1
|
Laffi L, Bigand F, Peham C, Novembre G, Gamba M, Ravignani A. Rhythmic categories in horse gait kinematics. J Anat 2025; 246:456-465. [PMID: 39814540 PMCID: PMC11828748 DOI: 10.1111/joa.14200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 11/23/2024] [Accepted: 12/02/2024] [Indexed: 01/18/2025] Open
Abstract
Anecdotally, horses' gaits sound rhythmic. Are they really? In this study, we quantified the motor rhythmicity of horses across three different gaits (walk, trot, and canter). For the first time, we adopted quantitative tools from bioacoustics and music cognition to quantify locomotor rhythmicity. Specifically, we tested whether kinematics data contained rhythmic categories; these occur when adjacent temporal intervals are categorically, rather than randomly, distributed. We extracted the motion cycle duration (tk) of two ipsilateral hooves from motion data of 13 ridden horses and calculated the ratios from two successive tk values. We tested whether these ratios significantly fell within rhythmic categories and quantified how close they were to small-integer ratios, a rhythmic feature also present in animal vocalizations and human music. We found a strong isochronous pattern-a 1:1 rhythmic ratio, corresponding to the ticking of a clock-in the motion of single limbs for all gaits. We also analyzed the interlimb coordination of the two ipsilateral hooves' impacts to identify differences associated with the biomechanical patterns of the three gaits. We found an interlimb 1:1 rhythmic pattern for trot and 1:3 and 3:1 rhythmic categories for walk and canter. Our findings are a first step toward quantifying rhythmicity in horse locomotion and potentially the resulting rhythmic sounds, with possible implications as tools to detect gait irregularities. Overall, we show that rhythmic categories are a valuable tool for gait kinematic analysis and that they can be used to quantify temporal patterns in the motor domain.
Collapse
Affiliation(s)
- Lia Laffi
- Department of Human NeurosciencesSapienza University of RomeRomeItaly
- Department of Life Sciences and Systems BiologyUniversity of TorinoTurinItaly
| | - Félix Bigand
- Neuroscience of Perception and Action LabItalian Institute of TechnologyRomeItaly
| | - Christian Peham
- Department of Companion Animals and HorsesMovement Science Group, University Clinic for Horses, Vetmeduni ViennaViennaAustria
| | - Giacomo Novembre
- Neuroscience of Perception and Action LabItalian Institute of TechnologyRomeItaly
| | - Marco Gamba
- Department of Companion Animals and HorsesMovement Science Group, University Clinic for Horses, Vetmeduni ViennaViennaAustria
| | - Andrea Ravignani
- Department of Human NeurosciencesSapienza University of RomeRomeItaly
- Center for Music in the Brain, Department of Clinical MedicineAarhus University and the Royal Academy of Music Aarhus/AalborgAarhusDenmark
| |
Collapse
|
2
|
Yasoda-Mohan A, Chen F, Vanneste S. Unveiling the mind's ear: Understanding the science behind auditory processing using illusions. Hear Res 2025; 459:109227. [PMID: 40020557 DOI: 10.1016/j.heares.2025.109227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/06/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
Our perceptual experience is not purely driven by the information our senses receive but is an active combination of prior experience and the sensory information that we receive. This is promisingly demonstrated by an illusory experience. Particularly in the auditory domain, we encounter illusions that serve as a tool to understand the more holistic and bigger umbrella of auditory processing. In the current manuscript, we review spectral, temporal, spatial auditory and multisensory processing through the lens of auditory illusions. We review examples of auditory illusions that could serve as models to better comprehend these sub-domains of auditory processing. We also explore the literature where these illusions have been used as a causal human model to unravel mechanisms behind neuropathology and conclude with futuristic applications of auditory illusions.
Collapse
Affiliation(s)
- Anusha Yasoda-Mohan
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, Trinity College Dublin, D02 PN40, Dublin, Ireland; School of Psychology, Trinity College Dublin, D02 PN40, Dublin, Ireland
| | - Feifan Chen
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, Trinity College Dublin, D02 PN40, Dublin, Ireland; School of Psychology, Trinity College Dublin, D02 PN40, Dublin, Ireland
| | - Sven Vanneste
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, Trinity College Dublin, D02 PN40, Dublin, Ireland; School of Psychology, Trinity College Dublin, D02 PN40, Dublin, Ireland; Global Brain Health Institute (GBHI), Trinity College Dublin, D02 PN40, Dublin, Ireland.
| |
Collapse
|
3
|
Klaperski-van der Wal S, Skinner J, Opacka-Juffry J, Pfeffer K. Dance and stress regulation: A multidisciplinary narrative review. PSYCHOLOGY OF SPORT AND EXERCISE 2025; 78:102823. [PMID: 39922294 DOI: 10.1016/j.psychsport.2025.102823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/21/2024] [Accepted: 01/14/2025] [Indexed: 02/10/2025]
Abstract
BACKGROUND Physical exercise is known to aid stress regulation, however the effects of specific exercise types are under-researched. Dance uniquely combines several characteristics that are known to have stress regulatory effects, such as music listening. Nonetheless, dance has received only little attention in studies examining the stress regulatory effects of exercise. OBJECTIVE We used a multidisciplinary narrative review as a novel approach to explore the complex relationship between dance and stress by integrating psychological, neurobiological, physiological, and socio-cultural findings. In particular, we looked at the effects of music and rhythm; partnering and social contact; and movement and physical activity. FINDINGS There is strong empirical evidence for the beneficial stress regulatory effects of music, social contact, and movement, illustrating that dance can promote coping and foster resilience. Neurobiological research shows that these findings can be explained by the effects that music, social contact, and movement have on, amongst others, dopamine, oxytocin, and β-endorphin modulation and their interplay with the stress system. Socio-cultural considerations of the significance of dance help to understand why dance might have these unique effects. They highlight that dance can be seen as a universal form of human expression, offering a communal space for bonding, healing, and collective coping strategies. DISCUSSION This review is the first to integrate perspectives from different disciplines on the stress regulatory effects of dance. It shows that dance has a large potential to aid coping and resilience at multiple levels of the human experience. At the same time, we identified that the existing evidence is often still limited by a narrow focus on exercise characteristics such as intensity levels. This hinders a more holistic understanding of underlying stress regulatory mechanisms and provides important directions for future research.
Collapse
Affiliation(s)
- Sandra Klaperski-van der Wal
- Behavioural Science Institute, Radboud University, Thomas van Aquinostraat 4, 6525 GD, Nijmegen, the Netherlands; School of Life & Health Sciences, University of Roehampton, Holybourne Avenue, SW15 4JD, London, United Kingdom.
| | - Jonathan Skinner
- School of Life & Health Sciences, University of Roehampton, Holybourne Avenue, SW15 4JD, London, United Kingdom; Surrey Business School, University of Surrey, GU2 7XH, United Kingdom.
| | - Jolanta Opacka-Juffry
- School of Life & Health Sciences, University of Roehampton, Holybourne Avenue, SW15 4JD, London, United Kingdom
| | - Kristina Pfeffer
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark; DRIVEN- Danish Centre for Motivation and Behaviour Science, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
4
|
Laffi L, Raimondi T, Ferrante C, Pagliara E, Bertuglia A, Briefer EF, Gamba M, Ravignani A. The rhythm of horse gaits. Ann N Y Acad Sci 2025; 1543:86-93. [PMID: 39731731 PMCID: PMC11776444 DOI: 10.1111/nyas.15271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2024]
Abstract
What makes animal gaits so audibly rhythmic? To answer this question, we recorded the footfall sound of 19 horses and quantified the rhythmic differences in the temporal structure of three natural gaits: walk, trot, and canter. Our analyses show that each gait displays a strikingly specific rhythmic pattern and that all gaits are organized according to small-integer ratios, those found when adjacent temporal intervals are related by a mathematically simple relationship of integer numbers. Walk and trot exhibit an isochronous structure (1:1)-similar to a ticking clock-while canter is characterized by three small-integer ratios (1:1, 1:2, 2:1). While walk and trot both show isochrony, trot has a slower tempo and is more precise and accurate, like a metronome. Our results quantitatively discriminate horse gaits based on rhythm, revealing striking commonalities with human music and some animal communicative signals. Gait and vocal rhythmicity share key features, and the former likely predates the latter; we suggest this supports gait-based hypotheses for the evolution of rhythm. Specifically, the perception of locomotor rhythmicity may have evolved in different species under pressure for predator recognition and mate selection; it may have been later exapted for rhythmic vocal communication.
Collapse
Affiliation(s)
- Lia Laffi
- Department of Human NeurosciencesSapienza University of RomeRomeItaly
- Department of Life Sciences and Systems BiologyUniversity of TurinTurinItaly
- Fondazione ZOOMCumiana, TurinItaly
| | - Teresa Raimondi
- Department of Human NeurosciencesSapienza University of RomeRomeItaly
| | - Carola Ferrante
- Department of Veterinary SciencesUniversity of TurinGrugliascoItaly
| | | | - Andrea Bertuglia
- Department of Veterinary SciencesUniversity of TurinGrugliascoItaly
| | - Elodie Floriane Briefer
- Behavioural Ecology Group, Section for Ecology and Evolution, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Marco Gamba
- Department of Life Sciences and Systems BiologyUniversity of TurinTurinItaly
| | - Andrea Ravignani
- Department of Human NeurosciencesSapienza University of RomeRomeItaly
- Center for Music in the Brain, Department of Clinical MedicineAarhus University & The Royal Academy of Music Aarhus/AalborgAarhusDenmark
| |
Collapse
|
5
|
Coye C, Caspar KR, Patel-Grosz P. Dance displays in gibbons: biological and linguistic perspectives on structured, intentional, and rhythmic body movement. Primates 2025; 66:61-73. [PMID: 39365409 PMCID: PMC11735528 DOI: 10.1007/s10329-024-01154-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 09/10/2024] [Indexed: 10/05/2024]
Abstract
Female crested gibbons (genus Nomascus) perform conspicuous sequences of twitching movements involving the rump and extremities. However, these dances have attracted little scientific attention and their structure and meaning remain largely obscure. Here we analyse close-range video recordings of captive crested gibbons, extracting descriptions of dance in four species (N. annamensis, N. gabriellae, N. leucogenys and N. siki). In addition, we report results from a survey amongst relevant professionals clarifying behavioural contexts of dance in captive and wild crested gibbons. Our results demonstrate that dances in Nomascus represent a common and intentional form of visual communication restricted to sexually mature females. Whilst primarily used as a proceptive signal to solicit copulation, dances occur in a wide range of contexts related to arousal and/or frustration in captivity. A linguistically informed view of this sequential behaviour demonstrates that movement within dances is organized in groups and follows an isochronous rhythm - patterns not described for visual displays in other non-human primates. We argue that applying the concept of dance to gibbons allows us to expand our understanding of communication in non-human primates and to develop hypotheses on the rules and regularities characterising it. We propose that crested gibbon dances likely evolved from less elaborate rhythmic proceptive signals, similar to those found in siamangs. Although dance displays in humans and crested gibbons share a number of key characteristics, they cannot be assumed to be homologous. Nevertheless, gibbon dances represent a striking model behaviour to investigate the use of complex gestural signals in hominoid primates.
Collapse
Affiliation(s)
| | - Kai R Caspar
- Institute for Cell Biology, Heinrich Heine University, Düsseldorf, Germany.
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic.
| | | |
Collapse
|
6
|
van der Vleuten BJR, Hovenkamp VA, Varkevisser JM, Spierings MJ. Context-dependent rhythmicity in chimpanzee displays. Proc Biol Sci 2024; 291:20242200. [PMID: 39626754 PMCID: PMC11614530 DOI: 10.1098/rspb.2024.2200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 12/08/2024] Open
Abstract
Rhythm is an important component of human language and music production. Rhythms such as isochrony (intervals spaced equally in time) are also present in vocalizations of certain non-human species, including several birds and mammals. This study aimed to identify rhythmic patterns with music-based methods within the display behaviour of chimpanzees (Pan troglodytes), humans' closest living relatives. Behavioural observations were conducted on individuals from two zoo-housed colonies. We found isochronous rhythms in vocal (e.g. pants, grunts and hoots) as well as in motoric (e.g. swaying and stomping) behavioural sequences. Among individuals, variation was found in the duration between onsets of behavioural elements, resulting in individual-specific tempi. Despite this variation in individual tempi, display sequences were consistently structured with stable, isochronous rhythms. Overall, directed displays targeted at specific individuals were less isochronous than undirected displays. The presence of rhythmic patterns across two independent colonies of chimpanzees suggests that underlying mechanisms for rhythm production may be shared between humans and non-human primates. This shared mechanism indicates that the cognitive requirements for rhythm production potentially preceded human music and language evolution.
Collapse
Affiliation(s)
| | - V. A. Hovenkamp
- Institute of Biology Leiden, Leiden University, Leiden2333 BE, The Netherlands
| | - J. M. Varkevisser
- Institute of Biology Leiden, Leiden University, Leiden2333 BE, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden University, Leiden2333 AK, The Netherlands
| | - M. J. Spierings
- Institute of Biology Leiden, Leiden University, Leiden2333 BE, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden University, Leiden2333 AK, The Netherlands
- Department of Behavioral and Cognitive Biology, Vienna University, Vienna1030, Austria
| |
Collapse
|
7
|
Celma-Miralles A, Seeberg AB, Haumann NT, Vuust P, Petersen B. Experience with the cochlear implant enhances the neural tracking of spectrotemporal patterns in the Alberti bass. Hear Res 2024; 452:109105. [PMID: 39216335 DOI: 10.1016/j.heares.2024.109105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Cochlear implant (CI) users experience diminished music enjoyment due to the technical limitations of the CI. Nonetheless, behavioral studies have reported that rhythmic features are well-transmitted through the CI. Still, the gradual improvement of rhythm perception after the CI switch-on has not yet been determined using neurophysiological measures. To fill this gap, we here reanalyzed the electroencephalographic responses of participants from two previous mismatch negativity studies. These studies included eight recently implanted CI users measured twice, within the first six weeks after CI switch-on and approximately three months later; thirteen experienced CI users with a median experience of 7 years; and fourteen normally hearing (NH) controls. All participants listened to a repetitive four-tone pattern (known in music as Alberti bass) for 35 min. Applying frequency tagging, we aimed to estimate the neural activity synchronized to the periodicities of the Alberti bass. We hypothesized that longer experience with the CI would be reflected in stronger frequency-tagged neural responses approaching the responses of NH controls. We found an increase in the frequency-tagged amplitudes after only 3 months of CI use. This increase in neural synchronization may reflect an early adaptation to the CI stimulation. Moreover, the frequency-tagged amplitudes of experienced CI users were significantly greater than those of recently implanted CI users, but still smaller than those of NH controls. The frequency-tagged neural responses did not just reflect spectrotemporal changes in the stimuli (i.e., intensity or spectral content fluctuating over time), but also showed non-linear transformations that seemed to enhance relevant periodicities of the Alberti bass. Our findings provide neurophysiological evidence indicating a gradual adaptation to the CI, which is noticeable already after three months, resulting in close to NH brain processing of spectrotemporal features of musical rhythms after extended CI use.
Collapse
Affiliation(s)
- Alexandre Celma-Miralles
- Center for Music in the Brain, dept. of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark.
| | - Alberte B Seeberg
- Center for Music in the Brain, dept. of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark
| | - Niels T Haumann
- Center for Music in the Brain, dept. of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark
| | - Peter Vuust
- Center for Music in the Brain, dept. of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark
| | - Bjørn Petersen
- Center for Music in the Brain, dept. of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark
| |
Collapse
|
8
|
De Gregorio C, Maiolini M, Raimondi T, Carugati F, Miaretsoa L, Valente D, Torti V, Giacoma C, Ravignani A, Gamba M. Isochrony as ancestral condition to call and song in a primate. Ann N Y Acad Sci 2024; 1537:41-50. [PMID: 38925552 DOI: 10.1111/nyas.15151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Animal songs differ from calls in function and structure, and have comparative and translational value, showing similarities to human music. Rhythm in music is often distributed in quantized classes of intervals known as rhythmic categories. These classes have been found in the songs of a few nonhuman species but never in their calls. Are rhythmic categories song-specific, as in human music, or can they transcend the song-call boundary? We analyze the vocal displays of one of the few mammals producing both songs and call sequences: Indri indri. We test whether rhythmic categories (a) are conserved across songs produced in different contexts, (b) exist in call sequences, and (c) differ between songs and call sequences. We show that rhythmic categories occur across vocal displays. Vocalization type and function modulate deployment of categories. We find isochrony (1:1 ratio, like the rhythm of a ticking clock) in all song types, but only advertisement songs show three rhythmic categories (1:1, 1:2, 2:1 ratios). Like songs, some call types are also isochronous. Isochrony is the backbone of most indri vocalizations, unlike human speech, where it is rare. In indri, isochrony underlies both songs and hierarchy-less call sequences and might be ancestral to both.
Collapse
Affiliation(s)
- Chiara De Gregorio
- Department of Life Sciences and Systems Biology, University of Torino, Turin, Italy
- Department of Psychology, University of Warwick, Coventry, UK
| | - Marco Maiolini
- Department of Life Sciences and Systems Biology, University of Torino, Turin, Italy
| | - Teresa Raimondi
- Department of Life Sciences and Systems Biology, University of Torino, Turin, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Filippo Carugati
- Department of Life Sciences and Systems Biology, University of Torino, Turin, Italy
| | - Longondraza Miaretsoa
- Groupe d'étude et de recherche sur les primates de Madagascar (GERP), Antananarivo, Madagascar
| | - Daria Valente
- Department of Life Sciences and Systems Biology, University of Torino, Turin, Italy
- Parco Natura Viva Garda Zoological Park (PNV), Verona, Italy
| | - Valeria Torti
- Department of Life Sciences and Systems Biology, University of Torino, Turin, Italy
| | - Cristina Giacoma
- Department of Life Sciences and Systems Biology, University of Torino, Turin, Italy
| | - Andrea Ravignani
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus, Aalborg, Denmark
| | - Marco Gamba
- Department of Life Sciences and Systems Biology, University of Torino, Turin, Italy
| |
Collapse
|
9
|
Hersh TA, Ravignani A, Whitehead H. Cetaceans are the next frontier for vocal rhythm research. Proc Natl Acad Sci U S A 2024; 121:e2313093121. [PMID: 38814875 PMCID: PMC11194516 DOI: 10.1073/pnas.2313093121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
While rhythm can facilitate and enhance many aspects of behavior, its evolutionary trajectory in vocal communication systems remains enigmatic. We can trace evolutionary processes by investigating rhythmic abilities in different species, but research to date has largely focused on songbirds and primates. We present evidence that cetaceans-whales, dolphins, and porpoises-are a missing piece of the puzzle for understanding why rhythm evolved in vocal communication systems. Cetaceans not only produce rhythmic vocalizations but also exhibit behaviors known or thought to play a role in the evolution of different features of rhythm. These behaviors include vocal learning abilities, advanced breathing control, sexually selected vocal displays, prolonged mother-infant bonds, and behavioral synchronization. The untapped comparative potential of cetaceans is further enhanced by high interspecific diversity, which generates natural ranges of vocal and social complexity for investigating various evolutionary hypotheses. We show that rhythm (particularly isochronous rhythm, when sounds are equally spaced in time) is prevalent in cetacean vocalizations but is used in different contexts by baleen and toothed whales. We also highlight key questions and research areas that will enhance understanding of vocal rhythms across taxa. By coupling an infraorder-level taxonomic assessment of vocal rhythm production with comparisons to other species, we illustrate how broadly comparative research can contribute to a more nuanced understanding of the prevalence, evolution, and possible functions of rhythm in animal communication.
Collapse
Affiliation(s)
- Taylor A. Hersh
- Marine Mammal Institute, Oregon State University, Newport, OR97365
- Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics, Nijmegen6525 XD, The Netherlands
- Department of Biology, Dalhousie University, HalifaxNS B3H 4R2, Canada
| | - Andrea Ravignani
- Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics, Nijmegen6525 XD, The Netherlands
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus8000, Denmark
- Department of Human Neurosciences, Sapienza University of Rome, Rome00185, Italy
| | - Hal Whitehead
- Department of Biology, Dalhousie University, HalifaxNS B3H 4R2, Canada
| |
Collapse
|
10
|
Sebastianelli M, Lukhele SM, Secomandi S, de Souza SG, Haase B, Moysi M, Nikiforou C, Hutfluss A, Mountcastle J, Balacco J, Pelan S, Chow W, Fedrigo O, Downs CT, Monadjem A, Dingemanse NJ, Jarvis ED, Brelsford A, vonHoldt BM, Kirschel ANG. A genomic basis of vocal rhythm in birds. Nat Commun 2024; 15:3095. [PMID: 38653976 DOI: 10.1038/s41467-024-47305-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/22/2024] [Indexed: 04/25/2024] Open
Abstract
Vocal rhythm plays a fundamental role in sexual selection and species recognition in birds, but little is known of its genetic basis due to the confounding effect of vocal learning in model systems. Uncovering its genetic basis could facilitate identifying genes potentially important in speciation. Here we investigate the genomic underpinnings of rhythm in vocal non-learning Pogoniulus tinkerbirds using 135 individual whole genomes distributed across a southern African hybrid zone. We find rhythm speed is associated with two genes that are also known to affect human speech, Neurexin-1 and Coenzyme Q8A. Models leveraging ancestry reveal these candidate loci also impact rhythmic stability, a trait linked with motor performance which is an indicator of quality. Character displacement in rhythmic stability suggests possible reinforcement against hybridization, supported by evidence of asymmetric assortative mating in the species producing faster, more stable rhythms. Because rhythm is omnipresent in animal communication, candidate genes identified here may shape vocal rhythm across birds and other vertebrates.
Collapse
Affiliation(s)
- Matteo Sebastianelli
- Department of Biological Sciences, University of Cyprus, PO Box 20537, Nicosia, 1678, Cyprus.
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 751 23, Uppsala, Sweden.
| | - Sifiso M Lukhele
- Department of Biological Sciences, University of Cyprus, PO Box 20537, Nicosia, 1678, Cyprus
| | - Simona Secomandi
- Department of Biological Sciences, University of Cyprus, PO Box 20537, Nicosia, 1678, Cyprus
| | - Stacey G de Souza
- Department of Biological Sciences, University of Cyprus, PO Box 20537, Nicosia, 1678, Cyprus
| | - Bettina Haase
- Vertebrate Genome Lab, The Rockefeller University, New York, NY, USA
| | - Michaella Moysi
- Department of Biological Sciences, University of Cyprus, PO Box 20537, Nicosia, 1678, Cyprus
| | - Christos Nikiforou
- Department of Biological Sciences, University of Cyprus, PO Box 20537, Nicosia, 1678, Cyprus
| | - Alexander Hutfluss
- Behavioural Ecology, Faculty of Biology, LMU Munich (LMU), 82152, Planegg-Martinsried, Germany
| | | | - Jennifer Balacco
- Vertebrate Genome Lab, The Rockefeller University, New York, NY, USA
| | | | | | - Olivier Fedrigo
- Vertebrate Genome Lab, The Rockefeller University, New York, NY, USA
| | - Colleen T Downs
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3209, South Africa
| | - Ara Monadjem
- Department of Biological Sciences, University of Eswatini, Kwaluseni, Eswatini
- Mammal Research Institute, Department of Zoology & Entomology, University of Pretoria, Private Bag 20, Hatfield, 0028, Pretoria, South Africa
| | - Niels J Dingemanse
- Behavioural Ecology, Faculty of Biology, LMU Munich (LMU), 82152, Planegg-Martinsried, Germany
| | - Erich D Jarvis
- Vertebrate Genome Lab, The Rockefeller University, New York, NY, USA
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Alan Brelsford
- Department of Evolution, Ecology and Organismal Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Bridgett M vonHoldt
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Alexander N G Kirschel
- Department of Biological Sciences, University of Cyprus, PO Box 20537, Nicosia, 1678, Cyprus.
| |
Collapse
|
11
|
Le Covec M, Bovet D, Watanabe S, Izawa EI, Bobin-Bègue A. Spontaneous tempo production in cockatiels (Nymphicus hollandicus) and jungle crows (Corvus macrorhynchos). Behav Processes 2024; 217:105007. [PMID: 38368968 DOI: 10.1016/j.beproc.2024.105007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Musical and rhythmical abilities are poorly documented in non-human animals. Most of the existing studies focused on synchronisation performances to external rhythms. In humans, studies demonstrated that rhythmical processing (e. g. rhythm discrimination or synchronisation to external rhythm) is dependent of an individual measure: the individual tempo. It is assessed by asking participants to produce an endogenous isochronous rhythm (known as spontaneous motor tempo) without any specific instructions nor temporal cue. In non-human animal literature, studies describing spontaneous and endogenous production of motor tempo without any temporal clue are rare. This exploratory study aims to describe and compare the spontaneous motor tempo of cockatiels and jungle crows. Data were collected on spontaneous beak drumming behaviours of birds housed in laboratory. Inter beak strokes intervals were calculated from sound tracks of videos. The analyses revealed that inter beak strokes intervals are non-randomly distributed intervals and are isochronous. Recorded spontaneous motor tempos are significantly different among some cockatiels. Since we could only conduct statistical analysis with one corvid, we cannot conclude about this species. Our results suggest that cockatiels and jungle crows have individual tempos, thus encouraging further investigations.
Collapse
Affiliation(s)
- Mathilde Le Covec
- Laboratoire Ethologie, Cognition, Développement, Université Paris Nanterre, UPL, Nanterre F92000, France.
| | - Dalila Bovet
- Laboratoire Ethologie, Cognition, Développement, Université Paris Nanterre, UPL, Nanterre F92000, France
| | - Shigeru Watanabe
- Centre for Advanced Research on Logic and Sensibility, The Global COE Program, Keio University, 8th Floor Mita Toho Building, 3-1-7 Mita, Minato-ku, Tokyo 108-0073, Japan
| | - Ei-Ichi Izawa
- Centre for Advanced Research on Logic and Sensibility, The Global COE Program, Keio University, 8th Floor Mita Toho Building, 3-1-7 Mita, Minato-ku, Tokyo 108-0073, Japan
| | - Anne Bobin-Bègue
- Laboratoire Ethologie, Cognition, Développement, Université Paris Nanterre, UPL, Nanterre F92000, France
| |
Collapse
|
12
|
Clink DJ. Isochronous rhythms: Facilitating song coordination across taxa? Curr Biol 2024; 34:R201-R203. [PMID: 38471449 DOI: 10.1016/j.cub.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The biological expression of isochronous rhythms - rhythms like those produced by a metronome - was once thought to be unique to humans. A new study reports that faster and more isochronous rhythms lead to more successful duets in singing gibbons: isochronous rhythms might be an important component of song coordination across taxa.
Collapse
Affiliation(s)
- Dena Jane Clink
- K. Lisa Yang Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, Ithaca, NY 14850, USA.
| |
Collapse
|
13
|
Ma H, Wang Z, Han P, Fan P, Chapman CA, Garber PA, Fan P. Small apes adjust rhythms to facilitate song coordination. Curr Biol 2024; 34:935-945.e3. [PMID: 38266649 DOI: 10.1016/j.cub.2023.12.071] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/03/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
Song coordination is a universal characteristic of human music. Many animals also produce well-coordinated duets or choruses that resemble human music. However, the mechanism and evolution of song coordination have only recently been studied in animals. Here, we studied the mechanism of song coordination in three closely related species of wild Nomascus gibbons that live in polygynous groups. In each species, song bouts were dominated by male solo sequences (referred to hereafter as male sequence), and females contributed stereotyped great calls to coordinate with males. Considering the function of rhythm in facilitating song coordination in human music and animal vocalizations, we predicted that adult males adjust their song rhythm to facilitate song coordination with females. In support of this prediction, we found that adult males produced significantly more isochronous rhythms with a faster tempo in male sequences that were followed by successful female great calls (a complete sequence with "introductory" and "wa" notes). The difference in isochrony and tempos between successful great call sequences and male sequences was smaller in N. concolor compared with the other two species, which may make it difficult for females to predict a male's precise temporal pattern. Consequently, adult females of N. concolor produced more failed great call (an incomplete sequence with only introductory notes) sequences. We propose that the high degree of rhythm change functions as an unambiguous signal that can be easily perceived by receivers. In this regard, gibbon vocalizations offer an instructive model to understand the origins and evolution of human music.
Collapse
Affiliation(s)
- Haigang Ma
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, China
| | - Zidi Wang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, China
| | - Pu Han
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, China
| | - Penglai Fan
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541006, Guangxi, China; Endangered Animal Ecology, College of Life Sciences, Guangxi Normal University, Guilin 541006, Guangxi, China
| | - Colin A Chapman
- Biology Department, Vancouver Island University, Nanaimo, BC V9R 5S5, Canada; Wilson Center, 1300 Pennsylvania Avenue NW, Washington, DC 20004, USA; School of Life Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg 3209, South Africa; Shanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an 710127, China
| | - Paul A Garber
- Department of Anthropology, Program in Ecology and Evolutionary Biology, University of Illinois, Urbana, IL 61801, USA; International Centre of Biodiversity and Primate Conservation, Dali University, Dali 671003, Yunnan, China
| | - Pengfei Fan
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, China.
| |
Collapse
|
14
|
Wheatley T, Thornton MA, Stolk A, Chang LJ. The Emerging Science of Interacting Minds. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2024; 19:355-373. [PMID: 38096443 PMCID: PMC10932833 DOI: 10.1177/17456916231200177] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
For over a century, psychology has focused on uncovering mental processes of a single individual. However, humans rarely navigate the world in isolation. The most important determinants of successful development, mental health, and our individual traits and preferences arise from interacting with other individuals. Social interaction underpins who we are, how we think, and how we behave. Here we discuss the key methodological challenges that have limited progress in establishing a robust science of how minds interact and the new tools that are beginning to overcome these challenges. A deep understanding of the human mind requires studying the context within which it originates and exists: social interaction.
Collapse
Affiliation(s)
- Thalia Wheatley
- Consortium for Interacting Minds, Psychological and Brain Sciences, Dartmouth, Hanover, NH USA
- Santa Fe Institute
| | - Mark A. Thornton
- Consortium for Interacting Minds, Psychological and Brain Sciences, Dartmouth, Hanover, NH USA
| | - Arjen Stolk
- Consortium for Interacting Minds, Psychological and Brain Sciences, Dartmouth, Hanover, NH USA
| | - Luke J. Chang
- Consortium for Interacting Minds, Psychological and Brain Sciences, Dartmouth, Hanover, NH USA
| |
Collapse
|
15
|
Etani T, Miura A, Kawase S, Fujii S, Keller PE, Vuust P, Kudo K. A review of psychological and neuroscientific research on musical groove. Neurosci Biobehav Rev 2024; 158:105522. [PMID: 38141692 DOI: 10.1016/j.neubiorev.2023.105522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
When listening to music, we naturally move our bodies rhythmically to the beat, which can be pleasurable and difficult to resist. This pleasurable sensation of wanting to move the body to music has been called "groove." Following pioneering humanities research, psychological and neuroscientific studies have provided insights on associated musical features, behavioral responses, phenomenological aspects, and brain structural and functional correlates of the groove experience. Groove research has advanced the field of music science and more generally informed our understanding of bidirectional links between perception and action, and the role of the motor system in prediction. Activity in motor and reward-related brain networks during music listening is associated with the groove experience, and this neural activity is linked to temporal prediction and learning. This article reviews research on groove as a psychological phenomenon with neurophysiological correlates that link musical rhythm perception, sensorimotor prediction, and reward processing. Promising future research directions range from elucidating specific neural mechanisms to exploring clinical applications and socio-cultural implications of groove.
Collapse
Affiliation(s)
- Takahide Etani
- School of Medicine, College of Medical, Pharmaceutical, and Health, Kanazawa University, Kanazawa, Japan; Graduate School of Media and Governance, Keio University, Fujisawa, Japan; Advanced Research Center for Human Sciences, Waseda University, Tokorozawa, Japan.
| | - Akito Miura
- Faculty of Human Sciences, Waseda University, Tokorozawa, Japan
| | - Satoshi Kawase
- The Faculty of Psychology, Kobe Gakuin University, Kobe, Japan
| | - Shinya Fujii
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan
| | - Peter E Keller
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark/The Royal Academy of Music Aarhus/Aalborg, Denmark; The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Penrith, Australia
| | - Peter Vuust
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark/The Royal Academy of Music Aarhus/Aalborg, Denmark
| | - Kazutoshi Kudo
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
16
|
Fiorin G, Delfitto D. Syncopation as structure bootstrapping: the role of asymmetry in rhythm and language. Front Psychol 2024; 15:1304485. [PMID: 38440243 PMCID: PMC10911290 DOI: 10.3389/fpsyg.2024.1304485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/22/2024] [Indexed: 03/06/2024] Open
Abstract
Syncopation - the occurrence of a musical event on a metrically weak position preceding a rest on a metrically strong position - represents an important challenge in the study of the mapping between rhythm and meter. In this contribution, we present the hypothesis that syncopation is an effective strategy to elicit the bootstrapping of a multi-layered, hierarchically organized metric structure from a linear rhythmic surface. The hypothesis is inspired by a parallel with the problem of linearization in natural language syntax, which is the problem of how hierarchically organized phrase-structure markers are mapped onto linear sequences of words. The hypothesis has important consequences for the role of meter in music perception and cognition and, more particularly, for its role in the relationship between rhythm and bodily entrainment.
Collapse
Affiliation(s)
- Gaetano Fiorin
- Department of Humanities, University of Trieste, Trieste, Italy
| | - Denis Delfitto
- Department of Cultures and Civilizations, University of Verona, Verona, Italy
| |
Collapse
|
17
|
Leonetti S, Cimarelli G, Hersh TA, Ravignani A. Why do dogs wag their tails? Biol Lett 2024; 20:20230407. [PMID: 38229554 PMCID: PMC10792393 DOI: 10.1098/rsbl.2023.0407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/11/2023] [Indexed: 01/18/2024] Open
Abstract
Tail wagging is a conspicuous behaviour in domestic dogs (Canis familiaris). Despite how much meaning humans attribute to this display, its quantitative description and evolutionary history are rarely studied. We summarize what is known about the mechanism, ontogeny, function and evolution of this behaviour. We suggest two hypotheses to explain its increased occurrence and frequency in dogs compared to other canids. During the domestication process, enhanced rhythmic tail wagging behaviour could have (i) arisen as a by-product of selection for other traits, such as docility and tameness, or (ii) been directly selected by humans, due to our proclivity for rhythmic stimuli. We invite testing of these hypotheses through neurobiological and ethological experiments, which will shed light on one of the most readily observed yet understudied animal behaviours. Targeted tail wagging research can be a window into both canine ethology and the evolutionary history of characteristic human traits, such as our ability to perceive and produce rhythmic behaviours.
Collapse
Affiliation(s)
- Silvia Leonetti
- Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Giulia Cimarelli
- Domestication Lab, Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Taylor A. Hersh
- Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Marine Mammal Institute, Oregon State University, Newport, OR, USA
| | - Andrea Ravignani
- Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
18
|
Lem N, Fujioka T. Individual differences of limitation to extract beat from Kuramoto coupled oscillators: Transition from beat-based tapping to frequent tapping with weaker coupling. PLoS One 2023; 18:e0292059. [PMID: 37812651 PMCID: PMC10561847 DOI: 10.1371/journal.pone.0292059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 09/12/2023] [Indexed: 10/11/2023] Open
Abstract
Musical performers synchronize to each other despite differences in sound-onset timings which reflect each musician's sense of the beat. A dynamical system of Kuramoto oscillators can simulate this spread of onsets at varying levels of temporal alignment with a variety of tempo and sound densities which also influence individual abilities for beat extraction. Here, we examined how people's sense of beat emerges when tapping with Kuramoto oscillators of varying coupling strengths which distribute onsets around periodic moments in time. We hypothesized that people tap regularly close to the sound onset density peaks when coupling is strong. When weaker coupling produces multiple inter-onset intervals that are more widely spread, people may interpret their variety and distributions differently in order to form a sense of beat. Experiment 1 with a small in-person cohort indeed showed a few individuals who responded with high frequency tapping to slightly weak coupled stimuli although the rest found regular beats. Experiment 2 with a larger on-line cohort revealed three groups based on characteristics of inter-tap-intervals analyzed by k-means clustering, namely a Regular group (about 1/3 of the final sample) with the most robust beat extraction, Fast group (1/6) who maintained frequent tapping except for the strongest coupling, and Hybrid group (1/2) who maintained beats except for the weakest coupling. Furthermore, the adaptation time course of tap interval variability was slowest in Regular group. We suggest that people's internal criterion for forming beats may involve different perceptual timescales where multiple stimulus intervals could be integrated or processed sequentially as is, and that the highly frequent tapping may reflect their approach in actively seeking synchronization. Our study provides the first documentation of the novel limits of sensorimotor synchronization and individual differences using coupled oscillator dynamics as a generative model of collective behavior.
Collapse
Affiliation(s)
- Nolan Lem
- Center for Computer Research in Music and Acoustics (CCRMA), Department of Music, Stanford University, Stanford, California, United States of America
| | - Takako Fujioka
- Center for Computer Research in Music and Acoustics (CCRMA), Department of Music, Stanford University, Stanford, California, United States of America
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, California, United States of America
| |
Collapse
|
19
|
Criscuolo A, Schwartze M, Prado L, Ayala Y, Merchant H, Kotz SA. Macaque monkeys and humans sample temporal regularities in the acoustic environment. Prog Neurobiol 2023; 229:102502. [PMID: 37442410 DOI: 10.1016/j.pneurobio.2023.102502] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Many animal species show comparable abilities to detect basic rhythms and produce rhythmic behavior. Yet, the capacities to process complex rhythms and synchronize rhythmic behavior appear to be species-specific: vocal learning animals can, but some primates might not. This discrepancy is of high interest as there is a putative link between rhythm processing and the development of sophisticated sensorimotor behavior in humans. Do our closest ancestors show comparable endogenous dispositions to sample the acoustic environment in the absence of task instructions and training? We recorded EEG from macaque monkeys and humans while they passively listened to isochronous equitone sequences. Individual- and trial-level analyses showed that macaque monkeys' and humans' delta-band neural oscillations encoded and tracked the timing of auditory events. Further, mu- (8-15 Hz) and beta-band (12-20 Hz) oscillations revealed the superimposition of varied accentuation patterns on a subset of trials. These observations suggest convergence in the encoding and dynamic attending of temporal regularities in the acoustic environment, bridging a gap in the phylogenesis of rhythm cognition.
Collapse
Affiliation(s)
- Antonio Criscuolo
- Department of Neuropsychology & Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands
| | - Michael Schwartze
- Department of Neuropsychology & Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands
| | - Luis Prado
- Instituto de Neurobiología, UNAM, Campus Juriquilla, Boulevard Juriquilla No. 3001, 76230 Queretaro, QRO, Mexico
| | - Yaneri Ayala
- Instituto de Neurobiología, UNAM, Campus Juriquilla, Boulevard Juriquilla No. 3001, 76230 Queretaro, QRO, Mexico
| | - Hugo Merchant
- Instituto de Neurobiología, UNAM, Campus Juriquilla, Boulevard Juriquilla No. 3001, 76230 Queretaro, QRO, Mexico
| | - Sonja A Kotz
- Department of Neuropsychology & Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| |
Collapse
|
20
|
Rouse AA, Patel AD, Wainapel S, Kao MH. Sex differences in vocal learning ability in songbirds are linked with differences in flexible rhythm pattern perception. Anim Behav 2023; 203:193-206. [PMID: 37842009 PMCID: PMC10569135 DOI: 10.1016/j.anbehav.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Humans readily recognize familiar rhythmic patterns, such as isochrony (equal timing between events) across a wide range of rates. This reflects a facility with perceiving the relative timing of events, not just absolute interval durations. Several lines of evidence suggest this ability is supported by precise temporal predictions arising from forebrain auditory-motor interactions. We have shown previously that male zebra finches, Taeniopygia guttata, which possess specialized auditory-motor networks and communicate with rhythmically patterned sequences, share our ability to flexibly recognize isochrony across rates. To test the hypothesis that flexible rhythm pattern perception is linked to vocal learning, we ask whether female zebra finches, which do not learn to sing, can also recognize global temporal patterns. We find that females can flexibly recognize isochrony across a wide range of rates but perform slightly worse than males on average. These findings are consistent with recent work showing that while females have reduced forebrain song regions, the overall network connectivity of vocal premotor regions is similar to males and may support predictions of upcoming events. Comparative studies of male and female songbirds thus offer an opportunity to study how individual differences in auditory-motor connectivity influence perception of relative timing, a hallmark of human music perception.
Collapse
Affiliation(s)
- Andrew A. Rouse
- Department of Psychology, Tufts University, Medford, MA, U.S.A
| | - Aniruddh D. Patel
- Department of Psychology, Tufts University, Medford, MA, U.S.A
- Program in Brain, Mind and Consciousness, Canadian Institute for Advanced Research, Toronto, ON, Canada
| | | | - Mimi H. Kao
- Department of Biology, Tufts University, Medford, MA, U.S.A
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, U.S.A
| |
Collapse
|
21
|
Jadoul Y, Ravignani A. Modelling the emergence of synchrony from decentralized rhythmic interactions in animal communication. Proc Biol Sci 2023; 290:20230876. [PMID: 37464759 PMCID: PMC10354483 DOI: 10.1098/rspb.2023.0876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/23/2023] [Indexed: 07/20/2023] Open
Abstract
To communicate, an animal's strategic timing of rhythmic signals is crucial. Evolutionary, game-theoretical, and dynamical systems models can shed light on the interaction between individuals and the associated costs and benefits of signalling at a specific time. Mathematical models that study rhythmic interactions from a strategic or evolutionary perspective are rare in animal communication research. But new inspiration may come from a recent game theory model of how group synchrony emerges from local interactions of oscillatory neurons. In the study, the authors analyse when the benefit of joint synchronization outweighs the cost of individual neurons sending electrical signals to each other. They postulate there is a benefit for pairs of neurons to fire together and a cost for a neuron to communicate. The resulting model delivers a variant of a classical dynamical system, the Kuramoto model. Here, we present an accessible overview of the Kuramoto model and evolutionary game theory, and of the 'oscillatory neurons' model. We interpret the model's results and discuss the advantages and limitations of using this particular model in the context of animal rhythmic communication. Finally, we sketch potential future directions and discuss the need to further combine evolutionary dynamics, game theory and rhythmic processes in animal communication studies.
Collapse
Affiliation(s)
- Yannick Jadoul
- Comparative Bioacoustics Research Group, Max Planck Institute for Psycholinguistics, Wundtlaan 1, Nijmegen 6525 XD, The Netherlands
| | - Andrea Ravignani
- Comparative Bioacoustics Research Group, Max Planck Institute for Psycholinguistics, Wundtlaan 1, Nijmegen 6525 XD, The Netherlands
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
- Department of Human Neurosciences, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
22
|
Yu CY, Cabildo A, Grahn JA, Vanden Bosch der Nederlanden CM. Perceived rhythmic regularity is greater for song than speech: examining acoustic correlates of rhythmic regularity in speech and song. Front Psychol 2023; 14:1167003. [PMID: 37303916 PMCID: PMC10250601 DOI: 10.3389/fpsyg.2023.1167003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Rhythm is a key feature of music and language, but the way rhythm unfolds within each domain differs. Music induces perception of a beat, a regular repeating pulse spaced by roughly equal durations, whereas speech does not have the same isochronous framework. Although rhythmic regularity is a defining feature of music and language, it is difficult to derive acoustic indices of the differences in rhythmic regularity between domains. The current study examined whether participants could provide subjective ratings of rhythmic regularity for acoustically matched (syllable-, tempo-, and contour-matched) and acoustically unmatched (varying in tempo, syllable number, semantics, and contour) exemplars of speech and song. We used subjective ratings to index the presence or absence of an underlying beat and correlated ratings with stimulus features to identify acoustic metrics of regularity. Experiment 1 highlighted that ratings based on the term "rhythmic regularity" did not result in consistent definitions of regularity across participants, with opposite ratings for participants who adopted a beat-based definition (song greater than speech), a normal-prosody definition (speech greater than song), or an unclear definition (no difference). Experiment 2 defined rhythmic regularity as how easy it would be to tap or clap to the utterances. Participants rated song as easier to clap or tap to than speech for both acoustically matched and unmatched datasets. Subjective regularity ratings from Experiment 2 illustrated that stimuli with longer syllable durations and with less spectral flux were rated as more rhythmically regular across domains. Our findings demonstrate that rhythmic regularity distinguishes speech from song and several key acoustic features can be used to predict listeners' perception of rhythmic regularity within and across domains as well.
Collapse
Affiliation(s)
- Chu Yi Yu
- The Brain and Mind Institute, Western University, London, ON, Canada
- Department of Psychology, Western University, London, ON, Canada
| | - Anne Cabildo
- Department of Psychology, University of Toronto, Mississauga, ON, Canada
| | - Jessica A. Grahn
- The Brain and Mind Institute, Western University, London, ON, Canada
- Department of Psychology, Western University, London, ON, Canada
| | - Christina M. Vanden Bosch der Nederlanden
- The Brain and Mind Institute, Western University, London, ON, Canada
- Department of Psychology, Western University, London, ON, Canada
- Department of Psychology, University of Toronto, Mississauga, ON, Canada
| |
Collapse
|
23
|
Beck J, Konieczny L. What a difference a syllable makes-Rhythmic reading of poetry. Front Psychol 2023; 14:1043651. [PMID: 36865353 PMCID: PMC9973453 DOI: 10.3389/fpsyg.2023.1043651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/06/2023] [Indexed: 02/15/2023] Open
Abstract
In reading conventional poems aloud, the rhythmic experience is coupled with the projection of meter, enabling the prediction of subsequent input. However, it is unclear how top-down and bottom-up processes interact. If the rhythmicity in reading loud is governed by the top-down prediction of metric patterns of weak and strong stress, these should be projected also onto a randomly included, lexically meaningless syllable. If bottom-up information such as the phonetic quality of consecutive syllables plays a functional role in establishing a structured rhythm, the occurrence of the lexically meaningless syllable should affect reading and the number of these syllables in a metrical line should modulate this effect. To investigate this, we manipulated poems by replacing regular syllables at random positions with the syllable "tack". Participants were instructed to read the poems aloud and their voice was recorded during the reading. At the syllable level, we calculated the syllable onset interval (SOI) as a measure of articulation duration, as well as the mean syllable intensity. Both measures were supposed to operationalize how strongly a syllable was stressed. Results show that the average articulation duration of metrically strong regular syllables was longer than for weak syllables. This effect disappeared for "tacks". Syllable intensities, on the other hand, captured metrical stress of "tacks" as well, but only for musically active participants. Additionally, we calculated the normalized pairwise variability index (nPVI) for each line as an indicator for rhythmic contrast, i.e., the alternation between long and short, as well as louder and quieter syllables, to estimate the influence of "tacks" on reading rhythm. For SOI the nPVI revealed a clear negative effect: When "tacks" occurred, lines appeared to be read less altering, and this effect was proportional to the number of tacks per line. For intensity, however, the nPVI did not capture significant effects. Results suggests that top-down prediction does not always suffice to maintain a rhythmic gestalt across a series of syllables that carry little bottom-up prosodic information. Instead, the constant integration of sufficiently varying bottom-up information appears necessary to maintain a stable metrical pattern prediction.
Collapse
Affiliation(s)
- Judith Beck
- Center for Cognitive Science, Institute of Psychology, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
24
|
Raimondi T, Di Panfilo G, Pasquali M, Zarantonello M, Favaro L, Savini T, Gamba M, Ravignani A. Isochrony and rhythmic interaction in ape duetting. Proc Biol Sci 2023; 290:20222244. [PMID: 36629119 PMCID: PMC9832542 DOI: 10.1098/rspb.2022.2244] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/08/2022] [Indexed: 01/12/2023] Open
Abstract
How did rhythm originate in humans, and other species? One cross-cultural universal, frequently found in human music, is isochrony: when note onsets repeat regularly like the ticking of a clock. Another universal consists in synchrony (e.g. when individuals coordinate their notes so that they are sung at the same time). An approach to biomusicology focuses on similarities and differences across species, trying to build phylogenies of musical traits. Here we test for the presence of, and a link between, isochrony and synchrony in a non-human animal. We focus on the songs of one of the few singing primates, the lar gibbon (Hylobates lar), extracting temporal features from their solo songs and duets. We show that another ape exhibits one rhythmic feature at the core of human musicality: isochrony. We show that an enhanced call rate overall boosts isochrony, suggesting that respiratory physiological constraints play a role in determining the song's rhythmic structure. However, call rate alone cannot explain the flexible isochrony we witness. Isochrony is plastic and modulated depending on the context of emission: gibbons are more isochronous when duetting than singing solo. We present evidence for rhythmic interaction: we find statistical causality between one individual's note onsets and the co-singer's onsets, and a higher than chance degree of synchrony in the duets. Finally, we find a sex-specific trade-off between individual isochrony and synchrony. Gibbon's plasticity for isochrony and rhythmic overlap may suggest a potential shared selective pressure for interactive vocal displays in singing primates. This pressure may have convergently shaped human and gibbon musicality while acting on a common neural primate substrate. Beyond humans, singing primates are promising models to understand how music and, specifically, a sense of rhythm originated in the primate phylogeny.
Collapse
Affiliation(s)
- Teresa Raimondi
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Giovanni Di Panfilo
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Matteo Pasquali
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Martina Zarantonello
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Livio Favaro
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Tommaso Savini
- Conservation Ecology Program, King Mongkut University of Technology Thonburi, School of Bioresources and Technology, Bangkok, Thailand
| | - Marco Gamba
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Andrea Ravignani
- Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and The Royal Academy of Music Aarhus/Aalborg, Denmark
| |
Collapse
|
25
|
Demartsev V, Haddas-Sasson M, Ilany A, Koren L, Geffen E. Male rock hyraxes that maintain an isochronous song rhythm achieve higher reproductive success. J Anim Ecol 2022. [PMID: 36097377 DOI: 10.1111/1365-2656.13801] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/26/2022] [Indexed: 11/29/2022]
Abstract
Rhythmic stability (nonrandom temporal structure) is required for many neural and physiological functions, whereas rhythmic irregularities can indicate genetic or developmental deficiencies. Therefore, rhythmic courtship or contest signals are widespread in nature as honest advertisement displays. Examination of bird songs revealed the pervasiveness of categorical rhythmic patterns that can be described as small integer ratios between sequential inter-call intervals. As similar rhythmic profiles are prevalent in human music, it was suggested that a shared functionality could drive both animal songs and human musical rhythms, facilitating synchrony between signallers and enabling easy identification of performance errors. Here we examined whether the rhythmic structure and the rhythmic stability of vocal displays are related to reproductive success in male rock hyraxes (Procavia capensis), which presents an unusual case of a terrestrial singing mammal. We combined long-term parentage analysis of 13 male hyraxes (22 male/years) with an analysis of an audio library of 105 hyrax songs. Male annual reproductive success was determined by the number of offspring that survived to the age of 1 year. The frequency of singing events was used to determine the seasonal singing effort for each male. Songs were analysed for rhythmic structure, focusing on the presence of categorical rhythms and the contribution of rhythmic stability to annual reproductive success. We found that male hyraxes that sing more frequently tend to have more surviving offspring and that the rhythmic profile of hyrax songs is predominantly isochronous with sequential vocal element pairs nearly equally spaced. The ratio of isochronous vocal element transitions (on-integer) to element transitions that deviate from an isochronous pattern (off-integer) in hyrax songs is positively correlated with male reproductive success. Our findings support the notion that isochronous rhythmic stability can serve as an indication of quality in sexually selected signals and is not necessarily driven by the need for multiple caller synchronization. The relative scarcity of nonisochronous rhythmic categories in individually performed hyrax songs raises the question of whether such rhythmic categories could be a product of collective, coordinated signalling, while being selected against in individual performance.
Collapse
Affiliation(s)
- Vlad Demartsev
- Department of Biology, University of Konstanz, Konstanz, Germany.,Department for the Ecology of Animal Societies, Max Plank Institute for Animal Behavior, Konstanz, Germany
| | | | - Amiyaal Ilany
- Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel
| | - Lee Koren
- Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel
| | - Eli Geffen
- School of Zoology, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
26
|
Xing J, Sainburg T, Taylor H, Gentner TQ. Syntactic modulation of rhythm in Australian pied butcherbird song. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220704. [PMID: 36177196 PMCID: PMC9515642 DOI: 10.1098/rsos.220704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/05/2022] [Indexed: 05/04/2023]
Abstract
The acoustic structure of birdsong is spectrally and temporally complex. Temporal complexity is often investigated in a syntactic framework focusing on the statistical features of symbolic song sequences. Alternatively, temporal patterns can be investigated in a rhythmic framework that focuses on the relative timing between song elements. Here, we investigate the merits of combining both frameworks by integrating syntactic and rhythmic analyses of Australian pied butcherbird (Cracticus nigrogularis) songs, which exhibit organized syntax and diverse rhythms. We show that rhythms of the pied butcherbird song bouts in our sample are categorically organized and predictable by the song's first-order sequential syntax. These song rhythms remain categorically distributed and strongly associated with the first-order sequential syntax even after controlling for variance in note length, suggesting that the silent intervals between notes induce a rhythmic structure on note sequences. We discuss the implication of syntactic-rhythmic relations as a relevant feature of song complexity with respect to signals such as human speech and music, and advocate for a broader conception of song complexity that takes into account syntax, rhythm, and their interaction with other acoustic and perceptual features.
Collapse
Affiliation(s)
- Jeffrey Xing
- Department of Psychology, University of California San Diego, La Jolla, CA, USA
| | - Tim Sainburg
- Department of Psychology, University of California San Diego, La Jolla, CA, USA
| | - Hollis Taylor
- Sydney Conservatorium of Music, University of Sydney, Sydney, New South Wales, Australia
| | - Timothy Q. Gentner
- Department of Psychology, University of California San Diego, La Jolla, CA, USA
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
- Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
27
|
Xing J, Sainburg T, Taylor H, Gentner TQ. Syntactic modulation of rhythm in Australian pied butcherbird song. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220704. [PMID: 36177196 DOI: 10.6084/m9.figshare.c.6197494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/05/2022] [Indexed: 05/21/2023]
Abstract
The acoustic structure of birdsong is spectrally and temporally complex. Temporal complexity is often investigated in a syntactic framework focusing on the statistical features of symbolic song sequences. Alternatively, temporal patterns can be investigated in a rhythmic framework that focuses on the relative timing between song elements. Here, we investigate the merits of combining both frameworks by integrating syntactic and rhythmic analyses of Australian pied butcherbird (Cracticus nigrogularis) songs, which exhibit organized syntax and diverse rhythms. We show that rhythms of the pied butcherbird song bouts in our sample are categorically organized and predictable by the song's first-order sequential syntax. These song rhythms remain categorically distributed and strongly associated with the first-order sequential syntax even after controlling for variance in note length, suggesting that the silent intervals between notes induce a rhythmic structure on note sequences. We discuss the implication of syntactic-rhythmic relations as a relevant feature of song complexity with respect to signals such as human speech and music, and advocate for a broader conception of song complexity that takes into account syntax, rhythm, and their interaction with other acoustic and perceptual features.
Collapse
Affiliation(s)
- Jeffrey Xing
- Department of Psychology, University of California San Diego, La Jolla, CA, USA
| | - Tim Sainburg
- Department of Psychology, University of California San Diego, La Jolla, CA, USA
| | - Hollis Taylor
- Sydney Conservatorium of Music, University of Sydney, Sydney, New South Wales, Australia
| | - Timothy Q Gentner
- Department of Psychology, University of California San Diego, La Jolla, CA, USA
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
- Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
28
|
Aesthetics of musical timing: Culture and expertise affect preferences for isochrony but not synchrony. Cognition 2022; 227:105205. [PMID: 35724531 DOI: 10.1016/j.cognition.2022.105205] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 11/23/2022]
Abstract
Expressive communication in the arts often involves deviations from stylistic norms, which can increase the aesthetic evaluation of an artwork or performance. The detection and appreciation of such expressive deviations may be amplified by cultural familiarity and expertise of the observer. One form of expressive communication in music is playing "out of time," including asynchrony (deviations from synchrony between different instruments) and non-isochrony (deviations from equal spacing between subsequent note onsets or metric units). As previous research has provided somewhat conflicting perspectives on the degree to which deviations from synchrony and isochrony are aesthetically relevant, we aimed to shed new light on this topic by accounting for the effects of listeners' cultural familiarity and expertise. We manipulated (a)synchrony and (non-)isochrony separately in excerpts from three groove-based musical styles (jazz, candombe, and jembe), using timings from real performances. We recruited musician and non-musician participants (N = 176) from three countries (UK, Uruguay, and Mali), selected to vary in their prior experience of hearing and performing these three styles. Participants completed both an aesthetic preference rating task and a perceptual discrimination task for the stimuli. Our results indicate an overall preference toward synchrony in these styles, but culturally contingent, expertise-dependent preferences for deviations from isochrony. This suggests that temporal processing relies on mechanisms that vary in their dependence on low-level and high-level perception, and emphasizes the role of cultural familiarity and expertise in shaping aesthetic preferences.
Collapse
|
29
|
Franco F, Suttora C, Spinelli M, Kozar I, Fasolo M. Singing to infants matters: Early singing interactions affect musical preferences and facilitate vocabulary building. JOURNAL OF CHILD LANGUAGE 2022; 49:552-577. [PMID: 33908341 DOI: 10.1017/s0305000921000167] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This research revealed that the frequency of reported parent-infant singing interactions predicted 6-month-old infants' performance in laboratory music experiments and mediated their language development in the second year. At 6 months, infants (n = 36) were tested using a preferential listening procedure assessing their sustained attention to instrumental and sung versions of the same novel tunes whilst the parents completed an ad-hoc questionnaire assessing home musical interactions with their infants. Language development was assessed with a follow-up when the infants were 14-month-old (n = 26). The main results showed that 6-month-olds preferred listening to sung rather than instrumental melodies, and that self-reported high levels of parental singing with their infants [i] were associated with less pronounced preference for the sung over the instrumental version of the tunes at 6 months, and [ii] predicted significant advantages on the language outcomes in the second year. The results are interpreted in relation to conceptions of developmental plasticity.
Collapse
Affiliation(s)
- Fabia Franco
- Department of Psychology, Middlesex University, London, UK
| | - Chiara Suttora
- Department of Psychology, University of Bologna, Bologna, Italy
| | - Maria Spinelli
- Department of Neuroscience, Imaging and Clinical Science, University G. d'Annunzio Chieti-Pescara, Chieti, Italy
| | - Iryna Kozar
- Department of Psychology, University of Milan-Bicocca, Milan, Italy
| | - Mirco Fasolo
- Department of Neuroscience, Imaging and Clinical Science, University G. d'Annunzio Chieti-Pescara, Chieti, Italy
| |
Collapse
|
30
|
Tsogli V, Jentschke S, Koelsch S. Unpredictability of the “when” influences prediction error processing of the “what” and “where”. PLoS One 2022; 17:e0263373. [PMID: 35113946 PMCID: PMC8812910 DOI: 10.1371/journal.pone.0263373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 01/18/2022] [Indexed: 11/24/2022] Open
Abstract
The capability to establish accurate predictions is an integral part of learning. Whether predictions about different dimensions of a stimulus interact with each other, and whether such an interaction affects learning, has remained elusive. We conducted a statistical learning study with EEG (electroencephalography), where a stream of consecutive sound triplets was presented with deviants that were either: (a) statistical, depending on the triplet ending probability, (b) physical, due to a change in sound location or (c) double deviants, i.e. a combination of the two. We manipulated the predictability of stimulus-onset by using random stimulus-onset asynchronies. Temporal unpredictability due to random onsets reduced the neurophysiological responses to statistical and location deviants, as indexed by the statistical mismatch negativity (sMMN) and the location MMN. Our results demonstrate that the predictability of one stimulus attribute influences the processing of prediction error signals of other stimulus attributes, and thus also learning of those attributes.
Collapse
Affiliation(s)
- Vera Tsogli
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | | | - Stefan Koelsch
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- * E-mail:
| |
Collapse
|
31
|
Abstract
The present study investigates effects of conventionally metered and rhymed poetry on eyemovements
in silent reading. Readers saw MRRL poems (i.e., metrically regular, rhymed
language) in two layouts. In poem layout, verse endings coincided with line breaks. In prose
layout verse endings could be mid-line. We also added metrical and rhyme anomalies. We
hypothesized that silently reading MRRL results in building up auditive expectations that
are based on a rhythmic “audible gestalt” and propose that rhythmicity is generated through
subvocalization. Our results revealed that readers were sensitive to rhythmic-gestalt-anomalies
but showed differential effects in poem and prose layouts. Metrical anomalies in particular
resulted in robust reading disruptions across a variety of eye-movement measures in
the poem layout and caused re-reading of the local context. Rhyme anomalies elicited
stronger effects in prose layout and resulted in systematic re-reading of pre-rhymes. The
presence or absence of rhythmic-gestalt-anomalies, as well as the layout manipulation, also
affected reading in general. Effects of syllable number indicated a high degree of subvocalization.
The overall pattern of results suggests that eye-movements reflect, and are closely
aligned with, the rhythmic subvocalization of MRRL. This study introduces a two-stage approach to the analysis of long MRRL stimuli and contributes
to the discussion of how the processing of rhythm in music and speech may overlap.
Collapse
Affiliation(s)
- Judith Beck
- Cognitive Science, University of Freiburg,, Germany
| | | |
Collapse
|
32
|
Gordon RL, Ravignani A, Hyland Bruno J, Robinson CM, Scartozzi A, Embalabala R, Niarchou M, Cox NJ, Creanza N. Linking the genomic signatures of human beat synchronization and learned song in birds. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200329. [PMID: 34420388 DOI: 10.1098/rstb.2020.0329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The development of rhythmicity is foundational to communicative and social behaviours in humans and many other species, and mechanisms of synchrony could be conserved across species. The goal of the current paper is to explore evolutionary hypotheses linking vocal learning and beat synchronization through genomic approaches, testing the prediction that genetic underpinnings of birdsong also contribute to the aetiology of human interactions with musical beat structure. We combined state-of-the-art-genomic datasets that account for underlying polygenicity of these traits: birdsong genome-wide transcriptomics linked to singing in zebra finches, and a human genome-wide association study of beat synchronization. Results of competitive gene set analysis revealed that the genetic architecture of human beat synchronization is significantly enriched for birdsong genes expressed in songbird Area X (a key nucleus for vocal learning, and homologous to human basal ganglia). These findings complement ethological and neural evidence of the relationship between vocal learning and beat synchronization, supporting a framework of some degree of common genomic substrates underlying rhythm-related behaviours in two clades, humans and songbirds (the largest evolutionary radiation of vocal learners). Future cross-species approaches investigating the genetic underpinnings of beat synchronization in a broad evolutionary context are discussed. This article is part of the theme issue 'Synchrony and rhythm interaction: from the brain to behavioural ecology'.
Collapse
Affiliation(s)
- Reyna L Gordon
- Department of Otolaryngology - Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Andrea Ravignani
- Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | | | - Cristina M Robinson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Alyssa Scartozzi
- Department of Otolaryngology - Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Rebecca Embalabala
- Department of Otolaryngology - Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Maria Niarchou
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA.,Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | -
- 23andMe, Inc., Sunnyvale, CA, USA
| | - Nancy J Cox
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA.,Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Nicole Creanza
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.,Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
33
|
Abstract
A cross-species perspective can extend and provide testable predictions for Savage et al.'s framework. Rhythm and melody, I argue, could bootstrap each other in the evolution of musicality. Isochrony may function as a temporal grid to support rehearsing and learning modulated, pitched vocalizations. Once this melodic plasticity is acquired, focus can shift back to refining rhythm processing and beat induction.
Collapse
|
34
|
Vocal learning and flexible rhythm pattern perception are linked: Evidence from songbirds. Proc Natl Acad Sci U S A 2021; 118:2026130118. [PMID: 34272278 PMCID: PMC8307534 DOI: 10.1073/pnas.2026130118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We can recognize the cadence of a friend’s voice or the rhythm of a familiar song across a wide range of tempi. This shows that our perception of temporal patterns relies strongly on the relative timing of events rather than on specific absolute durations. This tendency is foundational to speech and music perception, but to what extent is it shared by other species? We hypothesize that animals that learn their vocalizations are more likely to share this tendency. Here, we show that a vocal learning songbird robustly recognizes a basic rhythmic pattern independent of rate. Our findings pave the way for neurobiological studies to identify how the brain represents and perceives the temporal structure of auditory sequences. Rhythm perception is fundamental to speech and music. Humans readily recognize a rhythmic pattern, such as that of a familiar song, independently of the tempo at which it occurs. This shows that our perception of auditory rhythms is flexible, relying on global relational patterns more than on the absolute durations of specific time intervals. Given that auditory rhythm perception in humans engages a complex auditory–motor cortical network even in the absence of movement and that the evolution of vocal learning is accompanied by strengthening of forebrain auditory–motor pathways, we hypothesize that vocal learning species share our perceptual facility for relational rhythm processing. We test this by asking whether the best-studied animal model for vocal learning, the zebra finch, can recognize a fundamental rhythmic pattern—equal timing between event onsets (isochrony)—based on temporal relations between intervals rather than on absolute durations. Prior work suggests that vocal nonlearners (pigeons and rats) are quite limited in this regard and are biased to attend to absolute durations when listening to rhythmic sequences. In contrast, using naturalistic sounds at multiple stimulus rates, we show that male zebra finches robustly recognize isochrony independent of absolute time intervals, even at rates distant from those used in training. Our findings highlight the importance of comparative studies of rhythmic processing and suggest that vocal learning species are promising animal models for key aspects of human rhythm perception. Such models are needed to understand the neural mechanisms behind the positive effect of rhythm on certain speech and movement disorders.
Collapse
|
35
|
Beccacece L, Abondio P, Cilli E, Restani D, Luiselli D. Human Genomics and the Biocultural Origin of Music. Int J Mol Sci 2021; 22:5397. [PMID: 34065521 PMCID: PMC8160972 DOI: 10.3390/ijms22105397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/03/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022] Open
Abstract
Music is an exclusive feature of humankind. It can be considered as a form of universal communication, only partly comparable to the vocalizations of songbirds. Many trends of research in this field try to address music origins, as well as the genetic bases of musicality. On one hand, several hypotheses have been made on the evolution of music and its role, but there is still debate, and comparative studies suggest a gradual evolution of some abilities underlying musicality in primates. On the other hand, genome-wide studies highlight several genes associated with musical aptitude, confirming a genetic basis for different musical skills which humans show. Moreover, some genes associated with musicality are involved also in singing and song learning in songbirds, suggesting a likely evolutionary convergence between humans and songbirds. This comprehensive review aims at presenting the concept of music as a sociocultural manifestation within the current debate about its biocultural origin and evolutionary function, in the context of the most recent discoveries related to the cross-species genetics of musical production and perception.
Collapse
Affiliation(s)
- Livia Beccacece
- Laboratory of Molecular Anthropology, Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Paolo Abondio
- Laboratory of Molecular Anthropology, Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Elisabetta Cilli
- Department of Cultural Heritage, University of Bologna—Ravenna Campus, 48121 Ravenna, Italy; (E.C.); (D.R.)
| | - Donatella Restani
- Department of Cultural Heritage, University of Bologna—Ravenna Campus, 48121 Ravenna, Italy; (E.C.); (D.R.)
| | - Donata Luiselli
- Department of Cultural Heritage, University of Bologna—Ravenna Campus, 48121 Ravenna, Italy; (E.C.); (D.R.)
| |
Collapse
|
36
|
Roeske TC, Tchernichovski O, Poeppel D, Jacoby N. Categorical Rhythms Are Shared between Songbirds and Humans. Curr Biol 2020; 30:3544-3555.e6. [PMID: 32707062 PMCID: PMC7511425 DOI: 10.1016/j.cub.2020.06.072] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/11/2020] [Accepted: 06/22/2020] [Indexed: 12/28/2022]
Abstract
Rhythm is a prominent feature of music. Of the infinite possible ways of organizing events in time, musical rhythms are almost always distributed categorically. Such categories can facilitate the transmission of culture-a feature that songbirds and humans share. We compared rhythms of live performances of music to rhythms of wild thrush nightingale and domestic zebra finch songs. In nightingales, but not in zebra finches, we found universal rhythm categories, with patterns that were surprisingly similar to those of music. Isochronous 1:1 rhythms were similarly common. Interestingly, a bias toward small ratios (around 1:2 to 1:3), which is highly abundant in music, was observed also in thrush nightingale songs. Within that range, however, there was no statistically significant bias toward exact integer ratios (1:2 or 1:3) in the birds. High-ratio rhythms were abundant in the nightingale song and are structurally similar to fusion rhythms (ornaments) in music. In both species, preferred rhythms remained invariant over extended ranges of tempos, indicating natural categories. The number of rhythm categories decreased at higher tempos, with a threshold above which rhythm became highly stereotyped. In thrush nightingales, this threshold occurred at a tempo twice faster than in humans, indicating weaker structural constraints and a remarkable motor proficiency. Together, the results suggest that categorical rhythms reflect similar constraints on learning motor skills across species. The saliency of categorical rhythms across humans and thrush nightingales suggests that they promote, or emerge from, the cultural transmission of learned vocalizations. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Tina C Roeske
- Music Department, Max Planck Institute for Empirical Aesthetics, Grueneburgweg 14, 60322 Frankfurt, Germany; Department of Psychology, Hunter College, Hunter North 642, 695 Park Avenue, New York, NY 10065, USA.
| | - Ofer Tchernichovski
- Department of Psychology, Hunter College, Hunter North 642, 695 Park Avenue, New York, NY 10065, USA; The CUNY Graduate Center, 365 5th Avenue, New York, NY 10016, USA.
| | - David Poeppel
- Neuroscience Department, Max Planck Institute for Empirical Aesthetics, Grueneburgweg 14, 60322 Frankfurt, Germany.
| | - Nori Jacoby
- Research Group Computational Auditory Perception, Max Planck Institute for Empirical Aesthetics, Grueneburgweg 14, 60322 Frankfurt, Germany; The Center for Science and Society, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
37
|
Ravignani A, Dalla Bella S, Falk S, Kello CT, Noriega F, Kotz SA. Rhythm in speech and animal vocalizations: a cross-species perspective. Ann N Y Acad Sci 2019; 1453:79-98. [PMID: 31237365 PMCID: PMC6851814 DOI: 10.1111/nyas.14166] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/14/2019] [Accepted: 05/24/2019] [Indexed: 12/31/2022]
Abstract
Why does human speech have rhythm? As we cannot travel back in time to witness how speech developed its rhythmic properties and why humans have the cognitive skills to process them, we rely on alternative methods to find out. One powerful tool is the comparative approach: studying the presence or absence of cognitive/behavioral traits in other species to determine which traits are shared between species and which are recent human inventions. Vocalizations of many species exhibit temporal structure, but little is known about how these rhythmic structures evolved, are perceived and produced, their biological and developmental bases, and communicative functions. We review the literature on rhythm in speech and animal vocalizations as a first step toward understanding similarities and differences across species. We extend this review to quantitative techniques that are useful for computing rhythmic structure in acoustic sequences and hence facilitate cross-species research. We report links between vocal perception and motor coordination and the differentiation of rhythm based on hierarchical temporal structure. While still far from a complete cross-species perspective of speech rhythm, our review puts some pieces of the puzzle together.
Collapse
Affiliation(s)
- Andrea Ravignani
- Artificial Intelligence LaboratoryVrije Universiteit BrusselBrusselsBelgium
- Institute for Advanced StudyUniversity of AmsterdamAmsterdamthe Netherlands
| | - Simone Dalla Bella
- International Laboratory for BrainMusic and Sound Research (BRAMS)MontréalQuebecCanada
- Department of PsychologyUniversity of MontrealMontréalQuebecCanada
- Department of Cognitive PsychologyWarsawPoland
| | - Simone Falk
- International Laboratory for BrainMusic and Sound Research (BRAMS)MontréalQuebecCanada
- Laboratoire de Phonétique et Phonologie, UMR 7018, CNRS/Université Sorbonne Nouvelle Paris‐3Institut de Linguistique et Phonétique générales et appliquéesParisFrance
| | | | - Florencia Noriega
- Chair for Network DynamicsCenter for Advancing Electronics Dresden (CFAED), TU DresdenDresdenGermany
- CODE University of Applied SciencesBerlinGermany
| | - Sonja A. Kotz
- International Laboratory for BrainMusic and Sound Research (BRAMS)MontréalQuebecCanada
- Basic and Applied NeuroDynamics Laboratory, Faculty of Psychology and Neuroscience, Department of Neuropsychology and PsychopharmacologyMaastricht UniversityMaastrichtthe Netherlands
- Department of NeuropsychologyMax‐Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| |
Collapse
|
38
|
FRIEDSON STEVENM. The unbearable weight of music: The intermezzo. ANTHROPOLOGY TODAY 2019. [DOI: 10.1111/1467-8322.12528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- STEVEN M. FRIEDSON
- University Distinguished Research Professor of Music and Anthropology and head of the ethnomusicology programme at the University of North Texas. For the past 30 years, he has been conducting research on music and ritual in Africa
| |
Collapse
|
39
|
Polyanskaya L, Samuel AG, Ordin M. Regularity in speech rhythm as a social coalition signal. Ann N Y Acad Sci 2019; 1453:153-165. [PMID: 31373001 DOI: 10.1111/nyas.14193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/24/2019] [Accepted: 06/13/2019] [Indexed: 01/09/2023]
Abstract
Regular rhythm facilitates audiomotor entrainment and synchronization in motor behavior and vocalizations between individuals. As rhythm entrainment between interacting agents is correlated with higher levels of cooperation and prosocial affiliative behavior, humans can potentially map regular speech rhythm onto higher cooperation and friendliness between interacting individuals. We tested this hypothesis at two rhythmic levels: pulse (recurrent acoustic events) and meter (hierarchical structuring of pulses based on their relative salience). We asked the listeners to make judgments of the hostile or collaborative attitude of two interacting agents who exhibit either regular or irregular pulse (Experiment 1) or meter (Experiment 2). The results confirmed a link between the perception of social affiliation and rhythmicity: evenly distributed pulses (vowel onsets) and consistent grouping of pulses into recurrent hierarchical patterns are more likely to be perceived as cooperation signals. People are more sensitive to regularity at the level of pulse than at the level of meter, and they are more confident when they associate cooperation with isochrony in pulse. The evolutionary origin of this faculty is possibly the need to transmit and perceive coalition information in social groups of human ancestors. We discuss the implications of these findings for the emergence of speech in humans.
Collapse
Affiliation(s)
- Leona Polyanskaya
- BCBL - Basque Centre on Cognition, Brain and Language, Donostia, Spain
| | - Arthur G Samuel
- BCBL - Basque Centre on Cognition, Brain and Language, Donostia, Spain.,IKERBASQUE - Basque Foundation for Science, Bilbao, Spain.,Department of Psychology, Stony Brook University, Stony Brook, New York
| | - Mikhail Ordin
- BCBL - Basque Centre on Cognition, Brain and Language, Donostia, Spain.,IKERBASQUE - Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
40
|
Polyanskaya L, Samuel AG, Ordin M. Speech Rhythm Convergence as a Social Coalition Signal. EVOLUTIONARY PSYCHOLOGY 2019; 17:1474704919879335. [PMID: 31564124 PMCID: PMC10480829 DOI: 10.1177/1474704919879335] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/06/2019] [Indexed: 10/25/2022] Open
Abstract
Patterns of nonverbal and verbal behavior of interlocutors become more similar as communication progresses. Rhythm entrainment promotes prosocial behavior and signals social bonding and cooperation. Yet, it is unknown if the convergence of rhythm in human speech is perceived and is used to make pragmatic inferences regarding the cooperative urge of the interactors. We conducted two experiments to answer this question. For analytical purposes, we separate pulse (recurring acoustic events) and meter (hierarchical structuring of pulses based on their relative salience). We asked the listeners to make judgments on the hostile or collaborative attitude of interacting agents who exhibit different or similar pulse (Experiment 1) or meter (Experiment 2). The results suggest that rhythm convergence can be a marker of social cooperation at the level of pulse, but not at the level of meter. The mapping of rhythmic convergence onto social affiliation or opposition is important at the early stages of language acquisition. The evolutionary origin of this faculty is possibly the need to transmit and perceive coalition information in social groups of human ancestors. We suggest that this faculty could promote the emergence of the speech faculty in humans.
Collapse
Affiliation(s)
- Leona Polyanskaya
- BCBL—Basque Centre on Cognition, Brain and Language, Donostia, Spain
| | - Arthur G. Samuel
- BCBL—Basque Centre on Cognition, Brain and Language, Donostia, Spain
- IKERBASQUE—Basque Foundation for Science, Bilbao, Spain
- Department of Psychology, Stony Brook University, Stony Brook, NY, USA
| | - Mikhail Ordin
- BCBL—Basque Centre on Cognition, Brain and Language, Donostia, Spain
- IKERBASQUE—Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
41
|
Lumaca M, Haumann NT, Vuust P, Brattico E, Baggio G. From random to regular: neural constraints on the emergence of isochronous rhythm during cultural transmission. Soc Cogn Affect Neurosci 2019; 13:877-888. [PMID: 30016510 PMCID: PMC6123518 DOI: 10.1093/scan/nsy054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 07/09/2018] [Indexed: 12/20/2022] Open
Abstract
A core design feature of human communication systems and expressive behaviours is their temporal organization. The cultural evolutionary origins of this feature remain unclear. Here, we test the hypothesis that regularities in the temporal organization of signalling sequences arise in the course of cultural transmission as adaptations to aspects of cortical function. We conducted two experiments on the transmission of rhythms associated with affective meanings, focusing on one of the most widespread forms of regularity in language and music: isochronicity. In the first experiment, we investigated how isochronous rhythmic regularities emerge and change in multigenerational signalling games, where the receiver (learner) in a game becomes the sender (transmitter) in the next game. We show that signalling sequences tend to become rhythmically more isochronous as they are transmitted across generations. In the second experiment, we combined electroencephalography (EEG) and two-player signalling games over 2 successive days. We show that rhythmic regularization of sequences can be predicted based on the latencies of the mismatch negativity response in a temporal oddball paradigm. These results suggest that forms of isochronicity in communication systems originate in neural constraints on information processing, which may be expressed and amplified in the course of cultural transmission.
Collapse
Affiliation(s)
- Massimo Lumaca
- SISSA International School for Advanced Studies, 34136 Trieste, Italy.,Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, 8000 Aarhus C, Denmark
| | - Niels Trusbak Haumann
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, 8000 Aarhus C, Denmark
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, 8000 Aarhus C, Denmark
| | - Elvira Brattico
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, 8000 Aarhus C, Denmark
| | - Giosuè Baggio
- SISSA International School for Advanced Studies, 34136 Trieste, Italy.,Language Acquisition and Language Processing Lab, Department of Language and Literature, Norwegian University of Science and Technology, 5543A Trondheim, Norway
| |
Collapse
|
42
|
Perceptual-learning evidence for inter-onset-interval- and frequency-specific processing of fast rhythms. Atten Percept Psychophys 2019; 81:533-542. [PMID: 30488189 DOI: 10.3758/s13414-018-1631-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Rhythm is fundamental to music and speech, yet little is known about how even simple rhythmic patterns are processed. Here we investigated the processing of isochronous rhythms in the short inter-onset-interval (IOI) range (IOIs < 250-400 ms) using a perceptual-learning paradigm. Trained listeners (n=8) practiced anisochrony detection with a 100-ms IOI marked by 1-kHz tones, 720 trials per day for 7 days. Between pre- and post-training tests, trained listeners improved significantly more than controls (no training; n=8) on the anisochrony-detection condition that the trained listeners practiced. However, the learning on anisochrony detection did not generalize to temporal-interval discrimination with the trained IOI (100 ms) and marker frequency (1 kHz) or to anisochrony detection with an untrained marker frequency (4 kHz or variable frequency vs. 1 kHz), and generalized negatively to anisochrony detection with an untrained IOI (200 ms vs. 100 ms). Further, pre-training thresholds were correlated among nearly all of the conditions with the same IOI (100-ms IOIs), but not between conditions with different IOIs (100-ms vs. 200-ms IOIs). Thus, it appears that some task-, IOI-, and frequency-specific processes are involved in fast-rhythm processing. These outcomes are most consistent with a holistic rhythm-processing model in which a holistic "image" of the stimulus is compared to a stimulus-specific template.
Collapse
|
43
|
Lumaca M, Trusbak Haumann N, Brattico E, Grube M, Vuust P. Weighting of neural prediction error by rhythmic complexity: A predictive coding account using mismatch negativity. Eur J Neurosci 2019; 49:1597-1609. [DOI: 10.1111/ejn.14329] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/28/2018] [Accepted: 12/12/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Massimo Lumaca
- Department of Clinical MedicineCenter for Music in the BrainAarhus University & The Royal Academy of Music Aarhus C Denmark
- SISSA International School for Advanced Studies Trieste Italy
| | - Niels Trusbak Haumann
- Department of Clinical MedicineCenter for Music in the BrainAarhus University & The Royal Academy of Music Aarhus C Denmark
| | - Elvira Brattico
- Department of Clinical MedicineCenter for Music in the BrainAarhus University & The Royal Academy of Music Aarhus C Denmark
| | - Manon Grube
- Department of Clinical MedicineCenter for Music in the BrainAarhus University & The Royal Academy of Music Aarhus C Denmark
| | - Peter Vuust
- Department of Clinical MedicineCenter for Music in the BrainAarhus University & The Royal Academy of Music Aarhus C Denmark
| |
Collapse
|
44
|
Ravignani A, de Reus K. Modelling Animal Interactive Rhythms in Communication. Evol Bioinform Online 2019; 15:1176934318823558. [PMID: 30733626 PMCID: PMC6343447 DOI: 10.1177/1176934318823558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 11/15/2022] Open
Abstract
Time is one crucial dimension conveying information in animal communication. Evolution has shaped animals' nervous systems to produce signals with temporal properties fitting their socio-ecological niches. Many quantitative models of mechanisms underlying rhythmic behaviour exist, spanning insects, crustaceans, birds, amphibians, and mammals. However, these computational and mathematical models are often presented in isolation. Here, we provide an overview of the main mathematical models employed in the study of animal rhythmic communication among conspecifics. After presenting basic definitions and mathematical formalisms, we discuss each individual model. These computational models are then compared using simulated data to uncover similarities and key differences in the underlying mechanisms found across species. Our review of the empirical literature is admittedly limited. We stress the need of using comparative computer simulations - both before and after animal experiments - to better understand animal timing in interaction. We hope this article will serve as a potential first step towards a common computational framework to describe temporal interactions in animals, including humans.
Collapse
Affiliation(s)
- Andrea Ravignani
- Artificial Intelligence Lab, Vrije Universiteit Brussel, Brussels, Belgium
| | - Koen de Reus
- Department Life Sciences, Erasmus University College, Erasmus University Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
45
|
Kotz S, Ravignani A, Fitch W. The Evolution of Rhythm Processing. Trends Cogn Sci 2018; 22:896-910. [DOI: 10.1016/j.tics.2018.08.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/25/2018] [Accepted: 08/02/2018] [Indexed: 01/14/2023]
|
46
|
Ravignani A, Kello CT, de Reus K, Kotz SA, Dalla Bella S, Méndez-Aróstegui M, Rapado-Tamarit B, Rubio-Garcia A, de Boer B. Ontogeny of vocal rhythms in harbor seal pups: an exploratory study. Curr Zool 2018; 65:107-120. [PMID: 30697246 PMCID: PMC6347067 DOI: 10.1093/cz/zoy055] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/02/2018] [Indexed: 11/15/2022] Open
Abstract
Puppyhood is a very active social and vocal period in a harbor seal’s life Phoca vitulina. An important feature of vocalizations is their temporal and rhythmic structure, and understanding vocal timing and rhythms in harbor seals is critical to a cross-species hypothesis in evolutionary neuroscience that links vocal learning, rhythm perception, and synchronization. This study utilized analytical techniques that may best capture rhythmic structure in pup vocalizations with the goal of examining whether (1) harbor seal pups show rhythmic structure in their calls and (2) rhythms evolve over time. Calls of 3 wild-born seal pups were recorded daily over the course of 1–3 weeks; 3 temporal features were analyzed using 3 complementary techniques. We identified temporal and rhythmic structure in pup calls across different time windows. The calls of harbor seal pups exhibit some degree of temporal and rhythmic organization, which evolves over puppyhood and resembles that of other species’ interactive communication. We suggest next steps for investigating call structure in harbor seal pups and propose comparative hypotheses to test in other pinniped species.
Collapse
Affiliation(s)
- Andrea Ravignani
- Research Department, Sealcentre Pieterburen, Pieterburen, The Netherlands.,Artificial Intelligence Lab, Vrije Universiteit Brussel, Brussels, Belgium
| | - Christopher T Kello
- Cognitive and Information Sciences, University of California, Merced, CA, USA
| | - Koen de Reus
- Research Department, Sealcentre Pieterburen, Pieterburen, The Netherlands
| | - Sonja A Kotz
- Basic and Applied NeuroDynamics Lab, Faculty of Psychology and Neuroscience, Department of Neuropsychology & Psychopharmacology, Maastricht University, Maastricht, The Netherlands.,Department of Neuropsychology, Max-Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,International Laboratory for Brain, Music and Sound Research (BRAMS), Montréal, QC, Canada
| | - Simone Dalla Bella
- International Laboratory for Brain, Music and Sound Research (BRAMS), Montréal, QC, Canada.,Department of Psychology, University of Montreal, Montréal, QC, Canada.,Department of Cognitive Psychology, WSFiZ in Warsaw, Warsaw, Poland
| | | | | | - Ana Rubio-Garcia
- Research Department, Sealcentre Pieterburen, Pieterburen, The Netherlands
| | - Bart de Boer
- Artificial Intelligence Lab, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
47
|
Honing H. On the biological basis of musicality. Ann N Y Acad Sci 2018; 1423:51-56. [PMID: 29542134 DOI: 10.1111/nyas.13638] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/21/2018] [Accepted: 01/25/2018] [Indexed: 11/26/2022]
Abstract
In recent years, music and musicality have been the focus of an increasing amount of research effort. This has led to a growing role and visibility of the contribution of (bio)musicology to the field of neuroscience and cognitive sciences at large. While it has been widely acknowledged that there are commonalities between speech, language, and musicality, several researchers explain this by considering musicality as an epiphenomenon of language. However, an alternative hypothesis is that musicality is an innate and widely shared capacity for music that can be seen as a natural, spontaneously developing set of traits based on and constrained by our cognitive abilities and their underlying biology. A comparative study of musicality in humans and well-known animal models (monkeys, birds, pinnipeds) will further our insights on which features of musicality are exclusive to humans and which are shared between humans and nonhuman animals, contribute to an understanding of the musical phenotype, and further constrain existing evolutionary theories of music and musicality.
Collapse
Affiliation(s)
- Henkjan Honing
- Amsterdam Brain and Cognition, Institute for Advanced Study, Institute for Logic, Language and Computation, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
48
|
Ravignani A, Thompson B, Grossi T, Delgado T, Kirby S. Evolving building blocks of rhythm: how human cognition creates music via cultural transmission. Ann N Y Acad Sci 2018; 1423:176-187. [PMID: 29508405 DOI: 10.1111/nyas.13610] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/25/2017] [Accepted: 12/31/2017] [Indexed: 01/01/2023]
Abstract
Why does musical rhythm have the structure it does? Musical rhythm, in all its cross-cultural diversity, exhibits commonalities across world cultures. Traditionally, music research has been split into two fields. Some scientists focused on musicality, namely the human biocognitive predispositions for music, with an emphasis on cross-cultural similarities. Other scholars investigated music, seen as a cultural product, focusing on the variation in world musical cultures. Recent experiments found deep connections between music and musicality, reconciling these opposing views. Here, we address the question of how individual cognitive biases affect the process of cultural evolution of music. Data from two experiments are analyzed using two complementary techniques. In the experiments, participants hear drumming patterns and imitate them. These patterns are then given to the same or another participant to imitate. The structure of these initially random patterns is tracked along experimental "generations." Frequentist statistics show how participants' biases are amplified by cultural transmission, making drumming patterns more structured. Structure is achieved faster in transmission within rather than between participants. A Bayesian model approximates the motif structures participants learned and created. Our data and models suggest that individual biases for musicality may shape the cultural transmission of musical rhythm.
Collapse
Affiliation(s)
- Andrea Ravignani
- Artificial Intelligence Lab, Vrije Universiteit Brussel, Brussels, Belgium
- Language and Cognition Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
- Research Department, Sealcentre Pieterburen, Pieterburen, the Netherlands
| | - Bill Thompson
- Artificial Intelligence Lab, Vrije Universiteit Brussel, Brussels, Belgium
- Language and Cognition Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Thomas Grossi
- Centre for Language Evolution, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh, UK
| | - Tania Delgado
- Centre for Language Evolution, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh, UK
- Department of Cognitive Science, University of California, San Diego, La Jolla, California
| | - Simon Kirby
- Centre for Language Evolution, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
49
|
Ravignani A. Spontaneous rhythms in a harbor seal pup calls. BMC Res Notes 2018; 11:3. [PMID: 29298731 PMCID: PMC5751680 DOI: 10.1186/s13104-017-3107-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 12/19/2017] [Indexed: 12/25/2022] Open
Abstract
Objectives Timing and rhythm (i.e. temporal structure) are crucial, though historically neglected, dimensions of animal communication. When investigating these in non-human animals, it is often difficult to balance experimental control and ecological validity. Here I present the first step of an attempt to balance the two, focusing on the timing of vocal rhythms in a harbor seal pup (Phoca vitulina). Collection of this data had a clear aim: To find spontaneous vocal rhythms in this individual in order to design individually-adapted and ecologically-relevant stimuli for a later playback experiment. Data description The calls of one seal pup were recorded. The audio recordings were annotated using Praat, a free software to analyze vocalizations in humans and other animals. The annotated onsets and offsets of vocalizations were then imported in a Python script. The script extracted three types of timing information: the duration of calls, the intervals between calls’ onsets, and the intervals between calls’ maximum-intensity peaks. Based on the annotated data, available to download, I provide simple descriptive statistics for these temporal measures, and compare their distributions.
Collapse
Affiliation(s)
- Andrea Ravignani
- Research Department, Sealcentre Pieterburen, Hoofdstraat 94a, 9968 AG, Pieterburen, The Netherlands. .,Artificial Intelligence Lab, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium. .,Language and Cognition Department, Max Planck Institute for Psycholinguistics, Wundtlaan 1, 6525 XD, Nijmegen, The Netherlands.
| |
Collapse
|
50
|
Ravignani A. Comment on "Temporal and spatial variation in harbor seal (Phoca vitulina L.) roar calls from southern Scandinavia" [J. Acoust. Soc. Am. 141, 1824-1834 (2017)]. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 143:504. [PMID: 29390742 DOI: 10.1121/1.5021770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In their recent article, Sabinsky and colleagues investigated heterogeneity in harbor seals' vocalizations. The authors found seasonal and geographical variation in acoustic parameters, warning readers that recording conditions might account for some of their results. This paper expands on the temporal aspect of the encountered heterogeneity in harbor seals' vocalizations. Temporal information is the least susceptible to variable recording conditions. Hence geographical and seasonal variability in roar timing constitutes the most robust finding in the target article. In pinnipeds, evidence of timing and rhythm in the millisecond range-as opposed to circadian and seasonal rhythms-has theoretical and interdisciplinary relevance. In fact, the study of rhythm and timing in harbor seals is particularly decisive to support or confute a cross-species hypothesis, causally linking the evolution of vocal production learning and rhythm. The results by Sabinsky and colleagues can shed light on current scientific questions beyond pinniped bioacoustics, and help formulate empirically testable predictions.
Collapse
Affiliation(s)
- Andrea Ravignani
- Research Department, Sealcentre Pieterburen, Hoofdstraat 94a, 9968 AG Pieterburen, The Netherlands
| |
Collapse
|