1
|
Janiszewska-Turak E, Wierzbicka A, Rybak K, Pobiega K, Synowiec A, Woźniak Ł, Trych U, Krzykowski A, Gramza-Michałowska A. Studying the Influence of Salt Concentrations on Betalain and Selected Physical and Chemical Properties in the Lactic Acid Fermentation Process of Red Beetroot. Molecules 2024; 29:4803. [PMID: 39459172 PMCID: PMC11510701 DOI: 10.3390/molecules29204803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
This study emphasizes the significance of optimizing salt content during the fermentation of red beetroot to produce healthier and high-quality fermented products. It investigates the impact of different salt levels on fermentation, analyzing various parameters such as pH levels, dry matter content, total acidity, salt content, color changes, pigment content, and lactic acid bacteria count. This study identifies the most favorable salt concentration for bacterial growth during fermentation and storage as 2-3%. It was evaluated that salt levels fluctuated significantly during fermentation, with nearly 50% of the added salt absorbed by the beetroot tissues, mainly when lower salt concentrations were used. The fermentation process had a negative effect on the content of betalain pigments, as well as yellow pigments, including vulgaxanthin-I. It was also found that fermentation and storage affected the proportions of red pigments, with betacyanins proving to be more stable than betaxanthins, and that salt addition affected negatively pH and total acidity while causing an increase in yellow color. The pH was negatively correlated with the duration of the process, the amount of red pigment, and bacterial count. The results indicate that lower salt levels can lead to favorable physicochemical and microbiological parameters, allowing for the production of fermented red beetroot with reduced salt content without compromising quality.
Collapse
Affiliation(s)
- Emilia Janiszewska-Turak
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 159C Nowoursynowska St., 02-787 Warsaw, Poland; (A.W.); (K.R.)
| | - Anna Wierzbicka
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 159C Nowoursynowska St., 02-787 Warsaw, Poland; (A.W.); (K.R.)
| | - Katarzyna Rybak
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 159C Nowoursynowska St., 02-787 Warsaw, Poland; (A.W.); (K.R.)
| | - Katarzyna Pobiega
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 159C Nowoursynowska St., 02-787 Warsaw, Poland; (K.P.); (A.S.)
| | - Alicja Synowiec
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 159C Nowoursynowska St., 02-787 Warsaw, Poland; (K.P.); (A.S.)
| | - Łukasz Woźniak
- Department of Food Safety and Chemical Analysis, Institute of Agricultural and Food Biotechnology, 36 Rakowiecka Street, 02-532 Warsaw, Poland;
| | - Urszula Trych
- Department of Fruit and Vegetable Product Technology, Institute of Agricultural and Food Biotechnology, 36 Rakowiecka Street, 02-532 Warsaw, Poland;
| | - Andrzej Krzykowski
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, 31 Głęboka St., 20-612 Lublin, Poland;
| | - Anna Gramza-Michałowska
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland;
| |
Collapse
|
2
|
Nishihara M, Hirabuchi A, Teshima T, Uesugi S, Takahashi H. Flower color modification in Torenia fournieri by genetic engineering of betacyanin pigments. BMC PLANT BIOLOGY 2024; 24:614. [PMID: 38937670 PMCID: PMC11210153 DOI: 10.1186/s12870-024-05284-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/10/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Betalains are reddish and yellow pigments that accumulate in a few plant species of the order Caryophyllales. These pigments have antioxidant and medicinal properties and can be used as functional foods. They also enhance resistance to stress or disease in crops. Several plant species belonging to other orders have been genetically engineered to express betalain pigments. Betalains can also be used for flower color modification in ornamental plants, as they confer vivid colors, like red and yellow. To date, betalain engineering to modify the color of Torenia fournieri-or wishbone flower-a popular ornamental plant, has not been attempted. RESULTS We report the production of purple-reddish-flowered torenia plants from the purple torenia cultivar "Crown Violet." Three betalain-biosynthetic genes encoding CYP76AD1, dihydroxyphenylalanine (DOPA) 4,5-dioxygenase (DOD), and cyclo-DOPA 5-O-glucosyltransferase (5GT) were constitutively ectopically expressed under the cauliflower mosaic virus (CaMV) 35S promoter, and their expression was confirmed by quantitative real-time PCR (qRT-PCR) analysis. The color traits, measured by spectrophotometric colorimeter and spectral absorbance of fresh petal extracts, revealed a successful flower color modification from purple to reddish. Red pigmentation was also observed in whole plants. LC-DAD-MS and HPLC analyses confirmed that the additional accumulated pigments were betacyanins-mainly betanin (betanidin 5-O-glucoside) and, to a lesser extent, isobetanin (isobetanidin 5-O-glucoside). The five endogenous anthocyanins in torenia flower petals were also detected. CONCLUSIONS This study demonstrates the possibility of foreign betacyanin accumulation in addition to native pigments in torenia, a popular garden bedding plant. To our knowledge, this is the first report presenting engineered expression of betalain pigments in the family Linderniaceae. Genetic engineering of betalains would be valuable in increasing the flower color variation in future breeding programs for torenia.
Collapse
Affiliation(s)
- Masahiro Nishihara
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, 024-0003, Iwate, Japan.
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Kenjojima, Matsuoka, Eiheiji-cho, Fukui, 910-1195, Japan.
| | - Akiko Hirabuchi
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, 024-0003, Iwate, Japan
| | - Takuya Teshima
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, 024-0003, Iwate, Japan
| | - Shota Uesugi
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, 024-0003, Iwate, Japan
| | - Hideyuki Takahashi
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, 024-0003, Iwate, Japan
- Department of Agriculture, School of Agriculture, Tokai University, 871-12 Sugidou, Mashikimach, Kamimashiki-gun, Kumamoto, 861-2205, Japan
| |
Collapse
|
3
|
Liu S, An Z, Lai Z. Amaranth's Growth and Physiological Responses to Salt Stress and the Functional Analysis of AtrTCP1 Gene. Int J Mol Sci 2024; 25:5437. [PMID: 38791475 PMCID: PMC11121779 DOI: 10.3390/ijms25105437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Amaranth species are C4 plants that are rich in betalains, and they are tolerant to salinity stress. A small family of plant-specific TCP transcription factors are involved in the response to salt stress. However, it has not been investigated whether amaranth TCP1 is involved in salt stress. We elucidated that the growth and physiology of amaranth were affected by salt concentrations of 50-200 mmol·L-1 NaCl. The data showed that shoot and root growth was inhibited at 200 mmol·L-1, while it was promoted at 50 mmol·L-1. Meanwhile, the plants also showed physiological responses, which indicated salt-induced injuries and adaptation to the salt stress. Moreover, AtrTCP1 promoted Arabidopsis seed germination. The germination rate of wild-type (WT) and 35S::AtrTCP1-GUS Arabidopsis seeds reached around 92% by the seventh day and 94.5% by the second day under normal conditions, respectively. With 150 mmol·L-1 NaCl treatment, the germination rate of the WT and 35S::AtrTCP1-GUS plant seeds was 27.0% by the seventh day and 93.0% by the fourth day, respectively. Under salt stress, the transformed 35S::AtrTCP1 plants bloomed when they grew 21.8 leaves after 16.2 days of treatment, which was earlier than the WT plants. The transformed Arabidopsis plants flowered early to resist salt stress. These results reveal amaranth's growth and physiological responses to salt stress, and provide valuable information on the AtrTCP1 gene.
Collapse
Affiliation(s)
- Shengcai Liu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zixian An
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| |
Collapse
|
4
|
Kang Y, Li Y, Zhang T, Wang P, Liu W, Zhang Z, Yu W, Wang J, Wang J, Zhou Y. Integrated metabolome, full-length sequencing, and transcriptome analyses unveil the molecular mechanisms of color formation of the canary yellow and red bracts of Bougainvillea × buttiana 'Chitra'. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1441-1461. [PMID: 37648415 DOI: 10.1111/tpj.16439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/05/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
Bougainvillea is a typical tropical flower of great ornamental value due to its colorful bracts. The molecular mechanism behind color formation is not well-understood. Therefore, this research conducted metabolome analysis, transcriptome analysis, and multi-flux full-length sequencing in two color bracts of Bougainvillea × buttiana 'Chitra' to investigate the significantly different metabolites (SDMs) and differentially expressed genes (DEGs). Overall, 261 SDMs, including 62 flavonoids and 26 alkaloids, were detected, and flavonols and betalains were significantly differentially accumulated among the two bracts. Furthermore, the complete-length transcriptome of Bougainvillea × buttiana was also developed, which contained 512 493 non-redundant isoforms. Among them, 341 210 (66.58%) displayed multiple annotations in the KOG, GO, NR, KEGG, Pfam, Swissprot, and NT databases. RNA-seq findings revealed that 3610 DEGs were identified between two bracts. Co-expression analysis demonstrated that the DEGs and SDMs involved in flavonol metabolism (such as CHS, CHI, F3H, FLS, CYP75B1, kaempferol, and quercetin) and betacyanin metabolism (DODA, betanidin, and betacyanins) were the main contributors for the canary yellow and red bract formation, respectively. Further investigation revealed that several putative transcription factors (TFs) might interact with the promoters of the genes mentioned above. The expression profiles of the putative TFs displayed that they may positively and negatively regulate the structural genes' expression profiles. The data revealed a potential regulatory network between important genes, putative TFs, and metabolites in the flavonol and betacyanin biosynthesis of Bougainvillea × buttiana 'Chitra' bracts. These findings will serve as a rich genetic resource for future studies that could create new color bracts.
Collapse
Affiliation(s)
- Yuqian Kang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Yuxin Li
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Tingting Zhang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
- Xiangyang Academy of Agricultural Sciences, Xiangyang, 441057, Hubei, People's Republic of China
| | - Peng Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Wen Liu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Zhao Zhang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Wengang Yu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Jian Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Jian Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Yang Zhou
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
| |
Collapse
|
5
|
Tang L, Zhan L, Han Y, Wang Z, Dong L, Zhang Z. Microbial community assembly and functional profiles along the soil-root continuum of salt-tolerant Suaeda glauca and Suaeda salsa. FRONTIERS IN PLANT SCIENCE 2023; 14:1301117. [PMID: 38046600 PMCID: PMC10691491 DOI: 10.3389/fpls.2023.1301117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/01/2023] [Indexed: 12/05/2023]
Abstract
Developing and planting salt-tolerant plants has become a promising way to utilize saline-alkali land resources and ensure food security. Root-associated microbes of salt-tolerant plants have been shown to promote plant growth and alleviate high salt stress, yet very little is known about the salt resistance mechanisms of core microbes in different niches. This study characterized the microbial community structures, assembly processes, and functional profiles in four root-related compartments of two salt-tolerant plants by amplicon and shotgun metagenomic sequencing. The results showed that both plants significantly altered the microbial community structure of saline soils, with greater microbial alpha diversity in the rhizosphere or rhizoplane compared with bulk soils. Stochastic process dominated the microbial assembly processes, and the impact was stronger in Suaeda salsa than in S. glauca, indicating that S. salsa may have stronger resistance abilities to changing soil properties. Keystone species, such as Pseudomonas in the endosphere of S. glauca and Sphingomonas in the endosphere of S. salsa, which may play key roles in helping plants alleviate salt stress, were identified by using microbial co-occurrence network analysis. Furthermore, the microbiomes in the rhizoplane soils had more abundant genes involved in promoting growth of plants and defending against salt stress than those in bulk soils, especially in salt-tolerant S. salsa. Moreover, microbes in the rhizoplane of S. salsa exhibited higher functional diversities, with notable enrichment of genes involved in carbon fixation, dissimilar nitrate reduction to ammonium, and sulfite oxidation. These findings revealed differences and similarities in the microbial community assembly, functional profiles and keystone species closely related to salt alleviation of the two salt-tolerant plants. Overall, our study provides new insights into the ecological functions and varied strategies of rhizosphere microbes in different plants under salt stress and highlights the potential use of keystone microbes for enhancing salt resistance of plants.
Collapse
Affiliation(s)
- Luyao Tang
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Le Zhan
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Yanan Han
- Key Laboratory of Biological Medicines in Universities of Shandong Province, Weifang Key Laboratory of Antibody Medicines, School of Life Science and Technology, Weifang Medical University, Weifang, Shandong, China
| | - Zhengran Wang
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Lei Dong
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Zhong Zhang
- Key Laboratory of Biological Medicines in Universities of Shandong Province, Weifang Key Laboratory of Antibody Medicines, School of Life Science and Technology, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
6
|
Nishihara M, Hirabuchi A, Goto F, Nishizaki Y, Uesugi S, Watanabe A, Tasaki K, Washiashi R, Sasaki N. Production of yellow-flowered gentian plants by genetic engineering of betaxanthin pigments. THE NEW PHYTOLOGIST 2023; 240:1177-1188. [PMID: 37606277 DOI: 10.1111/nph.19218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/26/2023] [Indexed: 08/23/2023]
Abstract
Genetic engineering of flower color provides biotechnological products such as blue carnations or roses by accumulating delphinidin-based anthocyanins not naturally existing in these plant species. Betalains are another class of pigments that in plants are only synthesized in the order Caryophyllales. Although they have been engineered in several plant species, especially red-violet betacyanins, the yellow betaxanthins have yet to be engineered in ornamental plants. We attempted to produce yellow-flowered gentians by genetic engineering of betaxanthin pigments. First, white-flowered gentian lines were produced by knocking out the dihydroflavonol 4-reductase (DFR) gene using CRISPR/Cas9-mediated genome editing. Beta vulgaris BvCYP76AD6 and Mirabilis jalapa MjDOD, driven by gentian petal-specific promoters, flavonoid 3',5'-hydroxylase (F3'5'H) and anthocyanin 5,3'-aromatic acyltransferase (AT), respectively, were transformed into the above DFR-knockout white-flowered line; the resultant gentian plants had vivid yellow flowers. Expression analysis and pigment analysis revealed petal-specific expression and accumulation of seven known betaxanthins in their petals to c. 0.06-0.08 μmol g FW-1 . Genetic engineering of vivid yellow-flowered plants can be achieved by combining genome editing and a suitable expression of betaxanthin-biosynthetic genes in ornamental plants.
Collapse
Affiliation(s)
- Masahiro Nishihara
- Iwate Biotechnology Research Center, 22-174-4, Narita, Kitakami, Iwate, 024-0003, Japan
| | - Akiko Hirabuchi
- Iwate Biotechnology Research Center, 22-174-4, Narita, Kitakami, Iwate, 024-0003, Japan
| | - Fumina Goto
- Iwate Biotechnology Research Center, 22-174-4, Narita, Kitakami, Iwate, 024-0003, Japan
| | - Yuzo Nishizaki
- Division of Food Additives, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Shota Uesugi
- Iwate Biotechnology Research Center, 22-174-4, Narita, Kitakami, Iwate, 024-0003, Japan
| | - Aiko Watanabe
- Iwate Biotechnology Research Center, 22-174-4, Narita, Kitakami, Iwate, 024-0003, Japan
| | - Keisuke Tasaki
- Iwate Biotechnology Research Center, 22-174-4, Narita, Kitakami, Iwate, 024-0003, Japan
- Department of Agriculture, Faculty of Agriculture, Tokyo University of Agriculture, 1737, Funako, Atsugi, Kanagawa, 243-0034, Japan
| | - Rie Washiashi
- Iwate Biotechnology Research Center, 22-174-4, Narita, Kitakami, Iwate, 024-0003, Japan
| | - Nobuhiro Sasaki
- Iwate Biotechnology Research Center, 22-174-4, Narita, Kitakami, Iwate, 024-0003, Japan
- Department of Agricultural Biology, Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| |
Collapse
|
7
|
Imran M, Mpovo CL, Aaqil Khan M, Shaffique S, Ninson D, Bilal S, Khan M, Kwon EH, Kang SM, Yun BW, Lee IJ. Synergistic Effect of Melatonin and Lysinibacillus fusiformis L. (PLT16) to Mitigate Drought Stress via Regulation of Hormonal, Antioxidants System, and Physio-Molecular Responses in Soybean Plants. Int J Mol Sci 2023; 24:8489. [PMID: 37239837 PMCID: PMC10218646 DOI: 10.3390/ijms24108489] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Drought is one of the most detrimental factors that causes significant effects on crop development and yield. However, the negative effects of drought stress may be alleviated with the aid of exogenous melatonin (MET) and the use of plant-growth-promoting bacteria (PGPB). The present investigation aimed to validate the effects of co-inoculation of MET and Lysinibacillus fusiformis on hormonal, antioxidant, and physio-molecular regulation in soybean plants to reduce the effects of drought stress. Therefore, ten randomly selected isolates were subjected to various plant-growth-promoting rhizobacteria (PGPR) traits and a polyethylene-glycol (PEG)-resistance test. Among these, PLT16 tested positive for the production of exopolysaccharide (EPS), siderophore, and indole-3-acetic acid (IAA), along with higher PEG tolerance, in vitro IAA, and organic-acid production. Therefore, PLT16 was further used in combination with MET to visualize the role in drought-stress mitigation in soybean plant. Furthermore, drought stress significantly damages photosynthesis, enhances ROS production, and reduces water stats, hormonal signaling and antioxidant enzymes, and plant growth and development. However, the co-application of MET and PLT16 enhanced plant growth and development and improved photosynthesis pigments (chlorophyll a and b and carotenoids) under both normal conditions and drought stress. This may be because hydrogen-peroxide (H2O2), superoxide-anion (O2-), and malondialdehyde (MDA) levels were reduced and antioxidant activities were enhanced to maintain redox homeostasis and reduce the abscisic-acid (ABA) level and its biosynthesis gene NCED3 while improving the synthesis of jasmonic acid (JA) and salicylic acid (SA) to mitigate drought stress and balance the stomata activity to maintain the relative water states. This may be possible due to a significant increase in endo-melatonin content, regulation of organic acids, and enhancement of nutrient uptake (calcium, potassium, and magnesium) by co-inoculated PLT16 and MET under normal conditions and drought stress. In addition, co-inoculated PLT16 and MET modulated the relative expression of DREB2 and TFs bZIP while enhancing the expression level of ERD1 under drought stress. In conclusion, the current study found that the combined application of melatonin and Lysinibacillus fusiformis inoculation increased plant growth and could be used to regulate plant function during drought stress as an eco-friendly and low-cost approach.
Collapse
Affiliation(s)
- Muhammad Imran
- Biosafety Division, National Institute of Agriculture Science, Rural Development Administration, Jeonju 54874, Republic of Korea;
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Clems Luzolo Mpovo
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Muhammad Aaqil Khan
- Department of Chemical and Life Sciences, Qurtuba University of Science and Information Technology, Peshawar 24830, Pakistan
| | - Shifa Shaffique
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Daniel Ninson
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Saqib Bilal
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Murtaza Khan
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Eun-Hae Kwon
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Byung-Wook Yun
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
8
|
Salinity stress improves antioxidant potential by modulating physio-biochemical responses in Moringa oleifera Lam. Sci Rep 2023; 13:2895. [PMID: 36807545 PMCID: PMC9938910 DOI: 10.1038/s41598-023-29954-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/13/2023] [Indexed: 02/20/2023] Open
Abstract
Moringa oleifera Lam. is a common edible plant, famous for several nutritional and therapeutic benefits. This study investigates the salt -induced modulations in plant growth, physio-biochemical responses, and antioxidant performance of M. oleifera grown under 0, 50, and 100 mM NaCl concentrations. Results showed that the plant effectively managed moderate salinity (50 mM NaCl) by maintaining succulence, weight ratios, and biomass allocation patterns of both shoot and root with minimal reduction in dry biomass. However, high salinity (100 mM NaCl) remarkably declined all growth parameters. The plant accumulated more Na+ and Cl-, while less K+ under salinity as compared to the control. Consequently, osmotic potentials of both root and leaf decreased under salinity, which was corroborated by the high amount of proline and soluble sugars. Increased level of H2O2 with significantly unchanged membrane fluidity indicating its role in perceiving and managing stress at moderate salinity. In addition, increased activities of superoxide dismutase, and catalase, with increased glutathione and flavonoid contents suggest an integrated participation of both enzymatic and non-enzymatic antioxidant components in regulating ROS. On the other hand, high salinity caused an outburst of ROS indicated by high H2O2, MDA, and electrolyte leakage. As a response, moringa drastically increased the activities of all antioxidant enzymes and contents of antioxidant molecules including ascorbic acid, glutathione, total phenols, and flavonoids with high radical scavenging and reducing power capacities. However, a considerable amount of energy was used in such management resulting in a significant growth reduction at 100 mM NaCl. This study suggests that moringa effectively resisted moderate salinity by modulating physio-biochemical attributes and effectively managing ion toxicity and oxidative stress. Salt stress also enhanced the medicinal potentials of moringa by increasing the contents of antioxidant compounds including ascorbic acid, glutathione, total phenols, and flavonoids and their resulting activities. It can be grown on degraded/ saline lands and biomass of this plant can be used for edible and medicinal purposes, besides providing other benefits in a global climate change scenario.
Collapse
|
9
|
Wijesinghe VN, Choo WS. Antimicrobial betalains. J Appl Microbiol 2022; 133:3347-3367. [PMID: 36036373 PMCID: PMC9826318 DOI: 10.1111/jam.15798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/21/2022] [Accepted: 08/23/2022] [Indexed: 01/11/2023]
Abstract
Betalains are nitrogen-containing plant pigments that can be red-violet (betacyanins) or yellow-orange (betaxanthins), currently employed as natural colourants in the food and cosmetic sectors. Betalains exhibit antimicrobial activity against a broad spectrum of microbes including multidrug-resistant bacteria, as well as single-species and dual-species biofilm-producing bacteria, which is highly significant given the current antimicrobial resistance issue reported by The World Health Organization. Research demonstrating antiviral activity against dengue virus, in silico studies including SARS-CoV-2, and anti-fungal effects of betalains highlight the diversity of their antimicrobial properties. Though limited in vivo studies have been conducted, antimalarial and anti-infective activities of betacyanin have been observed in living infection models. Cellular mechanisms of antimicrobial activity of betalains are yet unknown; however existing research has laid the framework for a potentially novel antimicrobial agent. This review covers an overview of betalains as antimicrobial agents and discussions to fully exploit their potential as therapeutic agents to treat infectious diseases.
Collapse
Affiliation(s)
| | - Wee Sim Choo
- School of ScienceMonash University MalaysiaBandar SunwaySelangorMalaysia
| |
Collapse
|
10
|
Davies KM, Landi M, van Klink JW, Schwinn KE, Brummell DA, Albert NW, Chagné D, Jibran R, Kulshrestha S, Zhou Y, Bowman JL. Evolution and function of red pigmentation in land plants. ANNALS OF BOTANY 2022; 130:613-636. [PMID: 36070407 PMCID: PMC9670752 DOI: 10.1093/aob/mcac109] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/05/2022] [Indexed: 05/10/2023]
Abstract
BACKGROUND Land plants commonly produce red pigmentation as a response to environmental stressors, both abiotic and biotic. The type of pigment produced varies among different land plant lineages. In the majority of species they are flavonoids, a large branch of the phenylpropanoid pathway. Flavonoids that can confer red colours include 3-hydroxyanthocyanins, 3-deoxyanthocyanins, sphagnorubins and auronidins, which are the predominant red pigments in flowering plants, ferns, mosses and liverworts, respectively. However, some flowering plants have lost the capacity for anthocyanin biosynthesis and produce nitrogen-containing betalain pigments instead. Some terrestrial algal species also produce red pigmentation as an abiotic stress response, and these include both carotenoid and phenolic pigments. SCOPE In this review, we examine: which environmental triggers induce red pigmentation in non-reproductive tissues; theories on the functions of stress-induced pigmentation; the evolution of the biosynthetic pathways; and structure-function aspects of different pigment types. We also compare data on stress-induced pigmentation in land plants with those for terrestrial algae, and discuss possible explanations for the lack of red pigmentation in the hornwort lineage of land plants. CONCLUSIONS The evidence suggests that pigment biosynthetic pathways have evolved numerous times in land plants to provide compounds that have red colour to screen damaging photosynthetically active radiation but that also have secondary functions that provide specific benefits to the particular land plant lineage.
Collapse
Affiliation(s)
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Italy
| | - John W van Klink
- The New Zealand Institute for Plant and Food Research Limited, Department of Chemistry, Otago University, Dunedin, New Zealand
| | - Kathy E Schwinn
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - David A Brummell
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Nick W Albert
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - David Chagné
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Rubina Jibran
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Samarth Kulshrestha
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Yanfei Zhou
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - John L Bowman
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Portillo-Nava C, Guerrero-Esperanza M, Guerrero-Rangel A, Guevara-Domínguez P, Martínez-Gallardo N, Nava-Sandoval C, Ordaz-Ortiz J, Sánchez-Segura L, Délano-Frier J. Natural or light-induced pigment accumulation in grain amaranths coincides with enhanced resistance against insect herbivory. PLANTA 2021; 254:101. [PMID: 34669050 DOI: 10.1007/s00425-021-03757-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
MAIN CONCLUSION Increased resistance to insect herbivory in grain amaranth plants is associated with increased betalain pigmentation, either naturally acquired or accumulated in response to blue-red light irradiation. Betalains are water-soluble pigments characteristic of plants of the Caryophyllales order. Their abiotic stress-induced accumulation is believed to protect against oxidative damage, while their defensive function against biotic aggressors is scarce. A previous observation of induced betalain-biosynthetic gene expression in stressed grain amaranth plants led to the proposal that these pigments play a defensive role against insect herbivory. This study provided further support for this premise. First, a comparison of "green" and "red" Amaranthus cruentus phenotypes showed that the latter suffered less insect herbivory damage. Coincidentally, growth and vitality of Manduca sexta larvae were more severely affected when fed on red-leafed A. cruentus plants or on an artificial diet supplemented with red-leaf pigment extracts. Second, the exposure of A. cruentus and A. caudatus plants, having contrasting pigmentation phenotypes, to light enriched in the blue and red wavelength spectra led to pigment accumulation throughout the plant and to increased resistance to insect herbivory. These events were accompanied by the induced expression of known betalain-biosynthetic genes, including uncharacterized DODA genes believed to participate in this biosynthetic pathway in a still undefined way. Finally, transient co-expression of different combinations of betalain-biosynthetic genes in Nicotiana benthamiana led to detectable accumulation of betalamic acid and betanidin. This outcome supported the participation of certain AhDODA and other genes in the grain amaranth betalain-biosynthetic pathway.
Collapse
Affiliation(s)
- Claudia Portillo-Nava
- Department of Biotechnology and Biochemistry, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Kilómetro 9.6 Libramiento Norte Carretera Irapuato-León, CP, 36821, Irapuato, Guanajuato, México
| | - Moisés Guerrero-Esperanza
- Metabolomics Laboratory, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad de Genómica Avanzada, Kilómetro 9.6 Libramiento Norte Carretera Irapuato-León, CP, 36821, Irapuato, Guanajuato, México
| | - Armando Guerrero-Rangel
- Department of Biotechnology and Biochemistry, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Kilómetro 9.6 Libramiento Norte Carretera Irapuato-León, CP, 36821, Irapuato, Guanajuato, México
| | - Paulina Guevara-Domínguez
- Metabolomics Laboratory, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad de Genómica Avanzada, Kilómetro 9.6 Libramiento Norte Carretera Irapuato-León, CP, 36821, Irapuato, Guanajuato, México
| | - Norma Martínez-Gallardo
- Department of Biotechnology and Biochemistry, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Kilómetro 9.6 Libramiento Norte Carretera Irapuato-León, CP, 36821, Irapuato, Guanajuato, México
| | - Cecilia Nava-Sandoval
- Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Unidad Profesional Lázaro Cárdenas, Prolongación de Carpio y Plan de Ayala S/N,Col. Santo Tomás, CDMX, CP, 11340, Alcaldía Miguel Hidalgo, México
| | - José Ordaz-Ortiz
- Metabolomics Laboratory, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad de Genómica Avanzada, Kilómetro 9.6 Libramiento Norte Carretera Irapuato-León, CP, 36821, Irapuato, Guanajuato, México
| | - Lino Sánchez-Segura
- Department of Biotechnology and Biochemistry, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Kilómetro 9.6 Libramiento Norte Carretera Irapuato-León, CP, 36821, Irapuato, Guanajuato, México
| | - John Délano-Frier
- Department of Biotechnology and Biochemistry, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Kilómetro 9.6 Libramiento Norte Carretera Irapuato-León, CP, 36821, Irapuato, Guanajuato, México.
| |
Collapse
|