1
|
Umrao V, Yadav S, Semwal P, Misra S, Mishra SK, Chauhan PS, Shirke PA. Endophytic bacilli from Cyamopsis tetragonoloba (L.) Taub. induces plant growth and drought tolerance. Int Microbiol 2024; 27:1541-1556. [PMID: 38472714 DOI: 10.1007/s10123-024-00499-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 03/14/2024]
Abstract
Cyamopsis tetragonoloba (L.) Taub. (guar) is a commercially important crop known for its galactomannan content in seeds. Drought stress is a significant global concern that compromises the productivity of major legumes including guar. The endophytic microbes associated with plants play a significant role in enhancing plant growth and modulating the impact of abiotic stress(s). The present study involved the isolation of 73 endophytic bacteria from the guar seeds of drought-tolerant (RGC-1002 and RGC-1066) and sensitive (Sarada and Varsha) varieties. Based on multiple PGP attributes and drought tolerance, at 50% PEG6000 w/v, 11 efficient isolates were selected and identified through 16S rRNA gene sequencing. Isolates belonging to ten different species of bacilli including Cytobacillus oceanisediminis, Mesobacillus fermenti, Peribacillus simplex from sensitive and Bacillus zanthoxyli, B. safensis, B. velezensis, B. altitudinis, B. licheniformis, B. tequilensis, and B. paralicheniformis isolated from tolerant varieties. A greenhouse experiment with a drought-sensitive guar variety demonstrated that inoculation of selected isolates showed comparatively better plant growth, higher relative water content (RWC), decreased carbon isotope discrimination ratio (Δ13C), increased chlorophyll, carotenoids, anthocyanin, and proline content, decreased malondialdehyde (MDA) and modulated defense enzymes as compared to their uninoculated controls. Tolerant variety isolates B. tequilensis NBRI14G and B. safensis NBRI10R showed the most promising results in improving plant growth and also drought stress tolerance in guar plants. This study represents for the first time that seed endophytic bacterial strains from guar can be utilized to develop the formulation for improving the productivity of guar under drought-stress conditions.
Collapse
Affiliation(s)
- Vaishali Umrao
- Plant Physiology Laboratory, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sushma Yadav
- Plant Physiology Laboratory, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pradeep Semwal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Sankalp Misra
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Lucknow-Deva Road, Barabanki, Uttar Pradesh, 225003, India
| | - Shashank Kumar Mishra
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Puneet Singh Chauhan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India.
| | - Pramod Arvind Shirke
- Plant Physiology Laboratory, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Juby S, Soumya P, Jayachandran K, Radhakrishnan EK. Morphological, Metabolomic and Genomic Evidences on Drought Stress Protective Functioning of the Endophyte Bacillus safensis Ni7. Curr Microbiol 2024; 81:209. [PMID: 38834921 DOI: 10.1007/s00284-024-03720-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/26/2024] [Indexed: 06/06/2024]
Abstract
The metabolomic and genomic characterization of an endophytic Bacillus safensis Ni7 was carried out in this study. This strain has previously been isolated from the xerophytic plant Nerium indicum L. and reported to enhance the drought tolerance in Capsicum annuum L. seedlings. The effects of drought stress on the morphology, biofilm production, and metabolite production of B. safensis Ni7 are analyzed in the current study. From the results obtained, the organism was found to have multiple strategies such as aggregation and clumping, robust biofilm production, and increased production of surfactin homologues under the drought induced condition when compared to non-stressed condition. Further the whole genome sequencing (WGS) based analysis has demonstrated B. safensis Ni7 to have a genome size of 3,671,999 bp, N50 value of 3,527,239, and a mean G+C content of 41.58%. Interestingly the organism was observed to have the presence of various stress-responsive genes (13, 20U, 16U,160, 39, 17M, 18, 26, and ctc) and genes responsible for surfactin production (srfAA, srfAB, srfAC, and srfAD), biofilm production (epsD, epsE, epsF, epsG, epsH, epsI, epsK, epsL, epsM, epsN, and pel), chemotaxis (cheB_1, cheB_2, cheB_3, cheW_1, cheW_2 cheR, cheD, cheC, cheA, cheY, cheV, and cheB_4), flagella synthesis (flgG_1, flgG_2, flgG_3, flgC, and flgB) as supportive to the drought tolerance. Besides these, the genes responsible for plant growth promotion (PGP), including the genes for nitrogen (nasA, nasB, nasC, nasD, and nasE) and sulfur assimilation (cysL_1&L_2, cysI) and genes for phosphate solubilization (phoA, phoP_1& phoP_2, and phoR) could also be predicted. Along with the same, the genes for catalase, superoxide dismutase, protein homeostasis, cellular fitness, osmoprotectants production, and protein folding could also be predicted from its WGS data. Further pan-genome analysis with plant associated B. safensis strains available in the public databases revealed B. safensis Ni7 to have the presence of a total of 5391 gene clusters. Among these, 3207 genes were identified as core genes, 954 as shell genes and 1230 as cloud genes. This variation in gene content could be taken as an indication of evolution of strains of Bacillus safensis as per specific conditions and hence in the case of B. safensis Ni7 its role in habitat adaptation of plant is well expected. This diversity in endophytic bacterial genes may attribute its role to support the plant system to cope up with stress conditions. Overall, the study provides genomic evidence on Bacillus safensis Ni7 as a stress alleviating microbial partner in plants.
Collapse
Affiliation(s)
- Silju Juby
- School of Biosciences, Mahatma Gandhi University, Kottayam, India
| | - P Soumya
- School of Biosciences, Mahatma Gandhi University, Kottayam, India
| | - K Jayachandran
- School of Biosciences, Mahatma Gandhi University, Kottayam, India
| | | |
Collapse
|
3
|
Bleša D, Matušinský P, Baláž M, Nesvadba Z, Zavřelová M. Endophyte Inoculation and Elevated Potassium Supply on Productivity, Growth and Physiological Parameters of Spring Barley ( Hordeum vulgare L.) Genotypes over Contrasting Seasons. PLANTS (BASEL, SWITZERLAND) 2024; 13:1168. [PMID: 38674576 PMCID: PMC11054443 DOI: 10.3390/plants13081168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
In recent years, recurrent droughts have significantly affected spring barley production, reducing the quantity and quality of grain. This study aims to identify genotype-specific traits and the drought resilience of six different Hordeum vulgare L. (spring barley) genotypes, while also examining the potential of potassium application and fungal endophyte Serendipita indica inoculation to mitigate the negative effects of dry periods during the growing season. Field experiments were conducted over a three-year period from 2020 to 2022, measuring physiological, growth, and yield parameters. To get insight into the physiological state of the plants, we measured the soluble sugars content and the ratio of stable carbon isotopes in the flag leaf tissue, which reflects conditions during its formation. The dominant factors that influenced the measured parameters were the genotypes and seasons, as well as their interaction, rather than other experimental factors. The results showed that the Spitfire and Accordine varieties were the best performing in both the 2020 and 2021 seasons, as indicated by their yield. However, in the drier 2022 season, the yield of these two varieties decreased significantly (to 55% for Spitfire and to 69% for Accordine of their yield in 2021), while for the arid-region genotypes, it remained at the same level as the previous year. This study sheds light on the potential of various genotypes to withstand periods of drought and the effectiveness of using potassium application and S. indica inoculation as mitigation approaches.
Collapse
Affiliation(s)
- Dominik Bleša
- Agrotest Fyto, Ltd., 76701 Kroměříž, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic;
| | - Pavel Matušinský
- Agrotest Fyto, Ltd., 76701 Kroměříž, Czech Republic
- Department of Botany, Faculty of Science, Palacký University in Olomouc, 78371 Olomouc, Czech Republic
| | - Milan Baláž
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic;
| | - Zdeněk Nesvadba
- Gene Bank, Crop Research Institute, Drnovská 507, 16106 Praha 6 – Ruzyně, Czech Republic;
| | | |
Collapse
|
4
|
Xing W, Gai X, Xue L, Chen G. Evaluating the role of rhizosphere microbial home-field advantage in Betula luminifera adaptation to antimony mining areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169009. [PMID: 38040368 DOI: 10.1016/j.scitotenv.2023.169009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/04/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
It has been established that the coevolution of plants and the rhizosphere microbiome in response to abiotic stress can result in the recruitment of specific functional microbiomes. However, the potential of inoculated rhizosphere microbiomes to enhance plant fitness and the inheritance of adaptive traits in subsequent generations remains unclear. In this study, cross-inoculation trials were conducted using seeds, rhizosphere microbiome, and in situ soil collected from areas of Betula luminifera grown in both antimony mining and control sites. Compared to the control site, plants originating from mining areas exhibited stronger adaptive traits, specifically manifested as significant increases in hundred-seed weight, specific surface area, and germination rate, as well as markedly enhanced seedling survival rate and biomass. Inoculation with mining microbiomes could enhance the fitness of plants in mining sites through a "home-field advantage" while also improving the fitness of plants originating from control sites. During the initial phase of seedling development, bacteria play a crucial role in promoting growth, primarily due to their mechanisms of metal resistance and nutrient cycling. This study provided evidence that the outcomes of long-term coevolution between plants and the rhizosphere microbiome in mining areas can be passed on to future generations. Moreover, it has been demonstrated that transgenerational inheritance and rhizosphere microbiome inoculation are important factors in improving the adaptability of plants in mining areas. The findings have important implications for vegetation restoration and ecological environment improvement in mining areas.
Collapse
Affiliation(s)
- Wenli Xing
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; Nanjing Forestry University, Nanjing 210037, China
| | - Xu Gai
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Liang Xue
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Guangcai Chen
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China.
| |
Collapse
|
5
|
Langill T, Wójcik M, Vangronsveld J, Thijs S. Endophyte Community Changes in the Seeds of Eight Plant Species following Inoculation with a Multi-Endophytic Bacterial Consortium and an Individual Sphingomonas wittichii Strain Obtained from Noccaea caerulescens. PLANTS (BASEL, SWITZERLAND) 2023; 12:3660. [PMID: 37896123 PMCID: PMC10609953 DOI: 10.3390/plants12203660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
Noccaea caerulescens, a hyperaccumulator plant species known for its metal tolerance and accumulation abilities, harbours a microbiome of interest within its seed. These seed-associated bacteria, often referred to as seed endophytes, play a unique role in seed germination and plant growth and health. This work aimed to address how inoculating seeds of eight different plant species-Medicago sativa (alfalfa), Zea mays (corn), Raphanus sativus (radish), Helianthus annus (sunflower), Cucurbita pepo subsp. pepo (squash), Beta vulgaris subsp. cicla (rainbow chard), Arabidopsis thaliana (thale cress), and Noccaea caerulescens (penny cress)-with a bacterial consortium made from the seed endophytes of N. caerulescens would affect the seed microbiome of each test plant species, as well as inoculation with a strain of the bacterium Sphingomonas wittichii, which was previously isolated from seeds of N. caerulescens. Additionally, we aimed to offer preliminary plant tests in order to determine the best seed treatment plan for future research. The results showed that inoculation with the bacterial consortium held the most potential for increasing plant size (p < 0.001) and increasing germination rate (p < 0.05). The plant that responded best to inoculation was N. caerulescens (penny cress), likely because the microbes being introduced into the seed were not foreign. This paper also offers the first insight into the seed endophytes of Beta vulgaris subsp. cicla, highlighting an abundance of Proteobacteria, Firmicutes, and Actinobacteriota.
Collapse
Affiliation(s)
- Tori Langill
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium (J.V.)
| | - Małgorzata Wójcik
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium (J.V.)
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033 Lublin, Poland
| | - Jaco Vangronsveld
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium (J.V.)
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033 Lublin, Poland
| | - Sofie Thijs
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium (J.V.)
| |
Collapse
|
6
|
Liu Y, Morelli M, Koskimäki JJ, Qin S, Zhu YH, Zhang XX. Editorial: Role of endophytic bacteria in improving plant stress resistance. FRONTIERS IN PLANT SCIENCE 2022; 13:1106701. [PMID: 36561457 PMCID: PMC9763997 DOI: 10.3389/fpls.2022.1106701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 06/03/2023]
Affiliation(s)
- Yang Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Massimiliano Morelli
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Sede Secondaria di Bari, Bari, Italy
| | | | - Sheng Qin
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Yong-Hua Zhu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan, China
| | - Xiao-Xia Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|