1
|
Becker C, Conduit R, Chouinard PA, Laycock R. EEG correlates of static and dynamic face perception: The role of naturalistic motion. Neuropsychologia 2024; 205:108986. [PMID: 39218391 DOI: 10.1016/j.neuropsychologia.2024.108986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/09/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Much of our understanding of how the brain processes dynamic faces comes from research that compares static photographs to dynamic morphs, which exhibit simplified, computer-generated motion. By comparing static, video recorded, and dynamic morphed expressions, we aim to identify the neural correlates of naturalistic facial dynamism, using time-domain and time-frequency analysis. Dynamic morphs were made from the neutral and peak frames of video recorded transitions of happy and fearful expressions, which retained expression change and removed asynchronous and non-linear features of naturalistic facial motion. We found that dynamic morphs elicited increased N400 amplitudes and lower LPP amplitudes compared to other stimulus types. Video recordings elicited higher LPP amplitudes and greater frontal delta activity compared to other stimuli. Thematic analysis of participant interviews using a large language model revealed that participants found it difficult to assess the genuineness of morphed expressions, and easier to analyse the genuineness of happy compared to fearful expressions. Our findings suggest that animating real faces with artificial motion may violate expectations (N400) and reduce the social salience (LPP) of dynamic morphs. Results also suggest that delta oscillations in the frontal region may be involved with the perception of naturalistic facial motion in happy and fearful expressions. Overall, our findings highlight the sensitivity of neural mechanisms required for face perception to subtle changes in facial motion characteristics, which has important implications for neuroimaging research using faces with simplified motion.
Collapse
Affiliation(s)
- Casey Becker
- RMIT University, School of Health & Biomedical Sciences, STEM College, 225-254 Plenty Rd, Bundoora, Victoria, 3083, Australia.
| | - Russell Conduit
- RMIT University, School of Health & Biomedical Sciences, STEM College, 225-254 Plenty Rd, Bundoora, Victoria, 3083, Australia.
| | - Philippe A Chouinard
- La Trobe University, Department of Psychology, Counselling, & Therapy, 75 Kingsbury Drive, Bundoora, Victoria, 3086, Australia.
| | - Robin Laycock
- RMIT University, School of Health & Biomedical Sciences, STEM College, 225-254 Plenty Rd, Bundoora, Victoria, 3083, Australia.
| |
Collapse
|
2
|
Del Vecchio M, Avanzini P, Gerbella M, Costa S, Zauli FM, d'Orio P, Focacci E, Sartori I, Caruana F. Anatomo-functional basis of emotional and motor resonance elicited by facial expressions. Brain 2024; 147:3018-3031. [PMID: 38365267 DOI: 10.1093/brain/awae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/21/2023] [Accepted: 01/28/2024] [Indexed: 02/18/2024] Open
Abstract
Simulation theories predict that the observation of other's expressions modulates neural activity in the same centres controlling their production. This hypothesis has been developed by two models, postulating that the visual input is directly projected either to the motor system for action recognition (motor resonance) or to emotional/interoceptive regions for emotional contagion and social synchronization (emotional resonance). Here we investigated the role of frontal/insular regions in the processing of observed emotional expressions by combining intracranial recording, electrical stimulation and effective connectivity. First, we intracranially recorded from prefrontal, premotor or anterior insular regions of 44 patients during the passive observation of emotional expressions, finding widespread modulations in prefrontal/insular regions (anterior cingulate cortex, anterior insula, orbitofrontal cortex and inferior frontal gyrus) and motor territories (Rolandic operculum and inferior frontal junction). Subsequently, we electrically stimulated the activated sites, finding that (i) in the anterior cingulate cortex and anterior insula, the stimulation elicited emotional/interoceptive responses, as predicted by the 'emotional resonance model'; (ii) in the Rolandic operculum it evoked face/mouth sensorimotor responses, in line with the 'motor resonance' model; and (iii) all other regions were unresponsive or revealed functions unrelated to the processing of facial expressions. Finally, we traced the effective connectivity to sketch a network-level description of these regions, finding that the anterior cingulate cortex and the anterior insula are reciprocally interconnected while the Rolandic operculum is part of the parieto-frontal circuits and poorly connected with the former. These results support the hypothesis that the pathways hypothesized by the 'emotional resonance' and the 'motor resonance' models work in parallel, differing in terms of spatio-temporal fingerprints, reactivity to electrical stimulation and connectivity patterns.
Collapse
Affiliation(s)
- Maria Del Vecchio
- Institute of Neuroscience, National Research Council of Italy (CNR), 43125 Parma, Italy
| | - Pietro Avanzini
- Institute of Neuroscience, National Research Council of Italy (CNR), 43125 Parma, Italy
| | - Marzio Gerbella
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Sara Costa
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Flavia Maria Zauli
- 'Claudio Munari' Epilepsy Surgery Center, ASST GOM Niguarda, 20142 Milan, Italy
| | - Piergiorgio d'Orio
- 'Claudio Munari' Epilepsy Surgery Center, ASST GOM Niguarda, 20142 Milan, Italy
| | - Elena Focacci
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Ivana Sartori
- 'Claudio Munari' Epilepsy Surgery Center, ASST GOM Niguarda, 20142 Milan, Italy
| | - Fausto Caruana
- Institute of Neuroscience, National Research Council of Italy (CNR), 43125 Parma, Italy
| |
Collapse
|
3
|
Gobbo S, Lega C, De Sandi A, Daini R. The role of preSMA and STS in face recognition: A transcranial magnetic stimulation (TMS) study. Neuropsychologia 2024; 198:108877. [PMID: 38555065 DOI: 10.1016/j.neuropsychologia.2024.108877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Current models propose that facial recognition is mediated by two independent yet interacting anatomo-functional systems: one processing facial features mainly mediated by the Fusiform Face Area and the other involved in the extraction of dynamic information from faces, subserved by Superior Temporal Sulcus (STS). Also, the pre-Supplementary Motor Area (pre-SMA) is implicated in facial expression processing as it is involved in its motor mimicry. However, the literature only shows evidence of the implication of STS and preSMA for facial expression recognition, without relating it to face recognition. In addition, the literature shows a facilitatory role of facial motion in the recognition of unfamiliar faces, particularly for poor recognizers. The present study aimed at studying the role of STS and preSMA in unfamiliar face recognition in people with different face recognition skills. 34 healthy participants received repetitive transcranial magnetic stimulation over the right posterior STS, pre-SMA and as sham during a task of matching of faces encoded through: facial expression, rigid head movement or as static (i.e., absence of any facial or head motion). All faces were represented without emotional content. Results indicate that STS has a direct role in recognizing identities through rigid head movement and an indirect role in facial expression processing. This dissociation represents a step forward with respect to current face processing models suggesting that different types of motion involve separate brain and cognitive processes. PreSMA interacts with face recognition skills, increasing the performance of poor recognizers and decreasing that of good recognizers in all presentation conditions. Together, the results suggest the use of at least partially different mechanisms for face recognition in poor and good recognizers and a different role of STS and preSMA in face recognition.
Collapse
Affiliation(s)
- Silvia Gobbo
- Department of Psychology, University of Milan-Bicocca, Milan, Italy.
| | - Carlotta Lega
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | | - Roberta Daini
- Department of Psychology, University of Milan-Bicocca, Milan, Italy
| |
Collapse
|
4
|
Achour-Benallegue A, Pelletier J, Kaminski G, Kawabata H. Facial icons as indexes of emotions and intentions. Front Psychol 2024; 15:1356237. [PMID: 38807962 PMCID: PMC11132266 DOI: 10.3389/fpsyg.2024.1356237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/02/2024] [Indexed: 05/30/2024] Open
Abstract
Various objects and artifacts incorporate representations of faces, encompassing artworks like portraits, as well as ethnographic or industrial artifacts such as masks or humanoid robots. These representations exhibit diverse degrees of human-likeness, serving different functions and objectives. Despite these variations, they share common features, particularly facial attributes that serve as building blocks for facial expressions-an effective means of communicating emotions. To provide a unified conceptualization for this broad spectrum of face representations, we propose the term "facial icons" drawing upon Peirce's semiotic concepts. Additionally, based on these semiotic principles, we posit that facial icons function as indexes of emotions and intentions, and introduce a significant anthropological theory aligning with our proposition. Subsequently, we support our assertions by examining processes related to face and facial expression perception, as well as sensorimotor simulation processes involved in discerning others' mental states, including emotions. Our argumentation integrates cognitive and experimental evidence, reinforcing the pivotal role of facial icons in conveying mental states.
Collapse
Affiliation(s)
- Amel Achour-Benallegue
- Cognition, Environment and Communication Research Team, Human Augmentation Research Center, National Institute of Advanced Industrial Science and Technology, Kashiwa, Japan
| | - Jérôme Pelletier
- Institut Jean Nicod, Département d'études cognitives, ENS, EHESS, CNRS, PSL University, Paris, France
- Department of Philosophy, University of Western Brittany, Brest, France
| | - Gwenaël Kaminski
- Cognition, Langues, Langage, Ergonomie, Université de Toulouse, Toulouse, France
- Institut Universitaire de France, Paris, France
| | - Hideaki Kawabata
- Department of Psychology, Faculty of Letters, Keio University, Tokyo, Japan
| |
Collapse
|
5
|
Schumacher G, Homan MD, Rebasso I, Fasching N, Bakker BN, Rooduijn M. Establishing the validity and robustness of facial electromyography measures for political science. Politics Life Sci 2024; 43:198-215. [PMID: 39465517 DOI: 10.1017/pls.2023.26] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Opinion formation and information processing are affected by unconscious affective responses to stimuli-particularly in politics. Yet we still know relatively little about such affective responses and how to measure them. In this study, we focus on emotional valence and examine facial electromyography (fEMG) measures. We demonstrate the validity of these measures, discuss ways to make measurement and analysis more robust, and consider validity trade-offs in experimental design. In doing so, we hope to support scholars in designing studies that will advance scholarship on political attitudes and behavior by incorporating unconscious affective responses to political stimuli-responses that have too often been neglected by political scientists.
Collapse
Affiliation(s)
- Gijs Schumacher
- Department of Political Science, University of Amsterdam, Amsterdam, Netherlands
| | - Maaike D Homan
- Organisational Behaviour Research Group, Utrecht University
| | | | - Neil Fasching
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, PA, USA
| | - Bert N Bakker
- Amsterdam School of Communication Research, University of Amsterdam, Amsterdam, Netherlands
| | - Matthijs Rooduijn
- Department of Political Science, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
6
|
Zhao W, Liu Q, Zhang X, Song X, Zhang Z, Qing P, Liu X, Zhu S, Yang W, Kendrick KM. Differential responses in the mirror neuron system during imitation of individual emotional facial expressions and association with autistic traits. Neuroimage 2023; 277:120263. [PMID: 37399932 DOI: 10.1016/j.neuroimage.2023.120263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/15/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023] Open
Abstract
The mirror neuron system (MNS), including the inferior frontal gyrus (IFG), inferior parietal lobule (IPL) and superior temporal sulcus (STS) plays an important role in action representation and imitation and may be dysfunctional in autism spectrum disorder (ASD). However, it's not clear how these three regions respond and interact during the imitation of different basic facial expressions and whether the pattern of responses is influenced by autistic traits. Thus, we conducted a natural facial expression (happiness, angry, sadness and fear) imitation task in 100 healthy male subjects where expression intensity was measured using facial emotion recognition software (FaceReader) and MNS responses were recorded using functional near-infrared spectroscopy (fNIRS). Autistic traits were measured using the Autism Spectrum Quotient questionnaire. Results showed that imitation of happy expressions produced the highest expression intensity but a small deactivation in MNS responses, suggesting a lower processing requirement compared to other expressions. A cosine similarity analysis indicated a distinct pattern of MNS responses during imitation of each facial expression with functional intra-hemispheric connectivity between the left IPL and left STS being significantly higher during happy compared to other expressions, while inter-hemispheric connectivity between the left and right IPL differed between imitation of fearful and sad expressions. Furthermore, functional connectivity changes during imitation of each different expression could reliably predict autistic trait scores. Overall, the results provide evidence for distinct patterns of functional connectivity changes between MNS regions during imitation of different emotions which are also associated with autistic traits.
Collapse
Affiliation(s)
- Weihua Zhao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China; Institute of Electronic and Information Engineering of UESTC in Guangdong, Dongguan, 523808, China
| | - Qi Liu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xiaolu Zhang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xinwei Song
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Zhao Zhang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Peng Qing
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xiaolong Liu
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, 610066, China
| | - Siyu Zhu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Wenxu Yang
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Keith M Kendrick
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| |
Collapse
|
7
|
Dureux A, Zanini A, Everling S. Face-Selective Patches in Marmosets Are Involved in Dynamic and Static Facial Expression Processing. J Neurosci 2023; 43:3477-3494. [PMID: 37001990 PMCID: PMC10184744 DOI: 10.1523/jneurosci.1484-22.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 03/09/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023] Open
Abstract
The correct identification of facial expressions is critical for understanding the intention of others during social communication in the daily life of all primates. Here we used ultra-high-field fMRI at 9.4 T to investigate the neural network activated by facial expressions in awake New World common marmosets from both male and female sex, and to determine the effect of facial motions on this network. We further explored how the face-patch network is involved in the processing of facial expressions. Our results show that dynamic and static facial expressions activate face patches in temporal and frontal areas (O, PV, PD, MD, AD, and PL) as well as in the amygdala, with stronger responses for negative faces, also associated with an increase of the respiration rates of the monkey. Processing of dynamic facial expressions involves an extended network recruiting additional regions not known to be part of the face-processing network, suggesting that face motions may facilitate the recognition of facial expressions. We report for the first time in New World marmosets that the perception and identification of changeable facial expressions, vital for social communication, recruit face-selective brain patches also involved in face detection processing and are associated with an increase of arousal.SIGNIFICANCE STATEMENT Recent research in humans and nonhuman primates has highlighted the importance to correctly recognize and process facial expressions to understand others' emotions in social interactions. The current study focuses on the fMRI responses of emotional facial expressions in the common marmoset (Callithrix jacchus), a New World primate species sharing several similarities of social behavior with humans. Our results reveal that temporal and frontal face patches are involved in both basic face detection and facial expression processing. The specific recruitment of these patches for negative faces associated with an increase of the arousal level show that marmosets process facial expressions of their congener, vital for social communication.
Collapse
Affiliation(s)
- Audrey Dureux
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8, Canada
| | - Alessandro Zanini
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8, Canada
| | - Stefan Everling
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5K8, Canada
| |
Collapse
|
8
|
Lee M, Lori A, Langford NA, Rilling JK. The neural basis of smile authenticity judgments and the potential modulatory role of the oxytocin receptor gene (OXTR). Behav Brain Res 2023; 437:114144. [PMID: 36216140 DOI: 10.1016/j.bbr.2022.114144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/03/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022]
Abstract
Accurate perception of genuine vs. posed smiles is crucial for successful social navigation in humans. While people vary in their ability to assess the authenticity of smiles, little is known about the specific biological mechanisms underlying this variation. We investigated the neural substrates of smile authenticity judgments using functional magnetic resonance imaging (fMRI). We also tested a preliminary hypothesis that a common polymorphism in the oxytocin receptor gene (OXTR) rs53576 would modulate the behavioral and neural indices of accurate smile authenticity judgments. A total of 185 healthy adult participants (Neuroimaging arm: N = 44, Behavioral arm: N = 141) determined the authenticity of dynamic facial expressions of genuine and posed smiles either with or without fMRI scanning. Correctly identified genuine vs. posed smiles activated brain areas involved with reward processing, facial mimicry, and mentalizing. Activation within the inferior frontal gyrus and dorsomedial prefrontal cortex correlated with individual differences in sensitivity (d') and response criterion (C), respectively. Our exploratory genetic analysis revealed that rs53576 G homozygotes in the neuroimaging arm had a stronger tendency to judge posed smiles as genuine than did A allele carriers and showed decreased activation in the medial prefrontal cortex when viewing genuine vs. posed smiles. Yet, OXTR rs53576 did not modulate task performance in the behavioral arm, which calls for further studies to evaluate the legitimacy of this result. Our findings extend previous literature on the biological foundations of smile authenticity judgments, particularly emphasizing the involvement of brain regions implicated in reward, facial mimicry, and mentalizing.
Collapse
Affiliation(s)
| | - Adriana Lori
- Department of Psychiatry and Behavioral Science, USA
| | - Nicole A Langford
- Department of Psychiatry and Behavioral Science, USA; Nell Hodgson Woodruff School of Nursing, USA
| | - James K Rilling
- Department of Anthropology, USA; Department of Psychiatry and Behavioral Science, USA; Center for Behavioral Neuroscience, USA; Emory National Primate Research Center, USA; Center for Translational Social Neuroscience, USA.
| |
Collapse
|
9
|
Palagi E, Caruana F, de Waal FBM. The naturalistic approach to laughter in humans and other animals: towards a unified theory. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210175. [PMID: 36126670 PMCID: PMC9489289 DOI: 10.1098/rstb.2021.0175] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/15/2022] [Indexed: 12/18/2022] Open
Abstract
This opinion piece aims to tackle the biological, psychological, neural and cultural underpinnings of laughter from a naturalistic and evolutionary perspective. A naturalistic account of laughter requires the revaluation of two dogmas of a longstanding philosophical tradition, that is, the quintessential link between laughter and humour, and the uniquely human nature of this behaviour. In the spirit of Provine's and Panksepp's seminal studies, who firstly argued against the anti-naturalistic dogmas, here we review compelling evidence that (i) laughter is first and foremost a social behaviour aimed at regulating social relationships, easing social tensions and establishing social bonds, and that (ii) homologue and homoplasic behaviours of laughter exist in primates and rodents, who also share with humans the same underpinning neural circuitry. We make a case for the hypothesis that the contagiousness of laughter and its pervasive social infectiousness in everyday social interactions is mediated by a specific mirror mechanism. Finally, we argue that a naturalistic account of laughter should not be intended as an outright rejection of classic theories; rather, in the last part of the piece we argue that our perspective is potentially able to integrate previous viewpoints-including classic philosophical theories-ultimately providing a unified evolutionary explanation of laughter. This article is part of the theme issue 'Cracking the laugh code: laughter through the lens of biology, psychology and neuroscience'.
Collapse
Affiliation(s)
- Elisabetta Palagi
- Unit of Ethology, Department of Biology, University of Pisa, via A. Volta 6, Pisa 56126, Italy
| | - Fausto Caruana
- Institute of Neuroscience, National Research Council of Italy (CNR), Via Volturno 39/E, Parma 43125, Italy
| | | |
Collapse
|
10
|
Zauli FM, Del Vecchio M, Russo S, Mariani V, Pelliccia V, d'Orio P, Sartori I, Avanzini P, Caruana F. The web of laughter: frontal and limbic projections of the anterior cingulate cortex revealed by cortico-cortical evoked potential from sites eliciting laughter. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210180. [PMID: 36126672 PMCID: PMC9489285 DOI: 10.1098/rstb.2021.0180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/02/2022] [Indexed: 12/20/2022] Open
Abstract
According to an evolutionist approach, laughter is a multifaceted behaviour affecting social, emotional, motor and speech functions. Albeit previous studies have suggested that high-frequency electrical stimulation (HF-ES) of the pregenual anterior cingulate cortex (pACC) may induce bursts of laughter-suggesting a crucial contribution of this region to the cortical control of this behaviour-the complex nature of laughter implies that outward connections from the pACC may reach and affect a complex network of frontal and limbic regions. Here, we studied the effective connectivity of the pACC by analysing the cortico-cortical evoked potentials elicited by single-pulse electrical stimulation of pACC sites whose HF-ES elicited laughter in 12 patients. Once these regions were identified, we studied their clinical response to HF-ES, to reveal the specific functional target of pACC representation of laughter. Results reveal that the neural representation of laughter in the pACC interacts with several frontal and limbic regions, including cingulate, orbitofrontal, medial prefrontal and anterior insular regions-involved in interoception, emotion, social reward and motor behaviour. These results offer neuroscientific support to the evolutionist approach to laughter, providing a possible mechanistic explanation of the interplay between this behaviour and emotion regulation, speech production and social interactions. This article is part of the theme issue 'Cracking the laugh code: laughter through the lens of biology, psychology and neuroscience'.
Collapse
Affiliation(s)
- F M Zauli
- Department of Biomedical and Clinical Sciences 'L. Sacco', University of Milan, Milan, Italy
- Department of Philosophy 'Piero Martinetti', University of Milan, Milan, Italy
- 'Claudio Munari' Epilepsy Surgery Center, ASST GOM Niguarda, Milan, Italy
| | - M Del Vecchio
- Institute of Neuroscience, National Research Council of Italy (CNR), Parma, Italy
| | - S Russo
- Department of Biomedical and Clinical Sciences 'L. Sacco', University of Milan, Milan, Italy
- Department of Philosophy 'Piero Martinetti', University of Milan, Milan, Italy
- Allen Institute, Seattle, WA
| | - V Mariani
- Neurology and Stroke Unit Division, Circolo Hospital ASST Settelaghi University of Insubria, Varese, Italy
| | - V Pelliccia
- 'Claudio Munari' Epilepsy Surgery Center, ASST GOM Niguarda, Milan, Italy
| | - P d'Orio
- 'Claudio Munari' Epilepsy Surgery Center, ASST GOM Niguarda, Milan, Italy
- Institute of Neuroscience, National Research Council of Italy (CNR), Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma
| | - I Sartori
- 'Claudio Munari' Epilepsy Surgery Center, ASST GOM Niguarda, Milan, Italy
| | - P Avanzini
- Institute of Neuroscience, National Research Council of Italy (CNR), Parma, Italy
| | - F Caruana
- Institute of Neuroscience, National Research Council of Italy (CNR), Parma, Italy
| |
Collapse
|
11
|
Hsu CT, Sato W, Kochiyama T, Nakai R, Asano K, Abe N, Yoshikawa S. Enhanced Mirror Neuron Network Activity and Effective Connectivity during Live Interaction Among Female Subjects. Neuroimage 2022; 263:119655. [PMID: 36182055 DOI: 10.1016/j.neuroimage.2022.119655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022] Open
Abstract
Facial expressions are indispensable in daily human communication. Previous neuroimaging studies investigating facial expression processing have presented pre-recorded stimuli and lacked live face-to-face interaction. Our paradigm alternated between presentations of real-time model performance and pre-recorded videos of dynamic facial expressions to participants. Simultaneous functional magnetic resonance imaging (fMRI) and facial electromyography activity recordings, as well as post-scan valence and arousal ratings were acquired from 44 female participants. Live facial expressions enhanced the subjective valence and arousal ratings as well as facial muscular responses. Live performances showed greater engagement of the right posterior superior temporal sulcus (pSTS), right inferior frontal gyrus (IFG), right amygdala and right fusiform gyrus, and modulated the effective connectivity within the right mirror neuron system (IFG, pSTS, and right inferior parietal lobule). A support vector machine algorithm could classify multivoxel activation patterns in brain regions involved in dynamic facial expression processing in the mentalizing networks (anterior and posterior cingulate cortex). These results indicate that live social interaction modulates the activity and connectivity of the right mirror neuron system and enhances spontaneous mimicry, further facilitating emotional contagion.
Collapse
Affiliation(s)
- Chun-Ting Hsu
- Psychological Process Research Team, Guardian Robot Project, RIKEN, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan..
| | - Wataru Sato
- Psychological Process Research Team, Guardian Robot Project, RIKEN, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan..
| | - Takanori Kochiyama
- Brain Activity Imaging Center, ATR- Promotions, Inc., 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan
| | - Ryusuke Nakai
- Institute for the Future of Human Society, Kyoto University, 46 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto, 606-8501 Japan
| | - Kohei Asano
- Institute for the Future of Human Society, Kyoto University, 46 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto, 606-8501 Japan; Department of Children Education, Osaka University of Comprehensive Children Education, 6-chome-4-26 Yuzato, Higashisumiyoshi Ward, Osaka, 546-0013, Japan
| | - Nobuhito Abe
- Institute for the Future of Human Society, Kyoto University, 46 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto, 606-8501 Japan
| | - Sakiko Yoshikawa
- Institute of Philosophy and Human Values, Kyoto University of the Arts, 2-116 Uryuyama Kitashirakawa, Sakyo, Kyoto, Kyoto 606-8271, Japan
| |
Collapse
|
12
|
Kyranides MN, Petridou M, Gokani HA, Hill S, Fanti KA. Reading and reacting to faces, the effect of facial mimicry in improving facial emotion recognition in individuals with antisocial behavior and psychopathic traits. CURRENT PSYCHOLOGY 2022. [DOI: 10.1007/s12144-022-02749-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AbstractIndividuals with antisocial behavior and psychopathic traits are characterized by deficits in processing facial expressions, which results in poor social adaptation and dysfunctional interpersonal relationships. However, it is not clear how individuals with varying levels of these traits differ in this emotional impairment and if these deficits are due to correctly identifying or reacting appropriately to facial expressions. The aim of the study was to examine how individuals with these traits recognized and responded to affective facial expressions by using FaceReader software (which analyses footage of faces) across different experimental conditions (imitation, suppression, and control). Imitating facial expressions was introduced to examine whether it could direct participants’ attention to the facial cues and improve participants’ performance on the facial task. A total of 643 individuals from the community were pre-screened and a sample (N = 107; M age = 21.08, SD = 1.55), differentiated on levels of antisocial personality disorder (APD) symptoms and psychopathic (PSY) traits, who were selected based on extreme scores (high/low), were invited to participate in the study. Individuals with higher levels of APD symptoms and PSY traits (APD + PSY) expressed more anger than other groups, while those in the APD-only group expressed more sadness, compared to other groups. Overall, participants were compliant in following the instructions to imitate facial expressions. However, only the group with predominantly APD symptoms and the group with combined symptoms (APD + PSY) showed improvement in their accuracy ratings specifically when instructed to imitate facial expressions, compared to when no instructions were provided. The study offers a promising direction for targeting deficits in facial emotion recognition, suggesting that the deficits found in individuals with behavioral problems (with and without psychopathic traits) can be improved by asking them to imitate facial expressions.
Collapse
|
13
|
Eddy CM. The Transdiagnostic Relevance of Self-Other Distinction to Psychiatry Spans Emotional, Cognitive and Motor Domains. Front Psychiatry 2022; 13:797952. [PMID: 35360118 PMCID: PMC8960177 DOI: 10.3389/fpsyt.2022.797952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/14/2022] [Indexed: 01/18/2023] Open
Abstract
Self-other distinction refers to the ability to distinguish between our own and other people's physical and mental states (actions, perceptions, emotions etc.). Both the right temporo-parietal junction and brain areas associated with the human mirror neuron system are likely to critically influence self-other distinction, given their respective contributions to theory of mind and embodied empathy. The degree of appropriate self-other distinction will vary according to the exact social situation, and how helpful it is to feel into, or remain detached from, another person's mental state. Indeed, the emotional resonance that we can share with others affords the gift of empathy, but over-sharing may pose a downside, leading to a range of difficulties from personal distress to paranoia, and perhaps even motor tics and compulsions. The aim of this perspective paper is to consider how evidence from behavioral and neurophysiological studies supports a role for problems with self-other distinction in a range of psychiatric symptoms spanning the emotional, cognitive and motor domains. The various signs and symptoms associated with problematic self-other distinction comprise both maladaptive and adaptive (compensatory) responses to dysfunction within a common underlying neuropsychological mechanism, compelling the adoption of more holistic transdiagnostic therapeutic approaches within Psychiatry.
Collapse
Affiliation(s)
- Clare M Eddy
- Birmingham and Solihull Mental Health NHS Foundation Trust, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
14
|
Caruana F. Two simulation systems in the human frontal cortex? Disentangling between motor simulation and emotional mirroring using laughter. Cortex 2021; 148:215-217. [PMID: 34696898 DOI: 10.1016/j.cortex.2021.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 11/24/2022]
Affiliation(s)
- Fausto Caruana
- Institute of Neuroscience, National Research Council of Italy (CNR), Via Volturno 39/E, 43125 Parma, Italy.
| |
Collapse
|
15
|
Platho-Elwischger K, Schmoeger M, Willinger U, Abdel-Aziz C, Algner J, Pretscherer S, Auff E, Kranz G, Turnbull O, Sycha T. Cognitive Performance After Facial Botulinum Toxin Treatment in a Cohort of Neurologic Patients: An Exploratory Study. Arch Phys Med Rehabil 2021; 103:402-408. [PMID: 34496270 DOI: 10.1016/j.apmr.2021.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/30/2021] [Accepted: 08/08/2021] [Indexed: 11/02/2022]
Abstract
OBJECTIVE To investigate higher cognitive functions after mimicry changes after facial botulinum toxin (BTX) injections, we tested verbal and nonverbal reasoning in patients with blepharospasm or hemifacial spasm before and after their long-term botulinum toxin treatment. DESIGN Explorative, nonrandomized, clinical trial. SETTING Patients receiving ambulatory care and control participants from the general community. PARTICIPANTS Volunteer sample (N=84) of patients (n=21) with blepharospasm or hemifacial spasm who received facial BTX injections. Control participants included patients (n=30) with cervical dystonia who received cervical BTX injections and individuals without neurological disorders (n=33). INTERVENTIONS The 2 groups receiving injections were tested before and 3 weeks after their treatment. The group without neurological disorders received no injections. MAIN OUTCOME MEASURES Verbal and nonverbal reasoning scores. RESULTS The key unexpected finding was that patients who received facial BTX injections perform significantly worse in nonverbal reasoning tasks, when compared with those who did not receive injections (P=.022). There was no significant difference in the baseline reasoning scores and at follow-up for verbal reasoning between the 3 groups. There was no correlation between toxin dose and reasoning scores (verbal: P=.132; nonverbal: P=.294). CONCLUSIONS Because of potential confounders, the results do not yet allow any conclusion on causality. Further research is needed to confirm our findings.
Collapse
Affiliation(s)
- Kirsten Platho-Elwischger
- Department of Neurology Medical University of Vienna, Vienna, Austria; Department of Neurology, Clinic Hietzing, Vienna, Austria
| | | | - Ulrike Willinger
- Department of Neurology Medical University of Vienna, Vienna, Austria
| | - Carmen Abdel-Aziz
- Department of Neurology Medical University of Vienna, Vienna, Austria
| | - Jennifer Algner
- Department of Neurology Medical University of Vienna, Vienna, Austria
| | | | - Eduard Auff
- Department of Neurology Medical University of Vienna, Vienna, Austria
| | - Gottfried Kranz
- Department of Neurology Medical University of Vienna, Vienna, Austria; Rehabilitation Center Rosenhuegel, Vienna, Austria
| | - Oliver Turnbull
- School of Psychology, Bangor University, Bangor, United Kingdom
| | - Thomas Sycha
- Department of Neurology Medical University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
Höfling TTA, Alpers GW, Gerdes ABM, Föhl U. Automatic facial coding versus electromyography of mimicked, passive, and inhibited facial response to emotional faces. Cogn Emot 2021; 35:874-889. [PMID: 33761825 DOI: 10.1080/02699931.2021.1902786] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Decoding someone's facial expressions provides insights into his or her emotional experience. Recently, Automatic Facial Coding (AFC) software has been developed to provide measurements of emotional facial expressions. Previous studies provided first evidence for the sensitivity of such systems to detect facial responses in study participants. In the present experiment, we set out to generalise these results to affective responses as they can occur in variable social interactions. Thus, we presented facial expressions (happy, neutral, angry) and instructed participants (N = 64) to either actively mimic, to look at them passively (n = 21), or to inhibit their own facial reaction (n = 22). A video stream for AFC and an electromyogram (EMG) of the zygomaticus and corrugator muscles were registered continuously. In the mimicking condition, both AFC and EMG differentiated well between facial expressions in response to the different emotional pictures. In the passive viewing and in the inhibition condition AFC did not detect changes in facial expressions whereas EMG was still highly sensitive. Although only EMG is sensitive when participants intend to conceal their facial reactions, these data extend previous findings that Automatic Facial Coding is a promising tool for the detection of intense facial reaction.
Collapse
Affiliation(s)
- T Tim A Höfling
- Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany.,Business School, Pforzheim University of Applied Sciences, Pforzheim, Germany
| | - Georg W Alpers
- Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany
| | - Antje B M Gerdes
- Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany
| | - Ulrich Föhl
- Business School, Pforzheim University of Applied Sciences, Pforzheim, Germany
| |
Collapse
|
17
|
The impact of facemasks on emotion recognition, trust attribution and re-identification. Sci Rep 2021; 11:5577. [PMID: 33692417 PMCID: PMC7970937 DOI: 10.1038/s41598-021-84806-5] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 02/19/2021] [Indexed: 01/02/2023] Open
Abstract
Covid-19 pandemics has fostered a pervasive use of facemasks all around the world. While they help in preventing infection, there are concerns related to the possible impact of facemasks on social communication. The present study investigates how emotion recognition, trust attribution and re-identification of faces differ when faces are seen without mask, with a standard medical facemask, and with a transparent facemask restoring visual access to the mouth region. Our results show that, in contrast to standard medical facemasks, transparent masks significantly spare the capability to recognize emotional expressions. Moreover, transparent masks spare the capability to infer trustworthiness from faces with respect to standard medical facemasks which, in turn, dampen the perceived untrustworthiness of faces. Remarkably, while transparent masks (unlike standard masks) do not impair emotion recognition and trust attribution, they seemingly do impair the subsequent re-identification of the same, unmasked, face (like standard masks). Taken together, this evidence supports a dissociation between mechanisms sustaining emotion and identity processing. This study represents a pivotal step in the much-needed analysis of face reading when the lower portion of the face is occluded by a facemask.
Collapse
|
18
|
Peng S, Kuang B, Zhang L, Hu P. Right Temporoparietal Junction Plays a Role in the Modulation of Emotional Mimicry by Group Membership. Front Hum Neurosci 2021; 15:606292. [PMID: 33643012 PMCID: PMC7902487 DOI: 10.3389/fnhum.2021.606292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/11/2021] [Indexed: 11/13/2022] Open
Abstract
Our prior research demonstrated that the right temporoparietal junction (rTPJ) exerted a modulatory role in ingroup bias in emotional mimicry. In this study, two experiments were conducted to further explore whether the rTPJ is a neural region for emotional mimicry or for the modulation of emotional mimicry by group membership in a sham-controlled, double-blinded, between-subject design. Both experiments employed non-invasive transcranial direct current stimulation (tDCS) to temporarily change the cortical excitability over the rTPJ and facial electromyography (fEMG) to measure facial muscle activations as an index of emotional mimicry. After the anodal or sham stimulation, participants in Experiment 1 passively viewed a series of happy clips, while participants in Experiment 2 viewed happy clips performed by ethnic ingroup and outgroup models. fEMG analyses revealed that participants in Experiment 1 showed the same degree of happy mimicry for both tDCS conditions (anodal vs. sham) and participants in Experiment 2 showed an ingroup bias in happy mimicry in the sham condition, which disappeared in the anodal condition. Taken together, the present study demonstrated that rTPJ plays a role in the modulation of emotional mimicry by group membership.
Collapse
Affiliation(s)
- Shenli Peng
- College of Education, Hunan Agricultural University, Changsha, China
| | - Beibei Kuang
- School of International Relations, National University of Defense Technology, Nanjing, China
| | - Ling Zhang
- Department of Psychology, Renmin University of China, Beijing, China
| | - Ping Hu
- Department of Psychology, Renmin University of China, Beijing, China
| |
Collapse
|
19
|
Sorella S, Grecucci A, Piretti L, Job R. Do anger perception and the experience of anger share common neural mechanisms? Coordinate-based meta-analytic evidence of similar and different mechanisms from functional neuroimaging studies. Neuroimage 2021; 230:117777. [PMID: 33503484 DOI: 10.1016/j.neuroimage.2021.117777] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/11/2021] [Accepted: 01/19/2021] [Indexed: 12/14/2022] Open
Abstract
The neural bases of anger are still a matter of debate. In particular we do not know whether anger perception and anger experience rely on similar or different neural mechanisms. To study this topic, we performed activation-likelihood-estimation meta-analyses of human neuroimaging studies on 61 previous studies on anger perception and experience. Anger perception analysis resulted in significant activation in the amygdala, the right superior temporal gyrus, the right fusiform gyrus and the right IFG, thus revealing the role of perceptual temporal areas for perceiving angry stimuli. Anger experience analysis resulted in the bilateral activations of the insula and the ventrolateral prefrontal cortex, thus revealing a role for these areas in the subjective experience of anger and, possibly, in a subsequent evaluation of the situation. Conjunction analyses revealed a common area localized in the right inferior frontal gyrus, probably involved in the conceptualization of anger for both perception and experience. Altogether these results provide new insights on the functional architecture underlying the neural processing of anger that involves separate and joint mechanisms. According to our tentative model, angry stimuli are processed by temporal areas, such as the superior temporal gyrus, the fusiform gyrus and the amygdala; on the other hand, the subjective experience of anger mainly relies on the anterior insula; finally, this pattern of activations converges in the right IFG. This region seems to play a key role in the elaboration of a general meaning of this emotion, when anger is perceived or experienced.
Collapse
Affiliation(s)
- Sara Sorella
- Clinical and Affective Neuroscience Lab, Department of Psychology and Cognitive Sciences (DiPSCo), University of Trento, Rovereto, Italy.
| | - Alessandro Grecucci
- Clinical and Affective Neuroscience Lab, Department of Psychology and Cognitive Sciences (DiPSCo), University of Trento, Rovereto, Italy
| | - Luca Piretti
- Clinical and Affective Neuroscience Lab, Department of Psychology and Cognitive Sciences (DiPSCo), University of Trento, Rovereto, Italy
| | - Remo Job
- Clinical and Affective Neuroscience Lab, Department of Psychology and Cognitive Sciences (DiPSCo), University of Trento, Rovereto, Italy
| |
Collapse
|
20
|
Shaham G, Mortillaro M, Aviezer H. Automatic facial reactions to facial, body, and vocal expressions: A stimulus-response compatibility study. Psychophysiology 2020; 57:e13684. [PMID: 32996608 DOI: 10.1111/psyp.13684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/30/2022]
Abstract
When perceiving emotional facial expressions there is an automatic tendency to react with a matching facial expression. A classic explanation of this phenomenon, termed the matched motor hypothesis, highlights the importance of topographic matching, that is, the correspondence in body parts, between perceived and produced actions. More recent studies using mimicry paradigms have challenged this classic account, producing ample evidence against the matched motor hypothesis. However, research using stimulus-response compatibility (SRC) paradigms usually assumed the effect relies on topographic matching. While mimicry and SRC share some characteristics, critical differences between the paradigms suggest conclusions cannot be simply transferred from one to another. Thus, our aim in the present study was to directly test the matched motor hypothesis using SRC. Specifically, we investigated whether observing emotional body postures or hearing emotional vocalizations produces a tendency to respond with one's face, despite completely different motor actions being involved. In three SRC experiments, participants were required to either smile or frown in response to a color cue, presented concurrently with stimuli of happy and angry facial (experiment 1), body (experiment 2), or vocal (experiment 3) expressions. Reaction times were measured using facial EMG. Whether presenting facial, body, or vocal expressions, we found faster responses in compatible, compared to incompatible trials. These results demonstrate that the SRC effect of emotional expressions does not require topographic matching. Our findings question interpretations of previous research and suggest further examination of the matched motor hypothesis.
Collapse
Affiliation(s)
- Galit Shaham
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Marcello Mortillaro
- Swiss Centre for Affective Sciences, University of Geneva, Geneva, Switzerland
| | - Hillel Aviezer
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
21
|
Gerbella M, Pinardi C, Di Cesare G, Rizzolatti G, Caruana F. Two Neural Networks for Laughter: A Tractography Study. Cereb Cortex 2020; 31:899-916. [DOI: 10.1093/cercor/bhaa264] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/14/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023] Open
Abstract
Abstract
Laughter is a complex motor behavior occurring in both emotional and nonemotional contexts. Here, we investigated whether the different functions of laughter are mediated by distinct networks and, if this is the case, which are the white matter tracts sustaining them. We performed a multifiber tractography investigation placing seeds in regions involved in laughter production, as identified by previous intracerebral electrical stimulation studies in humans: the pregenual anterior cingulate (pACC), ventral temporal pole (TPv), frontal operculum (FO), presupplementary motor cortex, and ventral striatum/nucleus accumbens (VS/NAcc). The primary motor cortex (M1) and two subcortical territories were also studied to trace the descending projections. Results provided evidence for the existence of two relatively distinct networks. A first network, including pACC, TPv, and VS/NAcc, is interconnected through the anterior cingulate bundle, the accumbofrontal tract, and the uncinate fasciculus, reaching the brainstem throughout the mamillo-tegmental tract. This network is likely involved in the production of emotional laughter. A second network, anchored to FO and M1, projects to the brainstem motor nuclei through the internal capsule. It is most likely the neural basis of nonemotional and conversational laughter. The two networks interact throughout the pre-SMA that is connected to both pACC and FO.
Collapse
Affiliation(s)
- M Gerbella
- Department of Medicine and Surgery, University of Parma, Parma 43125, Italy
| | - C Pinardi
- Neuroradiology Department, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan 20133, Italy
| | - G Di Cesare
- Cognitive Architecture for Collaborative Technologies Unit, Italian Institute of Technology, Genova 16163, Italy
| | - G Rizzolatti
- Department of Medicine and Surgery, University of Parma, Parma 43125, Italy
- Institute of Neuroscience, Italian National Research Council (CNR), Parma 43125, Italy
| | - F Caruana
- Institute of Neuroscience, Italian National Research Council (CNR), Parma 43125, Italy
| |
Collapse
|
22
|
Is the Putative Mirror Neuron System Associated with Empathy? A Systematic Review and Meta-Analysis. Neuropsychol Rev 2020; 31:14-57. [PMID: 32876854 DOI: 10.1007/s11065-020-09452-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/09/2020] [Indexed: 12/18/2022]
Abstract
Theoretical perspectives suggest that the mirror neuron system (MNS) is an important neurobiological contributor to empathy, yet empirical support is mixed. Here, we adopt a summary model for empathy, consisting of motor, emotional, and cognitive components of empathy. This review provides an overview of existing empirical studies investigating the relationship between putative MNS activity and empathy in healthy populations. 52 studies were identified that investigated the association between the MNS and at least one domain of empathy, representing data from 1044 participants. Our results suggest that emotional and cognitive empathy are moderately correlated with MNS activity, however, these domains were mixed and varied across techniques used to acquire MNS activity (TMS, EEG, and fMRI). Few studies investigated motor empathy, and of those, no significant relationships were revealed. Overall, results provide preliminary evidence for a relationship between MNS activity and empathy. However, our findings highlight methodological variability in study design as an important factor in understanding this relationship. We discuss limitations regarding these methodological variations and important implications for clinical and community translations, as well as suggestions for future research.
Collapse
|
23
|
Szczypiński J, Alińska A, Waligóra M, Kopera M, Krasowska A, Michalska A, Suszek H, Jakubczyk A, Wypych M, Wojnar M, Marchewka A. Familiarity with children improves the ability to recognize children's mental states: an fMRI study using the Reading the Mind in the Eyes Task and the Nencki Children Eyes Test. Sci Rep 2020; 10:12964. [PMID: 32737383 PMCID: PMC7395771 DOI: 10.1038/s41598-020-69938-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 07/21/2020] [Indexed: 11/09/2022] Open
Abstract
Theory of mind plays a fundamental role in human social interactions. People generally better understand the mental states of members of their own race, a predisposition called the own-race bias, which can be significantly reduced by experience. It is unknown whether the ability to understand mental states can be similarly influenced by own-age bias, whether this bias can be reduced by experience and, finally, what the neuronal correlates of this processes are. We evaluate whether adults working with children (WC) have an advantage over adults not working with children (NWC) in understanding the mental states of youngsters. Participants performed fMRI tasks with Adult Mind (AM) and Child Mind (CM) conditions based on the Reading the Mind in the Eyes test and a newly developed Nencki Children Eyes test. WC had better accuracy in the CM condition than NWC. In NWC, own-age bias was associated with higher activation in the posterior superior temporal sulcus (pSTS) in AM than in CM. This effect was not observed in the WC group, which showed higher activation in the pSTS and inferior frontal gyri in CM than in AM. Therefore, activation in these regions is required for the improvement in recognition of children's mental states caused by experience.
Collapse
Affiliation(s)
- Jan Szczypiński
- Laboratory of Brain Imaging (LOBI), Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, 02-093, Warsaw, Poland.
- Department of Psychiatry, Medical University of Warsaw, Warsaw, Poland.
| | - Anna Alińska
- Laboratory of Brain Imaging (LOBI), Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, 02-093, Warsaw, Poland
| | - Marek Waligóra
- Laboratory of Brain Imaging (LOBI), Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, 02-093, Warsaw, Poland
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Maciej Kopera
- Department of Psychiatry, Medical University of Warsaw, Warsaw, Poland
| | | | - Aneta Michalska
- Department of Psychiatry, Medical University of Warsaw, Warsaw, Poland
| | - Hubert Suszek
- Faculty of Psychology, University of Warsaw, Warsaw, Poland
| | - Andrzej Jakubczyk
- Department of Psychiatry, Medical University of Warsaw, Warsaw, Poland
| | - Marek Wypych
- Laboratory of Brain Imaging (LOBI), Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, 02-093, Warsaw, Poland
| | - Marcin Wojnar
- Department of Psychiatry, Medical University of Warsaw, Warsaw, Poland
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Artur Marchewka
- Laboratory of Brain Imaging (LOBI), Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, 02-093, Warsaw, Poland.
| |
Collapse
|
24
|
Caruana F, Avanzini P, Pelliccia V, Mariani V, Zauli F, Sartori I, Del Vecchio M, Lo Russo G, Rizzolatti G. Mirroring other's laughter. Cingulate, opercular and temporal contributions to laughter expression and observation. Cortex 2020; 128:35-48. [DOI: 10.1016/j.cortex.2020.02.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/29/2020] [Accepted: 02/25/2020] [Indexed: 01/19/2023]
|
25
|
Palagi E, Celeghin A, Tamietto M, Winkielman P, Norscia I. The neuroethology of spontaneous mimicry and emotional contagion in human and non-human animals. Neurosci Biobehav Rev 2020; 111:149-165. [DOI: 10.1016/j.neubiorev.2020.01.020] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 11/27/2019] [Accepted: 01/18/2020] [Indexed: 01/30/2023]
|
26
|
Blocking facial mimicry affects recognition of facial and body expressions. PLoS One 2020; 15:e0229364. [PMID: 32078668 PMCID: PMC7032686 DOI: 10.1371/journal.pone.0229364] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/04/2020] [Indexed: 11/20/2022] Open
Abstract
Facial mimicry is commonly defined as the tendency to imitate-at a sub-threshold level-facial expressions of other individuals. Numerous studies support a role of facial mimicry in recognizing others' emotions. However, the underlying functional mechanism is unclear. A prominent hypothesis considers facial mimicry as based on an action-perception loop, leading to the prediction that facial mimicry should be observed only when processing others' facial expressions. Nevertheless, previous studies have also detected facial mimicry during observation of emotional bodily expressions. An emergent alternative hypothesis is that facial mimicry overtly reflects the simulation of an "emotion", rather than the reproduction of a specific observed motor pattern. In the present study, we tested whether blocking mimicry ("Bite") on the lower face disrupted recognition of happy expressions conveyed by either facial or body expressions. In Experiment 1, we tested participants' ability to identify happy, fearful and neutral expressions in the Bite condition and in two control conditions. In Experiment 2, to ensure that such a manipulation selectively affects emotion recognition, we tested participants' ability to recognize emotional expressions, as well as the actors' gender, under the Bite condition and a control condition. Finally, we investigated the relationship between dispositional empathy and emotion recognition under the condition of blocked mimicry. Our findings demonstrated that blocking mimicry on the lower face hindered recognition of happy facial and body expressions, while the recognition of neutral and fearful expressions was not affected by the mimicry manipulation. The mimicry manipulation did not affect the gender discrimination task. Furthermore, the impairment of happy expression recognition correlated with empathic traits. These results support the role of facial mimicry in emotion recognition and suggest that facial mimicry reflects a global sensorimotor simulation of others' emotions rather than a muscle-specific reproduction of an observed motor expression.
Collapse
|
27
|
Barabanschikov V, Korolkova O. Perception of “Live” Facial Expressions. EXPERIMENTAL PSYCHOLOGY (RUSSIA) 2020. [DOI: 10.17759/exppsy.2020130305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The article provides a review of experimental studies of interpersonal perception on the material of static and dynamic facial expressions as a unique source of information about the person’s inner world. The focus is on the patterns of perception of a moving face, included in the processes of communication and joint activities (an alternative to the most commonly studied perception of static images of a person outside of a behavioral context). The review includes four interrelated topics: face statics and dynamics in the recognition of emotional expressions; specificity of perception of moving face expressions; multimodal integration of emotional cues; generation and perception of facial expressions in communication processes. The analysis identifies the most promising areas of research of face in motion. We show that the static and dynamic modes of facial perception complement each other, and describe the role of qualitative features of the facial expression dynamics in assessing the emotional state of a person. Facial expression is considered as part of a holistic multimodal manifestation of emotions. The importance of facial movements as an instrument of social interaction is emphasized.
Collapse
|
28
|
Amiriparian S, Han J, Schmitt M, Baird A, Mallol-Ragolta A, Milling M, Gerczuk M, Schuller B. Synchronization in Interpersonal Speech. Front Robot AI 2019; 6:116. [PMID: 33501131 PMCID: PMC7806071 DOI: 10.3389/frobt.2019.00116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 10/22/2019] [Indexed: 11/13/2022] Open
Abstract
During both positive and negative dyadic exchanges, individuals will often unconsciously imitate their partner. A substantial amount of research has been made on this phenomenon, and such studies have shown that synchronization between communication partners can improve interpersonal relationships. Automatic computational approaches for recognizing synchrony are still in their infancy. In this study, we extend on previous work in which we applied a novel method utilizing hand-crafted low-level acoustic descriptors and autoencoders (AEs) to analyse synchrony in the speech domain. For this purpose, a database consisting of 394 in-the-wild speakers from six different cultures, is used. For each speaker in the dyadic exchange, two AEs are implemented. Post the training phase, the acoustic features for one of the speakers is tested using the AE trained on their dyadic partner. In this same way, we also explore the benefits that deep representations from audio may have, implementing the state-of-the-art Deep Spectrum toolkit. For all speakers at varied time-points during their interaction, the calculation of reconstruction error from the AE trained on their respective dyadic partner is made. The results obtained from this acoustic analysis are then compared with the linguistic experiments based on word counts and word embeddings generated by our word2vec approach. The results demonstrate that there is a degree of synchrony during all interactions. We also find that, this degree varies across the 6 cultures found in the investigated database. These findings are further substantiated through the use of 4,096 dimensional Deep Spectrum features.
Collapse
Affiliation(s)
- Shahin Amiriparian
- ZD.B Chair of Embedded Intelligence for Health Care and Wellbeing, University of Augsburg, Augsburg, Germany
| | - Jing Han
- ZD.B Chair of Embedded Intelligence for Health Care and Wellbeing, University of Augsburg, Augsburg, Germany
| | - Maximilian Schmitt
- ZD.B Chair of Embedded Intelligence for Health Care and Wellbeing, University of Augsburg, Augsburg, Germany
| | - Alice Baird
- ZD.B Chair of Embedded Intelligence for Health Care and Wellbeing, University of Augsburg, Augsburg, Germany
| | - Adria Mallol-Ragolta
- ZD.B Chair of Embedded Intelligence for Health Care and Wellbeing, University of Augsburg, Augsburg, Germany
| | - Manuel Milling
- ZD.B Chair of Embedded Intelligence for Health Care and Wellbeing, University of Augsburg, Augsburg, Germany
| | - Maurice Gerczuk
- ZD.B Chair of Embedded Intelligence for Health Care and Wellbeing, University of Augsburg, Augsburg, Germany
| | - Björn Schuller
- ZD.B Chair of Embedded Intelligence for Health Care and Wellbeing, University of Augsburg, Augsburg, Germany.,Group on Language, Audio & Music, Imperial College London, London, United Kingdom
| |
Collapse
|
29
|
Korb S, Goldman R, Davidson RJ, Niedenthal PM. Increased Medial Prefrontal Cortex and Decreased Zygomaticus Activation in Response to Disliked Smiles Suggest Top-Down Inhibition of Facial Mimicry. Front Psychol 2019; 10:1715. [PMID: 31402888 PMCID: PMC6677088 DOI: 10.3389/fpsyg.2019.01715] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 07/09/2019] [Indexed: 12/03/2022] Open
Abstract
Spontaneous facial mimicry is modulated by many factors, and often needs to be suppressed to comply with social norms. The neural basis for the inhibition of facial mimicry was investigated in a combined functional magnetic resonance imaging and electromyography study in 39 healthy participants. In an operant conditioning paradigm, face identities were associated with reward or punishment and were later shown expressing dynamic smiles and anger expressions. Face identities previously associated with punishment, compared to reward, were disliked by participants overall, and their smiles generated less mimicry. Consistent with previous research on the inhibition of finger/hand movements, the medial prefrontal cortex (mPFC) was activated when previous conditioning was incongruent with the valence of the expression. On such trials there was also greater functional connectivity of the mPFC with insula and premotor cortex as tested with psychophysiological interaction, suggesting inhibition of areas associated with the production of facial mimicry and the processing of facial feedback. The findings suggest that the mPFC supports the inhibition of facial mimicry, and support the claim of theories of embodied cognition that facial mimicry constitutes a spontaneous low-level motor imitation.
Collapse
Affiliation(s)
- Sebastian Korb
- Department of Applied Psychology: Health, Development, Enhancement and Intervention, Faculty of Psychology, University of Vienna, Vienna, Austria.,Department of Psychology, University of Wisconsin-Madison, Madison, WI, United States
| | - Robin Goldman
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, United States
| | - Richard J Davidson
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, United States.,Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, United States
| | - Paula M Niedenthal
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
30
|
Sessa P, Schiano Lomoriello A, Luria R. Neural measures of the causal role of observers' facial mimicry on visual working memory for facial expressions. Soc Cogn Affect Neurosci 2019; 13:1281-1291. [PMID: 30365020 PMCID: PMC6277745 DOI: 10.1093/scan/nsy095] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/18/2018] [Indexed: 01/10/2023] Open
Abstract
Simulation models of facial expressions propose that sensorimotor regions may increase the clarity of facial expressions representations in extrastriate areas. We monitored the event-related potential marker of visual working memory (VWM) representations, namely the sustained posterior contralateral negativity (SPCN), also termed contralateral delay activity, while participants performed a change detection task including to-be-memorized faces with different intensities of anger. In one condition participants could freely use their facial mimicry during the encoding/VWM maintenance of the faces while in a different condition participants had their facial mimicry blocked by a gel. Notably, SPCN amplitude was reduced for faces in the blocked mimicry condition when compared to the free mimicry condition. This modulation interacted with the empathy levels of participants such that only participants with medium-high empathy scores showed such reduction of the SPCN amplitude when their mimicry was blocked. The SPCN amplitude was larger for full expressions when compared to neutral and subtle expressions, while subtle expressions elicited lower SPCN amplitudes than neutral faces. These findings provide evidence of a functional link between mimicry and VWM for faces and further shed light on how this memory system may receive feedbacks from sensorimotor regions during the processing of facial expressions.
Collapse
Affiliation(s)
- Paola Sessa
- Department of Developmental and Social Psychology, University of Padova, Padova, Italy.,Padova Neuroscience Center, University of Padova, Padova, Italy
| | | | - Roy Luria
- School of Psychological Science, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
31
|
Sato W, Kochiyama T, Uono S, Sawada R, Kubota Y, Yoshimura S, Toichi M. Widespread and lateralized social brain activity for processing dynamic facial expressions. Hum Brain Mapp 2019; 40:3753-3768. [PMID: 31090126 DOI: 10.1002/hbm.24629] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 04/28/2019] [Accepted: 05/02/2019] [Indexed: 11/07/2022] Open
Abstract
Dynamic facial expressions of emotions constitute natural and powerful means of social communication in daily life. A number of previous neuroimaging studies have explored the neural mechanisms underlying the processing of dynamic facial expressions, and indicated the activation of certain social brain regions (e.g., the amygdala) during such tasks. However, the activated brain regions were inconsistent across studies, and their laterality was rarely evaluated. To investigate these issues, we measured brain activity using functional magnetic resonance imaging in a relatively large sample (n = 51) during the observation of dynamic facial expressions of anger and happiness and their corresponding dynamic mosaic images. The observation of dynamic facial expressions, compared with dynamic mosaics, elicited stronger activity in the bilateral posterior cortices, including the inferior occipital gyri, fusiform gyri, and superior temporal sulci. The dynamic facial expressions also activated bilateral limbic regions, including the amygdalae and ventromedial prefrontal cortices, more strongly versus mosaics. In the same manner, activation was found in the right inferior frontal gyrus (IFG) and left cerebellum. Laterality analyses comparing original and flipped images revealed right hemispheric dominance in the superior temporal sulcus and IFG and left hemispheric dominance in the cerebellum. These results indicated that the neural mechanisms underlying processing of dynamic facial expressions include widespread social brain regions associated with perceptual, emotional, and motor functions, and include a clearly lateralized (right cortical and left cerebellar) network like that involved in language processing.
Collapse
Affiliation(s)
- Wataru Sato
- Kokoro Research Center, Kyoto University, Kyoto, Japan
| | | | - Shota Uono
- Department of Neurodevelopmental Psychiatry, Habilitation and Rehabilitation, Kyoto University, Kyoto, Japan
| | - Reiko Sawada
- Department of Neurodevelopmental Psychiatry, Habilitation and Rehabilitation, Kyoto University, Kyoto, Japan
| | - Yasutaka Kubota
- Health and Medical Services Center, Shiga University, Hikone, Shiga, Japan
| | - Sayaka Yoshimura
- Department of Neurodevelopmental Psychiatry, Habilitation and Rehabilitation, Kyoto University, Kyoto, Japan
| | - Motomi Toichi
- Faculty of Human Health Science, Kyoto University, Kyoto, Japan.,The Organization for Promoting Neurodevelopmental Disorder Research, Kyoto, Japan
| |
Collapse
|
32
|
Jankowiak-Siuda K, Duszyk A, Dopierała A, Bujwid K, Rymarczyk K, Grabowska A. Empathic Responses for Pain in Facial Muscles Are Modulated by Actor's Attractiveness and Gender, and Perspective Taken by Observer. Front Psychol 2019; 10:624. [PMID: 30949111 PMCID: PMC6437081 DOI: 10.3389/fpsyg.2019.00624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/06/2019] [Indexed: 12/30/2022] Open
Abstract
Although empathy for pain is an often studied phenomenon, only few studies employing electromyography (EMG) have investigated either emotional responses to the pain of others or factors that modulate these responses. The present study investigated whether the sex and attractiveness of persons experiencing pain affected muscle activity associated with empathy for pain, the corrugator supercili (CS) and orbicularis oculi (OO) muscles, in male and female participants in two conditions: adopting a perspective of “the other” or “the self.” Fifty one participants (27 females) watched movies showing situations that included the expression of pain, with female and male and more and less attractive actors under both conditions, while the CS and OO EMG were recorded. Perspective did not affect CS muscle activity, but OO muscle activity tended to be higher in women than men under the imagine-self condition. CS muscle activity, but not OO muscle activity, was modulated by the actors’ gender and attractiveness. CS muscle activity was stronger in response to the pain of less attractive than more attractive actors, and to the pain of female actors compared to male actors. Moreover, a positive correlation was found between empathic concern, as a trait, and CS muscle activity, but only in the imagine-self condition.
Collapse
Affiliation(s)
- Kamila Jankowiak-Siuda
- Faculty of Psychology, Department of Experimental Neuropsychology, Institute of Cognitive and Behavioural Neuroscience, SWPS University of Social Sciences and Humanities, Warsaw, Poland
| | - Anna Duszyk
- Faculty of Psychology, Department of Experimental Neuropsychology, Institute of Cognitive and Behavioural Neuroscience, SWPS University of Social Sciences and Humanities, Warsaw, Poland
| | - Aleksandra Dopierała
- Faculty of Psychology, Department of Experimental Neuropsychology, Institute of Cognitive and Behavioural Neuroscience, SWPS University of Social Sciences and Humanities, Warsaw, Poland
| | - Krzysztof Bujwid
- Faculty of Psychology, Department of Experimental Neuropsychology, Institute of Cognitive and Behavioural Neuroscience, SWPS University of Social Sciences and Humanities, Warsaw, Poland
| | - Krystyna Rymarczyk
- Faculty of Psychology, Department of Experimental Neuropsychology, Institute of Cognitive and Behavioural Neuroscience, SWPS University of Social Sciences and Humanities, Warsaw, Poland
| | - Anna Grabowska
- Faculty of Psychology, Department of Experimental Neuropsychology, Institute of Cognitive and Behavioural Neuroscience, SWPS University of Social Sciences and Humanities, Warsaw, Poland
| |
Collapse
|
33
|
Rymarczyk K, Żurawski Ł, Jankowiak-Siuda K, Szatkowska I. Empathy in Facial Mimicry of Fear and Disgust: Simultaneous EMG-fMRI Recordings During Observation of Static and Dynamic Facial Expressions. Front Psychol 2019; 10:701. [PMID: 30971997 PMCID: PMC6445885 DOI: 10.3389/fpsyg.2019.00701] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 03/13/2019] [Indexed: 01/18/2023] Open
Abstract
Real-life faces are dynamic by nature, particularly when expressing emotion. Increasing evidence suggests that the perception of dynamic displays enhances facial mimicry and induces activation in widespread brain structures considered to be part of the mirror neuron system, a neuronal network linked to empathy. The present study is the first to investigate the relations among facial muscle responses, brain activity, and empathy traits while participants observed static and dynamic (videos) facial expressions of fear and disgust. During display presentation, blood-oxygen level-dependent (BOLD) signal as well as muscle reactions of the corrugator supercilii and levator labii were recorded simultaneously from 46 healthy individuals (21 females). It was shown that both fear and disgust faces caused activity in the corrugator supercilii muscle, while perception of disgust produced facial activity additionally in the levator labii muscle, supporting a specific pattern of facial mimicry for these emotions. Moreover, individuals with higher, compared to individuals with lower, empathy traits showed greater activity in the corrugator supercilii and levator labii muscles; however, these responses were not differentiable between static and dynamic mode. Conversely, neuroimaging data revealed motion and emotional-related brain structures in response to dynamic rather than static stimuli among high empathy individuals. In line with this, there was a correlation between electromyography (EMG) responses and brain activity suggesting that the Mirror Neuron System, the anterior insula and the amygdala might constitute the neural correlates of automatic facial mimicry for fear and disgust. These results revealed that the dynamic property of (emotional) stimuli facilitates the emotional-related processing of facial expressions, especially among whose with high trait empathy.
Collapse
Affiliation(s)
- Krystyna Rymarczyk
- Department of Experimental Psychology, Institute of Cognitive and Behavioural Neuroscience, SWPS University of Social Sciences and Humanities, Warsaw, Poland
| | - Łukasz Żurawski
- Laboratory of Psychophysiology, Department of Neurophysiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences (PAS), Warsaw, Poland
| | - Kamila Jankowiak-Siuda
- Department of Experimental Psychology, Institute of Cognitive and Behavioural Neuroscience, SWPS University of Social Sciences and Humanities, Warsaw, Poland
| | - Iwona Szatkowska
- Laboratory of Psychophysiology, Department of Neurophysiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences (PAS), Warsaw, Poland
| |
Collapse
|
34
|
Varcin KJ, Grainger SA, Richmond JL, Bailey PE, Henry JD. A role for affectivity in rapid facial mimicry: An electromyographic study. Soc Neurosci 2019; 14:608-617. [PMID: 30669959 DOI: 10.1080/17470919.2018.1564694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Emotional expressions evoke rapid facial reactions in the perceiver that are consistent with the valence of the observed expression. We aimed to investigate whether this robust facial reaction is purely a motor matching response or instead represents underlying affective processes. Participants' (N = 60) corrugator supercilii and zygomaticus major muscle activity was quantified using facial electromyography (EMG) while they viewed three sets of images; (i) upright happy and angry facial expressions, (ii) inverted happy and angry facial expressions, and (iii) sad and happy eyes and mouth expressions. Participants displayed patterns of EMG responding that were consistent with the affective valence of the emotional expression, as opposed to merely matching the observed stimuli (i.e. a motor matching response). Using a novel methodological approach, these findings provide evidence for the contention that affective processing underlies rapid facial mimicry reactions.
Collapse
Affiliation(s)
- Kandice J Varcin
- a School of Psychology, University of New South Wales , Sydney , Australia.,b Telethon Kids Institute, University of Western Australia , Subiaco , Australia
| | - Sarah A Grainger
- c School of Psychology, University of Queensland , Brisbane , Australia
| | - Jenny L Richmond
- a School of Psychology, University of New South Wales , Sydney , Australia
| | - Phoebe E Bailey
- d School of Psychology, Western Sydney University , Sydney , Australia
| | - Julie D Henry
- c School of Psychology, University of Queensland , Brisbane , Australia
| |
Collapse
|
35
|
Problems with Facial Mimicry Might Contribute to Emotion Recognition Impairment in Parkinson's Disease. PARKINSONS DISEASE 2018; 2018:5741941. [PMID: 30534356 PMCID: PMC6252194 DOI: 10.1155/2018/5741941] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/23/2018] [Indexed: 12/17/2022]
Abstract
Difficulty with emotion recognition is increasingly being recognized as a symptom of Parkinson's disease. Most research into this area contends that progressive cognitive decline accompanying the disease is to be blamed. However, facial mimicry (i.e., the involuntary congruent activation of facial expression muscles upon viewing a particular facial expression) might also play a role and has been relatively understudied in this clinical population. In healthy participants, facial mimicry has been shown to improve recognition of observed emotions, a phenomenon described by embodied simulation theory. Due to motor disturbances, Parkinson's disease patients frequently show reduced emotional expressiveness, which translates into reduced mimicry. Therefore, it is likely that facial mimicry problems in Parkinson's disease contribute at least partly to the emotional recognition deficits that these patients experience and might greatly influence their social cognition abilities and quality of life. The present review aims to highlight the need for further inquiry into the motor mechanisms behind emotional recognition in Parkinson's disease by synthesizing behavioural, physiological, and neuroanatomical evidence.
Collapse
|
36
|
Armbruster D, Grage T, Kirschbaum C, Strobel A. Processing emotions: Effects of menstrual cycle phase and premenstrual symptoms on the startle reflex, facial EMG and heart rate. Behav Brain Res 2018; 351:178-187. [DOI: 10.1016/j.bbr.2018.05.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 12/12/2022]
|
37
|
Social Cognition through the Lens of Cognitive and Clinical Neuroscience. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4283427. [PMID: 30302338 PMCID: PMC6158937 DOI: 10.1155/2018/4283427] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/13/2018] [Indexed: 12/13/2022]
Abstract
Social cognition refers to a set of processes, ranging from perception to decision-making, underlying the ability to decode others' intentions and behaviors to plan actions fitting with social and moral, besides individual and economic considerations. Its centrality in everyday life reflects the neural complexity of social processing and the ubiquity of social cognitive deficits in different pathological conditions. Social cognitive processes can be clustered in three domains associated with (a) perceptual processing of social information such as faces and emotional expressions (social perception), (b) grasping others' cognitive or affective states (social understanding), and (c) planning behaviors taking into consideration others', in addition to one's own, goals (social decision-making). We review these domains from the lens of cognitive neuroscience, i.e., in terms of the brain areas mediating the role of such processes in the ability to make sense of others' behavior and plan socially appropriate actions. The increasing evidence on the “social brain” obtained from healthy young individuals nowadays constitutes the baseline for detecting changes in social cognitive skills associated with physiological aging or pathological conditions. In the latter case, impairments in one or more of the abovementioned domains represent a prominent concern, or even a core facet, of neurological (e.g., acquired brain injury or neurodegenerative diseases), psychiatric (e.g., schizophrenia), and developmental (e.g., autism) disorders. To pave the way for the other papers of this issue, addressing the social cognitive deficits associated with severe acquired brain injury, we will briefly discuss the available evidence on the status of social cognition in normal aging and its breakdown in neurodegenerative disorders. Although the assessment and treatment of such impairments is a relatively novel sector in neurorehabilitation, the evidence summarized here strongly suggests that the development of remediation procedures for social cognitive skills will represent a future field of translational research in clinical neuroscience.
Collapse
|
38
|
Doyle CL. Commentary: A Neurodynamic Perspective on Musical Enjoyment: The Role of Emotional Granularity. Front Psychol 2018; 9:457. [PMID: 29676404 PMCID: PMC5895939 DOI: 10.3389/fpsyg.2018.00457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/19/2018] [Indexed: 12/04/2022] Open
|