1
|
Jardim-Messeder D, de Souza-Vieira Y, Sachetto-Martins G. Dressed Up to the Nines: The Interplay of Phytohormones Signaling and Redox Metabolism During Plant Response to Drought. PLANTS (BASEL, SWITZERLAND) 2025; 14:208. [PMID: 39861561 PMCID: PMC11768152 DOI: 10.3390/plants14020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
Plants must effectively respond to various environmental stimuli to achieve optimal growth. This is especially relevant in the context of climate change, where drought emerges as a major factor globally impacting crops and limiting overall yield potential. Throughout evolution, plants have developed adaptative strategies for environmental stimuli, with plant hormones and reactive oxygen species (ROS) playing essential roles in their development. Hormonal signaling and the maintenance of ROS homeostasis are interconnected, playing indispensable roles in growth, development, and stress responses and orchestrating diverse molecular responses during environmental adversities. Nine principal classes of phytohormones have been categorized: auxins, brassinosteroids, cytokinins, and gibberellins primarily oversee developmental growth regulation, while abscisic acid, ethylene, jasmonic acid, salicylic acid, and strigolactones are the main orchestrators of environmental stress responses. Coordination between phytohormones and transcriptional regulation is crucial for effective plant responses, especially in drought stress. Understanding the interplay of ROS and phytohormones is pivotal for elucidating the molecular mechanisms involved in plant stress responses. This review provides an overview of the intricate relationship between ROS, redox metabolism, and the nine different phytohormones signaling in plants, shedding light on potential strategies for enhancing drought tolerance for sustainable crop production.
Collapse
Affiliation(s)
- Douglas Jardim-Messeder
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Ygor de Souza-Vieira
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Gilberto Sachetto-Martins
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| |
Collapse
|
2
|
Pompeiano A, Moles TM, Mariotti L, Santaniello A, Di Baccio D, Scartazza A, Huarancca Reyes T, Guglielminetti L. Tomato biodiversity reveals landrace enhanced drought-adaptive strategy. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109495. [PMID: 39813758 DOI: 10.1016/j.plaphy.2025.109495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/02/2025] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
Tomato (Solanum lycopersicum L.) is a major crop in the Mediterranean basin, vulnerable to drought at any crop stage. Landraces are traditional, locally adapted varieties with greater resilience to water scarcity than modern cultivars. This study compares the responses of Ciettaicale (CE), a tomato landrace, with Moneymaker (MM), a commercial variety, to controlled soil water deficit at early vegetative stage using biometric, physiological, biochemical, and molecular analyses. Our data highlighted that CE copes better with prolonged and severe drought stress, activating distinct response mechanism. CE sustained higher root water content, and root-to-shoot biomass ratio under drought compared to MM, which may be related to their phytohormones balance. Although pigment responses to drought did not differ markedly, the main ratios revealed different defense mechanisms. Both genotypes showed opposite trends in non-photochemical quenching (NPQ) and actual photon yield of PSII photochemistry under drought stress, with increasing NPQ while decreasing PSII electron transport rate and CO2 uptake capacity. However, differences in substomatal CO2 concentration indicated that drought mainly limits photosynthesis through diffusive resistances in CE and metabolic impairment in MM. Changes in antioxidant redox status and activities highlighted the CE ability to activate cellular processes to partially control oxidative stress and to induce a drought acclimation. Multicanonical analysis revealed clear genotype separation along the drought gradient, except for CE, which showed complex drought response and introgression of tolerance traits, particularly under moderate stress. Utilizing such genotypes can significantly improve horticultural production under drought conditions.
Collapse
Affiliation(s)
- A Pompeiano
- Department of Agriculture, Food and Environment, University of Pisa, Italy; Centre of Agro-Ecological Research "Enrico Avanzi" (CiRAA), Pisa, Italy
| | - T M Moles
- Department of Agriculture, Food and Environment, University of Pisa, Italy
| | - L Mariotti
- Department of Agriculture, Food and Environment, University of Pisa, Italy
| | | | - D Di Baccio
- Research Institute on Terrestrial Ecosystems, National Research Council, Pisa, Italy
| | - A Scartazza
- Research Institute on Terrestrial Ecosystems, National Research Council, Pisa, Italy; National Biodiversity Future Center (NBFC), Palermo, Italy
| | - T Huarancca Reyes
- Department of Agriculture, Food and Environment, University of Pisa, Italy.
| | - L Guglielminetti
- Department of Agriculture, Food and Environment, University of Pisa, Italy; Centre of Agro-Ecological Research "Enrico Avanzi" (CiRAA), Pisa, Italy
| |
Collapse
|
3
|
Morales Orellana RJ, Rath T, Druege U, Tandrón Moya YA, von Wirén N, Winkelmann T. Laser-wound stimulated adventitious root formation of Rosa canina cuttings involves a complex response at plant hormonal and metabolic level. FRONTIERS IN PLANT SCIENCE 2024; 15:1515990. [PMID: 39737379 PMCID: PMC11682910 DOI: 10.3389/fpls.2024.1515990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/22/2024] [Indexed: 01/01/2025]
Abstract
Introduction The presence of wounds in addition to the excision-induced wounds after severance from the stock plants is known to positively influence adventitious root formation of woody plant cuttings. Previous morphological studies highlighted laser wounding as a technique allowing to precisely control the decisive ablation depth. However, the biochemical processes involved in the response of rooting to the additional wounding remained unexplored. Methods The present study analyzed changes in the plant hormone and carbohydrate profiles in response to laser treatments of rose leafy single-node stem cuttings (Rosa canina 'Pfänder'). Concentrations of four groups of plant hormones and of carbohydrates were monitored in three different stem sections of the cutting base during the first eight days after excision of cuttings. In addition, histology was employed to investigate anatomical changes at the basal wound and the laser wounds at the start and the end of the experiment after 40 days. Results Laser ablation caused an increase of vascular tissue dimension directly in the laser wound, and increased the quantity and quality of rooting compared to control cuttings. A clear early local rise of jasmonic acid (JA) was detected directly in wounded areas after laser marking, as well as an increase in abscisic acid (ABA) that persisted for the subsequent days. Indole-3-acetic acid (IAA) levels were relatively high on day zero, but decreased thereafter. Interestingly, higher IAA levels were maintained in the stem section below the axillary bud compared with the opposite section. Laser-treated cuttings presented a clear increase in contents of IAA-amino acid conjugates (IAAGlu and IAAsp) and the oxidation product OxIAA. Differences in concentration of these IAA metabolites were related to the position of the laser wound relative to the axillary bud and leaf. Additionally, laser treatments caused gradually increased levels of the cytokinin N6-isopentenyladenine (iP) in laser-treated zones, and of zeatin riboside specifically when the laser wound was placed on the leaf-bud side. Additional laser wounding reduced starch and sucrose levels in all wounded sections at the end of the evaluation period, independently of the wounding location. Discussion The results of this study indicate that presence of additional injured tissue triggers a complex biochemical adjustment at the base of the cutting responsible of inducing vascular tissue growth and capable of generating a positive response to adventitious root formation.
Collapse
Affiliation(s)
- Raul Javier Morales Orellana
- Hochschule Osnabrück - University of Applied Sciences, Biosystem Engineering Laboratory (BLab), Osnabrück, Germany
- Leibniz University Hannover, Institute of Horticultural Production Systems, Section Woody Plant and Propagation Physiology, Hannover, Germany
| | - Thomas Rath
- Hochschule Osnabrück - University of Applied Sciences, Biosystem Engineering Laboratory (BLab), Osnabrück, Germany
| | - Uwe Druege
- Erfurt Research Centre for Horticultural Crops, University of Applied Sciences Erfurt, Erfurt, Germany
| | - Yudelsy A. Tandrón Moya
- Leibniz Institute of Plant Genetics and Crop Plant Research, Department of Physiology and Cell Biology, Gatersleben, Germany
| | - Nicolaus von Wirén
- Leibniz Institute of Plant Genetics and Crop Plant Research, Department of Physiology and Cell Biology, Gatersleben, Germany
| | - Traud Winkelmann
- Leibniz University Hannover, Institute of Horticultural Production Systems, Section Woody Plant and Propagation Physiology, Hannover, Germany
| |
Collapse
|
4
|
Awadalla RA, Sallam A, Börner A, Elshamy MM, Heikal YM. The role of salicylic acid in modulating phenotyping in spring wheat varieties for mitigating drought stress. BMC PLANT BIOLOGY 2024; 24:948. [PMID: 39394092 PMCID: PMC11468136 DOI: 10.1186/s12870-024-05620-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/23/2024] [Indexed: 10/13/2024]
Abstract
Climate change-related droughts that recur frequently are one of the biggest obstacles to wheat (Triticum aestivum L.) productivity. Worldwide, attempts are being done to establish drought-resistant cultivars. However, progress is slow since drought tolerance is a complex trait controlled by numerous genes, and its expression is influenced by the environment. Phenotypic, biochemical physiological, and genotyping approaches are highlighted as critical research components for leveraging genetic variation in eight wheat genotypes. Treatments included eight spring wheat genotypes (IPK_040, IPK_046, IPK_050, IPK_071, IPK_105, WAS_007, WAS_024 and WAS_031), normal irrigation (NI), drought stress (D) (30% field capacity (FC)), normal irrigation with 0.5 mM SA (NSA), and drought treated with SA (DSA). The results revealed that there was a reduction in relative water content, an increase membrane leakage, and leaf chlorophyll content under drought stress. SA induced the defense responses against drought by increasing the osmolytes and the antioxidative enzymes activities. Compared to the NI group, the DSA treatment improved the water regulation, antioxidant capacity, and drought stress resistance. SA significantly reduced the deleterious effects of water stress on phenotyping more in WAS_ 024 and IPK_ 105 genotypes. The most responsive genotypes to salicylic acid were IPK_ 046 among the IPK genotypes, whereas WAS_031 genotype was amongst WAS genotypes based on the morpho-physiological traits. The findings of this study give a solid foundation for assessing drought resistance in T. aestivum and developing cultivation-specific water management methods.
Collapse
Affiliation(s)
- Rawan A Awadalla
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
| | - Ahmed Sallam
- Department Genebank, Resources Genetics and Reproduction, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben D, Stadt Seeland, 06466, Germany
- Department of Genetics, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt
| | - Andreas Börner
- Department Genebank, Resources Genetics and Reproduction, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben D, Stadt Seeland, 06466, Germany
| | - Maha M Elshamy
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Yasmin M Heikal
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
5
|
Maghrebi M, Marín-Sanz M, Miras Moreno MB, Quagliata G, Caldo F, Gatti N, Mannino G, Pesenti M, D'Alessandro S, Nocito FF, Lucini L, Sestili F, Astolfi S, Barro F, Vigani G. The drought-induced plasticity of mineral nutrients contributes to drought tolerance discrimination in durum wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109077. [PMID: 39213946 DOI: 10.1016/j.plaphy.2024.109077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/06/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Drought is a major challenge for the cultivation of durum wheat, a crucial crop for global food security. Plants respond to drought by adjusting their mineral nutrient profiles to cope with water scarcity, showing the importance of nutrient plasticity for plant acclimation and adaptation to diverse environments. Therefore, it is essential to understand the genetic basis of mineral nutrient profile plasticity in durum wheat under drought stress to select drought-tolerant varieties. The research study investigated the responses of different durum wheat genotypes to severe drought stress at the seedling stage. The study employed an ionomic, molecular, biochemical and physiological approach to shed light on distinct behaviors among different genotypes. The drought tolerance of SVEMS16, SVEVO, and BULEL was related to their capacity of maintaining or increasing nutrient's accumulation, while the limited nutrient acquisition capability of CRESO and S.CAP likely resulted in their susceptibility to drought. The study highlighted the importance of macronutrients such as SO42-, NO3-, PO43-, and K+ in stress resilience and identified variant-containing genes potentially influencing nutritional variations under drought. These findings provide valuable insights for further field studies to assess the drought tolerance of durum wheat genotypes across various growth stages, ultimately ensuring food security and sustainable production in the face of changing environmental conditions.
Collapse
Affiliation(s)
- Moez Maghrebi
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Centro dell'Innovazione, Università degli studi di Torino, Turin, Italy
| | - Miriam Marín-Sanz
- Department of Plant Breeding, Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Alameda del Obispo s/n, 14004-Córdoba, Spain
| | - Maria Begona Miras Moreno
- Department of Plant Breeding, Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Alameda del Obispo s/n, 14004-Córdoba, Spain
| | - Giulia Quagliata
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università della Tuscia, Viterbo, Italy
| | - Francesco Caldo
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Centro dell'Innovazione, Università degli studi di Torino, Turin, Italy
| | - Noemi Gatti
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Centro dell'Innovazione, Università degli studi di Torino, Turin, Italy
| | - Giuseppe Mannino
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Centro dell'Innovazione, Università degli studi di Torino, Turin, Italy
| | - Michele Pesenti
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università degli Studi di Milano, 20133 Milano, Italy
| | - Stefano D'Alessandro
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Centro dell'Innovazione, Università degli studi di Torino, Turin, Italy
| | - Fabio Francesco Nocito
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università degli Studi di Milano, 20133 Milano, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Universita Cattolica del Sacro Cuore, I-29122, Piacenza, Italy
| | - Francesco Sestili
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università della Tuscia, Viterbo, Italy
| | - Stefania Astolfi
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università della Tuscia, Viterbo, Italy
| | - Francisco Barro
- Department of Plant Breeding, Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Alameda del Obispo s/n, 14004-Córdoba, Spain
| | - Gianpiero Vigani
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Centro dell'Innovazione, Università degli studi di Torino, Turin, Italy.
| |
Collapse
|
6
|
Noor MMA, Tahjib-Ul-Arif M, Alim SMA, Islam MM, Hasan MT, Babar MA, Hossain MA, Jewel ZA, Murata Y, Mostofa MG. Lentil adaptation to drought stress: response, tolerance, and breeding approaches. FRONTIERS IN PLANT SCIENCE 2024; 15:1403922. [PMID: 39228838 PMCID: PMC11368723 DOI: 10.3389/fpls.2024.1403922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/05/2024] [Indexed: 09/05/2024]
Abstract
Lentil (Lens culinaris Medik.) is a cool season legume crop that plays vital roles in food and nutritional security, mostly in the least developed countries. Lentil is often cultivated in dry and semi-dry regions, where the primary abiotic factor is drought, which negatively impacts lentil growth and development, resulting in a reduction of yield. To withstand drought-induced multiple negative effects, lentil plants evolved a variety of adaptation strategies that can be classified within three broad categories of drought tolerance mechanisms (i.e., escape, avoidance, and tolerance). Lentil adapts to drought by the modulation of various traits in the root system, leaf architecture, canopy structure, branching, anatomical features, and flowering process. Furthermore, the activation of certain defensive biochemical pathways as well as the regulation of gene functions contributes to lentil drought tolerance. Plant breeders typically employ conventional and mutational breeding approaches to develop lentil varieties that can withstand drought effects; however, little progress has been made in developing drought-tolerant lentil varieties using genomics-assisted technologies. This review highlights the current understanding of morpho-physiological, biochemical, and molecular mechanisms of lentil adaptation to drought stress. We also discuss the potential application of omics-assisted breeding approaches to develop lentil varieties with superior drought tolerance traits.
Collapse
Affiliation(s)
- Md. Mahmud Al Noor
- Plant Breeding Division, Bangladesh Institute of Nuclear Agriculture, Mymensingh, Bangladesh
| | - Md. Tahjib-Ul-Arif
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, Bangladesh
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, Japan
| | - S. M. Abdul Alim
- Plant Breeding Division, Bangladesh Institute of Nuclear Agriculture, Mymensingh, Bangladesh
| | - Md. Mohimenul Islam
- Horticulture Division, Bangladesh Institute of Nuclear Agriculture, Mymensingh, Bangladesh
| | - Md. Toufiq Hasan
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Ali Babar
- Agronomy Departments, University of Florida, Gainesville, FL, United States
| | - Mohammad Anwar Hossain
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Zilhas Ahmed Jewel
- Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Yoshiyuki Murata
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, Japan
| | - Mohammad Golam Mostofa
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
7
|
Kodadinne Narayana N, Wijewardana C, Alsajri FA, Reddy KR, Stetina SR, Bheemanahalli R. Resilience of soybean genotypes to drought stress during the early vegetative stage. Sci Rep 2024; 14:17365. [PMID: 39075221 PMCID: PMC11286970 DOI: 10.1038/s41598-024-67930-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024] Open
Abstract
Drought stress poses a significant risk to soybean production, as it relies on optimum rainfall under rainfed conditions. Exposure to brief dry periods during early vegetative growth impacts soybean growth and development. Choosing a genotype that can withstand stress with minimal impact on physiology and growth might help sustain biomass or yields under low rainfall conditions. Therefore, this study characterized 64 soybean genotypes for traits associated with drought tolerance during the early vegetative stage under two soil moisture treatments, 100% evapotranspiration (well-watered) and 50% evapotranspiration (drought), using the Soil-Plant-Atmosphere Research (SPAR) units. Eighteen morpho-physiological traits responses were assessed, and their relationship with the early vegetative drought tolerance was investigated. Drought stress significantly increased root weight, root volume, and root-to-shoot ratio but reduced shoot weight. Drought-stressed plants increased the canopy temperature by 3.1 °C. Shoot weight positively correlated with root surface area (r = 0.52, P < 0.001) and root weight (r = 0.65, P < 0.001). There was a strong negative correlation between shoot weight and root-to-shoot ratio (P < 0.01). Further, the combined drought response index was strongly associated with the root response index and weakly with the physiological response index. These findings suggest that genotypes (S55-Q3 and R2C4775) with high above-ground biomass with a balanced root-to-shoot ratio improves drought tolerance during the early vegetative. These genotypes could serve as valuable genetic resources to dissect the molecular networks underlying drought tolerance and ultimately be used in breeding programs to improve root ability at the early vegetative stage.
Collapse
Affiliation(s)
| | - Chathurika Wijewardana
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Firas A Alsajri
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, MS, USA
- Field Crops Department, Tikrit University, Tikrit, 009642, Iraq
| | - K Raja Reddy
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, MS, USA.
| | - Salliana R Stetina
- USDA Agricultural Research Service, Crop Genetics Research Unit, Stoneville, MS, USA
| | - Raju Bheemanahalli
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, MS, USA.
| |
Collapse
|
8
|
Sun Y, Robert CA, Thakur MP. Drought intensity and duration effects on morphological root traits vary across trait type and plant functional groups: a meta-analysis. BMC Ecol Evol 2024; 24:92. [PMID: 38965481 PMCID: PMC11223356 DOI: 10.1186/s12862-024-02275-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024] Open
Abstract
The increasing severity and frequency of drought pose serious threats to plant species worldwide. Yet, we lack a general understanding of how various intensities of droughts affect plant traits, in particular root traits. Here, using a meta-analysis of drought experiments (997 effect sizes from 76 papers), we investigate the effects of various intensities of droughts on some of the key morphological root traits. Our results show that root length, root mean diameter, and root area decline when drought is of severe or extreme intensity, whereas severe drought increases root tissue density. These patterns are most pronounced in trees compared to other plant functional groups. Moreover, the long duration of severe drought decreases root length in grasses and root mean diameter in legumes. The decline in root length and root diameter due to severe drought in trees was independent of drought duration. Our results suggest that morphological root traits respond strongly to increasing intensity of drought, which further depends on drought duration and may vary among plant functional groups. Our meta-analysis highlights the need for future studies to consider the interactive effects of drought intensity and drought duration for a better understanding of variable plant responses to drought.
Collapse
Affiliation(s)
- Yu Sun
- Institute of Ecology and Evolution, University of Bern, Bern, 3012, Switzerland.
| | | | - Madhav P Thakur
- Institute of Ecology and Evolution, University of Bern, Bern, 3012, Switzerland
| |
Collapse
|
9
|
Moreno-Pérez A, Martínez-Ferri E, van den Berg N, Pliego C. Effects of Exogenous Application of Methyl Jasmonate and Salicylic Acid on the Physiological and Molecular Response of 'Dusa' Avocado to Rosellinia necatrix. PLANT DISEASE 2024; 108:2111-2121. [PMID: 38530233 DOI: 10.1094/pdis-11-23-2316-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Methyl jasmonate (MeJA) and salicylic acid (SA) are important in mediating plant responses to abiotic and biotic stresses. MeJA and SA can act as elicitors by triggering plant defense responses similar to those induced by pathogens and may even provide long-term protection against them. Thus, exogenous application of MeJA and SA could protect susceptible avocado plants against white root rot (WRR) disease caused by the necrotrophic fungus Rosellinia necatrix, one of the main diseases affecting avocado orchards. This work evaluates the effects of MeJA or SA on the physiological and molecular response of susceptible 'Dusa' avocado rootstock and their ability to provide some protection against WRR. The application of MeJA and SA in avocado increased photoprotective mechanisms (nonphotochemical chlorophyll fluorescence quenching) and upregulated the glutathione S-transferase, suggesting the triggering of mechanisms closely related to oxidative stress relief and reactive oxygen species scavenging. In contrast to SA, MeJA's effects were more pronounced at the morphoanatomical level, including functional traits such as high leaf mass area, high stomatal density, and high root/shoot ratio, closely related to strategies to cope with water scarcity and WRR disease. Moreover, MeJA upregulated a greater number of defense-related genes than SA, including a glu protease inhibitor, a key gene in avocado defense against R. necatrix. The overall effects of MeJA increased 'Dusa' avocado tolerance to R. necatrix by inducing a primed state that delayed WRR disease symptoms. These findings point toward the use of MeJA application as an environmentally friendly strategy to mitigate the impact of this disease on susceptible avocado orchards.
Collapse
Affiliation(s)
- Ana Moreno-Pérez
- Department of Genomics and Biotechnology (IFAPA Centro de Málaga), Fruticultura Subtropical y Mediterranea, IFAPA, Unidad Asociada al CSIC, 29140 Churriana, Málaga, Spain
- Department of Crop Ecophysiology (IFAPA Centro de Málaga), Fruticultura Subtropical y Mediterranea, IFAPA, Unidad Asociada al CSIC, 29140 Churriana, Málaga, Spain
- Program of Advanced Biotechnology, Faculty of Science, Campus de Teatinos s/n, University of Málaga, 29071 Churriana, Málaga, Spain
| | - Elsa Martínez-Ferri
- Department of Crop Ecophysiology (IFAPA Centro de Málaga), Fruticultura Subtropical y Mediterranea, IFAPA, Unidad Asociada al CSIC, 29140 Churriana, Málaga, Spain
| | - Noëlani van den Berg
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, 0002 Pretoria, South Africa
- Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, 0002 Pretoria, South Africa
| | - Clara Pliego
- Department of Genomics and Biotechnology (IFAPA Centro de Málaga), Fruticultura Subtropical y Mediterranea, IFAPA, Unidad Asociada al CSIC, 29140 Churriana, Málaga, Spain
| |
Collapse
|
10
|
Gao H, Huang Z, Chen W, Xing A, Zhao S, Wan W, Hu H, Li H. Mild to moderate drought stress reinforces the role of functional microbiome in promoting growth of a dominant forage species ( Neopallasia pectinata) in desert steppe. Front Microbiol 2024; 15:1371208. [PMID: 38841054 PMCID: PMC11150836 DOI: 10.3389/fmicb.2024.1371208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/09/2024] [Indexed: 06/07/2024] Open
Abstract
Background Desert steppe ecosystems are prone to drought stress, which influences the ecological balance and sustainable development of grasslands. In addition to directly restrict plant growth, drought stress indirectly impacts plant fitness by altering the diversity and function of root-associated microbiomes. This begs the question of whether the functional microbiome of forage plants, represented by synthetic microbial communities (SynComs), can be leveraged to mitigate drought stress in desert steppes and promote the ecological restoration of these fragile ecosystems. Methods A pot experiment was conducted to evaluate the role of SynComs in improving the plant growth and drought stress resistance of Neopallasia pectinata (Pall.) Poljak in desert steppe in Inner Mongolia, China. Six SynComs were derived from the rhizosphere and root endosphere of 12 dominant forage species in the desert steppe. Each SynCom comprised two to three bacterial genera (Bacillus, Protomicromonospora, and Streptomyces). We examined the capacities of different SynComs for nutrient solubilization, phytohormone secretion, and enzymatic activity. Results Under no water stress (75% soil water holding capacity, WHC), single strains performed better than SynComs in promoting plant growth in terms of stem diameter, root length, and plant dry weight, with the greatest effects observed for Streptomyces coeruleorubidus ATCC 13740 (p < 0.05). However, under mild to moderate drought stress (55% and 35% WHC), SynComs outperformed single strains in enhancing plant biomass accumulation and inducing the production of resistance-related substances (p < 0.05). No significant effect of single strains and SynComs emerged under extreme drought stress (20% WHC). Conclusion This study underscores the potential of SynComs in facilitating forage plants to combat drought stress in desert steppe. Mild to moderate drought stress stimulates SynComs to benefit the growth of N. pectinata plants, despite a soil moisture threshold (21% WHC) exists for the microbial effect. The use of SynComs provides a promising strategy for the ecological restoration and sustainable utilization of desert steppes by manipulating the functional microbiome of forage plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Haigang Li
- Inner Mongolia Key Laboratory of Soil Quality and Nutrient Resources, Key Laboratory of Agricultural Ecological Security and Green Development at Universities of Inner Mongolia Autonomous Region, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| |
Collapse
|
11
|
Yang JY, Wang HB, Zhang DC. Response of the root anatomical structure of Carex moorcroftii to habitat drought in the Western Sichuan Plateau of China. PLANTA 2024; 259:131. [PMID: 38652171 PMCID: PMC11039561 DOI: 10.1007/s00425-024-04412-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
MAIN CONCLUSION The anatomical structures of Carex moorcroftii roots showing stronger plasticity during drought had a lower coefficient of variation in cell size in the same habitats, while those showing weaker plasticity had a higher coefficient of variation. The complementary relationship between these factors comprises the adaptation mechanism of the C. moorcroftii root to drought. To explore the effects of habitat drought on root anatomy of hygrophytic plants, this study focused on roots of C. moorcroftii. Five sample plots were set up along a soil moisture gradient in the Western Sichuan Plateau to collect experimental materials. Paraffin sectioning was used to obtain root anatomy, and one-way ANOVA, correlation analysis, linear regression analysis, and RDA ranking were applied to analyze the relationship between root anatomy and soil water content. The results showed that the root transverse section area, thickness of epidermal cells, exodermis and Casparian strips, and area of aerenchyma were significantly and positively correlated with soil moisture content (P < 0.01). The diameter of the vascular cylinder and the number and total area of vessels were significantly and negatively correlated with the soil moisture content (P < 0.01). The plasticity of the anatomical structures was strong for the diameter and area of the vascular cylinder and thickness of the Casparian strip and epidermis, while it was weak for vessel diameter and area. In addition, there was an asymmetrical relationship between the functional adaptation of root anatomical structure in different soil moisture and the variation degree of root anatomical structure in the same soil moisture. Therefore, the roots of C. moorcroftii can shorten the water transport distance from the epidermis to the vascular cylinder, increase the area of the vascular cylinder and the number of vessels, and establish a complementary relationship between the functional adaptation of root anatomical structure in different habitats and the variation degree of root anatomical structure in the same habitat to adapt to habitat drought. This study provides a scientific basis for understanding the response of plateau wetland plants to habitat changes and their ecological adaptation strategies. More scientific experimental methods should be adopted to further study the mutual coordination mechanisms of different anatomical structures during root adaptation to habitat drought for hygrophytic plants.
Collapse
Affiliation(s)
- Jia-Ying Yang
- Key Laboratory of National Forestry and Grassland Administration On Biodiversity Conservation in Southwest China, Southwest Forestry University, Bailongsi 300#, Kunming, Yunnan, 650224, China
| | - Hong-Bin Wang
- Key Laboratory of National Forestry and Grassland Administration On Biodiversity Conservation in Southwest China, Southwest Forestry University, Bailongsi 300#, Kunming, Yunnan, 650224, China
| | - Da-Cai Zhang
- Key Laboratory of National Forestry and Grassland Administration On Biodiversity Conservation in Southwest China, Southwest Forestry University, Bailongsi 300#, Kunming, Yunnan, 650224, China.
| |
Collapse
|
12
|
Singh RK, Upadhyay PK, Dhar S, G. A. R, Singh VK, Kumar R, Singh RK, Shekhawat K, Rathore SS, Dass A, Kumar A, Gupta G, Rajpoot S, Prakash V, Sarkar S, Sharma NK, Rawat S, Singh S. System of wheat intensification (SWI): Effects on lodging resistance, photosynthetic efficiency, soil biomes, and water productivity. PLoS One 2024; 19:e0299785. [PMID: 38598442 PMCID: PMC11006180 DOI: 10.1371/journal.pone.0299785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/16/2024] [Indexed: 04/12/2024] Open
Abstract
Intense cultivation with narrow row spacing in wheat, a common practice in the Indo-Gangetic plains of South Asia, renders the crop more susceptible to lodging during physiological maturity. This susceptibility, compounded by the use of traditional crop cultivars, has led to a substantial decline in overall crop productivity. In response to these challenges, a two-year field study on the system of wheat intensification (SWI) was conducted. The study involved three different cultivation methods in horizontal plots and four wheat genotypes in vertical plots, organized in a strip plot design. Our results exhibited that adoption of SWI at 20 cm × 20 cm resulted in significantly higher intercellular CO2 concentration (5.9-6.3%), transpiration rate (13.2-15.8%), stomatal conductance (55-59%), net photosynthetic rate (126-160%), and photosynthetically active radiation (PAR) interception (1.6-25.2%) over the existing conventional method (plant geometry 22.5 cm × continuous plant to plant spacing) of wheat cultivation. The lodging resistance capacity of both the lower and upper 3rd nodes was significantly higher in the SWI compared to other cultivation methods. Among different genotypes, HD 2967 demonstrated the highest recorded value for lodging resistance capacity, followed by HD 2851, HD 3086, and HD 2894. In addition, adoption of the SWI at 20 cm × 20 cm enhanced crop grain yield by 36.9-41.6%, and biological yield by 27.5-29.8%. Significantly higher soil dehydrogenase activity (12.06 μg TPF g-1 soil hr-1), arylsulfatase activity (82.8 μg p-nitro phenol g-1 soil hr-1), alkaline phosphatase activity (3.11 n moles ethylene g-1 soil hr-1), total polysaccharides, soil microbial biomass carbon, and soil chlorophyll content were also noted under SWI over conventional method of the production. Further, increased root volumes, surface root density and higher NPK uptake were recorded under SWI at 20×20 cm in comparison to rest of the treatments. Among the tested wheat genotypes, HD-2967 and HD-3086 had demonstrated notable increases in grain and biological yields, as well as improvements in the photosynthetically active radiation (PAR) and chlorophyll content. Therefore, adoption of SWI at 20 cm ×20 cm (square planting) with cultivars HD 2967 might be the best strategy for enhancing crop productivity and resource-use efficiency under the similar wheat growing conditions of India and similar agro-ecotypes of the globe.
Collapse
Affiliation(s)
- Ramesh Kumar Singh
- ICAR-Indian Agricultural Research Institute, New Delhi, India
- Department of Animal Husbandry, Lucknow, India
| | | | - Shiva Dhar
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rajanna G. A.
- ICAR- Directorate of Groundnut Research, Regional Station, Ananthapur, India
| | - Vinod Kumar Singh
- ICAR-Central Research Institute for Dryland Agriculture, Hyderabad, India
| | - Rakesh Kumar
- ICAR-Research Complex for Eastern Region, Patna, India
| | | | | | | | - Anchal Dass
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Amit Kumar
- ICAR-Research Complex for NEH Region, Sikkim, India
| | - Gaurendra Gupta
- ICAR- Indian Grassland and Fodder Research Institute, Jhansi, India
| | | | | | | | | | - Satyam Rawat
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Satendra Singh
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
13
|
Tran NHT, Hoang DV, Phan LT. Drought stress induces early flowering and the stress tolerance of offspring in Petunia hybrida. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2024; 41:53-63. [PMID: 39464867 PMCID: PMC11500584 DOI: 10.5511/plantbiotechnology.23.1220a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/20/2023] [Indexed: 10/29/2024]
Abstract
Petunia hybrida (Solanaceae) exhibits high sensitivity to water scarcity, especially during flowering. This study investigated changes in the flowering time of P. hybrida in response to water deficit over a 7-week period. Various levels of water stress-i.e., light, moderate, and severe-were imposed on plants grown in a greenhouse, and these were compared to a control group grown alongside. Remarkably, early flowering was observed under severe stress in P. hybrida for the first time, occurring 5.3 days earlier than in the control group. Furthermore, seeds collected from control and treatment plants were then used to assess drought stress memory in offspring. Seedlings were cultivated in a dehydration medium containing either PEG 8000 or a control MS medium. In the PEG 8000 medium, seedlings from parents exposed to moderate and severe drought stresses exhibited higher drought tolerance than those from well-watered conditions. Moreover, they also displayed significantly longer roots, more leaves, and a lower ion leakage rate. Taken together, these findings demonstrated the presence of positive transgenerational effects on progeny. Thus, while parental drought stress during reproduction stage may affect seed quality, it can enhance drought tolerance in the next generation via induction of stress memory.
Collapse
Affiliation(s)
- Ngoc-Ha Thi Tran
- Institute of Tropical Biology, Vietnam Academy of Science and Technology, Linh Trung, Thu Duc, Ho Chi Minh City 700000, Vietnam
| | - Duong Van Hoang
- Institute of Tropical Biology, Vietnam Academy of Science and Technology, Linh Trung, Thu Duc, Ho Chi Minh City 700000, Vietnam
| | - Loc Tuong Phan
- Institute of Tropical Biology, Vietnam Academy of Science and Technology, Linh Trung, Thu Duc, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
14
|
Latif A, Yang CG, Zhang LX, Yang XY, Liu XY, Ai LF, Noman A, Pu CX, Sun Y. The Receptor Kinases DRUS1 and DRUS2 Behave Distinctly in Osmotic Stress Tolerance by Modulating the Root System Architecture via Auxin Signaling. PLANTS (BASEL, SWITZERLAND) 2024; 13:860. [PMID: 38592851 PMCID: PMC10974500 DOI: 10.3390/plants13060860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/11/2024]
Abstract
Receptor kinases DRUS1 (Dwarf and Runtish Spikelet1) and DRUS2 are orthologues of the renowned Arabidopsis thaliana gene FERONIA, which play redundant roles in rice growth and development. Whether the two duplicated genes perform distinct functions in response to environmental stress is largely unknown. Here, we found that osmotic stress (OS) and ABA increased DRUS1 expression while decreasing DRUS2. When subjected to osmotic stress, the increased DRUS1 in drus2 mutants suppresses the OsIAA repressors, resulting in a robust root system with an increased number of adventitious and lateral roots as well as elongated primary, adventitious, and lateral roots, conferring OS tolerance. In contrast, the decreased DRUS2 in drus1-1 mutants are not sufficient to suppress OsIAA repressors, leading to a feeble root system with fewer adventitious and lateral roots and hindering seminal root growth, rendering OS intolerance. All these findings offer valuable insights into the biological significance of the duplication of two homologous genes in rice, wherein, if one is impaired, the other one is able to continue auxin-signaling-mediated root growth and development to favor resilience to environmental stress, such as water shortage.
Collapse
Affiliation(s)
- Ammara Latif
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (A.L.)
- Department of Botany, Government College University, Faisalabad 38000, Pakistan
| | - Chen-Guang Yang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (A.L.)
| | - Lan-Xin Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (A.L.)
| | - Xin-Yu Yang
- Technology Center of Shijiazhuang Customs, Shijiazhuang 050051, China
| | - Xin-Ye Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (A.L.)
| | - Lian-Feng Ai
- Technology Center of Shijiazhuang Customs, Shijiazhuang 050051, China
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad 38000, Pakistan
| | - Cui-Xia Pu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (A.L.)
| | - Ying Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (A.L.)
| |
Collapse
|
15
|
Paethaisong W, Lakhunthod P, Santanoo S, Chandarak N, Onwan S, Kaewjampa N, Dongsansuk A. Open field hardening improves leaf physiological drought tolerance in young plants of Sindora siamensis. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23102. [PMID: 38479796 DOI: 10.1071/fp23102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 02/21/2024] [Indexed: 04/04/2024]
Abstract
The effect of drought stress on leaf physiology was studied in 10-month-old plants of Sindora siamensis . Plants were either placed in an open greenhouse (unhardening; UH) or in an open field (open field hardening; H) for 45days. Both the UH and H plants stopped receiving water (D) until the initial drought injury and then rewatered (R) until complete recovery. Results showed necrosis in the leaves of UH+D, while H+D showed wilting at Day 7 after drought. A greater degree of necrosis was found in UH+D+R but made complete recovery in H+D+R at Day 4 after rewatering. Drought stress resulted in decreased leaf area in H, and reduced leaf and stem water status, PSII efficiency, net photosynthetic rate, stomatal conductance and transpiration rate in both UH and H. It also resulted in an increase in water use efficiency in both UH and H. Electrolyte leakage and malondialdehyde contents in UH were markedly increased due to drought stress. These results suggest that unhardened young plants of Sindora exposed to drought exhibited enhanced stomata behaviour by minimising open stomata and transpiration, resulting in high efficiency of water usage. However, there was still membrane damage from lipid peroxidation, which caused necrosis. Open field hardened plants exposed to drought demonstrated reduced open stomata and transpiration, thereby preserving leaf and soil water status and enhancing water use efficiency. This may be a reduction in lipid peroxidation though an oxidative scavenging mechanism that causes a slight alteration in membrane stability and a slight necrosis.
Collapse
Affiliation(s)
- Warunya Paethaisong
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Preeyanuch Lakhunthod
- Department of Biological Sciences, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Supranee Santanoo
- Salt-tolerant Rice Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Natthamon Chandarak
- Salt-tolerant Rice Research Group, Khon Kaen University, Khon Kaen 40002, Thailand; and Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sujittra Onwan
- Department of Forest Resource Management Office No. 7, Khon Kaen 40000, Thailand
| | - Naruemol Kaewjampa
- Department of Conservation, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Anoma Dongsansuk
- Salt-tolerant Rice Research Group, Khon Kaen University, Khon Kaen 40002, Thailand; and Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
16
|
Wang X, Zhao W, Wei X, Sun Y, Dong S. Molecular mechanism of drought resistance in soybean roots revealed using physiological and multi-omics analyses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108451. [PMID: 38402799 DOI: 10.1016/j.plaphy.2024.108451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
Soybeans are one of the most cultivated crops worldwide and drought can seriously affect their growth and development. Many studies have elucidated the mechanisms through which soybean leaves respond to drought; however, little is known about these mechanisms in roots. We used two soybean varieties with different drought tolerances to study the morphological, physiological, and molecular response mechanisms of the root system to drought stress in seedlings. We found that drought stress led to a significant decrease in the root traits and an increase in antioxidant enzyme activity in the two varieties. Drought-resistant varieties accumulate large amounts of flavonoids and phenolic acids at the metabolic level, which causes variations in drought resistance. Additionally, differences in gene expression and drought-resistance pathways between the two varieties were clarified using transcriptome analysis. Through a multi-omics joint analysis, phenylpropanoid and isoflavonoid biosynthesis were identified as the core drought resistance pathways in soybean roots. Candidate genes and marker metabolites affecting drought resistance were identified. The phenylpropanoid pathway confers drought tolerance to roots by maintaining a high level of POD activity and mediates the biosynthesis of various secondary drought-resistant metabolites to resist drought stress. This study provides useful data for investigating plant root drought responses and offers theoretical support for plant breeding for drought resistance.
Collapse
Affiliation(s)
- Xiyue Wang
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Wei Zhao
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Xinhe Wei
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Yanbin Sun
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Shoukun Dong
- College of Agriculture, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
17
|
Kalra A, Goel S, Elias AA. Understanding role of roots in plant response to drought: Way forward to climate-resilient crops. THE PLANT GENOME 2024; 17:e20395. [PMID: 37853948 DOI: 10.1002/tpg2.20395] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/26/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023]
Abstract
Drought stress leads to a significant amount of agricultural crop loss. Thus, with changing climatic conditions, it is important to develop resilience measures in agricultural systems against drought stress. Roots play a crucial role in regulating plant development under drought stress. In this review, we have summarized the studies on the role of roots and root-mediated plant responses. We have also discussed the importance of root system architecture (RSA) and the various structural and anatomical changes that it undergoes to increase survival and productivity under drought. Various genes, transcription factors, and quantitative trait loci involved in regulating root growth and development are also discussed. A summarization of various instruments and software that can be used for high-throughput phenotyping in the field is also provided in this review. More comprehensive studies are required to help build a detailed understanding of RSA and associated traits for breeding drought-resilient cultivars.
Collapse
Affiliation(s)
- Anmol Kalra
- Department of Botany, University of Delhi, North Campus, Delhi, India
| | - Shailendra Goel
- Department of Botany, University of Delhi, North Campus, Delhi, India
| | - Ani A Elias
- ICFRE - Institute of Forest Genetics and Tree Breeding (ICFRE - IFGTB), Coimbatore, India
| |
Collapse
|
18
|
Nasr Esfahani M, Sonnewald U. Unlocking dynamic root phenotypes for simultaneous enhancement of water and phosphorus uptake. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108386. [PMID: 38280257 DOI: 10.1016/j.plaphy.2024.108386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 01/29/2024]
Abstract
Phosphorus (P) and water are crucial for plant growth, but their availability is challenged by climate change, leading to reduced crop production and global food security. In many agricultural soils, crop productivity is confronted by both water and P limitations. The diminished soil moisture decreases available P due to reduced P diffusion, and inadequate P availability diminishes tissue water status through modifications in stomatal conductance and a decrease in root hydraulic conductance. P and water display contrasting distributions in the soil, with P being concentrated in the topsoil and water in the subsoil. Plants adapt to water- and P-limited environments by efficiently exploring localized resource hotspots of P and water through the adaptation of their root system. Thus, developing cultivars with improved root architecture is crucial for accessing and utilizing P and water from arid and P-deficient soils. To meet this goal, breeding towards multiple advantageous root traits can lead to better cultivars for water- and P-limited environments. This review discusses the interplay of P and water availability and highlights specific root traits that enhance the exploration and exploitation of optimal resource-rich soil strata while reducing metabolic costs. We propose root ideotype models, including 'topsoil foraging', 'subsoil foraging', and 'topsoil/subsoil foraging' for maize (monocot) and common bean (dicot). These models integrate beneficial root traits and guide the development of water- and P-efficient cultivars for challenging environments.
Collapse
Affiliation(s)
- Maryam Nasr Esfahani
- Department of Biology, Chair of Biochemistry, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany.
| | - Uwe Sonnewald
- Department of Biology, Chair of Biochemistry, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany.
| |
Collapse
|
19
|
Sharma A, Gupta A, Ramakrishnan M, Ha CV, Zheng B, Bhardwaj M, Tran LSP. Roles of abscisic acid and auxin in plants during drought: A molecular point of view. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108129. [PMID: 37897894 DOI: 10.1016/j.plaphy.2023.108129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/29/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023]
Abstract
Plant responses to drought are mediated by hormones like ABA (abscisic acid) and auxin. These hormones regulate plant drought responses by modulating various physiological and biological processes via cell signaling. ABA accumulation and signaling are central to plant drought responses. Auxin also regulates plant adaptive responses to drought, especially via signal transduction mediated by the interaction between ABA and auxin. In this review, we explored the interactive roles of ABA and auxin in the modulation of stomatal movement, root traits and accumulation of reactive oxygen species associated with drought tolerance.
Collapse
Affiliation(s)
- Anket Sharma
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Aarti Gupta
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Muthusamy Ramakrishnan
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Chien Van Ha
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Mamta Bhardwaj
- Department of Botany, Hindu Girls College, Maharshi Dayanand University, Sonipat, 131001, India
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
20
|
Abdalla M, Bitterlich M, Jansa J, Püschel D, Ahmed MA. The role of arbuscular mycorrhizal symbiosis in improving plant water status under drought. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4808-4824. [PMID: 37409696 DOI: 10.1093/jxb/erad249] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/28/2023] [Indexed: 07/07/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) have been presumed to ameliorate crop tolerance to drought. Here, we review the role of AMF in maintaining water supply to plants from drying soils and the underlying biophysical mechanisms. We used a soil-plant hydraulic model to illustrate the impact of several AMF mechanisms on plant responses to edaphic drought. The AMF enhance the soil's capability to transport water and extend the effective root length, thereby attenuating the drop in matric potential at the root surface during soil drying. The synthesized evidence and the corresponding simulations demonstrate that symbiosis with AMF postpones the stress onset limit, which is defined as the disproportionality between transpiration rates and leaf water potentials, during soil drying. The symbiosis can thus help crops survive extended intervals of limited water availability. We also provide our perspective on future research needs and call for reconciling the dynamic changes in soil and root hydraulics in order to better understand the role of AMF in plant water relations in the face of climate changes.
Collapse
Affiliation(s)
- Mohanned Abdalla
- Chair of Root-Soil Interaction, School of Life Sciences, Technical University of Munich, Freising, Germany
- Chair of Soil Physics, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
- Department of Horticulture, Faculty of Agriculture, University of Khartoum, Khartoum North, Sudan
| | - Michael Bitterlich
- Humboldt-Universität zu Berlin, Thaer-Institute, Division Urban Plant Ecophysiology, Berlin, Germany
| | - Jan Jansa
- Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - David Püschel
- Department of Mycorrhizal Symbioses, Institute of Botany of the Czech Academy of Sciences, Průhonice, Czech Republic
| | - Mutez A Ahmed
- Chair of Root-Soil Interaction, School of Life Sciences, Technical University of Munich, Freising, Germany
- Chair of Soil Physics, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
21
|
Shi R, Seiler C, Knoch D, Junker A, Altmann T. Integrated phenotyping of root and shoot growth dynamics in maize reveals specific interaction patterns in inbreds and hybrids and in response to drought. FRONTIERS IN PLANT SCIENCE 2023; 14:1233553. [PMID: 37719228 PMCID: PMC10502302 DOI: 10.3389/fpls.2023.1233553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/07/2023] [Indexed: 09/19/2023]
Abstract
In recent years, various automated methods for plant phenotyping addressing roots or shoots have been developed and corresponding platforms have been established to meet the diverse requirements of plant research and breeding. However, most platforms are only either able to phenotype shoots or roots of plants but not both simultaneously. This substantially limits the opportunities offered by a joint assessment of the growth and development dynamics of both organ systems, which are highly interdependent. In order to overcome these limitations, a root phenotyping installation was integrated into an existing automated non-invasive high-throughput shoot phenotyping platform. Thus, the amended platform is now capable of conducting high-throughput phenotyping at the whole-plant level, and it was used to assess the vegetative root and shoot growth dynamics of five maize inbred lines and four hybrids thereof, as well as the responses of five inbred lines to progressive drought stress. The results showed that hybrid vigour (heterosis) occurred simultaneously in roots and shoots and was detectable as early as 4 days after transplanting (4 DAT; i.e., 8 days after seed imbibition) for estimated plant height (EPH), total root length (TRL), and total root volume (TRV). On the other hand, growth dynamics responses to progressive drought were different in roots and shoots. While TRV was significantly reduced 10 days after the onset of the water deficit treatment, the estimated shoot biovolume was significantly reduced about 6 days later, and EPH showed a significant decrease even 2 days later (8 days later than TRV) compared with the control treatment. In contrast to TRV, TRL initially increased in the water deficit period and decreased much later (not earlier than 16 days after the start of the water deficit treatment) compared with the well-watered plants. This may indicate an initial response of the plants to water deficit by forming longer but thinner roots before growth was inhibited by the overall water deficit. The magnitude and the dynamics of the responses were genotype-dependent, as well as under the influence of the water consumption, which was related to plant size.
Collapse
Affiliation(s)
- Rongli Shi
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Christiane Seiler
- Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI), Quedlinburg, Germany
| | - Dominic Knoch
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Astrid Junker
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Thomas Altmann
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| |
Collapse
|
22
|
Kaur S, Seem K, Kumar S, Kaundal R, Mohapatra T. Comparative Genome-Wide Analysis of MicroRNAs and Their Target Genes in Roots of Contrasting Indica Rice Cultivars under Reproductive-Stage Drought. Genes (Basel) 2023; 14:1390. [PMID: 37510295 PMCID: PMC10379292 DOI: 10.3390/genes14071390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Recurrent occurrence of drought stress in varying intensity has become a common phenomenon in the present era of global climate change, which not only causes severe yield losses but also challenges the cultivation of rice. This raises serious concerns for sustainable food production and global food security. The root of a plant is primarily responsible to perceive drought stress and acquire sufficient water for the survival/optimal growth of the plant under extreme climatic conditions. Earlier studies reported the involvement/important roles of microRNAs (miRNAs) in plants' responses to environmental/abiotic stresses. A number (738) of miRNAs is known to be expressed in different tissues under varying environmental conditions in rice, but our understanding of the role, mode of action, and target genes of the miRNAs are still elusive. Using contrasting rice [IR-64 (reproductive-stage drought sensitive) and N-22 (drought-tolerant)] cultivars, imposed with terminal (reproductive-stage) drought stress, we demonstrate differential expression of 270 known and 91 novel miRNAs in roots of the contrasting rice cultivars in response to the stress. Among the known miRNAs, osamiR812, osamiR166, osamiR156, osamiR167, and osamiR396 were the most differentially expressed miRNAs between the rice cultivars. In the root of N-22, 18 known and 12 novel miRNAs were observed to be exclusively expressed, while only two known (zero novels) miRNAs were exclusively expressed in the roots of IR-64. The majority of the target gene(s) of the miRNAs were drought-responsive transcription factors playing important roles in flower, grain development, auxin signaling, root development, and phytohormone-crosstalk. The novel miRNAs identified in this study may serve as good candidates for the genetic improvement of rice for terminal drought stress towards developing climate-smart rice for sustainable food production.
Collapse
Affiliation(s)
- Simardeep Kaur
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
- Department of Plants, Soils, and Climate, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
- Bioinformatics Facility, Center for Integrated BioSystems, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
| | - Karishma Seem
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Rakesh Kaundal
- Department of Plants, Soils, and Climate, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
- Bioinformatics Facility, Center for Integrated BioSystems, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
| | | |
Collapse
|
23
|
Yuan YG, Gao FL, Yu FH, Li JM, Li MH. Resource availability and parasitism intensity influence the response of soybean to the parasitic plant Cuscuta australis. FRONTIERS IN PLANT SCIENCE 2023; 14:1177154. [PMID: 37229133 PMCID: PMC10203557 DOI: 10.3389/fpls.2023.1177154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/13/2023] [Indexed: 05/27/2023]
Abstract
Introduction Parasitic plants can damage crop plants and consequently cause yield losses and thus threaten food security. Resource availability (e.g., phosphorus, water) has an important role in the response of crop plants to biotic attacks. However, how the growth of crop plants under parasitism are affected by environmental resource fluctuation is poorly understood. Methods We conducted a pot experiment to test the effects of the intensity of Cuscuta australis parasitism and the availability of water and phosphorus (P) on soybean shoot and root biomass. Results and discussion We found that low-intensity parasitism caused ~6% biomass reduction, while high-intensity parasitism caused ~26% biomass reduction in soybean. Under 5-15% water holding capacity (WHC), the deleterious effect of parasitism on soybean hosts was ~60% and ~115% higher than that under 45-55% WHC and 85-95% WHC, respectively. When the P supply was 0 μM, the deleterious effect of parasitism on soybean was 67% lower than that when the P supply was 20 μM. Besides, the biomass of C. australis was highest when both the water and the P availability were lowest. Cuscuta australis caused the highest damage to soybean hosts under 5 μM P supply, 5-15% WHC, and high-intensity parasitism. Additionally, C. australis biomass was significantly and negatively related to the deleterious effect of parasitism on soybean hosts and to the total biomass of soybean hosts under high-intensity parasitism, but not under low-intensity parasitism. Although high resource availability can promote soybean growth, the two resources have different impacts on the response of hosts to parasitism. Higher P availability decreased host tolerance to parasites, while higher water availability increased host tolerance. These results indicate that crop management, specifically water and phosphorus supply, can efficiently control C. australis in soybean. To our best knowledge, this appears to be the first study to test the interactive effect of different resources on the growth and response of host plants under parasitism.
Collapse
Affiliation(s)
- Yong-Ge Yuan
- School of Advanced Study, Taizhou University, Taizhou, China
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, China
| | - Fang-Lei Gao
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Binzhou University, Binzhou, China
| | - Fei-Hai Yu
- School of Advanced Study, Taizhou University, Taizhou, China
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, China
| | - Jun-Min Li
- School of Advanced Study, Taizhou University, Taizhou, China
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, China
| | - Mai-He Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, China
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, Jilin, China
- College of Life Science, Hebei University, Baoding, Hebei, China
| |
Collapse
|