1
|
Sun PW, Chang JT, Luo MX, Chao CT, Du FK, Liao PC. In situ diversification and adaptive introgression in Taiwanese Scutellaria. PLANT BIOLOGY (STUTTGART, GERMANY) 2025; 27:238-254. [PMID: 39844615 DOI: 10.1111/plb.13769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025]
Abstract
Island habitats provide unique opportunities to study speciation. Recent work indicates that both ex situ origination and in situ speciation contribute to island species diversity. However, clear evidence of local adaptation of endemic plant species on islands requires in-depth studies, which are scarce. This study underscores the importance of local adaptation in maintaining species boundaries by examining how adaptive introgression, hybridization, and local adaptation contribute to genetic variation in island species. Multilocus genome scanning of 51 nuclear genes was used to investigate the evolutionary relationships of the Scutellaria species complex on Taiwan Island and assess the role of in situ diversification in generating high endemism and genetic diversity. Interspecies introgressions were detected by phylogenetic networks and ABBA-BABA-based analysis, suggesting ongoing or recent speciation processes. Coalescent-based simulation identified hybrid speciation in Scutellaria taiwanensis and Scutellaria hsiehii, with evidence of hybridization between more than two parental species. Genotype-environment association studies revealed that the influence of climate, particularly precipitation- and temperature-related factors, contributed to adaptive genetic divergence between species. Additionally, adaptive introgression related to environmental pressures that may have facilitated the colonization of new island habitats were identified. This research illustrates how hybridization, introgression, and adaptation shaped the evolutionary histories and divergence of this island-endemic plant species complex and sheds light on the multifaceted mechanisms of speciation on semi-isolated islands.
Collapse
Affiliation(s)
- P-W Sun
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, USA
| | - J-T Chang
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - M-X Luo
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - C-T Chao
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - F K Du
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - P-C Liao
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
2
|
Yap WS, Cengnata A, Saw WY, Abdul Rahman T, Teo YY, Lim RLH, Hoh BP. High-coverage whole-genome sequencing of a Jakun individual from the "Orang Asli" Proto-Malay subtribe from Peninsular Malaysia. Hum Genome Var 2025; 12:4. [PMID: 39774017 PMCID: PMC11707147 DOI: 10.1038/s41439-024-00308-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 12/04/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
Jakun, a Proto-Malay subtribe from Peninsular Malaysia, is believed to have inhabited the Malay Archipelago during the period of agricultural expansion approximately 4 thousand years ago (kya). However, their genetic structure and population history remain inconclusive. In this study, we report the genome structure of a Jakun female, based on whole-genome sequencing, which yielded an average coverage of 35.97-fold. We identified approximately 3.6 million single-nucleotide variations (SNVs) and 517,784 small insertions/deletions (indels). Of these, 39,916 SNVs were novel (referencing dbSNP151), and 10,167 were nonsynonymous (nsSNVs), spanning 5674 genes. Principal Component Analysis (PCA) revealed that the Jakun genome sequence closely clustered with the genomes of the Cambodians (CAM) and the Metropolitan Malays from Singapore (SG_MAS). The ADMIXTURE analysis further revealed potential admixture from the EA and North Borneo populations, as corroborated by the results from the F3, F4, and TreeMix analyses. Mitochondrial DNA analysis revealed that the Jakun genome carried the N21a haplogroup (estimated to have occurred ~19 kya), which is commonly found among Malays from Malaysia and Indonesia. From the whole-genome sequence data, we identified 825 damaging and deleterious nonsynonymous single-nucleotide polymorphisms (nsSNVs) affecting 720 genes. Some of these variants are associated with age-related macular degeneration, atrial fibrillation, and HDL cholesterol level. Additionally, we located a total of 3310 variants on 32 core adsorption, distribution, metabolism, and elimination (ADME) genes. Of these, 193 variants are listed in PharmGKB, and 21 are nsSNVs. In summary, the genetic structure identified in the Jakun individual could enhance the mapping of genetic variants for disease-based population studies and further our understanding of the human migration history in Southeast Asia.
Collapse
Affiliation(s)
- Wai-Sum Yap
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Federal Territory of Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Alvin Cengnata
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Federal Territory of Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Woei-Yuh Saw
- Saw Swee Hock School of Public Health National University of Singapore, Singapore, Singapore
- Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Thuhairah Abdul Rahman
- Clinical Pathology Diagnostic Centre Research Laboratory, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Sungai Buloh, Selangor, Malaysia
| | - Yik-Ying Teo
- Saw Swee Hock School of Public Health National University of Singapore, Singapore, Singapore
- Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Department of Statistics and Applied Probability, Faculty of Science, National University of Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Science and Engineering National University of Singapore, Singapore, Singapore
- Genome Institute of Singapore Agency for Science, Technology and Research, Singapore, Singapore
| | - Renee Lay-Hong Lim
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Federal Territory of Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Boon-Peng Hoh
- Faculty of Medicine and Health Sciences, UCSI University, Negeri Sembilan, Federal Territory of Kuala Lumpur, Malaysia.
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, IMU University, Bukit Jalil, Kuala Lumpur, Federal Territory of Kuala Lumpur, Malaysia.
| |
Collapse
|
3
|
de Almeida Sousa Cruz MA, de Barros Elias M, Calina D, Sharifi-Rad J, Teodoro AJ. Insights into grape-derived health benefits: a comprehensive overview. FOOD PRODUCTION, PROCESSING AND NUTRITION 2024; 6:91. [DOI: 10.1186/s43014-024-00267-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/08/2024] [Indexed: 01/03/2025]
Abstract
AbstractGrapes, renowned for their diverse phytochemical composition, have long been recognized for their health-promoting properties. This narrative review aims to synthesize the current research on grapes, with a particular emphasis on their role in disease prevention and health enhancement through bioactive compounds.A comprehensive review of peer-reviewed studies, including in vitro, in vivo, and clinical investigations, was conducted to elucidate the relationship between grape consumption and health outcomes. The review highlights the positive association of grape intake with a decreased risk of chronic diseases such as cardiovascular disease, type 2 diabetes, and certain cancers. Notable bioactive components like resveratrol are emphasized for their neuroprotective and antioxidative capabilities. Additionally, the review explores emerging research on the impact of grapes on gut microbiota and its implications for metabolic health and immune function.This updated review underscores the importance of future research to fully leverage and understand the therapeutic potential of grape-derived compounds, aiming to refine dietary guidelines and functional food formulations. Further translational studies are expected to clarify the specific bioactive interactions and their impacts on health.
Graphical Abstract
Collapse
|
4
|
Campos M, Pérez-Collazos E, Díaz-Pérez A, López-Alvarez D, Oumouloud A, Mur LAJ, Vogel JP, Catalán P. Repeated migration, interbreeding and bottlenecking shaped the phylogeography of the selfing grass Brachypodium stacei. Mol Ecol 2024; 33:e17513. [PMID: 39188107 DOI: 10.1111/mec.17513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 07/24/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
Brachypodium stacei is the most ancestral lineage in the genus Brachypodium, a model system for grass functional genomics. B. stacei shows striking and sometimes contradictory biological and evolutionary features, including a high selfing rate yet extensive admixture, an ancient Miocene origin yet with recent evolutionary radiation, and adaptation to different dry climate conditions in its narrow distribution range. Therefore, it constitutes an ideal system to study these life history traits. We studied the phylogeography of 17 native circum-Mediterranean B. stacei populations (39 individuals) using genome-wide RADseq SNP data and complete plastome sequences. Nuclear SNP data revealed the existence of six distinct genetic clusters, low levels of intra-population genetic diversity and high selfing rates, albeit with signatures of admixture. Coalescence-based dating analysis detected a recent split between crown lineages in the Late Quaternary. Plastome sequences showed incongruent evolutionary relationships with those recovered by the nuclear data, suggesting interbreeding and chloroplast capture events between genetically distant populations. Demographic and population dispersal coalescent models identified an ancestral origin of B. stacei in the western-central Mediterranean islands, followed by an early colonization of the Canary Islands and two independent colonization events of the eastern Mediterranean region through long-distance dispersal and bottleneck events as the most likely evolutionary history. Climate niche data identified three arid niches of B. stacei in the southern Mediterranean region. Our findings indicate that the phylogeography of B. stacei populations was shaped by recent radiations, frequent extinctions, long-distance dispersal events, occasional interbreeding, and adaptation to local climates.
Collapse
Affiliation(s)
- Miguel Campos
- Departamento de Ciencias Agrarias y del Medio Natural, Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Huesca, Spain
- Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| | - Ernesto Pérez-Collazos
- Departamento de Ciencias Agrarias y del Medio Natural, Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Huesca, Spain
- Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| | - Antonio Díaz-Pérez
- Departamento de Ciencias Agrarias y del Medio Natural, Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Huesca, Spain
- GESPLAN S.A. C, Las Palmas de Gran Canaria, Spain
- Instituto de Genética, Facultad de Agronomía, Universidad Central de Venezuela, Maracay, Venezuela
| | - Diana López-Alvarez
- Departamento de Ciencias Agrarias y del Medio Natural, Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Huesca, Spain
- Facultad de Ciencias Agropecuarias, Departamento de Ciencias Biológicas, Universidad Nacional de Colombia, Palmira, Colombia
| | - Ali Oumouloud
- Institute Agronomique et Vétérinaire Hassan II, Agadir, Morocco
| | - Luis A J Mur
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - John P Vogel
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Pilar Catalán
- Departamento de Ciencias Agrarias y del Medio Natural, Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Huesca, Spain
- Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| |
Collapse
|
5
|
Cruz MAAS, Coimbra PPS, Araújo-Lima CF, Freitas-Silva O, Teodoro AJ. Hybrid Fruits for Improving Health-A Comprehensive Review. Foods 2024; 13:219. [PMID: 38254523 PMCID: PMC10814314 DOI: 10.3390/foods13020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Several species of hybrid fruits, such as citrus, grapes, blueberries, apples, tomatoes, and lingonberries among others, have attracted scientific attention in recent years, especially due to their reported antioxidant and anti-inflammatory properties. The bagasse, leaves, bark, and seeds of these hybrid fruits have large amounts of polyphenols, such as flavonoids, which act as potent antioxidants. Several studies have been carried out in cellular models of neurotoxicity of the extract of these fruits, to document the beneficial effects for human health, as well as to prove its antiproliferative effect in cancer cells. In the present review, through a synthesis of existing information in the scientific literature, we demonstrate that hybrid fruits are a source of antioxidant and bioactive compounds, which act in the inhibition of diseases such as cancer, diabetes, and inflammatory and neurodegenerative diseases, and consequently improving human health.
Collapse
Affiliation(s)
- Marta A. A. S. Cruz
- Food and Nutrition Program, Functional Foods Laboratory, Federal University of the State of Rio de Janeiro, Rio de Janeiro 22290-240, RJ, Brazil;
| | - Pedro P. S. Coimbra
- Laboratory of Environmental Mutagenesis, Federal University of the State of Rio de Janeiro, Rio de Janeiro 22290-240, RJ, Brazil; (P.P.S.C.); (C.F.A.-L.)
- Laboratory of Pharmaceutical and Technological Innovation, Department of Genetics and Molecular Biology, Federal University of the State of Rio de Janeiro, Rio de Janeiro 22290-240, RJ, Brazil
| | - Carlos F. Araújo-Lima
- Laboratory of Environmental Mutagenesis, Federal University of the State of Rio de Janeiro, Rio de Janeiro 22290-240, RJ, Brazil; (P.P.S.C.); (C.F.A.-L.)
- Laboratory of Pharmaceutical and Technological Innovation, Department of Genetics and Molecular Biology, Federal University of the State of Rio de Janeiro, Rio de Janeiro 22290-240, RJ, Brazil
| | | | - Anderson J. Teodoro
- Food and Nutrition Program, Functional Foods Laboratory, Federal University of the State of Rio de Janeiro, Rio de Janeiro 22290-240, RJ, Brazil;
- Integrated Food and Nutrition Center, Department of Nutrition and Dietetics, Fluminense Federal University, Niterói 24020-140, RJ, Brazil
| |
Collapse
|
6
|
Cochetel N, Minio A, Guarracino A, Garcia JF, Figueroa-Balderas R, Massonnet M, Kasuga T, Londo JP, Garrison E, Gaut BS, Cantu D. A super-pangenome of the North American wild grape species. Genome Biol 2023; 24:290. [PMID: 38111050 PMCID: PMC10729490 DOI: 10.1186/s13059-023-03133-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/30/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Capturing the genetic diversity of wild relatives is crucial for improving crops because wild species are valuable sources of agronomic traits that are essential to enhance the sustainability and adaptability of domesticated cultivars. Genetic diversity across a genus can be captured in super-pangenomes, which provide a framework for interpreting genomic variations. RESULTS Here we report the sequencing, assembly, and annotation of nine wild North American grape genomes, which are phased and scaffolded at chromosome scale. We generate a reference-unbiased super-pangenome using pairwise whole-genome alignment methods, revealing the extent of the genomic diversity among wild grape species from sequence to gene level. The pangenome graph captures genomic variation between haplotypes within a species and across the different species, and it accurately assesses the similarity of hybrids to their parents. The species selected to build the pangenome are a great representation of the genus, as illustrated by capturing known allelic variants in the sex-determining region and for Pierce's disease resistance loci. Using pangenome-wide association analysis, we demonstrate the utility of the super-pangenome by effectively mapping short reads from genus-wide samples and identifying loci associated with salt tolerance in natural populations of grapes. CONCLUSIONS This study highlights how a reference-unbiased super-pangenome can reveal the genetic basis of adaptive traits from wild relatives and accelerate crop breeding research.
Collapse
Affiliation(s)
- Noé Cochetel
- Department of Viticulture and Enology, University of California Davis, Davis, CA, USA
| | - Andrea Minio
- Department of Viticulture and Enology, University of California Davis, Davis, CA, USA
| | - Andrea Guarracino
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
- Human Technopole, Milan, Italy
| | - Jadran F Garcia
- Department of Viticulture and Enology, University of California Davis, Davis, CA, USA
| | | | - Mélanie Massonnet
- Department of Viticulture and Enology, University of California Davis, Davis, CA, USA
| | - Takao Kasuga
- Crops Pathology and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Davis, CA, USA
| | - Jason P Londo
- Horticulture Section, School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY, USA
| | - Erik Garrison
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Brandon S Gaut
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, USA
| | - Dario Cantu
- Department of Viticulture and Enology, University of California Davis, Davis, CA, USA.
- Genome Center, University of California Davis, Davis, CA, USA.
| |
Collapse
|
7
|
Graham CDK, Forrestel EJ, Schilmiller AL, Zemenick AT, Weber MG. Evolutionary signatures of a trade-off in direct and indirect defenses across the wild grape genus, Vitis. Evolution 2023; 77:2301-2313. [PMID: 37527551 DOI: 10.1093/evolut/qpad140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/17/2023] [Accepted: 07/31/2023] [Indexed: 08/03/2023]
Abstract
Evolutionary correlations between chemical defense and protection by mutualist bodyguards have been long predicted, but tests of these patterns remain rare. We use a phylogenetic framework to test for evolutionary correlations indicative of trade-offs or synergisms between direct defense in the form of plant secondary metabolism and indirect defense in the form of leaf domatia, across 33 species in the wild grape genus, Vitis. We also performed a bioassay with a generalist herbivore to associate our chemical phenotypes with herbivore palatability. Finally, we tested whether defensive traits correlated with the average abiotic characteristics of each species' contemporary range and whether these correlations were consistent with plant defense theory. We found a negative evolutionary correlation between domatia size and the diversity of secondary metabolites in Vitis leaf tissue across the genus, and also that leaves with a higher diversity and richness of secondary metabolites were less palatable to a generalist herbivore, consistent with a trade-off in chemical and mutualistic defense investment. Predictions from plant defense theory were not supported by associations between investment in defense phenotypes and abiotic variables. Our work demonstrates an evolutionary pattern indicative of a trade-off between indirect and direct defense strategies across the Vitis genus.
Collapse
Affiliation(s)
- Carolyn D K Graham
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States
| | - Elisabeth J Forrestel
- Department of Viticulture and Enology, University of California-Davis, Davis, CA, United States
| | - Anthony L Schilmiller
- Mass Spectrometry and Metabolomics Core, Michigan State University, East Lansing, MI, United States
| | - Ash T Zemenick
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States
- Department of Viticulture and Enology, University of California-Davis, Davis, CA, United States
| | - Marjorie G Weber
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
8
|
Nie ZL, Hodel R, Ma ZY, Johnson G, Ren C, Meng Y, Ickert-Bond SM, Liu XQ, Zimmer E, Wen J. Climate-influenced boreotropical survival and rampant introgressions explain the thriving of New World grapes in the north temperate zone. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1183-1203. [PMID: 36772845 DOI: 10.1111/jipb.13466] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 02/08/2023] [Indexed: 05/13/2023]
Abstract
The north temperate region was characterized by a warm climate and a rich thermophilic flora before the Eocene, but early diversifications of the temperate biome under global climate change and biome shift remain uncertain. Moreover, it is becoming clear that hybridization/introgression is an important driving force of speciation in plant diversity. Here, we applied analyses from biogeography and phylogenetic networks to account for both introgression and incomplete lineage sorting based on genomic data from the New World Vitis, a charismatic component of the temperate North American flora with known and suspected gene flow among species. Biogeographic inference and fossil evidence suggest that the grapes were widely distributed from North America to Europe during the Paleocene to the Eocene, followed by widespread extinction and survival of relicts in the tropical New World. During the climate warming in the early Miocene, a Vitis ancestor migrated northward from the refugia with subsequent diversification in the North American region. We found strong evidence for widespread incongruence and reticulate evolution among nuclear genes within both recent and ancient lineages of the New World Vitis. Furthermore, the organellar genomes showed strong conflicts with the inferred species tree from the nuclear genomes. Our phylogenomic analyses provided an important assessment of the wide occurrence of reticulate introgression in the New World Vitis, which potentially represents one of the most important mechanisms for the diversification of Vitis species in temperate North America and even the entire temperate Northern Hemisphere. The scenario we report here may be a common model of temperate diversification of flowering plants adapted to the global climate cooling and fluctuation in the Neogene.
Collapse
Affiliation(s)
- Ze-Long Nie
- College of Biology and Environmental Sciences, Jishou University, Jishou, 416000, China
| | - Richard Hodel
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013-7012, USA
| | - Zhi-Yao Ma
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013-7012, USA
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Gabriel Johnson
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013-7012, USA
| | - Chen Ren
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Ying Meng
- College of Biology and Environmental Sciences, Jishou University, Jishou, 416000, China
| | - Stefanie M Ickert-Bond
- Herbarium (ALA), University of Alaska Museum of the North, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA
| | - Xiu-Qun Liu
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Elizabeth Zimmer
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013-7012, USA
| | - Jun Wen
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013-7012, USA
| |
Collapse
|
9
|
Zecca G, Panzeri D, Grassi F. Detecting signals of adaptive evolution in grape plastomes with a focus on the Cretaceous-Palaeogene (K/Pg) transition. ANNALS OF BOTANY 2022; 130:965-980. [PMID: 36282948 PMCID: PMC9851337 DOI: 10.1093/aob/mcac128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND AIMS Although plastid genes are widely used in phylogenetic studies, signals of positive selection have been scarcely investigated in the grape family. The plastomes from 91 accessions of Vitaceae were examined to understand the extent to which positive selection is present and to identify which genes are involved. Moreover, the changes through time of genes under episodic positive selection were investigated and the hypothesis of an adaptive process following the Cretaceous-Palaeogene (K/Pg) transition about 66 million years ago was tested. METHODS Different codon-substitution models were used to assess pervasive and episodic positive selection events on 70 candidate plastid genes. Divergence times between lineages were estimated and stochastic character mapping analysis was used to simulate variation over time of the genes found to be under episodic positive selection. KEY RESULTS A total of 20 plastid genes (29 %) showed positive selection. Among them, 14 genes showed pervasive signatures of positive selection and nine genes showed episodic signatures of positive selection. In particular, four of the nine genes (psbK, rpl20, rpoB, rps11) exhibited a similar pattern showing an increase in the rate of variation close to the K/Pg transition. CONCLUSION Multiple analyses have shown that the grape family has experienced ancient and recent positive selection events and that the targeted genes are involved in essential functions such as photosynthesis, self-replication and metabolism. Our results are consistent with the idea that the K/Pg transition has favoured an increased rate of change in some genes. Intense environmental perturbations have influenced the rapid diversification of certain lineages, and new mutations arising on some plastid genes may have been fixed by natural selection over the course of many generations.
Collapse
Affiliation(s)
- Giovanni Zecca
- University of Milan-Bicocca, Department of Biotechnology and Bioscience, Piazza della Scienza 2, 20126, Milano, Italy
| | - Davide Panzeri
- University of Milan-Bicocca, Department of Biotechnology and Bioscience, Piazza della Scienza 2, 20126, Milano, Italy
| | - Fabrizio Grassi
- University of Milan-Bicocca, Department of Biotechnology and Bioscience, Piazza della Scienza 2, 20126, Milano, Italy
- NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| |
Collapse
|
10
|
Brillouet JM, Romieu C, Bacilieri R, Nick P, Trias-Blasi A, Maul E, Solymosi K, Teszlák P, Jiang JF, Sun L, Ortolani D, Londo JP, Gutierrez B, Prins B, Reynders M, Van Caekenberghe F, Maghradze D, Marchal C, Sultan A, Thomas JF, Scherberich D, Fulcrand H, Roumeas L, Billerach G, Salimov V, Musayev M, Ejaz Ul Islam Dar M, Peltier JB, Grisoni M. Tannin phenotyping of the Vitaceae reveals a phylogenetic linkage of epigallocatechin in berries and leaves. ANNALS OF BOTANY 2022; 130:159-171. [PMID: 35700109 PMCID: PMC9445598 DOI: 10.1093/aob/mcac077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS Condensed tannins, responsible for berry and wine astringency, may have been selected during grapevine domestication. This work examines the phylogenetic distribution of condensed tannins throughout the Vitaceae phylogenetic tree. METHODS Green berries and mature leaves of representative true-to-type members of the Vitaceae were collected before 'véraison', freeze-dried and pulverized, and condensed tannins were measured following depolymerization by nucleophilic addition of 2-mercaptoethanol to the C4 of the flavan-3-ol units in an organic acidic medium. Reaction products were separated and quantified by ultrahigh pressure liquid chromatography/diode array detection/mass spectrometry. KEY RESULTS AND CONCLUSIONS The original ability to incorporate epigallocatechin (EGC) into grapevine condensed tannins was lost independently in both the American and Eurasian/Asian branches of the Vitaceae, with exceptional cases of reversion to the ancestral EGC phenotype. This is particularly true in the genus Vitis, where we now find two radically distinct groups differing with respect to EGC content. While Vitis species from Asia are void of EGC, 50 % of the New World Vitis harbour EGC. Interestingly, the presence of EGC is tightly coupled with the degree of leaf margin serration. Noticeably, the rare Asian EGC-forming species are phylogenetically close to Vitis vinifera, the only remnant representative of Vitis in Eurasia. Both the wild ancestral V. vinifera subsp. sylvestris as well as the domesticated V. vinifera subsp. sativa can accumulate EGC and activate galloylation biosynthesis that compete for photoassimilates and reductive power.
Collapse
Affiliation(s)
| | | | - Roberto Bacilieri
- INRA, Equipe DAAV, UMR AGAP (Univ. Montpellier, CIRAD, INRAE, SupAgro), Montpellier, France
| | - Peter Nick
- Karlsruhe Institute of Technology, Botanical Institute, Molecular Cell Biology, Karlsruhe, Germany
| | | | - Erika Maul
- Julius Kühn-Institut (JKI), Institut für Rebenzüchtung Geilweilerhof, Siebeldingen, Germany
| | - Katalin Solymosi
- Department of Plant Anatomy, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Peter Teszlák
- Department of Viticulture and Technology Development, Research Institute of Viticulture and Oenology, University of Pécs, Pécs, Hungary
| | - Jiang-Fu Jiang
- Zhengzhou Fruit Research Institute, Zhengzhou, Henan, PR China
| | - Lei Sun
- Zhengzhou Fruit Research Institute, Zhengzhou, Henan, PR China
| | | | - Jason P Londo
- USDA, Grape Genetics Research Unit, Agricultural Research Service, Geneva, New York, NY, USA
| | - Ben Gutierrez
- USDA, Plant Genetic Resources Unit, Agricultural Research Service, Geneva, New York, NY, USA
| | - Bernard Prins
- USDA, Nat’l Clonal Germplasm Rep – Tree Fruit & Nut Crops & Grapes, University of California, Davis, California, USA
| | | | | | | | - Cecile Marchal
- INRA, Grapevine Biological Resources Center, Experimental Unit of Domaine de Vassal, Marseillan-plage, France
| | - Amir Sultan
- National Herbarium (Stewart Collection), National Agricultural Research Centre, Islamabad, Pakistan
| | | | | | | | | | | | - Vugar Salimov
- Azerbaijani Scientific Research Institute of Viticulture and Winemaking, Baku, Azerbaijan
| | - Mirza Musayev
- Genetic Resources Institute of the Azerbaijan National Academy of Sciences, Baku, Azerbaijan
| | | | | | | |
Collapse
|
11
|
Park M, Darwish AG, Elhag RI, Tsolova V, Soliman KFA, El-Sharkawy I. A multi-locus genome-wide association study reveals the genetics underlying muscadine antioxidant in berry skin. FRONTIERS IN PLANT SCIENCE 2022; 13:969301. [PMID: 35991419 PMCID: PMC9386419 DOI: 10.3389/fpls.2022.969301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Muscadine berries display enhanced nutraceutical value due to the accumulation of distinctive phytochemical constituents with great potential antioxidant activity. Such nutritional and health merits are not only restricted to muscadine, but muscadine berries accumulate higher amounts of bioactive polyphenolics compared with other grape species. For the genetic study of the antioxidant trait in muscadine, a multi-locus genome-wide association study (GWAS) with 350 muscadine genotypes and 1,283 RNase H2 enzyme-dependent amplicon sequencing (rhAmpSeq) markers was performed. Phenotyping was conducted with several antioxidant-related traits, including total phenolic content (TPC), total flavonoid content (TFC), 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity, and FRAP antioxidant assay in muscadine berry skin. The correlation coefficient analysis revealed that the TPC, and DPPH/FRAP activities were significantly correlated. Through the GWAS analysis, 12 QTNs were identified from the four traits, of which six were pleiotropic QTNs. Two pleiotropic QTNs, chr2_14464718 and chr4_16491374, were commonly identified from the TPC and DPPH/FRAP activities. Co-located genes with the two pleiotropic QTNs were isolated, and two candidate genes were identified with transcriptome analysis. UDP-glycosyltransferase and 4-hydroxy-4-methyl-2-oxoglutarate aldolase were the candidate genes that are positively and negatively correlated to the quantitative property of traits, respectively. These results are the first genetic evidence of the quantitative property of antioxidants in muscadine and provide genetic resources for breeding antioxidant-rich cultivars for both Muscadinia and Euvitis species.
Collapse
Affiliation(s)
- Minkyu Park
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Ahmed G. Darwish
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL, United States
- Department of Biochemistry, Faculty of Agriculture, Minia University, Minia, Egypt
| | - Rashid I. Elhag
- College of Science and Technology, Florida A&M University, Tallahassee, FL, United States
| | - Violeta Tsolova
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Karam F. A. Soliman
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Islam El-Sharkawy
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL, United States
| |
Collapse
|
12
|
Scandura M, Fabbri G, Caniglia R, Iacolina L, Mattucci F, Mengoni C, Pante G, Apollonio M, Mucci N. Resilience to Historical Human Manipulations in the Genomic Variation of Italian Wild Boar Populations. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.833081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human activities can globally modify natural ecosystems determining ecological, demographic and range perturbations for several animal species. These changes can jeopardize native gene pools in different ways, leading either to genetic homogenization, or conversely, to the split into genetically divergent demes. In the past decades, most European wild boar (Sus scrofa) populations were heavily managed by humans. Anthropic manipulations have strongly affected also Italian populations through heavy hunting, translocations and reintroductions that might have deeply modified their original gene pools. In this study, exploiting the availability of the well-mapped porcine genome, we applied genomic tools to explore genome-wide variability in Italian wild boar populations, investigate their genetic structure and detect signatures of possible introgression from domestic pigs and non-native wild boar. Genomic data from 134 wild boar sampled in six areas of peninsular Italy and in Sardinia were gathered using the Illumina Porcine SNP60 BeadChip (60k Single Nucleotide Polymorphisms – SNPs) and compared with reference genotypes from European specimens and from domestic pigs (both commercial and Italian local breeds), using multivariate and maximum-likelihood approaches. Pairwise FST values, multivariate analysis and assignment procedures indicated that Italian populations were highly differentiated from all the other analyzed European wild boar populations. Overall, a lower heterozygosity was found in the Italian population than in the other European regions. The most diverging populations in Castelporziano Presidential Estate and Maremma Regional Park can be the result of long-lasting isolation, reduced population size and genetic drift. Conversely, an unexpected similarity was found among Apennine populations, even at high distances. Signatures of introgression from both non-Italian wild boar and domestic breeds were very limited. To summarize, we successfully applied genome-wide procedures to explore, for the first time, the genomic diversity of Italian wild boar, demonstrating that they represent a strongly heterogeneous assemblage of demes with different demographic and manipulation histories. Nonetheless, our results suggest that a native component of genomic variation is predominant over exogenous ones in most populations.
Collapse
|
13
|
Panzeri D, Guidi Nissim W, Labra M, Grassi F. Revisiting the Domestication Process of African Vigna Species (Fabaceae): Background, Perspectives and Challenges. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040532. [PMID: 35214865 PMCID: PMC8879845 DOI: 10.3390/plants11040532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/12/2022] [Accepted: 02/13/2022] [Indexed: 05/14/2023]
Abstract
Legumes are one of the most economically important and biodiverse families in plants recognised as the basis to develop functional foods. Among these, the Vigna genus stands out as a good representative because of its relatively recent African origin as well as its outstanding potential. Africa is a great biodiversity centre in which a great number of species are spread, but only three of them, Vigna unguiculata, Vigna subterranea and Vigna vexillata, were successfully domesticated. This review aims at analysing and valorising these species by considering the perspective of human activity and what effects it exerts. For each species, we revised the origin history and gave a focus on where, when and how many times domestication occurred. We provided a brief summary of bioactive compounds naturally occurring in these species that are fundamental for human wellbeing. The great number of wild lineages is a key point to improve landraces since the domestication process caused a loss of gene diversity. Their genomes hide a precious gene pool yet mostly unexplored, and genes lost during human activity can be recovered from the wild lineages and reintroduced in cultivated forms through modern technologies. Finally, we describe how all this information is game-changing to the design of future crops by domesticating de novo.
Collapse
Affiliation(s)
- Davide Panzeri
- Department of Biotechnology and Bioscience, University of Milan-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; (W.G.N.); (M.L.)
- Correspondence: (D.P.); (F.G.)
| | - Werther Guidi Nissim
- Department of Biotechnology and Bioscience, University of Milan-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; (W.G.N.); (M.L.)
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Viale delle Idee 30, 50019 Sesto Fiorentino, Italy
| | - Massimo Labra
- Department of Biotechnology and Bioscience, University of Milan-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; (W.G.N.); (M.L.)
| | - Fabrizio Grassi
- Department of Biotechnology and Bioscience, University of Milan-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; (W.G.N.); (M.L.)
- Correspondence: (D.P.); (F.G.)
| |
Collapse
|
14
|
Evaluation of Wild, Wine, Table, and Raisin Grapevine (Vitis spp.) Genotypes in Gedeo Zone, Southern Ethiopia. ScientificWorldJournal 2022; 2022:6852704. [PMID: 35132309 PMCID: PMC8817867 DOI: 10.1155/2022/6852704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/10/2021] [Accepted: 01/15/2022] [Indexed: 11/26/2022] Open
Abstract
Grapevine is one of the major horticultural crops of the world with the cultivated area exceeding 7.5 million ha used for a myriad of products ranging through fresh table grape, preserves, juice, wine, and raisins. The main objective of this study was to introduce twenty-eight grapevine cultivars (ten wild, ten wine, four table, and four raisin grapes) into Gedeo Zone for the first time and ampelographically characterize them in Dilla and Yirgacheffe agroecological conditions in Gedeo Zone, Southern Ethiopia, from August 2018 to July 2021. Ten Vitis abyssinica wild grapevine cultivars were collected from Adama, Addis Ababa, Alamata, Arba Minch, Bahir Dar, Dire Dawa, Gondar, Hawassa, Jimma, and Jinka areas. Additional ten world class wine grapes were gathered from Ziway Castel Winery, and four table and four raisin grapes were also collected from Raya Horti Farm and Koka Vineyard at the same time. The experiment was a 2 × 28 factorial arranged in randomized complete block design (RCBD) with three replications, and data were analyzed using the R-software. The analysis of variance revealed that the interaction of cultivar and location significantly (P < 0.001) affected grapevine plant height, leaf number, number of fruits per plant, and tendril number per vine, while grapevine trunk diameter, flower cluster, root length, and number of suckers per vines were not significantly (P > 0.05) influenced by the interaction of the two factors. Generally, the wine grapevine cultivars had lower canopy such as plant height, leaf number, number of tendrils, and suckering vines while these registered a higher number of fruits per plant, trunk diameter, flower cluster, and root length compared to the wild grapevine cultivars. The results of the present study suggested that Syrah, Chenin Blanc, and Grenache can produce high grapevine berry yield and wine quality in Gedeo Zone agroecology particularly in Dilla location. The wild grapevines collected from Dire Dawa, Arba Minch, Jinka, and Alamata were the potential candidates for the world class wine, raisin, and table grapevines which could open new frontiers in the future for Ethiopian native Vitis abyssinica wild grapevine breeding and genetic engineering that will help to move the national and international viticulture and enology industry forward. As the Ethiopian native grapevines are at the risk of total extinction, adequate conservation strategies are required. Breeding, detailed identification, and introducing the potential grapes in different regions of the country are needed. This finding represents a step forward in efforts to understand hybridization of Vitis abyssinica grapevine with Vitis vinifera and other new world Vitis species.
Collapse
|
15
|
Lewald KM, Abrieux A, Wilson DA, Lee Y, Conner WR, Andreazza F, Beers EH, Burrack HJ, Daane KM, Diepenbrock L, Drummond FA, Fanning PD, Gaffney MT, Hesler SP, Ioriatti C, Isaacs R, Little BA, Loeb GM, Miller B, Nava DE, Rendon D, Sial AA, da Silva CSB, Stockton DG, Van Timmeren S, Wallingford A, Walton VM, Wang X, Zhao B, Zalom FG, Chiu JC. Population genomics of Drosophila suzukii reveal longitudinal population structure and signals of migrations in and out of the continental United States. G3-GENES GENOMES GENETICS 2021; 11:6380432. [PMID: 34599814 PMCID: PMC8664444 DOI: 10.1093/g3journal/jkab343] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/10/2021] [Indexed: 11/14/2022]
Abstract
Drosophila suzukii, or spotted-wing drosophila, is now an established pest in many parts of the world, causing significant damage to numerous fruit crop industries. Native to East Asia, D. suzukii infestations started in the United States a decade ago, occupying a wide range of climates. To better understand invasion ecology of this pest, knowledge of past migration events, population structure, and genetic diversity is needed. In this study, we sequenced whole genomes of 237 individual flies collected across the continental United States, as well as several sites in Europe, Brazil, and Asia, to identify and analyze hundreds of thousands of genetic markers. We observed strong population structure between Western and Eastern US populations, but no evidence of any population structure between different latitudes within the continental United States, suggesting that there are no broad-scale adaptations occurring in response to differences in winter climates. We detect admixture from Hawaii to the Western United States and from the Eastern United States to Europe, in agreement with previously identified introduction routes inferred from microsatellite analysis. We also detect potential signals of admixture from the Western United States back to Asia, which could have important implications for shipping and quarantine policies for exported agriculture. We anticipate this large genomic dataset will spur future research into the genomic adaptations underlying D. suzukii pest activity and development of novel control methods for this agricultural pest.
Collapse
Affiliation(s)
- Kyle M Lewald
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Antoine Abrieux
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Derek A Wilson
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Yoosook Lee
- Florida Medical Entomology Laboratory, University of Florida Institute of Food and Agricultural Sciences, Vero Beach, FL 32603, USA
| | - William R Conner
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Felipe Andreazza
- Laboratory of Entomology, Embrapa Clima Temperado, BR 392 Km 78, Caixa Postal 403, Pelotas, RS 96010-971, Brazil
| | - Elizabeth H Beers
- Tree Fruit Research and Extension Center, Washington State University, Wenatchee, WA 99164, USA
| | - Hannah J Burrack
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27601, USA
| | - Kent M Daane
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA
| | - Lauren Diepenbrock
- UF IFAS Citrus Research and Education Center, University of Florida, Lake Alfred, FL 32603, USA
| | - Francis A Drummond
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
| | - Philip D Fanning
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
| | - Michael T Gaffney
- Horticultural Development Department, Teagasc, Ashtown, Dublin 15, Ireland
| | - Stephen P Hesler
- Department of Entomology, Cornell AgriTech, Cornell University, Geneva, NY 14850, USA
| | - Claudio Ioriatti
- Technology Transfer Centre, Fondazione Edmund Mach, Via E. Mach, 1, 38010 San Michele all'Adige (TN), Italy
| | - Rufus Isaacs
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Brian A Little
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Gregory M Loeb
- Department of Entomology, Cornell AgriTech, Cornell University, Geneva, NY 14850, USA
| | - Betsey Miller
- Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA
| | - Dori E Nava
- Laboratory of Entomology, Embrapa Clima Temperado, BR 392 Km 78, Caixa Postal 403, Pelotas, RS 96010-971, Brazil
| | - Dalila Rendon
- Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA
| | - Ashfaq A Sial
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | | | - Dara G Stockton
- Department of Entomology, Cornell AgriTech, Cornell University, Geneva, NY 14850, USA.,USDA-ARS, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Hilo, HI 96720, USA
| | - Steven Van Timmeren
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Anna Wallingford
- Department of Entomology, Cornell AgriTech, Cornell University, Geneva, NY 14850, USA.,Department of Agriculture, Nutrition & Food Systems, University of New Hampshire, Durham, NH 03824, USA
| | - Vaughn M Walton
- Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA
| | - Xingeng Wang
- USDA Agricultural Research Service, Beneficial Insects Introduction Research Unit, Newark, DE 19713, USA
| | - Bo Zhao
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27601, USA
| | - Frank G Zalom
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Joanna C Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
16
|
Back to the Origins: Background and Perspectives of Grapevine Domestication. Int J Mol Sci 2021; 22:ijms22094518. [PMID: 33926017 PMCID: PMC8123694 DOI: 10.3390/ijms22094518] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 01/01/2023] Open
Abstract
Domestication is a process of selection driven by humans, transforming wild progenitors into domesticated crops. The grapevine (Vitis vinifera L.), besides being one of the most extensively cultivated fruit trees in the world, is also a fascinating subject for evolutionary studies. The domestication process started in the Near East and the varieties obtained were successively spread and cultivated in different areas. Whether the domestication occurred only once, or whether successive domestication events occurred independently, is a highly debated mystery. Moreover, introgression events, breeding and intense trade in the Mediterranean basin have followed, in the last thousands of years, obfuscating the genetic relationships. Although a succession of studies has been carried out to explore grapevine origin and different evolution models are proposed, an overview of the topic remains pending. We review here the findings obtained in the main phylogenetic and genomic studies proposed in the last two decades, to clarify the fundamental questions regarding where, when and how many times grapevine domestication took place. Finally, we argue that the realization of the pan-genome of grapes could be a useful resource to discover and track the changes which have occurred in the genomes and to improve our understanding about the domestication.
Collapse
|
17
|
Mercati F, De Lorenzis G, Mauceri A, Zerbo M, Brancadoro L, D'Onofrio C, Morcia C, Barbagallo MG, Bignami C, Gardiman M, de Palma L, Ruffa P, Novello V, Crespan M, Sunseri F. Integrated Bayesian Approaches Shed Light on the Dissemination Routes of the Eurasian Grapevine Germplasm. FRONTIERS IN PLANT SCIENCE 2021; 12:692661. [PMID: 34434204 PMCID: PMC8381769 DOI: 10.3389/fpls.2021.692661] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/07/2021] [Indexed: 05/12/2023]
Abstract
The domestication and spreading of grapevine as well as the gene flow history had been described in many studies. We used a high-quality 7k SNP dataset of 1,038 Eurasian grape varieties with unique profiles to assess the population genetic diversity, structure, and relatedness, and to infer the most likely migration events. Comparisons of putative scenarios of gene flow throughout Europe from Caucasus helped to fit the more reliable migration routes around the Mediterranean Basin. Approximate Bayesian computation (ABC) approach made possible to provide a response to several questions so far remaining unsolved. Firstly, the assessment of genetic diversity and population structure within a well-covered dataset of ancient Italian varieties suggested the different histories between the Northern and Southern Italian grapevines. Moreover, Italian genotypes were shown to be distinguishable from all the other Eurasian populations for the first time. The entire Eurasian panel confirmed the east-to-west gene flow, highlighting the Greek role as a "bridge" between the Western and Eastern Eurasia. Portuguese germplasm showed a greater proximity to French varieties than the Spanish ones, thus being the main route for gene flow from Iberian Peninsula to Central Europe. Our findings reconciled genetic and archaeological data for one of the most cultivated and fascinating crops in the world.
Collapse
Affiliation(s)
- Francesco Mercati
- Istituto Bioscienze e Biorisorse, Consiglio Nazionale delle Ricerche, Palermo, Italy
- *Correspondence: Francesco Mercati
| | - Gabriella De Lorenzis
- Dipartimento di Scienze Agrarie ed Ambientali, Università degli Studi di Milan, Milan, Italy
| | - Antonio Mauceri
- Dipartimento Agraria, Università Mediterranea degli Studi di Reggio Calabria, Reggio Calabria, Italy
| | - Marcello Zerbo
- Istituto Bioscienze e Biorisorse, Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - Lucio Brancadoro
- Dipartimento di Scienze Agrarie ed Ambientali, Università degli Studi di Milan, Milan, Italy
| | - Claudio D'Onofrio
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università degli Studi di Pisa, Pisa, Italy
| | - Caterina Morcia
- CREA - Centro di Ricerca per la Genomica e la Bioinformatica, Fiorenzuola d'Arda, Italy
| | | | - Cristina Bignami
- Dipartimento di Scienze della Vita, Centro Biogest-Siteia, Università degli Studi di Modena e Reggio Emilia, Reggio Emilia, Italy
| | - Massimo Gardiman
- CREA - Centro di Ricerca per la Viticoltura ed Enologia, Conegliano, Italy
| | - Laura de Palma
- Dipartimento di Scienze Agrarie, Alimenti, Risorse Naturali e Ingegneria, Università degli Studi di Foggia, Foggia, Italy
| | - Paola Ruffa
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Torino, Italy
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Grugliasco, Italy
| | - Vittorino Novello
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Grugliasco, Italy
| | - Manna Crespan
- CREA - Centro di Ricerca per la Viticoltura ed Enologia, Conegliano, Italy
- Manna Crespan
| | - Francesco Sunseri
- Dipartimento Agraria, Università Mediterranea degli Studi di Reggio Calabria, Reggio Calabria, Italy
- Francesco Sunseri
| |
Collapse
|