1
|
Siddique MAB, Mahalder B, Haque MM, Ahammad AKS. Impact of climatic factors on water quality parameters in tilapia broodfish ponds and predictive modeling of pond water temperature with ARIMAX. Heliyon 2024; 10:e37717. [PMID: 39323824 PMCID: PMC11422597 DOI: 10.1016/j.heliyon.2024.e37717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024] Open
Abstract
Climate change represents a considerable threat to aquatic ecosystems, potentially affecting various water quality parameters.The study aims to assess the impacts climatic factors on the water quality parameters in tilapia broodfish pond and forecasting of water temperature in a tilapia broodfish pond using the ARIMAX model. Daily longitudinal time series data on water quality parameters were collected from the pond, while monthly climatic data were obtained from the Bangladesh Meteorological Department. Water temperature exhibited seasonal variation, peaking at 31.23 °C in October and dropping to 20.8 °C in December. pH levels ranged from 7.36 to 10.32, with the lowest recorded in December and the highest in August. Dissolved oxygen levels varied from 7.09 mg/L to 10.65 mg/L, with the lowest in September and the highest in January. Ammonia levels were highest in February at 0.33 mg/L. Water transparency ranged from 15.37 to 28 inches, with the highest in January and the lowest in June. Climatic factors significantly influenced these variations, as specified by Canonical correlation analysis (CCA). The best-fitting model, ARIMAX (1, 0, 1), indicated a fluctuating trend influenced by important exogenous factors like air temperature and solar intensity. By the end January 2025, the water temperature is expected to rise to 27.93 °C. This is a noticeable increase started from November to January. These higher temperatures may improve tilapia broodfish growth and development earlier. But the temperatures are predicted to drop started from February to March, which could negatively affect tilapia growth and development. A clear seasonal fluctuating pattern is exhibited in the future. These findings provide important insights for researchers, policymakers, academics, and those involved in tilapia farming. By considering air temperature and solar intensity in planning, stakeholders can better anticipate future pond conditions. Developing adaptive management strategies to reduce negative impacts and make the most of favorable conditions will be essential for sustainable tilapia production in the context of climate change.
Collapse
Affiliation(s)
- Mohammad Abu Baker Siddique
- Department of Fisheries Biology and Genetics, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Balaram Mahalder
- Department of Aquaculture, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammad Mahfujul Haque
- Department of Aquaculture, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - A. K. Shakur Ahammad
- Department of Fisheries Biology and Genetics, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
2
|
Ren W, Yao Y, Gao X, Wang H, Wen Z, Ni L, Zhang X, Cao T, Chou Q. Water depth affects submersed macrophyte more than herbivorous snail in mesotrophic lakes. FRONTIERS IN PLANT SCIENCE 2024; 15:1375898. [PMID: 38828221 PMCID: PMC11140150 DOI: 10.3389/fpls.2024.1375898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/22/2024] [Indexed: 06/05/2024]
Abstract
Introduction Water depth (WD) and snail abundance (SA) are two key factors affecting the growth of submersed aquatic plants in freshwater lake ecosystems. Changes in WD and SA drive changes in nutrients and other primary producers that may have direct or indirect effects on submersed plant growth, but which factor dominates the impact of both on aquatic plants has not been fully studied. Methods To investigate the dominant factors that influence aquatic plant growth in plateau lakes, a one-year field study was conducted to study the growth of three dominant submersed macrophyte (i.e., Vallisneria natans, Potamogeton maackianus, and Potamogeton lucens) in Erhai Lake. Results The results show that, the biomass of the three dominant plants, P.maackianus, is the highest, followed by P.lucens, and V.natans is the lowest. Meanwhile, periphyton and snails attached to P.maackianus are also the highest. Furthermore, WD had a positive effect on the biomass of two submersed macrophyte species of canopy-type P.maackianus and P.lucens, while it had a negative effect on rosette-type V.natans. Snail directly inhibited periphyton attached on V.natans and thereby increasing the biomass of aquatic plants, but the effect of snails on the biomass of the other two aquatic plants is not through inhibition of periphyton attached to their plants. Discussion The dominant factors affecting the biomass of submersed macrophyte in Erhai Lake were determined, as well as the direct and indirect mechanisms of WD and snails on the biomass of dominant submersed macrophyte. Understanding the mechanisms that dominate aquatic plant change will have implications for lake management and restoration.
Collapse
Affiliation(s)
- Wenjing Ren
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Yiqian Yao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyu Gao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hao Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zihao Wen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Leyi Ni
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiaolin Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Te Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Qingchuan Chou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
3
|
Li X, Li Y, El-Kassaby YA, Fang Y. Spatial Distribution and Ecological Determinants of Coexisting Hybrid Oak Species: A Study in Yushan's Mixed Forest. PLANTS (BASEL, SWITZERLAND) 2024; 13:1000. [PMID: 38611529 PMCID: PMC11013232 DOI: 10.3390/plants13071000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024]
Abstract
Ecological niche partitioning is crucial in reducing interspecific competition, fostering species coexistence, and preserving biodiversity. Our research, conducted in a hybrid mixed oak forest in Yushan, Jiangsu, China, focuses on Quercus acutissima, Q. variabilis, Q. fabri, and Q. serrata var. brevipetiolata. Using Point Pattern Analysis, we investigated the spatial relationships and ecological trait autocorrelation, including total carbon (TC), nitrogen (TN), phosphorus (TP), potassium (TK), and breast height diameter (DBH). Our findings show aggregated distribution patterns within the oak populations. The Inhomogeneous Poisson Point model highlights the impact of environmental heterogeneity on Q. variabilis, leading to distinct distribution patterns, while other species showed wider dispersion. This study reveals aggregated interspecific interactions, with a notable dispersal pattern between Q. acutissima and Q. variabilis. We observed significant variability in nutrient elements, indicating distinct nutrient dynamics and uptake processes. The variations in total carbon (TC), nitrogen (TN), phosphorus (TP), and potassium (TK) suggest distinct nutrient dynamics, with TK showing the highest variability. Despite variations in TC, TK, and TP, the species did not form distinct classes, suggesting overlapping nutritional strategies and environmental adaptations. Furthermore, spatial autocorrelation analysis indicates strong positive correlations for DBH, TC, and TP, whereas TK and TN correlations are non-significant. The results suggest habitat filtering as a key driver in intraspecific relationships, with a finer spatial scale of ecological niche division through TC and TP, which is crucial for maintaining coexistence among these oak species.
Collapse
Affiliation(s)
- Xuan Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Science, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China;
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Yongfu Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China;
| | - Yousry A. El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Yanming Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Science, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China;
| |
Collapse
|
4
|
Peng Q, Huo B, Yang H, Xu Z, Mao H, Yang S, Dai Y, Li Z, Deng X. Increased invasion of submerged macrophytes makes native species more susceptible to eutrophication in freshwater ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168658. [PMID: 37979865 DOI: 10.1016/j.scitotenv.2023.168658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
Invasion and eutrophication are considered to pose serious threats to freshwater biodiversity and ecosystem function. However, little is known about the synergistic effects of invasion density and nutrient concentration on native submerged macrophytes. Here, we selected a common invasive species (Elodea nuttallii) and two native plants (Hydrilla verticillata and Potamogeton maackianus) to elucidate the effects of invasion density and eutrophication on native submerged plants. We found that (1) high nutrient concentrations inhibited the growth of both invasive and native species, but E. nuttallii, with a wide ecological niche, was more tolerant to eutrophication than the two native species. (2) High invasion density had a remarkable negative effect on the growth of the two native species under the medium and high nutrient concentrations. (3) Medium and high invasion densities of E. nuttallii made native macrophytes more susceptible to eutrophication. (4) The two native macrophytes had species-specific responses to medium and high invasion densities under medium and high nutrient concentrations. Specifically, a high invasion density of E. nuttallii significantly delayed the growth of H. verticillata rather than P. maackianus. Thus, it is necessary to consider the synergistic effects of invasion with eutrophication when assessing invasion in freshwater ecosystems. And our results implied that invasion with eutrophication was a powerful factor determining the results of interspecific competition among submerged macrophytes, which could change the biodiversity, community structure and functions of freshwater ecosystems.
Collapse
Affiliation(s)
- Qiutong Peng
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan 430062, China.
| | - Bingbing Huo
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan 430062, China.
| | - Hui Yang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan 430062, China.
| | - Zhiyan Xu
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan 430062, China.
| | - Hongzhi Mao
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan 430062, China.
| | - Shiwen Yang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan 430062, China.
| | - Yuitai Dai
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan 430062, China.
| | - Zhongqiang Li
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan 430062, China.
| | - Xuwei Deng
- Donghu Experimental Station of Lake Ecosystems, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
5
|
Lengyel E, Stenger-Kovács C, Boros G, Al-Imari TJK, Novák Z, Bernát G. Anticipated impacts of climate change on the structure and function of phytobenthos in freshwater lakes. ENVIRONMENTAL RESEARCH 2023; 238:117283. [PMID: 37783333 DOI: 10.1016/j.envres.2023.117283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/14/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
Climate change threatens surface waters worldwide, especially shallow lakes where one of the expected consequences is a sharp increase in their water temperatures. Phytobenthos is an essential, but still less studied component of aquatic ecosystems, and it would be important to learn more about how global warming will affect this community in shallow lakes. In this research, the effects of different climate change scenarios (SSP2-4.5 and SSP5-8.5, as intermediate and high emission scenarios) on the structure and function of the entire phytobenthos community using species- and trait-based approaches were experimentally investigated in an outdoor mesocosm system. Our results show that the forecasted 3 °C increase in temperature will already exert significant impacts on the benthic algal community by (1) altering its species and (2) trait composition (smaller cell size, lower abundance of colonial and higher of filamentous forms); (3) decreasing Shannon diversity; and (4) enhancing the variability of the community. Higher increase in the temperature (+5 °C) will imply more drastic alterations in freshwater phytobenthos by (1) inducing very high variability in species composition and compositional changes even in phylum level (towards higher abundance of Cyanobacteria and Chlorophyta at the expense of Bacillariophyta); (2) continuing shift in trait composition (benefits for smaller cell volume, filamentous life-forms, non-motile and weakly attached taxa); (3) further reducing the functional diversity; (4) increasing biofilm thickness (1.4 μm/°C) and (5) decreasing maximum quantum yield of photosystem II. In conclusion, already the intermediate emission scenario will predictably induce high risk in biodiversity issues, the high emission scenario will imply drastic impacts on the benthic algae endangering even the function of the ecosystem.
Collapse
Affiliation(s)
- Edina Lengyel
- Limnology Research Group, Center for Natural Science, University of Pannonia, Egyetem utca 10, H-8200, Veszprém, Hungary; HUN-REN-PE Limnoecology Research Group, Egyetem utca 10, H-8200, Veszprém, Hungary.
| | - Csilla Stenger-Kovács
- Limnology Research Group, Center for Natural Science, University of Pannonia, Egyetem utca 10, H-8200, Veszprém, Hungary; HUN-REN-PE Limnoecology Research Group, Egyetem utca 10, H-8200, Veszprém, Hungary.
| | - Gergely Boros
- HUN-REN Balaton Limnological Research Institute, Klebelsberg Kuno utca 3, H-8237, Tihany, Hungary.
| | - Tiba Jassam Kaison Al-Imari
- Limnology Research Group, Center for Natural Science, University of Pannonia, Egyetem utca 10, H-8200, Veszprém, Hungary.
| | - Zoltán Novák
- HUN-REN Balaton Limnological Research Institute, Klebelsberg Kuno utca 3, H-8237, Tihany, Hungary.
| | - Gábor Bernát
- HUN-REN Balaton Limnological Research Institute, Klebelsberg Kuno utca 3, H-8237, Tihany, Hungary.
| |
Collapse
|
6
|
Zhou M, Jin X, Jiang M, Lü X, Lou Y. Helophytes adapt to water and N-enrichment stresses by adjusting and coordinating stoichiometry characteristics in main organs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165538. [PMID: 37454833 DOI: 10.1016/j.scitotenv.2023.165538] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Exploring the adaptation strategies of plants under stressful environments from an ecological stoichiometry perspective is a critical but underexplored research topic, and multi-organ collaborative research for multi-species can provide a comprehensive understanding. In this study, helophytes were selected as the subjects, and water depth and water N-enrichment were set as the stressors. A simulation experiment including three water depths (drought stress, control and flooding stress) and four water N-enrichment levels (control, low, medium and high N-enrichment stresses) for six helophyte species was carried out. Overall, C concentrations in all plant organs remained stable under water (drought-flooding stress) and N-enrichment stress. N concentrations increased under both flooding and drought stresses, while P concentrations and the N:P ratio showed an increase and decrease under only flooding stress, respectively. N concentration and N:P ratio increased with water N-enrichment level. The interaction only promoted the accumulation of N concentrations in aboveground organs. Especially, several species also changed organ C concentrations to adapt to water stress and adjusted root N concentrations for the combined stresses of flooding or drought and high N. Leaf and stem were strongly synergistic in N element, and leaf and root were mainly synergistic in P element. Water N-enrichment determined organ element concentrations more than water depth, and species identity dictated organ C:N:P ratios. Our results reveal that the allocation and synergy of nutrients among organs are important adaptive strategies for plants in stressful environments. Meanwhile, increasing water N-enrichment can be an unignored stressor, and species identity should be paid attention as a countermeasure.
Collapse
Affiliation(s)
- Mengdie Zhou
- Key Laboratory of Wetland Ecology and Environment & Jilin Provincial Joint Key Laboratory of Changbai Mountain Wetland and Ecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianglong Jin
- Key Laboratory of Wetland Ecology and Environment & Jilin Provincial Joint Key Laboratory of Changbai Mountain Wetland and Ecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Jiang
- Key Laboratory of Wetland Ecology and Environment & Jilin Provincial Joint Key Laboratory of Changbai Mountain Wetland and Ecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Xianguo Lü
- Key Laboratory of Wetland Ecology and Environment & Jilin Provincial Joint Key Laboratory of Changbai Mountain Wetland and Ecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yanjing Lou
- Key Laboratory of Wetland Ecology and Environment & Jilin Provincial Joint Key Laboratory of Changbai Mountain Wetland and Ecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
7
|
Silveira MJ, Florêncio FM, de Carvalho Harthman V, Thiébaut G. Responses of three invasive alien aquatic plant species to climate warming and plant density. JOURNAL OF PLANT RESEARCH 2023; 136:817-826. [PMID: 37505305 DOI: 10.1007/s10265-023-01482-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 07/13/2023] [Indexed: 07/29/2023]
Abstract
Climate warming may impact plant invasion success directly, as well as indirectly through changes among interactions within plant communities. However, the responses of invasive alien aquatic species to plant density and rising temperatures remain largely unknown. We tested the effects of plant density and neighbour plant identity at different temperatures to better understand the performance of a community of invasive species exposed to climate warming. A microcosm experiment was conducted with three invasive aquatic plants species-Elodea canadensis, Egeria densa and Lagarosiphon major-, at mono and polycultures with low and high plant density, at 16 °C, 19 °C and 23 °C. The results clearly demonstrated that rising temperature influenced, either as a single parameter or as a combined factor, at least one of the measured traits of the three invasive species. Leaf area of E. densa, root number of L. major and growth of E. densa and L. major were influenced by temperature, plant density and neighbour identity. Plant density influenced all traits with the exception of leaf area of E. canadensis and lateral branch production of E. densa. Neighbour identity had no effect on growth rate and leaf area of E. canadensis, on lateral branch and roots production of E. densa and on leaf area of L. major. These findings establish that rising temperature could enhance competition or facilitation among E. canadensis, L. major and E. densa and could cancel the beneficial effects of the presence of a neighbour species; however, the magnitude of this effect was strongly dependent on plant density. Rising temperature due to climate change will likely play a crucial role in interactions between invasive species within plant communities and in the further spread of these invasive aquatic plants.
Collapse
Affiliation(s)
- Márcio José Silveira
- Universidade Estadual de Minas Gerais, Unidade Ubá, Av. Olegário Maciel, 1427, Ubá, MG, CEP 36500-000, Brazil.
- University Rennes, CNRS, ECOBIO, UMR 6553, 35000, Rennes, France.
| | - Fernanda Moreira Florêncio
- Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais, PEA, Universidade Estadual de Maringá, UEM, Av Colombo, 5790, Bloco G90, Jardim Universitário, Maringá, PR, CEP 87020-900, Brazil
| | - Vanessa de Carvalho Harthman
- Federal University of Mato Grosso do Sul, UFMS/Campus Pantanal, Av Rio Branco, Bairro Universitário, Corumbá, MS, CEP 79304-902, Brazil
| | | |
Collapse
|
8
|
van Moorsel SJ, Thébault E, Radchuk V, Narwani A, Montoya JM, Dakos V, Holmes M, De Laender F, Pennekamp F. Predicting effects of multiple interacting global change drivers across trophic levels. GLOBAL CHANGE BIOLOGY 2023; 29:1223-1238. [PMID: 36461630 PMCID: PMC7614140 DOI: 10.1111/gcb.16548] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 05/26/2023]
Abstract
Global change encompasses many co-occurring anthropogenic drivers, which can act synergistically or antagonistically on ecological systems. Predicting how different global change drivers simultaneously contribute to observed biodiversity change is a key challenge for ecology and conservation. However, we lack the mechanistic understanding of how multiple global change drivers influence the vital rates of multiple interacting species. We propose that reaction norms, the relationships between a driver and vital rates like growth, mortality, and consumption, provide insights to the underlying mechanisms of community responses to multiple drivers. Understanding how multiple drivers interact to affect demographic rates using a reaction-norm perspective can improve our ability to make predictions of interactions at higher levels of organization-that is, community and food web. Building on the framework of consumer-resource interactions and widely studied thermal performance curves, we illustrate how joint driver impacts can be scaled up from the population to the community level. A simple proof-of-concept model demonstrates how reaction norms of vital rates predict the prevalence of driver interactions at the community level. A literature search suggests that our proposed approach is not yet used in multiple driver research. We outline how realistic response surfaces (i.e., multidimensional reaction norms) can be inferred by parametric and nonparametric approaches. Response surfaces have the potential to strengthen our understanding of how multiple drivers affect communities as well as improve our ability to predict when interactive effects emerge, two of the major challenges of ecology today.
Collapse
Affiliation(s)
- Sofia J. van Moorsel
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
- Department of GeographyUniversity of ZurichZurichSwitzerland
| | - Elisa Thébault
- Sorbonne Université, CNRS, IRD, INRAE, Université Paris Est Créteil, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris (iEES‐Paris)ParisFrance
| | - Viktoriia Radchuk
- Department of Ecological DynamicsLeibniz Institute for Zoo and Wildlife ResearchBerlinGermany
| | - Anita Narwani
- Department of Aquatic EcologyEawagDübendorfSwitzerland
| | - José M. Montoya
- Theoretical and Experimental Ecology StationCNRSMoulisFrance
| | - Vasilis Dakos
- Institut des Sciences de l'Evolution de Montpellier (ISEM)Université de Montpellier, IRD, EPHEMontpellierFrance
| | - Mark Holmes
- Namur Institute for Complex Systems (naXys), Institute of Life, Earth, and Environment (ILEE), Research Unit in Environmental and Evolutionary Biology, University of NamurNamurBelgium
| | - Frederik De Laender
- Namur Institute for Complex Systems (naXys), Institute of Life, Earth, and Environment (ILEE), Research Unit in Environmental and Evolutionary Biology, University of NamurNamurBelgium
| | - Frank Pennekamp
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| |
Collapse
|
9
|
Feng M, Cheng H, Zhang P, Wang K, Wang T, Zhang H, Wang H, Zhou L, Xu J, Zhang M. Stoichiometric stability of aquatic organisms increases with trophic level under warming and eutrophication. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160106. [PMID: 36370785 DOI: 10.1016/j.scitotenv.2022.160106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/05/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
The balance of stoichiometric traits of organisms is crucial for nutrient cycling and energy flow in ecosystems. However, the impacts of different drivers on stoichiometric (carbon, C; nitrogen, N; and phosphorus, P) variations of organisms have not been well addressed. In order to understand how stoichiometric traits vary across trophic levels under different environmental stressors, we performed a mesocosm experiment to explore the impacts of warming (including +3 °C consistent warming above ambient and heat waves ranging from 0 to 6 °C), eutrophication, herbicide and their interactions on stoichiometric traits of organisms at different trophic levels, which was quantified by stable nitrogen isotopes. Results showed that herbicide treatment had no significant impacts on all stochiometric traits, while warming and eutrophication significantly affected the stoichiometric traits of organisms at lower trophic levels. Eutrophication increased nutrient contents and decreased C: nutrient ratios in primary producers, while the response of N:P ratios depended on the taxonomic group. The contribution of temperature treatments to stoichiometric variation was less than that of eutrophication. Heat waves counteracted the impacts of eutrophication, which was different from the effects of continuous warming, indicating that eutrophication impacts on organism stoichiometric traits depended on climate scenarios. Compared to environmental drivers, taxonomic group was the dominant driver that determined the variations of stoichiometric traits. Furthermore, the stoichiometric stability of organisms was strongly positively correlated with their trophic levels. Our results demonstrate that warming and eutrophication might substantially alter the stoichiometric traits of lower trophic levels, thus impairing the nutrient transfer to higher trophic level, which might further change the structure of food webs and functions of the ecosystems.
Collapse
Affiliation(s)
- Mingjun Feng
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Haowu Cheng
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Peiyu Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
| | - Kang Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Tao Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Huan Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Huan Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Libin Zhou
- Institute of Ecology, College of Urban and Environmental Science, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Jun Xu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Min Zhang
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China.
| |
Collapse
|
10
|
Li J, Wang Y, Cui J, Wang W, Liu X, Chang Y, Yao D, Cui J. Removal effects of aquatic plants on high-concentration phosphorus in wastewater during summer. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116434. [PMID: 36352733 DOI: 10.1016/j.jenvman.2022.116434] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/26/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Aquatic plants are widely used in depth treatment of wastewater; however, the phosphorus (P) removal mechanisms of aquatic plants at high temperatures in summer are not well understood. Eight aquatic plants, including two floating species (Ludwigia peploides and Hydrocharis dubia) and six emergent species (Lythrum salicaria, Sagittaria sagittifolia, Canna indica, Sparganium stoloniferum, Rotala rotundifolia, and Ludwigia ovalis), were treated with five P solutions (3.0, 3.5, 4.0, 4.5, and 5.5 mg L-1) for 5 weeks in a greenhouse during summer at air temperatures ranging from 25 to 35 °C. H. dubia, L. peploides, L. salicaria, and S. sagittifolia showed high water P removal efficiencies (exceeded 95%). Furthermore, their corresponding residual P concentrations in water were almost lower than the limit value of 0.2 mg L-1 of Grade III in the Chinese Environmental Quality Atandards for Surface Water (GB3838-2002). Plants have different water P removal paths. For example, H. dubia enriched more P with water P concentration increasing significantly. As the culture time increased, the water pH fluctuated significantly in the fall, and then H. dubia used the produced H+ enrich P. L. peploides did not enrich P, but proliferated rapidly, to remove P from water by increasing its fresh weight (FW). L. salicaria and S. sagittifolia showed two paths of enrich-P and FW increase. During the growth process of L. salicaria, the stem diameter and leaf length increased with an increase in P concentration in water or plant or both; however, the height and root length of L. peploides were reduced. Moreover, SOD and CAT activities responded to high P concentrations in water or high temperatures or both, which protected against oxidative damage. These findings could offer theoretical foundation and practical guidance for selection of aquatic plant species in depth treatment of wastewater during summer.
Collapse
Affiliation(s)
- Jinfeng Li
- Institute of Botany, Jiangsu Province and Chinese Academy Sciences, Nanjing, 210014, China; Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing, 210014, China
| | - Yihong Wang
- Jiangsu Province Hydraulic Research Institute, Nanjing, 210017, China
| | - Jianwei Cui
- Institute of Botany, Jiangsu Province and Chinese Academy Sciences, Nanjing, 210014, China; Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing, 210014, China
| | - Wei Wang
- Institute of Botany, Jiangsu Province and Chinese Academy Sciences, Nanjing, 210014, China; Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing, 210014, China
| | - Xiaojing Liu
- Institute of Botany, Jiangsu Province and Chinese Academy Sciences, Nanjing, 210014, China; Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing, 210014, China
| | - Yajun Chang
- Institute of Botany, Jiangsu Province and Chinese Academy Sciences, Nanjing, 210014, China; Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing, 210014, China
| | - Dongrui Yao
- Institute of Botany, Jiangsu Province and Chinese Academy Sciences, Nanjing, 210014, China; Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing, 210014, China.
| | - Jian Cui
- Institute of Botany, Jiangsu Province and Chinese Academy Sciences, Nanjing, 210014, China; Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing, 210014, China.
| |
Collapse
|
11
|
Zhang P, Wang T, Zhang H, Wang H, Hilt S, Shi P, Cheng H, Feng M, Pan M, Guo Y, Wang K, Xu X, Chen J, Zhao K, He Y, Zhang M, Xu J. Heat waves rather than continuous warming exacerbate impacts of nutrient loading and herbicides on aquatic ecosystems. ENVIRONMENT INTERNATIONAL 2022; 168:107478. [PMID: 35998413 DOI: 10.1016/j.envint.2022.107478] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/13/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Submerged macrophytes are vital components in shallow aquatic ecosystems, but their abundances have declined globally. Shading by periphyton and phytoplankton/turbidity plays a major role in this decline, and the competing aquatic primary producers are subject to the complex influence of multiple stressors such as increasing temperatures, nutrient loading and herbicides. Their joint impact has rarely been tested and is difficult to predict due to potentially opposing effects on the different primary producers, their interactions and their grazers. Here, we used 48 mesocosms (2500 L) to simulate shallow lakes dominated by two typical submerged macrophytes, bottom-dwelling Vallisneria denseserrulata and canopy-forming Hydrilla verticillata, and associated food web components. We applied a combination of nutrient loading, continuous warming, heat waves and glyphosate-based herbicides to test how these stressors interactively impact the growth of submerged macrophytes, phytoplankton and periphyton as competing primary producers. Warming or heat waves alone did not affect phytoplankton and periphyton abundance, but negatively influenced the biomass of V. denseserrulata. Nutrient loading alone increased phytoplankton biomass and water turbidity and thus negatively affected submerged macrophyte biomass, particularly for V. denseserrulata, by shading. Glyphosate alone did not affect biomass of each primary producer under ambient temperatures. However, heat waves facilitated phytoplankton growth under combined nutrient loading and glyphosate treatments more than continuous warming. As a consequence, H. verticillata biomass was lowest under these conditions indicating the potential of multiple stressors for macrophyte decline. Our study demonstrated that multiple stressors interactively alter the biomass of primary producers and their interactions and can eventually lead to a loss of macrophyte communities and shift to phytoplankton dominance. These results show the risks in shallow lakes and ponds in agricultural landscapes and underline the need for multiple stressor studies as a base for their future management.
Collapse
Affiliation(s)
- Peiyu Zhang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Tao Wang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Huan Zhang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Huan Wang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Sabine Hilt
- Department of Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Penglan Shi
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Haowu Cheng
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Mingjun Feng
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Meng Pan
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Yulun Guo
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Kang Wang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiaoqi Xu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jianlin Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Kangshun Zhao
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yuhan He
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Min Zhang
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Jun Xu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
12
|
Ngarega BK, Nzei JM, Saina JK, Halmy MWA, Chen JM, Li ZZ. Mapping the habitat suitability of Ottelia species in Africa. PLANT DIVERSITY 2022; 44:468-480. [PMID: 36187550 PMCID: PMC9512647 DOI: 10.1016/j.pld.2021.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 06/15/2023]
Abstract
Understanding the influence of environmental covariates on plant distribution is critical, especially for aquatic plant species. Climate change is likely to alter the distribution of aquatic species. However, knowledge of this change on the burden of aquatic macroorganisms is often fraught with difficulty. Ottelia, a model genus for studying the evolution of the aquatic family Hydrocharitaceae, is mainly distributed in slow-flowing creeks, rivers, or lakes throughout pantropical regions in the world. Due to recent rapid climate changes, natural Ottelia populations have declined significantly. By modeling the effects of climate change on the distribution of Ottelia species and assessing the degree of niche similarity, we sought to identify high suitability regions and help formulate conservation strategies. The models use known background points to determine how environmental covariates vary spatially and produce continental maps of the distribution of the Ottelia species in Africa. Additionally, we estimated the possible influences of the optimistic and extreme pessimistic representative concentration pathways scenarios RCP 4.5 and RCP 8.5 for the 2050s. Our results show that the distinct distribution patterns of studied Ottelia species were influenced by topography (elevation) and climate (e.g., mean temperature of driest quarter, annual precipitation, and precipitation of the driest month). While there is a lack of accord in defining the limiting factors for the distribution of Ottelia species, it is clear that water-temperature conditions have promising effects when kept within optimal ranges. We also note that climate change will impact Ottelia by accelerating fragmentation and habitat loss. The assessment of niche overlap revealed that Ottelia cylindrica and O . verdickii had slightly more similar niches than the other Ottelia species. The present findings identify the need to enhance conservation efforts to safeguard natural Ottelia populations and provide a theoretical basis for the distribution of various Ottelia species in Africa.
Collapse
Affiliation(s)
- Boniface K. Ngarega
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, 666303, China
| | - John M. Nzei
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Josphat K. Saina
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, 666303, China
| | - Marwa Waseem A. Halmy
- Department of Environmental Sciences, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Jin-Ming Chen
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Zhi-Zhong Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| |
Collapse
|
13
|
Feng M, Zhang P, Cheng H, Frenken T, Xu J, Zhang M. Interactive effects of light and snail herbivory rather than nutrient loading determine early establishment of submerged macrophytes. Ecol Evol 2022; 12:e9070. [PMID: 35813922 PMCID: PMC9251838 DOI: 10.1002/ece3.9070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 11/06/2022] Open
Abstract
Submerged macrophytes play a key role in maintaining a clear-water phase and promoting biodiversity in shallow aquatic ecosystems. Since their abundance has declined globally due to anthropogenic activities, it is important to include them in aquatic ecosystem restoration programs. Macrophytes establishment in early spring is crucial for the subsequent growth of other warm-adapted macrophytes. However, factors affecting this early establishment of submerged macrophytes have not been fully explored yet. Here, we conducted an outdoor experiment from winter to early spring using the submerged macrophytes Potamogeton crispus and Vallisneria spinulosa to study the effects of shading, nutrient loading, snail herbivory (Radix swinhoei), and their interactions on the early growth and stoichiometric characteristics of macrophytes. The results show that the effects strongly depend on macrophyte species. Biomass and number of shoots of P. crispus decreased, and internode length increased during low light conditions, but were not affected by nutrient loading. P. crispus shoot biomass and number showed hump-shaped responses to increased snail biomass under full light. In contrast, the biomass of the plant linearly decreased with snail biomass under low light. This indicates an interaction of light with snail herbivory. Since snails prefer grazing on periphyton over macrophytes, a low density of snails promoted growth of P. crispus by removing periphyton competition, while herbivory on the macrophyte increased during a high density of snails. The growth of V. spinulosa was not affected by any of the factors, probably because of growth limitation by low temperature. Our study demonstrates that the interaction of light with snail herbivory may affect establishment and growth of submerged macrophytes in early spring. Macrophyte restoration projects may thus benefit from lowering water levels to increase light availability and making smart use of cold-adapted herbivores to reduce light competition with periphyton.
Collapse
Affiliation(s)
- Mingjun Feng
- College of FisheriesHuazhong Agricultural University, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond AquacultureWuhanChina
| | - Peiyu Zhang
- Institute of HydrobiologyChinese Academy of SciencesWuhanChina
| | - Haowu Cheng
- College of FisheriesHuazhong Agricultural University, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond AquacultureWuhanChina
| | - Thijs Frenken
- Cluster Nature and SocietyHAS University of Applied Sciences’s‐Hertogenboschthe Netherlands
- Department of Aquatic EcologyNetherlands Institute of Ecology (NIOO‐KNAW)Wageningenthe Netherlands
| | - Jun Xu
- Institute of HydrobiologyChinese Academy of SciencesWuhanChina
| | - Min Zhang
- College of FisheriesHuazhong Agricultural University, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond AquacultureWuhanChina
| |
Collapse
|
14
|
Dai M, Wang T, Wang Y, Xu J. Effects of Warming and Phosphorus Enrichment on the C:N:P Stoichiometry of Potamogeton crispus Organs. FRONTIERS IN PLANT SCIENCE 2022; 13:814255. [PMID: 35422837 PMCID: PMC9002266 DOI: 10.3389/fpls.2022.814255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
The loss of submerged macrophytes from freshwater ecosystems is accelerating owing to the combined effects of eutrophication and climate change. Submerged macrophytes depend on spring clear water; however, increased water temperatures and excessive phosphorus (P) inputs often lead to the dominance of phytoplankton. It is still not clear how the stoichiometric characteristics of carbon (C), nitrogen (N), and P in different tissues of submerged macrophytes respond to P enrichment and temperature increases. In this study, we established 36 mesocosm ecosystems to explore the effects of warming and P addition on the leaf, turion, stem, and seed stoichiometry of Potamogeton crispus. The results revealed that different functional plant organs show distinct responses to P addition and warming, which demonstrates the importance of evaluating the responses of different submerged macrophyte organs to environmental changes. In addition, interactive effects between P addition and warming were observed in the leaf, turion, and seed C:N:P stoichiometry, which highlights the importance of multifactorial studies. Our data showed that warming caused a decrease in the C content in most organs, with the exception of the stem; P addition increased the P content in most organs, with the exception of seed; N content in the turion and seed were influenced by interactive effects. Collectively, P addition could help P. crispus to resist the adverse effects of high temperatures by aiding growth and asexual reproduction, and asexual propagules were found to be more sensitive to P enrichment than sexual propagules.
Collapse
Affiliation(s)
- Mingzhe Dai
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Tao Wang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuyu Wang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Jun Xu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
15
|
Frei RJ, Lawson GM, Norris AJ, Cano G, Vargas MC, Kujanpää E, Hopkins A, Brown B, Sabo R, Brahney J, Abbott BW. Limited progress in nutrient pollution in the U.S. caused by spatially persistent nutrient sources. PLoS One 2021; 16:e0258952. [PMID: 34843503 PMCID: PMC8629290 DOI: 10.1371/journal.pone.0258952] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 10/10/2021] [Indexed: 01/01/2023] Open
Abstract
Human agriculture, wastewater, and use of fossil fuels have saturated ecosystems with nitrogen and phosphorus, threatening biodiversity and human water security at a global scale. Despite efforts to reduce nutrient pollution, carbon and nutrient concentrations have increased or remained high in many regions. Here, we applied a new ecohydrological framework to ~12,000 water samples collected by the U.S. Environmental Protection Agency from streams and lakes across the contiguous U.S. to identify spatial and temporal patterns in nutrient concentrations and leverage (an indicator of flux). For the contiguous U.S. and within ecoregions, we quantified trends for sites sampled repeatedly from 2000 to 2019, the persistence of spatial patterns over that period, and the patch size of nutrient sources and sinks. While we observed various temporal trends across ecoregions, the spatial patterns of nutrient and carbon concentrations in streams were persistent across and within ecoregions, potentially because of historical nutrient legacies, consistent nutrient sources, and inherent differences in nutrient removal capacity for various ecosystems. Watersheds showed strong critical source area dynamics in that 2-8% of the land area accounted for 75% of the estimated flux. Variability in nutrient contribution was greatest in catchments smaller than 250 km2 for most parameters. An ensemble of four machine learning models confirmed previously observed relationships between nutrient concentrations and a combination of land use and land cover, demonstrating how human activity and inherent nutrient removal capacity interactively determine nutrient balance. These findings suggest that targeted nutrient interventions in a small portion of the landscape could substantially improve water quality at continental scales. We recommend a dual approach of first prioritizing the reduction of nutrient inputs in catchments that exert disproportionate influence on downstream water chemistry, and second, enhancing nutrient removal capacity by restoring hydrological connectivity both laterally and vertically in stream networks.
Collapse
Affiliation(s)
- Rebecca J. Frei
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Gabriella M. Lawson
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Adam J. Norris
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Gabriel Cano
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Maria Camila Vargas
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Elizabeth Kujanpää
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Austin Hopkins
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Brian Brown
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Robert Sabo
- United States Environmental Protection Agency, Washington, D. C., United States of America
| | - Janice Brahney
- Department of Watershed Sciences and Ecology Center, Utah State University, Logan, Utah, United States of America
| | - Benjamin W. Abbott
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| |
Collapse
|
16
|
Wu H, Hao B, Jo H, Cai Y. Seasonality and Species Specificity of Submerged Macrophyte Biomass in Shallow Lakes Under the Influence of Climate Warming and Eutrophication. FRONTIERS IN PLANT SCIENCE 2021; 12:678259. [PMID: 34659276 PMCID: PMC8517270 DOI: 10.3389/fpls.2021.678259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Climate warming and eutrophication caused by anthropogenic activities strongly affect aquatic ecosystems. Submerged macrophytes usually play a key role in shallow lakes and can maintain a stable clear state. It is extremely important to study the effects of climate warming and eutrophication on the growth of submerged macrophytes in shallow lakes. However, the responses of submerged macrophytes to climate warming and eutrophication are still controversial. Additionally, the understanding of the main pathways impacting submerged macrophytes remains to be clarified. In addition, the influence of seasonality on the growth responses of submerged macrophytes to climate warming and eutrophication requires further elucidation. In this study, we conducted a series of mesocosm experiments with four replicates across four seasons to study the effects of rising temperature and nutrient enrichment on the biomass of two submerged macrophytes, Potamogeton crispus and Elodea canadensis. Our results demonstrated the seasonality and species specificity of plant biomass under the influence of climate warming and eutrophication, as well as the main explanatory factors in each season. Consistent with the seasonal results, the overall results showed that E. canadensis biomass was directly increased by rising temperature rather than by nutrient enrichment. Conversely, the overall results showed that P. crispus biomass was indirectly reduced by phosphorus enrichment via the strengthening of competition among primary producers. Distinct physiological and morphological traits may induce species-specific responses of submerged macrophytes to climate warming and eutrophication, indicating that further research should take interspecies differences into account.
Collapse
Affiliation(s)
- Haoping Wu
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Bioscience, Aarhus University, Silkeborg, Denmark
| | - Beibei Hao
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Bioscience, Aarhus University, Silkeborg, Denmark
| | - Hyunbin Jo
- Department of Bioscience, Aarhus University, Silkeborg, Denmark
- Institute for Environment and Energy, Pusan National University, Busan, South Korea
| | - Yanpeng Cai
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| |
Collapse
|
17
|
Crandall T, Jones E, Greenhalgh M, Frei RJ, Griffin N, Severe E, Maxwell J, Patch L, St. Clair SI, Bratsman S, Merritt M, Norris AJ, Carling GT, Hansen N, St. Clair SB, Abbott BW. Megafire affects stream sediment flux and dissolved organic matter reactivity, but land use dominates nutrient dynamics in semiarid watersheds. PLoS One 2021; 16:e0257733. [PMID: 34555099 PMCID: PMC8460006 DOI: 10.1371/journal.pone.0257733] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 09/08/2021] [Indexed: 01/05/2023] Open
Abstract
Climate change is causing larger wildfires and more extreme precipitation events in many regions. As these ecological disturbances increasingly coincide, they alter lateral fluxes of sediment, organic matter, and nutrients. Here, we report the stream chemistry response of watersheds in a semiarid region of Utah (USA) that were affected by a megafire followed by an extreme precipitation event in October 2018. We analyzed daily to hourly water samples at 10 stream locations from before the storm event until three weeks after its conclusion for suspended sediment, solute and nutrient concentrations, water isotopes, and dissolved organic matter concentration, optical properties, and reactivity. The megafire caused a ~2,000-fold increase in sediment flux and a ~6,000-fold increase in particulate carbon and nitrogen flux over the course of the storm. Unexpectedly, dissolved organic carbon (DOC) concentration was 2.1-fold higher in burned watersheds, despite the decreased organic matter from the fire. DOC from burned watersheds was 1.3-fold more biodegradable and 2.0-fold more photodegradable than in unburned watersheds based on 28-day dark and light incubations. Regardless of burn status, nutrient concentrations were higher in watersheds with greater urban and agricultural land use. Likewise, human land use had a greater effect than megafire on apparent hydrological residence time, with rapid stormwater signals in urban and agricultural areas but a gradual stormwater pulse in areas without direct human influence. These findings highlight how megafires and intense rainfall increase short-term particulate flux and alter organic matter concentration and characteristics. However, in contrast with previous research, which has largely focused on burned-unburned comparisons in pristine watersheds, we found that direct human influence exerted a primary control on nutrient status. Reducing anthropogenic nutrient sources could therefore increase socioecological resilience of surface water networks to changing wildfire regimes.
Collapse
Affiliation(s)
- Trevor Crandall
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
- Cimarron Valley Research Station, Oklahoma State University, Perkins, Oklahoma, United States of America
| | - Erin Jones
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Mitchell Greenhalgh
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Rebecca J. Frei
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Natasha Griffin
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Emilee Severe
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Jordan Maxwell
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Leika Patch
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - S. Isaac St. Clair
- Department of Statistics, Brigham Young University, Provo, Utah, United States of America
| | - Sam Bratsman
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Marina Merritt
- Department of Chemical Engineering, Brigham Young University, Provo, Utah, United States of America
| | - Adam J. Norris
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Gregory T. Carling
- Department of Geological Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Neil Hansen
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Samuel B. St. Clair
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Benjamin W. Abbott
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| |
Collapse
|
18
|
Ersoy Z, Scharfenberger U, Baho DL, Bucak T, Feldmann T, Hejzlar J, Levi EE, Mahdy A, Nõges T, Papastergiadou E, Stefanidis K, Šorf M, Søndergaard M, Trigal C, Jeppesen E, Beklioğlu M. Impact of nutrients and water level changes on submerged macrophytes along a temperature gradient: A pan-European mesocosm experiment. GLOBAL CHANGE BIOLOGY 2020; 26:6831-6851. [PMID: 32893967 DOI: 10.1111/gcb.15338] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/06/2020] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
Submerged macrophytes are of key importance for the structure and functioning of shallow lakes and can be decisive for maintaining them in a clear water state. The ongoing climate change affects the macrophytes through changes in temperature and precipitation, causing variations in nutrient load, water level and light availability. To investigate how these factors jointly determine macrophyte dominance and growth, we conducted a highly standardized pan-European experiment involving the installation of mesocosms in lakes. The experimental design consisted of mesotrophic and eutrophic nutrient conditions at 1 m (shallow) and 2 m (deep) depth along a latitudinal temperature gradient with average water temperatures ranging from 14.9 to 23.9°C (Sweden to Greece) and a natural drop in water levels in the warmest countries (Greece and Turkey). We determined percent plant volume inhabited (PVI) of submerged macrophytes on a monthly basis for 5 months and dry weight at the end of the experiment. Over the temperature gradient, PVI was highest in the shallow mesotrophic mesocosms followed by intermediate levels in the shallow eutrophic and deep mesotrophic mesocosms, and lowest levels in the deep eutrophic mesocosms. We identified three pathways along which water temperature likely affected PVI, exhibiting (a) a direct positive effect if light was not limiting; (b) an indirect positive effect due to an evaporation-driven water level reduction, causing a nonlinear increase in mean available light; and (c) an indirect negative effect through algal growth and, thus, high light attenuation under eutrophic conditions. We conclude that high temperatures combined with a temperature-mediated water level decrease can counterbalance the negative effects of eutrophic conditions on macrophytes by enhancing the light availability. While a water level reduction can promote macrophyte dominance, an extreme reduction will likely decrease macrophyte biomass and, consequently, their capacity to function as a carbon store and food source.
Collapse
Affiliation(s)
- Zeynep Ersoy
- Limnology Laboratory, Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
- 'Rui Nabeiro' Biodiversity Chair, MED - Mediterranean Institute for Agriculture, Environment and Development, Universidade de Évora, Évora, Portugal
| | - Ulrike Scharfenberger
- Department of River Ecology, Helmholtz Centre for Environmental Research UFZ, Magdeburg, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Didier L Baho
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Tuba Bucak
- Limnology Laboratory, Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
- Nature Conservation Centre, Ankara, Turkey
| | - Tõnu Feldmann
- Centre for Limnology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartumaa, Estonia
| | - Josef Hejzlar
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Eti E Levi
- Limnology Laboratory, Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
- Department of Bioscience, Aarhus University, Silkeborg, Denmark
| | - Aldoushy Mahdy
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut, Egypt
| | - Tiina Nõges
- Centre for Limnology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartumaa, Estonia
| | | | - Konstantinos Stefanidis
- Department of Biology, University of Patras, Rio, Greece
- Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, Anavissos Attiki, Greece
| | - Michal Šorf
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Martin Søndergaard
- Department of Bioscience, Aarhus University, Silkeborg, Denmark
- Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing, China
| | - Cristina Trigal
- Species Information Center, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Erik Jeppesen
- Limnology Laboratory, Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
- Department of Bioscience, Aarhus University, Silkeborg, Denmark
- Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing, China
- Centre for Ecosystem Research and Implementation (EKOSAM), Middle East Technical University, Ankara, Turkey
| | - Meryem Beklioğlu
- Limnology Laboratory, Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
- Centre for Ecosystem Research and Implementation (EKOSAM), Middle East Technical University, Ankara, Turkey
| |
Collapse
|