcriptional regulators under biotic stresses in plants. However, to date, characterization of lncRNAs in conifer trees has not been reported. In this study, transcriptomic identification of lncRNAs was carried out using strand-specific paired-end RNA sequencing, from Pinus radiata samples inoculated with F. circinatum at an early stage of infection. Results Overall, 13,312 lncRNAs were predicted through a bioinformatics approach, including long intergenic non-coding RNAs (92.3%), antisense lncRNAs (3.3%) and intronic lncRNAs (2.9%). Compared with protein-coding RNAs, pine lncRNAs are shorter, have lower expression, lower GC content and harbour fewer and shorter exons. A total of 164 differentially expressed (DE) lncRNAs were identified in response to F. circinatum infection in the inoculated versus mock-inoculated P. radiata seedlings. The predicted cis-regulated target genes of these pathogen-responsive lncRNAs were related to defence mechanisms such as kinase activity, phytohormone regulation, and cell wall reinforcement. Co-expression network analysis of DE lncRNAs, DE protein-coding RNAs and lncRNA target genes also indicated a potential network regulating pectinesterase activity and cell wall remodelling. Conclusions This study presents the first comprehensive genome-wide analysis of P. radiata lncRNAs and provides the basis for future functional characterizations of lncRNAs in relation to pine defence responses against F. circinatum. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08408-9.
Collapse
Affiliation(s)
- Cristina Zamora-Ballesteros
- Department of Vegetal Production and Forest Resources, University of Valladolid, Av Madrid 44, 34004 Palencia, Spain. .,Sustainable Forest Management Research Institute, University of Valladolid-INIA, 34004 Palencia, Spain.
| | - Jorge Martín-García
- Department of Vegetal Production and Forest Resources, University of Valladolid, Av Madrid 44, 34004 Palencia, Spain.,Sustainable Forest Management Research Institute, University of Valladolid-INIA, 34004 Palencia, Spain
| | - Aroa Suárez-Vega
- Departamento de Producción Animal, Facultad de Veterinaria, University of León, Campus de Vegazana s/n, 24071 León, Spain
| | - Julio Javier Diez
- Department of Vegetal Production and Forest Resources, University of Valladolid, Av Madrid 44, 34004 Palencia, Spain.,Sustainable Forest Management Research Institute, University of Valladolid-INIA, 34004 Palencia, Spain
| |
Collapse
|
14
|
Paape T, Heiniger B, Santo Domingo M, Clear MR, Lucas MM, Pueyo JJ. Genome-Wide Association Study Reveals Complex Genetic Architecture of Cadmium and Mercury Accumulation and Tolerance Traits in Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2022; 12:806949. [PMID: 35154199 PMCID: PMC8832151 DOI: 10.3389/fpls.2021.806949] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/13/2021] [Indexed: 05/15/2023]
Abstract
Heavy metals are an increasing problem due to contamination from human sources that and can enter the food chain by being taken up by plants. Understanding the genetic basis of accumulation and tolerance in plants is important for reducing the uptake of toxic metals in crops and crop relatives, as well as for removing heavy metals from soils by means of phytoremediation. Following exposure of Medicago truncatula seedlings to cadmium (Cd) and mercury (Hg), we conducted a genome-wide association study using relative root growth (RRG) and leaf accumulation measurements. Cd and Hg accumulation and RRG had heritability ranging 0.44 - 0.72 indicating high genetic diversity for these traits. The Cd and Hg trait associations were broadly distributed throughout the genome, indicated the traits are polygenic and involve several quantitative loci. For all traits, candidate genes included several membrane associated ATP-binding cassette transporters, P-type ATPase transporters, oxidative stress response genes, and stress related UDP-glycosyltransferases. The P-type ATPase transporters and ATP-binding cassette protein-families have roles in vacuole transport of heavy metals, and our findings support their wide use in physiological plant responses to heavy metals and abiotic stresses. We also found associations between Cd RRG with the genes CAX3 and PDR3, two linked adjacent genes, and leaf accumulation of Hg associated with the genes NRAMP6 and CAX9. When plant genotypes with the most extreme phenotypes were compared, we found significant divergence in genomic regions using population genomics methods that contained metal transport and stress response gene ontologies. Several of these genomic regions show high linkage disequilibrium (LD) among candidate genes suggesting they have evolved together. Minor allele frequency (MAF) and effect size of the most significant SNPs was negatively correlated with large effect alleles being most rare. This is consistent with purifying selection against alleles that increase toxicity and abiotic stress. Conversely, the alleles with large affect that had higher frequencies that were associated with the exclusion of Cd and Hg. Overall, macroevolutionary conservation of heavy metal and stress response genes is important for improvement of forage crops by harnessing wild genetic variants in gene banks such as the Medicago HapMap collection.
Collapse
Affiliation(s)
- Timothy Paape
- Brookhaven National Laboratory, Upton, NY, United States
| | - Benjamin Heiniger
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Miguel Santo Domingo
- Department of Soil, Plant and Environmental Quality, Institute of Agricultural Sciences, ICA-CSIC, Madrid, Spain
| | | | - M. Mercedes Lucas
- Department of Soil, Plant and Environmental Quality, Institute of Agricultural Sciences, ICA-CSIC, Madrid, Spain
| | - José J. Pueyo
- Department of Soil, Plant and Environmental Quality, Institute of Agricultural Sciences, ICA-CSIC, Madrid, Spain
| |
Collapse
|
15
|
Shen C, Fu HL, Liao Q, Huang B, Fan X, Liu XY, Xin JL, Huang YY. Transcriptome analysis and physiological indicators reveal the role of sulfur in cadmium accumulation and transportation in water spinach (Ipomoea aquatica Forsk.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112787. [PMID: 34544020 DOI: 10.1016/j.ecoenv.2021.112787] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/27/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) contamination of croplands has become a threat to crop food safety and human health. In this study, we investigated the effect of sulfur on the growth of water spinach under Cd stress and the amount of Cd accumulation by increasing the soil sulfate content. We found that the biomass of water spinach significantly increased after the application of sulfur while the shoot Cd concentration was considerably reduced (by 31%). The results revealed that sulfur could promote the expression of PME and LAC genes, accompanied by an increase in PME activity and lignin content. Also, the cell wall Cd content of water spinach roots was significantly increased under sulfur treatment. This finding suggests that sulfur could enhance the adsorption capacity of Cd by promoting the generation of cell wall components, thereby inhibiting the transportation of Cd via the apoplastic pathway. In addition, the higher expression of Nramp5 under the Cd1S0 (concentration of Cd and sulfur are 2.58 and 101.31 mg/kg respectively) treatment led to increased Cd uptake. The CAX3 and ABC transporters and GST were expressed at higher levels along with a higher cysteine content and GSH/GSSR value under Cd1S1 (concentration of Cd and sulfur are 2.60 and 198.36 mg/kg respectively) treatment, which contribute to the Cd detoxification and promotion of Cd compartmentalization in root vacuoles, thereby reducing the translocation of Cd to the shoot via the symplastic pathway.
Collapse
Affiliation(s)
- Chuang Shen
- Research Center for Environmental Pollution Control Technology, School of Safety and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Hui-Ling Fu
- Research Center for Environmental Pollution Control Technology, School of Safety and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Qiong Liao
- Research Center for Environmental Pollution Control Technology, School of Safety and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Baifei Huang
- Research Center for Environmental Pollution Control Technology, School of Safety and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Xi Fan
- Research Center for Environmental Pollution Control Technology, School of Safety and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Xue-Yang Liu
- Research Center for Environmental Pollution Control Technology, School of Safety and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Jun-Liang Xin
- Research Center for Environmental Pollution Control Technology, School of Safety and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China.
| | - Ying-Ying Huang
- Research Center for Environmental Pollution Control Technology, School of Safety and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China.
| |
Collapse
|
16
|
Raafat BM, Gamal-Eldeen AM, Almehmadi MM, El-Daly SM, Faizo NL, Althobaiti F. Angelica archangelica and Ginkgo biloba Extracts Recover Functional Blood Hemoglobin Derivatives in Rabbits Exposed to High Altitude. Curr Pharm Biotechnol 2021; 23:1377-1382. [PMID: 34792008 DOI: 10.2174/1389201022666211118112356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/17/2021] [Accepted: 10/21/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Shortage of oxygen is a common condition for residents of high-altitude (HA) areas. In mammals, hemoglobin (Hb) has four derivatives: oxyhemoglobin (Hb-O2), carboxyhemoglobin (Hb-CO), sulfhemoglobin (Hb-S), and methemoglobin (Met-Hb). In HA areas, aberrant physiological performance of blood hemoglobin is well-established. OBJECTIVE The study aimed to investigate the influence of 30 days of HA residence on rabbits' total Hb, Hb derivatives, Hb autooxidation rate, and antioxidant enzymes in comparison to low-altitude control rabbits. Further, the study aimed to investigate the effect of antioxidant-rich Angelica archangelica and/or Ginkgo biloba extracts on the same parameters in HA-resident rabbits. METHODS Rabbits subjected to 30 days of HA residence were compared to low-altitude control rabbits. HA-residence rabbits were then orally administered 0.11 g/kg b.wt. of Angelica archangelica and/or Ginkgo biloba extract for 14 days. Hb derivatives and Hb autooxidation rate were measured spectrophotometrically. Antioxidant enzymes were estimated using specialized kits. RESULTS Compared to low-altitude rabbits, 30-day HA-residence rabbits showed a noticeable increase (p<0.05) in Hb-O2 and Hb-CO concentration. In addition, Met-Hb concentration, autooxidation rate of Hb molecules, and activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx) exhibited a remarkable increase in HA-residence rabbits (p<0.01), reflective of rapid ROS generation. In HA-residence rabbits, both individual and combined treatment with antioxidant-rich extracts for 14 days resulted in recovery to near-normal functional levels of Hb-O2 and Met-Hb, Hb autooxidation rate, and activities of SOD and GPx, while only combined treatment led to Hb-O2 recovery. CONCLUSION The findings suggest that functional Hb levels may be recovered by oral administration of A. archangelica, G. biloba, or combined treatments. In conclusion, oxidative stress due to living in HA areas may be avoided by supplementation with natural antioxidants.
Collapse
Affiliation(s)
- Bassem M Raafat
- Radiological Sciences Department, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944. Saudi Arabia
| | - Amira M Gamal-Eldeen
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944. Saudi Arabia
| | - Mazen M Almehmadi
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944. Saudi Arabia
| | - Sherien M El-Daly
- Medical Biochemistry Department, Medical Research Division, National Research Centre, 33 El Buhouth St. Dokki, Cairo, 12622. Egypt
| | - Nahla L Faizo
- Radiological Sciences Department, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944. Saudi Arabia
| | - Fayez Althobaiti
- High Altitude Research Center, Prince Sultan Medical Complex, Al-Hawiyah, Taif University, Taif. Saudi Arabia
| |
Collapse
|
17
|
Zhou X, Joshi S, Khare T, Patil S, Shang J, Kumar V. Nitric oxide, crosstalk with stress regulators and plant abiotic stress tolerance. PLANT CELL REPORTS 2021; 40:1395-1414. [PMID: 33974111 DOI: 10.1007/s00299-021-02705-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Nitric oxide is a dynamic gaseous molecule involved in signalling, crosstalk with stress regulators, and plant abiotic-stress responses. It has great exploratory potentials for engineering abiotic stress tolerance in crops. Nitric oxide (NO), a redox-active gaseous signalling molecule, though present uniformly through the eukaryotes, maintain its specificity in plants with respect to its formation, signalling, and functions. Its cellular concentrations are decisive for its function, as a signalling molecule at lower concentrations, but triggers nitro-oxidative stress and cellular damage when produced at higher concentrations. Besides, it also acts as a potent stress alleviator. Discovered in animals as neurotransmitter, NO has come a long way to being a stress radical and growth regulator in plants. As a key redox molecule, it exhibits several key cellular and molecular interactions including with reactive chemical species, hydrogen sulphide, and calcium. Apart from being a signalling molecule, it is emerging as a key player involved in regulations of plant growth, development and plant-environment interactions. It is involved in crosstalk with stress regulators and is thus pivotal in these stress regulatory mechanisms. NO is getting an unprecedented attention from research community, being investigated and explored for its multifaceted roles in plant abiotic stress tolerance. Through this review, we intend to present the current knowledge and updates on NO biosynthesis and signalling, crosstalk with stress regulators, and how biotechnological manipulations of NO pathway are leading towards developing transgenic crop plants that can withstand environmental stresses and climate change. The targets of various stress responsive miRNA signalling have also been discussed besides giving an account of current approaches used to characterise and detect the NO.
Collapse
Affiliation(s)
- Xianrong Zhou
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing, 408100, China.
| | - Shrushti Joshi
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India
| | - Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India
- Department of Environmental Science, Savitribai Phule Pune University, Pune, 411007, India
| | - Suraj Patil
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India
| | - Jin Shang
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing, 408100, China
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India.
- Department of Environmental Science, Savitribai Phule Pune University, Pune, 411007, India.
| |
Collapse
|
18
|
Zhang G, Yang J, Zhang M, Li Q, Wu Y, Zhao X, Zhang H, Wang Y, Wu J, Wang W. Wheat TaPUB1 Regulates Cd Uptake and Tolerance by Promoting the Degradation of TaIRT1 and TaIAA17. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5818-5829. [PMID: 34018722 DOI: 10.1021/acs.jafc.0c08042] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) accumulation in agricultural soils is an increasingly serious problem, as plants absorb Cd, which inhibits their growth and development. Nonetheless, the molecular mechanisms underlying Cd detoxification and accumulation in wheat (Triticum aestivum L.) are unclear. Here, we isolated the U-box E3 ligase TaPUB1 from wheat and reported the functional characterization of TaPUB1 in Cd uptake and tolerance in wheat. Under Cd stress, TaPUB1 overexpression lines displayed higher photosynthetic rates than the wild type; opposite results were observed in the TaPUB1-RNAi lines. In addition, TaPUB1 overexpression lines showed reduced Cd uptake and accumulation, whereas RNAi plants exhibited a significant increase in Cd accumulation after Cd treatment. We further found that TaPUB1 enhanced the resistance of wheat to Cd stress in three ways. First, TaPUB1 interacts with and ubiquitinates TaIRT1, resulting in the inhibition of Cd uptake. Second, TaPUB1 interacts directly with and ubiquitinates TaIAA17, facilitates its degradation, and results in primary root elongation by activating the Aux signaling pathway under Cd stress. Moreover, TaPUB1 decreases ROS accumulation by regulating antioxidant-related gene expression and antioxidant enzyme activity under Cd stress. Thus, a molecular mechanism by which TaPUB1 regulates Cd uptake and tolerance by modulating the stability of TaIRT1 and TaIAA17 proteins was revealed.
Collapse
Affiliation(s)
- Guangqiang Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
- College of Agriculture and Bioengineering, Heze University, Heze, Shandong 274015, P. R. China
| | - Junjiao Yang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Meng Zhang
- Collaborative Innovation Center, Jining Medical University, Jining, Shandong 272067, P. R. China
| | - Qinxue Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Yunzhen Wu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Xiaoyu Zhao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Huifei Zhang
- College of Agricultural, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Yong Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Jiajie Wu
- College of Agricultural, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Wei Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| |
Collapse
|
19
|
Modareszadeh M, Bahmani R, Kim D, Hwang S. Decreases in arsenic accumulation by the plasma membrane intrinsic protein PIP2;2 in Arabidopsis and yeast. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116646. [PMID: 33561751 DOI: 10.1016/j.envpol.2021.116646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
Arsenic (As) is a toxic pollutant that mainly enters the human body via plants. Therefore, understanding the strategy for reducing arsenic accumulation in plants is important to human health and the environment. Aquaporins are ubiquitous water channel proteins that bidirectionally transport water across cell membranes and play a role in the transportation of other molecules, such as glycerol, ammonia, boric acid, and arsenic acid. Previously, we observed that Arabidopsis PIP2;2, encoding a plasma membrane intrinsic protein, is highly expressed in NtCyc07-expressing Arabidopsis, which shows a higher tolerance to arsenite (As(III)). In this study, we report that the overexpression of AtPIP2;2 enhanced As(III) tolerance and reduced As(III) levels in yeast. Likewise, AtPIP2;2-overexpressing Arabidopsis exhibited improved As(III) tolerance and lower accumulation of As(III). In contrast, atpip2;2 knockout Arabidopsis showed reduced As(III) tolerance but no significant change in As(III) levels. Interestingly, the AtPIP2;2 transcript and protein levels were increased in roots and shoots of Arabidopsis in response to As(III). Furthermore, As(III) efflux was enhanced and As(III) influx/accumulation was reduced in AtPIP2;2-expressing plants. The expression of AtPIP2;2 rescued the As(III)-sensitive phenotype of acr3 mutant yeast by reducing As levels and slightly reduced the As(III)-tolerant phenotype of fps1 mutant yeast by enhancing As content, suggesting that AtPIP2; 2 functions as a bidirectional channel of As(III), while the As(III) exporter activity is higher than the As(III) importer activity. All these results indicate that AtPIP2;2 expression promotes As(III) tolerance by decreasing As(III) accumulation through enhancing As(III) efflux in Arabidopsis. This finding can be applied to the generation of low arsenic crops for human health.
Collapse
Affiliation(s)
- Mahsa Modareszadeh
- Dept. of Molecular Biology Sejong University, Seoul, 143-747, Republic of Korea; Dept. of Bioindustry and Bioresource Engineering Sejong University, Seoul, 143-747, Republic of Korea; Plant Engineering Research Institute Sejong University, Seoul, 143-747, Republic of Korea
| | - Ramin Bahmani
- Dept. of Molecular Biology Sejong University, Seoul, 143-747, Republic of Korea; Dept. of Bioindustry and Bioresource Engineering Sejong University, Seoul, 143-747, Republic of Korea; Plant Engineering Research Institute Sejong University, Seoul, 143-747, Republic of Korea
| | - DongGwan Kim
- Dept. of Molecular Biology Sejong University, Seoul, 143-747, Republic of Korea; Dept. of Bioindustry and Bioresource Engineering Sejong University, Seoul, 143-747, Republic of Korea; Plant Engineering Research Institute Sejong University, Seoul, 143-747, Republic of Korea
| | - Seongbin Hwang
- Dept. of Molecular Biology Sejong University, Seoul, 143-747, Republic of Korea; Dept. of Bioindustry and Bioresource Engineering Sejong University, Seoul, 143-747, Republic of Korea; Plant Engineering Research Institute Sejong University, Seoul, 143-747, Republic of Korea.
| |
Collapse
|
20
|
Bhat JA, Ahmad P, Corpas FJ. Main nitric oxide (NO) hallmarks to relieve arsenic stress in higher plants. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124289. [PMID: 33153789 DOI: 10.1016/j.jhazmat.2020.124289] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/10/2020] [Accepted: 10/13/2020] [Indexed: 05/19/2023]
Abstract
Arsenic (As) is a toxic metalloid that adversely affects plant growth, and poses severe risks to human health. It induces disturbance to many physiological and metabolic pathways such as nutrient, water and redox imbalance, abnormal photosynthesis and ATP synthesis and loss of membrane integrity. Nitric oxide (NO) is a free radical molecule endogenously generated in plant cells which has signalling properties. Under As-stress, the endogenous NO metabolism is significantly affected in a clear connection with the metabolism of reactive oxygen species (ROS) triggering nitro-oxidative stress. However, the exogenous NO application provides beneficial effects under As-stress conditions which can relieve oxidative damages by stimulating the antioxidant systems, regulation of the expression of the transporter and other defence-related genes, modification of root cell wall composition or the biosynthesis of enriched sulfur compounds such phytochelatins (PCs). This review aims to provide up-to-date information on the key NO hallmarks to relieve As-stress in higher plants. Furthermore, it will be analyzed the diverse genetic engineering techniques to increase the endogenous NO content which could open new biotechnological applications, especially in crops under arsenic stress.
Collapse
Affiliation(s)
- Javaid Akhter Bhat
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, 8, Riyadh, Saudi Arabia; Department of Botany, S.P. College Srinagar, Jammu and Kashmir, India
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), C/ Profesor Albareda, 1, 18008 Granada, Spain.
| |
Collapse
|
21
|
Gräfe K, Schmitt L. The ABC transporter G subfamily in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:92-106. [PMID: 32459300 DOI: 10.1093/jxb/eraa260] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 05/21/2020] [Indexed: 05/02/2023]
Abstract
ABC transporters are ubiquitously present in all kingdoms and mediate the transport of a large spectrum of structurally different compounds. Plants possess high numbers of ABC transporters in relation to other eukaryotes; the ABCG subfamily in particular is extensive. Earlier studies demonstrated that ABCG transporters are involved in important processes influencing plant fitness. This review summarizes the functions of ABCG transporters present in the model plant Arabidopsis thaliana. These transporters take part in diverse processes such as pathogen response, diffusion barrier formation, or phytohormone transport. Studies involving knockout mutations reported pleiotropic phenotypes of the mutants. In some cases, different physiological roles were assigned to the same protein. The actual transported substrate(s), however, still remain to be determined for the majority of ABCG transporters. Additionally, the proposed substrate spectrum of different ABCG proteins is not always reflected by sequence identities between ABCG members. Applying only reverse genetics is thereby insufficient to clearly identify the substrate(s). We therefore stress the importance of in vitro studies in addition to in vivo studies in order to (i) clarify the substrate identity; (ii) determine the transport characteristics including directionality; and (iii) identify dimerization partners of the half-size proteins, which might in turn affect substrate specificity.
Collapse
Affiliation(s)
- Katharina Gräfe
- Institute of Biochemistry and Cluster of Excellence on Plant Sciences CEPLAS, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry and Cluster of Excellence on Plant Sciences CEPLAS, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
22
|
Modareszadeh M, Bahmani R, Kim D, Hwang S. CAX3 (cation/proton exchanger) mediates a Cd tolerance by decreasing ROS through Ca elevation in Arabidopsis. PLANT MOLECULAR BIOLOGY 2021; 105:115-132. [PMID: 32926249 DOI: 10.1007/s11103-020-01072-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
KEY MESSAGE Over-expression of CAX3 encoding a cation/proton exchanger enhances Cd tolerance by decreasing ROS (Reactive Oxygen Species) through activating anti-oxidative enzymes via elevation of Ca level in Arabidopsis CAXs (cation/proton exchangers) are involved in the sequestration of cations such as Mn, Li, and Cd, as well as Ca, from cytosol into the vacuole using proton gradients. In addition, it has been reported that CAX1, 2 and 4 are involved in Cd tolerance. Interestingly, it has been reported that CAX3 expressions were enhanced by Cd in Cd-tolerant transgenic plants expressing Hb1 (hemoglobin 1) or UBC1 (Ub-conjugating enzyme 1). Therefore, to investigate whether CAX3 plays a role in increasing Cd tolerance, CAX3 of Arabidopsis and tobacco were over-expressed in Arabidopsis thaliana. Compared to control plants, both transgenic plants displayed an increase in Cd tolerance, no change in Cd accumulation, and enhanced Ca levels. In support of these, AtCAX3-Arabidopsis showed no change in expressions of Cd transporters, but reduced expressions of Ca exporters and lower rate of Ca efflux. By contrast, atcax3 knockout Arabidopsis exhibited a reduced Cd tolerance, while the Cd level was not altered. The expression of Δ90-AtCAX3 (deletion of autoinhibitory domain) increased Cd and Ca tolerance in yeast, while AtCAX3 expression did not. Interestingly, less accumulation of ROS (H2O2 and O2-) was observed in CAX3-expressing transgenic plants and was accompanied with higher antioxidant enzyme activities (SOD, CAT, GR). Taken together, CAX3 over-expression may enhance Cd tolerance by decreasing Cd-induced ROS production by activating antioxidant enzymes and by intervening the positive feedback circuit between ROS generation and Cd-induced spikes of cytoplasmic Ca.
Collapse
Affiliation(s)
- Mahsa Modareszadeh
- Department of Molecular Biology, Sejong University, Seoul, 143-747, Republic of Korea
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, 143-747, Republic of Korea
- Plant Engineering Research Institute, Sejong University, Seoul, 143-747, Republic of Korea
| | - Ramin Bahmani
- Department of Molecular Biology, Sejong University, Seoul, 143-747, Republic of Korea
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, 143-747, Republic of Korea
- Plant Engineering Research Institute, Sejong University, Seoul, 143-747, Republic of Korea
| | - DongGwan Kim
- Department of Molecular Biology, Sejong University, Seoul, 143-747, Republic of Korea
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, 143-747, Republic of Korea
- Plant Engineering Research Institute, Sejong University, Seoul, 143-747, Republic of Korea
| | - Seongbin Hwang
- Department of Molecular Biology, Sejong University, Seoul, 143-747, Republic of Korea.
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, 143-747, Republic of Korea.
- Plant Engineering Research Institute, Sejong University, Seoul, 143-747, Republic of Korea.
| |
Collapse
|
23
|
Kim D, Bahmani R, Modareszadeh M, Hwang S. Mechanism for Higher Tolerance to and Lower Accumulation of Arsenite in NtCyc07-Overexpressing Tobacco. PLANTS 2020; 9:plants9111480. [PMID: 33153165 PMCID: PMC7692962 DOI: 10.3390/plants9111480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 01/24/2023]
Abstract
Arsenite [As(III)] is a highly toxic chemical to all organisms. Previously, we reported that the overexpression of NtCyc07 enhanced As(III) tolerance and reduced As(III) accumulation in yeast (Saccharomyces cerevisiae) and tobacco (Nicotiana tabacum). To understand a mechanism for higher As(III) tolerance and lower As(III) accumulation in NtCyc07-overexpressing tobacco, we examined the expression levels of various putative As(III) transporters (aquaporin). The expressions of putative As(III) exporter NIP1;1, PIP1;1, 1;5, 2;1, 2;2, and 2;7 were enhanced, while the expressions of putative As(III) importer NIP3;1, 4;1, and XIP2;1 were decreased, contributing to the reduced accumulation of As(III) in NtCyc07-overexpressing tobacco. In addition, the levels of oxidative stress indicators (H2O2, superoxide and malondialdehyde) were lower, and the activities of antioxidant enzymes (catalase, superoxide dismutase and glutathione reductase) were higher in NtCyc07-tobacco than in the control tobacco. This suggests that the lower oxidative stress in transgenic tobacco may be attributed to the higher activities of antioxidant enzymes and lower As(III) levels. Taken together, the overexpression of NtCyc07 enhances As(III) tolerance by reducing As(III) accumulation through modulation of expressions of putative As(III) transporters in tobacco.
Collapse
|
24
|
Phytoremediation of Cadmium: Physiological, Biochemical, and Molecular Mechanisms. BIOLOGY 2020; 9:biology9070177. [PMID: 32708065 PMCID: PMC7407403 DOI: 10.3390/biology9070177] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022]
Abstract
Cadmium (Cd) is one of the most toxic metals in the environment, and has noxious effects on plant growth and production. Cd-accumulating plants showed reduced growth and productivity. Therefore, remediation of this non-essential and toxic pollutant is a prerequisite. Plant-based phytoremediation methodology is considered as one a secure, environmentally friendly, and cost-effective approach for toxic metal remediation. Phytoremediating plants transport and accumulate Cd inside their roots, shoots, leaves, and vacuoles. Phytoremediation of Cd-contaminated sites through hyperaccumulator plants proves a ground-breaking and profitable choice to combat the contaminants. Moreover, the efficiency of Cd phytoremediation and Cd bioavailability can be improved by using plant growth-promoting bacteria (PGPB). Emerging modern molecular technologies have augmented our insight into the metabolic processes involved in Cd tolerance in regular cultivated crops and hyperaccumulator plants. Plants’ development via genetic engineering tools, like enhanced metal uptake, metal transport, Cd accumulation, and the overall Cd tolerance, unlocks new directions for phytoremediation. In this review, we outline the physiological, biochemical, and molecular mechanisms involved in Cd phytoremediation. Further, a focus on the potential of omics and genetic engineering strategies has been documented for the efficient remediation of a Cd-contaminated environment.
Collapse
|
25
|
Muthusamy M, Kim JY, Yoon EK, Kim JA, Lee SI. BrEXLB1, a Brassica rapa Expansin-Like B1 Gene is Associated with Root Development, Drought Stress Response, and Seed Germination. Genes (Basel) 2020; 11:genes11040404. [PMID: 32276441 PMCID: PMC7230339 DOI: 10.3390/genes11040404] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 12/28/2022] Open
Abstract
Expansins are structural proteins prevalent in cell walls, participate in cell growth and stress responses by interacting with internal and external signals perceived by the genetic networks of plants. Herein, we investigated the Brassica rapa expansin-like B1 (BrEXLB1) interaction with phytohormones (IAA, ABA, Ethephon, CK, GA3, SA, and JA), genes (Bra001852, Bra001958, and Bra003006), biotic (Turnip mosaic Virus (TuMV), Pectobacterium carotovorum, clubroot disease), and abiotic stress (salt, oxidative, osmotic, and drought) conditions by either cDNA microarray or qRT-PCR assays. In addition, we also unraveled the potential role of BrEXLB1 in root growth, drought stress response, and seed germination in transgenic Arabidopsis and B. rapa lines. The qRT-PCR results displayed that BrEXLB1 expression was differentially influenced by hormones, and biotic and abiotic stress conditions; upregulated by IAA, ABA, SA, ethylene, drought, salt, osmotic, and oxidative conditions; and downregulated by clubroot disease, P. carotovorum, and TuMV infections. Among the tissues, prominent expression was observed in roots indicating the possible role in root growth. The root phenotyping followed by confocal imaging of root tips in Arabidopsis lines showed that BrEXLB1 overexpression increases the size of the root elongation zone and induce primary root growth. Conversely, it reduced the seed germination rate. Further analyses with transgenic B. rapa lines overexpressing BrEXLB1 sense (OX) and antisense transcripts (OX-AS) confirmed that BrEXLB1 overexpression is positively associated with drought tolerance and photosynthesis during vegetative growth phases of B. rapa plants. Moreover, the altered expression of BrEXLB1 in transgenic lines differentially influenced the expression of predicted BrEXLB1 interacting genes like Bra001852 and Bra003006. Collectively, this study revealed that BrEXLB1 is associated with root development, drought tolerance, photosynthesis, and seed germination.
Collapse
Affiliation(s)
- Muthusamy Muthusamy
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Korea; (M.M.); (J.Y.K.); (J.A.K.)
| | - Joo Yeol Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Korea; (M.M.); (J.Y.K.); (J.A.K.)
| | - Eun Kyung Yoon
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore;
| | - Jin A. Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Korea; (M.M.); (J.Y.K.); (J.A.K.)
| | - Soo In Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Korea; (M.M.); (J.Y.K.); (J.A.K.)
- Correspondence: ; Tel.: +82-63-238-4618; Fax: +82-63-238-4604
| |
Collapse
|
26
|
Bahmani R, Modareszadeh M, Bihamta MR. Genotypic variation for cadmium tolerance in common bean (Phaseolus vulgaris L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110178. [PMID: 31927193 DOI: 10.1016/j.ecoenv.2020.110178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/03/2020] [Accepted: 01/05/2020] [Indexed: 06/10/2023]
Abstract
Given the limitation of crop production in Cd-polluted areas, the identification and selection of plant genotypes tolerant to Cd stress are of great significance. In the present work, we show the existence of genotypic variation for Cd tolerance in common bean. The laboratory screening of 25 bean genotypes indicated a significant positive correlation of the mean productivity (MP) and the geometric mean productivity (GMP) with plant fresh weight both in control and Cd-treated plants. A principal component analysis further confirmed this variation and, together with other analyses, led to the selection of genotypes G-11867, Taylor, Emerson, and D-81083 as tolerant genotypes. A total of six bean genotypes with different degrees of Cd tolerance were selected, and their long-term physiological responses to Cd (0, 45, and 90 mg/kg soil) were evaluated. Increasing Cd concentrations led to higher Cd accumulation both in roots and shoots, and to significant rises in the levels of the oxidative stress biomarkers malondialdehyde (MDA), dityrosine (D-T), and 8-hydroxy-2'-deoxyguanosine (8-OH-2'-dG). Remarkable reductions in plant hormone levels and chlorophyll contents, as well as in dry and fresh weight, were observed in Cd-treated plants. Among the examined genotypes, Emerson, Taylor, and G-11867 were found to be more tolerant to Cd owing to lower Cd accumulation and lower oxidative stress levels, as well as higher chlorophyll and hormone contents. Our results contribute to the understanding of the physiological and biochemical basis of Cd tolerance in bean plants and may therefore, be useful for breeding programs directed towards obtaining bean varieties showing low Cd accumulation.
Collapse
Affiliation(s)
- Ramin Bahmani
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea.
| | - Mahsa Modareszadeh
- Department of Molecular Biology, Sejong University, Seoul, 143-747, South Korea
| | | |
Collapse
|
27
|
Zhang L, Ding H, Jiang H, Wang H, Chen K, Duan J, Feng S, Wu G. Regulation of cadmium tolerance and accumulation by miR156 in Arabidopsis. CHEMOSPHERE 2020; 242:125168. [PMID: 31678850 DOI: 10.1016/j.chemosphere.2019.125168] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 10/18/2019] [Accepted: 10/20/2019] [Indexed: 05/28/2023]
Abstract
Plants have evolved effective strategies to cope with heavy metals Cd toxicity, but the regulatory mechanism underlying Cd tolerance and accumulation are still poorly understood. miR156 has been shown to be the master regulator of development and stress response in plants. However, whether miR156 is also involved in plant Cd stress response remains unknown. Here, we show that plants overexpressing miR156 (miR156OE) accumulated significantly less Cd in the shoot, and conferred enhanced tolerance to Cd stress. Plants with a knocked-down level of miR156 (MIM156) were sensitive to Cd stress, and accumulated significantly higher Cd. Under Cd stress, miR156OE had significantly longer primary root length, higher biomass and chlorophyll content, increased activities of antioxidative enzymes and lower levels of endogenous reactive oxygen species (ROS), while MIM156 had the opposite phenotype. To investigate the underlying mechanism of miR156-mediated Cd stress response in Arabidopsis, we profiled the expression of several Cd transporter genes. The expression of Cd uptake transporter of AtZIP1、AtZIP2 and vacuole segregated transporter AtABCC1 was significantly elevated in miR156OE, whereas it was significantly reduced in MIM156. MIM156 also led to an elevated level of AtHMA4 responsible for transporting Cd from the root to the shoot. Our results indicate that miR156 acts as a positive regulator of plant tolerance to Cd stress by modulating ROS levels and Cd uptake/transport genes expression. Therefore, our study adds a new layer of regulatory mechanism for Cd transport and tolerance in plants, and provides a perspective to regulate Cd transport artificially by modulating plant vegetative growth and development using miR156.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Laboratory of Subtropical Silviculture, Laboratory of Plant Molecular and Developmental Biology, Zhejiang Provincial Key Laboratory of Bioremediation of Soil Contamination, Zhejiang Agriculture and Forestry University, Hangzhou, China.
| | - Han Ding
- State Key Laboratory of Subtropical Silviculture, Laboratory of Plant Molecular and Developmental Biology, Zhejiang Provincial Key Laboratory of Bioremediation of Soil Contamination, Zhejiang Agriculture and Forestry University, Hangzhou, China.
| | - Hailing Jiang
- State Key Laboratory of Subtropical Silviculture, Laboratory of Plant Molecular and Developmental Biology, Zhejiang Provincial Key Laboratory of Bioremediation of Soil Contamination, Zhejiang Agriculture and Forestry University, Hangzhou, China.
| | - Huasen Wang
- State Key Laboratory of Subtropical Silviculture, Laboratory of Plant Molecular and Developmental Biology, Zhejiang Provincial Key Laboratory of Bioremediation of Soil Contamination, Zhejiang Agriculture and Forestry University, Hangzhou, China.
| | - Kexin Chen
- State Key Laboratory of Subtropical Silviculture, Laboratory of Plant Molecular and Developmental Biology, Zhejiang Provincial Key Laboratory of Bioremediation of Soil Contamination, Zhejiang Agriculture and Forestry University, Hangzhou, China.
| | - Jinju Duan
- State Key Laboratory of Subtropical Silviculture, Laboratory of Plant Molecular and Developmental Biology, Zhejiang Provincial Key Laboratory of Bioremediation of Soil Contamination, Zhejiang Agriculture and Forestry University, Hangzhou, China; Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China.
| | - Shengjun Feng
- State Key Laboratory of Subtropical Silviculture, Laboratory of Plant Molecular and Developmental Biology, Zhejiang Provincial Key Laboratory of Bioremediation of Soil Contamination, Zhejiang Agriculture and Forestry University, Hangzhou, China.
| | - Gang Wu
- State Key Laboratory of Subtropical Silviculture, Laboratory of Plant Molecular and Developmental Biology, Zhejiang Provincial Key Laboratory of Bioremediation of Soil Contamination, Zhejiang Agriculture and Forestry University, Hangzhou, China.
| |
Collapse
|
28
|
Terrón-Camero LC, Del Val C, Sandalio LM, Romero-Puertas MC. Low endogenous NO levels in roots and antioxidant systems are determinants for the resistance of Arabidopsis seedlings grown in Cd. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113411. [PMID: 31672356 DOI: 10.1016/j.envpol.2019.113411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/11/2019] [Accepted: 10/14/2019] [Indexed: 05/15/2023]
Abstract
Cadmium (Cd), which is a toxic non-essential heavy metal capable of entering plants and thus the food chain, constitutes a major environmental and health concern worldwide. An understanding of the tools used by plants to overcome Cd stress could lead to the production of food crops with lower Cd uptake capacity and of plants with greater Cd uptake potential for phytoremediation purposes in order to restore soil efficiency in self-sustaining ecosystems. The signalling molecule nitric oxide (NO), whose function remains unclear, has recently been involved in responses to Cd stress. Using different mutants, such as nia1nia2, nox1, argh1-1 and Atnoa1, which were altered in NO metabolism, we analysed various parameters related to reactive oxygen and nitrogen species (ROS/RNS) metabolism and seedling fitness following germination and growth under Cd treatment conditions for seven days. Seedling roots were the most affected, with an increase in ROS and RNS observed in wild type (WT) seedling roots, leading to increased oxidative damage and fitness loss. Mutants that showed lower NO levels in seedling roots under Cd stress were more resistant than WT seedlings due to the maintenance of antioxidant systems which protect against oxidative damage.
Collapse
Affiliation(s)
- Laura C Terrón-Camero
- Department of Biochemistry and Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín-CSIC, Granada, Spain
| | - Coral Del Val
- Department of Artificial Intelligence, University of Granada, E-18071, Granada, Spain; Andalusian Data Science and Computational Intelligence (DaSCI) Research Institute, University of Granada, E-18071, Granada, Spain
| | - Luisa M Sandalio
- Department of Biochemistry and Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín-CSIC, Granada, Spain
| | - María C Romero-Puertas
- Department of Biochemistry and Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín-CSIC, Granada, Spain.
| |
Collapse
|
29
|
Terrón-Camero LC, Peláez-Vico MÁ, Del-Val C, Sandalio LM, Romero-Puertas MC. Role of nitric oxide in plant responses to heavy metal stress: exogenous application versus endogenous production. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4477-4488. [PMID: 31125416 DOI: 10.1093/jxb/erz184] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/12/2019] [Indexed: 05/23/2023]
Abstract
Anthropogenic activities, such as industrial processes, mining, and agriculture, lead to an increase in heavy metal concentrations in soil, water, and air. Given their stability in the environment, heavy metals are difficult to eliminate and can constitute a human health risk by entering the food chain through uptake by crop plants. An excess of heavy metals is toxic for plants, which have various mechanisms to prevent their accumulation. However, once metals enter the plant, oxidative damage sometimes occurs, which can lead to plant death. Initial production of nitric oxide (NO), which may play a role in plant perception, signalling, and stress acclimation, has been shown to protect against heavy metals. Very little is known about NO-dependent mechanisms downstream from signalling pathways in plant responses to heavy metal stress. In this review, using bioinformatic techniques, we analyse studies of the involvement of NO in plant responses to heavy metal stress, its possible role as a cytoprotective molecule, and its relationship with reactive oxygen species. Some conclusions are drawn and future research perspectives are outlined to further elucidate the signalling mechanisms underlying the role of NO in plant responses to heavy metal stress.
Collapse
Affiliation(s)
- Laura C Terrón-Camero
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Apartado, Granada, Spain
| | - M Ángeles Peláez-Vico
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Apartado, Granada, Spain
| | - Coral Del-Val
- Department of Artificial Intelligence, University of Granada, Granada, Spain
- Andalusian Data Science and Computational Intelligence Research Institute, University of Granada, Granada, Spain
| | - Luisa M Sandalio
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Apartado, Granada, Spain
| | - María C Romero-Puertas
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Apartado, Granada, Spain
| |
Collapse
|
30
|
Fukudome M, Watanabe E, Osuki KI, Uchi N, Uchiumi T. Ectopic or Over-Expression of Class 1 Phytoglobin Genes Confers Flooding Tolerance to the Root Nodules of Lotus japonicus by Scavenging Nitric Oxide. Antioxidants (Basel) 2019; 8:antiox8070206. [PMID: 31277471 PMCID: PMC6681080 DOI: 10.3390/antiox8070206] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 12/25/2022] Open
Abstract
Flooding limits biomass production in agriculture. Leguminous plants, important agricultural crops, use atmospheric dinitrogen gas as nitrogen nutrition by symbiotic nitrogen fixation with rhizobia, but this root-nodule symbiosis is sometimes broken down by flooding of the root system. In this study, we analyzed the effect of flooding on the symbiotic system of transgenic Lotus japonicus lines which overexpressed class 1 phytoglobin (Glb1) of L. japonicus (LjGlb1-1) or ectopically expressed that of Alnus firma (AfGlb1). In the roots of wild-type plants, flooding increased nitric oxide (NO) level and expression of senescence-related genes and decreased nitrogenase activity; in the roots of transgenic lines, these effects were absent or less pronounced. The decrease of chlorophyll content in leaves and the increase of reactive oxygen species (ROS) in roots and leaves caused by flooding were also suppressed in these lines. These results suggest that increased levels of Glb1 help maintain nodule symbiosis under flooding by scavenging NO and controlling ROS.
Collapse
Affiliation(s)
- Mitsutaka Fukudome
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan
| | - Eri Watanabe
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan
| | - Ken-Ichi Osuki
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan
| | - Nahoko Uchi
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan
| | - Toshiki Uchiumi
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan.
| |
Collapse
|