1
|
Scano A, Orrù G, Kalcev G, Tusconi M, Spada M, Atzori L, Ferreli C, Cabitza F, Primavera D, Sancassiani F. Adaptive Hyperactivity and Biomarker Exploration: Insights from Elders in the Blue Zone of Sardinia. J Clin Med 2024; 13:6451. [PMID: 39518590 PMCID: PMC11547069 DOI: 10.3390/jcm13216451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Background/Objectives: Adaptive hyperactivity characterized by increased activity levels and novelty-seeking traits without mood disorders is prevalent among older adults in Sardinia's "blue zone," an area with high longevity. This study aims to evaluate the adaptive nature of hyperactivity concerning quality of life, social rhythms, and mood symptoms in individuals from this region, particularly among elderly adults over 80. Methods: This observational cross-sectional study included adults and older adults over 80 from Sardinia's blue zone. This study included a sample of patients followed at the Center for Consultation Psychiatry and Psychosomatics for Bipolar Disorder of the University Hospital of Cagliari and a homogeneous comparison sample of patients without psychiatric pathologies, referred to the Dermatology Clinic of the same hospital, for a period of 6 months, from February to August 2024. The general sample, divided into two parts-cases, represented by patients with psychiatric pathology, and controls, patients without psychiatric pathology-was divided in turn into three sub-groups: "adults" (18-64 years), young elders (65-79), and old elders (over 80 years). The participants underwent psychiatric interviews and completed the Mood Disorder Questionnaire (MDQ), Patient Health Questionnaire (PHQ-9), SF-12, and Brief Social Rhythm Scale (BSRS). Data were compared with national and regional normative data. Results: Older adults in the blue zone demonstrated higher MDQ positivity (22.58%) compared to the national averages (0.87%), without corresponding increases in dysregulated rhythms, depressive symptoms, or reduced quality of life. Younger old persons (65-79 years) showed increased rhythm dysregulation (BSRS score: 20.64 ± 7.02) compared to adults (17.40 ± 6.09, p = 0.040), but this trend was not observed in the oldest group (80+ years). No significant differences were found in the CH3SH and (CH3)2S levels between groups. Conclusions: The hyperactivity observed in older adults from Sardinia's blue zone appears adaptive and not linked to social rhythm dysregulation, depressive symptoms, or a diminished quality of life, suggesting resilience factors which may contribute to longevity. These findings support the potential classification of such hyperactivity as beneficial rather than pathological, warranting further research into biomarkers and psychoeducational interventions to prevent the onset of bipolar disorders in predisposed individuals.
Collapse
Affiliation(s)
- Alessandra Scano
- Department of Surgical Sciences, Oral Biotechnology Laboratory (OBL), 09042 Cagliari, Italy;
| | - Germano Orrù
- Department of Surgical Sciences, Oral Biotechnology Laboratory (OBL), 09042 Cagliari, Italy;
- Azienda Ospedaliero-Universitaria di Cagliari (AOU Cagliari), 09042 Cagliari, Italy;
| | - Goce Kalcev
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Cagliari, Italy; (G.K.); (M.S.); (D.P.); (F.S.)
- The National Alliance for Neuromuscular Diseases and Neuroscience GANGLION Skopje, 1000 Skopje, North Macedonia
| | - Massimo Tusconi
- Azienda Ospedaliero-Universitaria di Cagliari (AOU Cagliari), 09042 Cagliari, Italy;
| | - Maura Spada
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Cagliari, Italy; (G.K.); (M.S.); (D.P.); (F.S.)
| | - Laura Atzori
- Dermatology Clinic, Department of Medical Sciences and Public Health, University of Cagliari, 09042 Cagliari, Italy; (L.A.); (C.F.)
| | - Caterina Ferreli
- Dermatology Clinic, Department of Medical Sciences and Public Health, University of Cagliari, 09042 Cagliari, Italy; (L.A.); (C.F.)
| | - Flavio Cabitza
- Fondazione per la Tutela dell’Identità Ogliastrina, Corso Vittorio Emanuele II, Perdasdefogu, 08046 Nuoro, Italy;
| | - Diego Primavera
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Cagliari, Italy; (G.K.); (M.S.); (D.P.); (F.S.)
| | - Federica Sancassiani
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Cagliari, Italy; (G.K.); (M.S.); (D.P.); (F.S.)
| |
Collapse
|
2
|
Lai L, Li D, Zhang Y, Hao J, Wang X, Cui X, Xiang J, Wang B. Abnormal Dynamic Reconfiguration of Multilayer Temporal Networks in Patients with Bipolar Disorder. Brain Sci 2024; 14:935. [PMID: 39335429 PMCID: PMC11430687 DOI: 10.3390/brainsci14090935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Multilayer networks have been used to identify abnormal dynamic reconfiguration in bipolar disorder (BD). However, these studies ignore the differences in information interactions between adjacent layers when constructing multilayer networks, and the analysis of dynamic reconfiguration is not comprehensive enough; Methods: Resting-state functional magnetic resonance imaging data were collected from 46 BD patients and 54 normal controls. A multilayer temporal network was constructed for each subject, and inter-layer coupling of different nodes was considered using network similarity. The promiscuity, recruitment, and integration coefficients were calculated to quantify the different dynamic reconfigurations between the two groups; Results: The global inter-layer coupling, recruitment, and integration coefficients were significantly lower in BD patients. These results were further observed in the attention network and the limbic/paralimbic and subcortical network, reflecting reduced temporal stability, intra- and inter-subnetwork communication abilities in BD patients. The whole-brain promiscuity was increased in BD patients. The same results were observed in the somatosensory/motor and auditory network, reflecting more functional interactions; Conclusions: This study discovered abnormal dynamic interactions of BD from the perspective of dynamic reconfiguration, which can help to understand the pathological mechanisms of BD.
Collapse
Affiliation(s)
- Luyao Lai
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China
| | - Dandan Li
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China
| | - Yating Zhang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China
| | - Jianchao Hao
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China
| | - Xuedong Wang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiaohong Cui
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China
| | - Jie Xiang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China
| | - Bin Wang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
3
|
Lapa JDS, Duarte JFS, Campos ACP, Davidson B, Nestor SM, Rabin JS, Giacobbe P, Lipsman N, Hamani C. Adverse Effects of Deep Brain Stimulation for Treatment-Resistant Depression: A Scoping Review. Neurosurgery 2024; 95:509-516. [PMID: 38511957 DOI: 10.1227/neu.0000000000002910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/24/2024] [Indexed: 03/22/2024] Open
Abstract
Deep brain stimulation (DBS) is an emerging therapy for treatment-resistant depression (TRD). Although adverse effects have been reported in early-phase and a few randomized clinical trials, little is known about its overall safety profile, which has been assumed to be similar to that of DBS for movement disorders. The objective of this study was to pool existing safety data on DBS for TRD. Following PRISMA guidelines, PubMed was searched for English articles describing adverse outcomes after DBS for TRD. Studies were included if they reported at least 5 patients with a minimal follow-up of 6 months. After abstract (n = 607) and full-article review (n = 127), 28 articles reporting on 353 patients met criteria for final inclusion. Follow-up of the studies retrieved ranged from 12 to 96 months. Hemorrhages occurred in 0.8% of patients and infections in 10.2%. The rate of completed suicide was 2.5%. Development or worsening of depressive symptoms, anxiety, and mania occurred in 18.4%, 9.1%, and 5.1%, respectively. There were some differences between targets, but between-study heterogeneity precluded statistical comparisons. In conclusion, DBS for TRD is associated with surgical and psychiatric adverse events. Hemorrhage and infection occur at rates within an accepted range for other DBS applications. The risk of suicide after DBS for TRD is 2.5% but may not represent a significant deviation from the natural history of TRD. Finally, risks of worsening depression, anxiety, and the incidence of mania should be acknowledged when considering DBS for TRD.
Collapse
Affiliation(s)
- Jorge D S Lapa
- Department of Medicine, Federal University of Sergipe, Aracaju , Sergipe , Brazil
- Department Neurosurgery, Hospital de Cirurgia, Aracaju , Sergipe , Brazil
| | - Joel F S Duarte
- Department Neurosurgery, Neurological Institute of Curitiba, Curitiba , Brazil
| | | | - Benjamin Davidson
- Sunnybrook Research Institute, Toronto , Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto , Canada
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto , Canada
| | - Sean M Nestor
- Sunnybrook Research Institute, Toronto , Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto , Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto , Canada
| | - Jennifer S Rabin
- Sunnybrook Research Institute, Toronto , Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto , Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto , Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto , Canada
| | - Peter Giacobbe
- Sunnybrook Research Institute, Toronto , Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto , Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto , Canada
| | - Nir Lipsman
- Sunnybrook Research Institute, Toronto , Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto , Canada
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto , Canada
| | - Clement Hamani
- Sunnybrook Research Institute, Toronto , Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto , Canada
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto , Canada
| |
Collapse
|
4
|
Wei W, Cheng B, Yang X, Chu X, He D, Qin X, Zhang N, Zhao Y, Shi S, Cai Q, Hui J, Wen Y, Liu H, Jia Y, Zhang F. Single-cell multiomics analysis reveals cell/tissue-specific associations in bipolar disorder. Transl Psychiatry 2024; 14:323. [PMID: 39107272 PMCID: PMC11303399 DOI: 10.1038/s41398-024-03044-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024] Open
Abstract
This study investigates the cellular origin and tissue heterogeneity in bipolar disorder (BD) by integrating multiomics data. Four distinct datasets were employed, including single-cell RNA sequencing (scRNA-seq) data (embryonic and fetal brain, n = 8, 1,266 cells), BD Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) data (adult brain, n = 210), BD bulk RNA-seq data (adult brain, n = 314), and BD genome-wide association study (GWAS) summary data (n = 413,466). The integration of scRNA-seq data with multiomics data relevant to BD was accomplished using the single-cell disease relevance score (scDRS) algorithm. We have identified a novel brain cell cluster named ADCY1, which exhibits distinct genetic characteristics. From a high-resolution genetic perspective, glial cells emerge as the primary cytopathology associated with BD. Specifically, astrocytes were significantly related to BD at the RNA-seq level, while microglia showed a strong association with BD across multiple panels, including the transcriptome-wide association study (TWAS), ATAC-seq, and RNA-seq. Additionally, oligodendrocyte precursor cells displayed a significant association with BD in both ATAC-seq and RNA-seq panel. Notably, our investigation of brain regions affected by BD revealed significant associations between BD and all three types of glial cells in the dorsolateral prefrontal cortex (DLPFC). Through comprehensive analyses, we identified several BD-associated genes, including CRMP1, SYT4, UCHL1, and ZBTB18. In conclusion, our findings suggest that glial cells, particularly in specific brain regions such as the DLPFC, may play a significant role in the pathogenesis of BD. The integration of multiomics data has provided valuable insights into the etiology of BD, shedding light on potential mechanisms underlying this complex psychiatric disorder.
Collapse
Affiliation(s)
- Wenming Wei
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoge Chu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Dan He
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyue Qin
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Na Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yijing Zhao
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Sirong Shi
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Qingqing Cai
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jingni Hui
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Huan Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
5
|
Zafrilla-López M, Acosta-Díez M, Mitjans M, Giménez-Palomo A, Saiz PA, Barrot-Feixat C, Jiménez E, Papiol S, Ruiz V, Gavín P, García-Portilla MP, González-Blanco L, Bobes J, Schulze TG, Vieta E, Benabarre A, Arias B. Lithium response in bipolar disorder: Epigenome-wide DNA methylation signatures and epigenetic aging. Eur Neuropsychopharmacol 2024; 85:23-31. [PMID: 38669938 DOI: 10.1016/j.euroneuro.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024]
Abstract
Lithium (Li) is the first-line treatment for bipolar disorder (BD) even though only 30 % of BD patients are considered excellent responders. The mechanisms by which Li exerts its action are not clearly understood, but it has been suggested that specific epigenetic mechanisms, such as methylation processes, may play a role. In this regard, DNA methylation patterns can be used to estimate epigenetic age (EpiAge), which is accelerated in BD patients and reversed by Li treatment. Our first aim was to compare the DNA methylation profile in peripheral blood between BD patients categorized as excellent responders to Li (Ex-Rp) and non-responders (N-Rp). Secondly, EpiAge was estimated to detect differential age acceleration between the two groups. A total of 130 differentially methylated positions (DMPs) and 16 differentially methylated regions (DMRs) between Ex-Rp (n = 26) and N-Rp (n = 37) were identified (FDR adjusted p-value < 0.05). We found 122 genes mapping the DMPs and DMRs, nine of which (HOXB6, HOXB3, HOXB-AS3, TENM2, CACNA1B, ANK3, EEF2K, CYP1A1, and SORCS2) had previously been linked to Li response. We found genes related to the GSK3β pathway to be highly represented. Using FUMA, we found enrichment in Gene Ontology Cell Component for the synapse. Gene network analysis highlighted functions related to the cell cycle, nervous system development and function, and gene expression. No significant differences in age acceleration were found between Ex-Rp and N-Rp for any of the epigenetic clocks analysed. Our findings indicate that a specific methylation pattern could determine the response to Li in BD patients. We also found that a significant portion of the differentially methylated genes are closely associated with the GSK3β pathway, reinforcing the role of this system in Li response. Future longitudinal studies with larger samples will help to elucidate the epigenetic mechanisms underlying Li response.
Collapse
Affiliation(s)
- Marina Zafrilla-López
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Miriam Acosta-Díez
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Marina Mitjans
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Spain; CIBER de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Spain.
| | - Anna Giménez-Palomo
- Bipolar and Depressive Disorders Unit, Psychiatry and Psychology Service, Clinical Institute of Neuroscience, Hospital Clinic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
| | - Pilar A Saiz
- Department of Psychiatry, Servicio de Salud del Principado de Asturias (SESPA), School of Medicine, University of Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain; CIBER de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Ester Jiménez
- Bipolar and Depressive Disorders Unit, Psychiatry and Psychology Service, Clinical Institute of Neuroscience, Hospital Clinic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain; Institut de Neurociències, Department of Medicine, University of Barcelona, Barcelona, Spain; CIBER de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Sergi Papiol
- CIBER de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany; Max Planck Institute of Psychiatry, Munich, Germany
| | - Victoria Ruiz
- Bipolar and Depressive Disorders Unit, Psychiatry and Psychology Service, Clinical Institute of Neuroscience, Hospital Clinic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
| | - Patrícia Gavín
- Bipolar and Depressive Disorders Unit, Psychiatry and Psychology Service, Clinical Institute of Neuroscience, Hospital Clinic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
| | - María Paz García-Portilla
- Department of Psychiatry, Servicio de Salud del Principado de Asturias (SESPA), School of Medicine, University of Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain; CIBER de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Leticia González-Blanco
- Department of Psychiatry, Servicio de Salud del Principado de Asturias (SESPA), School of Medicine, University of Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain; CIBER de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Julio Bobes
- Department of Psychiatry, Servicio de Salud del Principado de Asturias (SESPA), School of Medicine, University of Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain; CIBER de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Thomas G Schulze
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany; Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eduard Vieta
- Bipolar and Depressive Disorders Unit, Psychiatry and Psychology Service, Clinical Institute of Neuroscience, Hospital Clinic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain; Institut de Neurociències, Department of Medicine, University of Barcelona, Barcelona, Spain; CIBER de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Antoni Benabarre
- Bipolar and Depressive Disorders Unit, Psychiatry and Psychology Service, Clinical Institute of Neuroscience, Hospital Clinic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain; Institut de Neurociències, Department of Medicine, University of Barcelona, Barcelona, Spain; CIBER de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Bárbara Arias
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Spain; CIBER de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
6
|
Sun M, Chen WM, Wu SY, Zhang J. Risk of Pediatric Bipolar Disorder After General Anesthesia in Infants and Toddlers: A Propensity Score-Matched Population-Based Cohort Study. Schizophr Bull 2024; 50:784-791. [PMID: 38641553 PMCID: PMC11283187 DOI: 10.1093/schbul/sbae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
BACKGROUND AND HYPOTHESIS The potential role of anesthesia as an independent risk factor for childhood bipolar disorder (BD) remains unclear. To address this, we conducted a population-based cohort study employing propensity score matching to compare BD incidence between pediatric patients undergoing surgery with and without general anesthesia. STUDY DESIGN Our study included patients aged 0-3 years who received at least 1 episode of general anesthesia and were hospitalized for over 1 day in Taiwan between January 2004 and December 2014. They were matched 1:1 with a population not receiving general anesthesia to assess pediatric BD incidence. STUDY RESULTS The study cohort comprised 15 070 patients, equally distributed between the general anesthesia and nongeneral anesthesia groups (7535 each). Multivariate Cox regression analysis revealed adjusted hazard ratios (aHRs; 95% CIs) for pediatric BD in the general anesthesia group as 1.26 (1.04-1.54; P = .021) compared to the nongeneral anesthesia group. Moreover, the incidence rate ratio (95% CI) for the general anesthesia group was 1.26 (1.03-1.53) compared to the nongeneral anesthesia group. CONCLUSIONS Early childhood exposure to general anesthesia is significantly associated with an increased risk of pediatric BD. This expands understanding of pediatric BD's complex development, informing preventive strategies, and enhancing mental health outcomes for vulnerable young patients and global pediatric healthcare.
Collapse
Affiliation(s)
- Mingyang Sun
- Department of Anesthesiology and Perioperative Medicine, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
| | - Wan-Ming Chen
- Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, Taipei, Taiwan
- Artificial Intelligence Development Center, Fu Jen Catholic University, Taipei, Taiwan
| | - Szu-Yuan Wu
- Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, Taipei, Taiwan
- Artificial Intelligence Development Center, Fu Jen Catholic University, Taipei, Taiwan
- Center for Regional Anesthesia and Pain Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Food Nutrition and Health Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
- Big Data Center, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan
- Division of Radiation Oncology, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Jiaqiang Zhang
- Department of Anesthesiology and Perioperative Medicine, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
| |
Collapse
|
7
|
Li J, Hu R, Luo H, Guo Y, Zhang Z, Luo Q, Xia P. Associations between dietary habits and bipolar disorder: a diet-wide mendelian randomization study. Front Psychiatry 2024; 15:1388316. [PMID: 38800064 PMCID: PMC11116565 DOI: 10.3389/fpsyt.2024.1388316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Background Diet/nutrition is critically important in the pathogenesis, progression, and treatment outcomes of various mental disorders. Current research predominantly focuses on the role of diet in the development and treatment of depression, with less attention given to the relationship between diet and Bipolar Disorder (BD). Method We employed Mendelian Randomization (MR) to investigate the relationship between 28 dietary habits and BD. An analysis was conducted using publicly available genome-wide association study data from the UK Biobank dataset. Various dietary habits were analyzed as exposures with BD as the outcome, mainly using the Inverse Variance Weighted (IVW) method. Results Intake of non-oily fish and sponge pudding both have a positive association with BD. Oily fish, dried fruit, apples, salt, and cooked vegetables intake also appeared potentially risky for BD, although the possibility of false positives cannot be ruled out. Sensitivity analysis further confirmed the robustness of these findings. Conclusion Our research provides evidence of a relationship between various dietary habits and BD. It underscores the need for careful dietary management and balance to reduce the risk of BD, suggesting caution with dietary preferences for fish and sponge pudding. Furthermore, more detailed studies are needed to further understand the potential impacts of high-sugar and high-protein diets on BD development.
Collapse
Affiliation(s)
- Junyao Li
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Renqin Hu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huirong Luo
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yanwei Guo
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zheng Zhang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qinghua Luo
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Pingyou Xia
- Yongchuan District Mental Health Center, Chongqing, China
| |
Collapse
|
8
|
Zhang L, Ding Y, Li T, Li H, Liu F, Li P, Zhao J, Lv D, Lang B, Guo W. Similar imaging changes and their relations to genetic profiles in bipolar disorder across different clinical stages. Psychiatry Res 2024; 335:115868. [PMID: 38554494 DOI: 10.1016/j.psychres.2024.115868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 04/01/2024]
Abstract
Bipolar disorder (BD) across different clinical stages may present shared and distinct changes in brain activity. We aimed to reveal the neuroimaging homogeneity and heterogeneity of BD and its relationship with clinical variables and genetic variations. In present study, we conducted fractional amplitude of low-frequency fluctuations (fALFF), functional connectivity (FC) and genetic neuroimaging association analyses with 32 depressed, 26 manic, 35 euthymic BD patients and 87 healthy controls (HCs). Significant differences were found in the bilateral pre/subgenual anterior cingulate cortex (ACC) across the four groups, and all bipolar patients exhibited decreased fALFF values in the ACC when compared to HCs. Furthermore, positive associations were significantly observed between fALFF values in the pre/subgenual ACC and participants' cognitive functioning. No significant changes were found in ACC-based FC. We identified fALFF-alteration-related genes in BD, with enrichment in biological progress including synaptic and ion transmission. Taken together, abnormal activity in ACC is a characteristic change associated with BD, regardless of specific mood stages, serving as a potential neuroimaging feature in BD patients. Our genetic neuroimaging association analysis highlights possible heterogeneity in biological processes that could be responsible for different clinical stages in BD.
Collapse
Affiliation(s)
- Leyi Zhang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yudan Ding
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Tingting Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Jingping Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Dongsheng Lv
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Center of Mental Health, Inner Mongolia Autonomous Region, Hohhot 010010, China.
| | - Bing Lang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
9
|
Ou AH, Rosenthal SB, Adli M, Akiyama K, Akula N, Alda M, Amare AT, Ardau R, Arias B, Aubry JM, Backlund L, Bauer M, Baune BT, Bellivier F, Benabarre A, Bengesser S, Bhattacharjee AK, Biernacka JM, Cervantes P, Chen GB, Chen HC, Chillotti C, Cichon S, Clark SR, Colom F, Cousins DA, Cruceanu C, Czerski PM, Dantas CR, Dayer A, Del Zompo M, Degenhardt F, DePaulo JR, Étain B, Falkai P, Fellendorf FT, Ferensztajn-Rochowiak E, Forstner AJ, Frisén L, Frye MA, Fullerton JM, Gard S, Garnham JS, Goes FS, Grigoroiu-Serbanescu M, Grof P, Gruber O, Hashimoto R, Hauser J, Heilbronner U, Herms S, Hoffmann P, Hofmann A, Hou L, Jamain S, Jiménez E, Kahn JP, Kassem L, Kato T, Kittel-Schneider S, König B, Kuo PH, Kusumi I, Lackner N, Laje G, Landén M, Lavebratt C, Leboyer M, Leckband SG, Jaramillo CAL, MacQueen G, Maj M, Manchia M, Marie-Claire C, Martinsson L, Mattheisen M, McCarthy MJ, McElroy SL, McMahon FJ, Mitchell PB, Mitjans M, Mondimore FM, Monteleone P, Nievergelt CM, Nöthen MM, Novák T, Ösby U, Ozaki N, Papiol S, Perlis RH, Pisanu C, Potash JB, Pfennig A, Reich-Erkelenz D, Reif A, Reininghaus EZ, Rietschel M, Rouleau GA, Rybakowski JK, Schalling M, Schofield PR, Schubert KO, Schulze TG, Schweizer BW, Seemüller F, Severino G, Shekhtman T, Shilling PD, Shimoda K, Simhandl C, Slaney CM, Squassina A, Stamm T, Stopkova P, Tighe SK, Tortorella A, Turecki G, Vieta E, Volkert J, Witt S, Wray NR, Wright A, Young LT, Zandi PP, Kelsoe JR. Lithium response in bipolar disorder is associated with focal adhesion and PI3K-Akt networks: a multi-omics replication study. Transl Psychiatry 2024; 14:109. [PMID: 38395906 PMCID: PMC10891068 DOI: 10.1038/s41398-024-02811-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/06/2023] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Lithium is the gold standard treatment for bipolar disorder (BD). However, its mechanism of action is incompletely understood, and prediction of treatment outcomes is limited. In our previous multi-omics study of the Pharmacogenomics of Bipolar Disorder (PGBD) sample combining transcriptomic and genomic data, we found that focal adhesion, the extracellular matrix (ECM), and PI3K-Akt signaling networks were associated with response to lithium. In this study, we replicated the results of our previous study using network propagation methods in a genome-wide association study of an independent sample of 2039 patients from the International Consortium on Lithium Genetics (ConLiGen) study. We identified functional enrichment in focal adhesion and PI3K-Akt pathways, but we did not find an association with the ECM pathway. Our results suggest that deficits in the neuronal growth cone and PI3K-Akt signaling, but not in ECM proteins, may influence response to lithium in BD.
Collapse
Affiliation(s)
- Anna H Ou
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Sara B Rosenthal
- Center for Computational Biology and Bioinformatics, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Mazda Adli
- Department of Psychiatry and Psychotherapy, Charité- Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
- Fliedner Klinik Berlin, Center for Psychiatry, Psychotherapy and Psychosomatic Medicine, Berlin, Germany
| | - Kazufumi Akiyama
- Department of Biological Psychiatry and Neuroscience, Dokkyo Medical University School of Medicine, Mibu, Japan
| | - Nirmala Akula
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, US Department of Health & Human Services, Bethesda, MD, USA
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
- National Institute of Mental Health, Klecany, Czech Republic
| | - Azmeraw T Amare
- Discipline of Psychiatry, University of Adelaide, Adelaide, SA, Australia
| | - Raffaella Ardau
- Unit of Clinical Pharmacology, Hospital University Agency of Cagliari, Cagliari, Italy
| | - Bárbara Arias
- Department of Evolutive Biology, Ecology and Environmental Sciences, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
- CIBER de Salud Mental, ISCIII, Madrid, Barcelona, Catalonia, Spain
| | - Jean-Michel Aubry
- Department of Mental Health and Psychiatry, Mood Disorders Unit-Geneva University Hospitals, Geneva, Switzerland
| | - Lena Backlund
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Michael Bauer
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Bernhard T Baune
- Discipline of Psychiatry, University of Adelaide, Adelaide, SA, Australia
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Frank Bellivier
- INSERM UMR-S 1144-Université Paris Cité Département de Psychiatrie et de Médecine Addictologique, AP-HP, Groupe Hospitalier Lariboisière-F Widal, Paris, France
| | - Antonio Benabarre
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, ISCIII, Barcelona, Catalonia, Spain
| | - Susanne Bengesser
- Neurobiological Background and Anthropometrics in Bipolar Affective Disorder, Division of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | | | - Joanna M Biernacka
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Pablo Cervantes
- The Neuromodulation Unit, McGill University Health Centre, Montreal, QC, Canada
| | - Guo-Bo Chen
- The Neuromodulation Unit, McGill University Health Centre, Montreal, QC, Canada
| | - Hsi-Chung Chen
- Department of Psychiatry & Center of Sleep Disorders, National Taiwan University Hospital, Taipei, Taiwan
| | - Caterina Chillotti
- Unit of Clinical Pharmacology, Hospital University Agency of Cagliari, Cagliari, Italy
| | - Sven Cichon
- Institute of Human Genetics, University of Bonn and Department of Genomics, Life & Brain Center, Bonn, Germany
- Human Genomics Research Group, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Scott R Clark
- Discipline of Psychiatry, University of Adelaide, Adelaide, SA, Australia
| | - Francesc Colom
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, ISCIII, Barcelona, Catalonia, Spain
| | - David A Cousins
- Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Cristiana Cruceanu
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Piotr M Czerski
- Psychiatric Genetic Unit, Poznan University of Medical Sciences, Poznan, Poland
| | - Clarissa R Dantas
- Department of Psychiatry, University of Campinas (Unicamp), Campinas, Brazil
| | - Alexandre Dayer
- Department of Mental Health and Psychiatry, Mood Disorders Unit-Geneva University Hospitals, Geneva, Switzerland
| | - Maria Del Zompo
- Unit of Clinical Pharmacology, Hospital University Agency of Cagliari, Cagliari, Italy
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Franziska Degenhardt
- Institute of Human Genetics, University of Bonn and Department of Genomics, Life & Brain Center, Bonn, Germany
| | - J Raymond DePaulo
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Bruno Étain
- INSERM UMR-S 1144-Université Paris Cité Département de Psychiatrie et de Médecine Addictologique, AP-HP, Groupe Hospitalier Lariboisière-F Widal, Paris, France
| | - Peter Falkai
- Institute of Psychiatric Phenomics and Genomics (IPPG) and Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Frederike Tabea Fellendorf
- Neurobiological Background and Anthropometrics in Bipolar Affective Disorder, Division of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | | | - Andreas J Forstner
- Institute of Human Genetics, University of Bonn and Department of Genomics, Life & Brain Center, Bonn, Germany
| | - Louise Frisén
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
- Child and Adolescent Psychiatry Research Center, Stockholm, Sweden
| | - Mark A Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Janice M Fullerton
- Mental Illness Research Theme, Neuroscience Research Australia, Sydney, NSW, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Sébastien Gard
- Pôle de Psychiatrie Générale Universitaire, Centre Hospitalier Charles Perrens, Bordeaux, France
| | - Julie S Garnham
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Fernando S Goes
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Maria Grigoroiu-Serbanescu
- Biometric Psychiatric Genetics Research Unit, Alexandru Obregia Psychiatric Hospital, Bucharest, Romania
| | - Paul Grof
- Mood Disorders Center of Ottawa, Ottawa, ON, Canada
| | - Oliver Gruber
- Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August University Göttingen, Göttingen, Germany
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Joanna Hauser
- Psychiatric Genetic Unit, Poznan University of Medical Sciences, Poznan, Poland
| | - Urs Heilbronner
- Institute of Psychiatric Phenomics and Genomics (IPPG) and Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Stefan Herms
- Institute of Human Genetics, University of Bonn and Department of Genomics, Life & Brain Center, Bonn, Germany
- Human Genomics Research Group, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn and Department of Genomics, Life & Brain Center, Bonn, Germany
- Human Genomics Research Group, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Andrea Hofmann
- Institute of Human Genetics, University of Bonn and Department of Genomics, Life & Brain Center, Bonn, Germany
| | - Liping Hou
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, US Department of Health & Human Services, Bethesda, MD, USA
| | | | - Esther Jiménez
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, ISCIII, Barcelona, Catalonia, Spain
| | - Jean-Pierre Kahn
- Service de Psychiatrie et Psychologie Clinique, Centre Psychothérapique de Nancy-Laxou-Université de Lorraine, Nancy, France
| | - Layla Kassem
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, US Department of Health & Human Services, Bethesda, MD, USA
| | - Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Saitama, Japan
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt-Goethe University, Frankfurt am Main, Germany
| | - Barbara König
- Department of Psychiatry and Psychotherapeutic Medicine, Landesklinikum Neunkirchen, Neunkirchen, Austria
| | - Po-Hsiu Kuo
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Ichiro Kusumi
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Nina Lackner
- Neurobiological Background and Anthropometrics in Bipolar Affective Disorder, Division of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Gonzalo Laje
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, US Department of Health & Human Services, Bethesda, MD, USA
| | - Mikael Landén
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the Gothenburg University, Gothenburg, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Catharina Lavebratt
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Marion Leboyer
- Assistance Publique-Hôpitaux de Paris, Hôpital Albert Chenevier-Henri Mondor, Pôle de Psychiatrie, Créteil, France
| | - Susan G Leckband
- Department of Pharmacy, VA San Diego Healthcare System, La Jolla, CA, USA
| | | | - Glenda MacQueen
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Mario Maj
- Department of Psychiatry, University of Naples SUN, Naples, Italy
| | - Mirko Manchia
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Cynthia Marie-Claire
- INSERM UMR-S 1144-Université Paris Cité Département de Psychiatrie et de Médecine Addictologique, AP-HP, Groupe Hospitalier Lariboisière-F Widal, Paris, France
| | - Lina Martinsson
- Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
| | | | - Michael J McCarthy
- Department of Psychiatry, VA San Diego Healthcare System, La Jolla, CA, USA
| | - Susan L McElroy
- Department of Psychiatry, Lindner Center of Hope, University of Cincinnati, Mason, OH, USA
| | - Francis J McMahon
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, US Department of Health & Human Services, Bethesda, MD, USA
| | - Philip B Mitchell
- School of Psychiatry, University of New South Wales, and Black Dog Institute, Sydney, NSW, Australia
| | - Marina Mitjans
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, CIBER de Salud Mental, ISCIII, Madrid, Spain
| | - Francis M Mondimore
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Palmiero Monteleone
- Neurosciences Section, Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | | | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn and Department of Genomics, Life & Brain Center, Bonn, Germany
| | - Tomas Novák
- National Institute of Mental Health, Klecany, Czech Republic
| | - Urban Ösby
- Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sergi Papiol
- Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Roy H Perlis
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Claudia Pisanu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - James B Potash
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Andrea Pfennig
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Daniela Reich-Erkelenz
- Institute of Psychiatric Phenomics and Genomics (IPPG) and Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt-Goethe University, Frankfurt am Main, Germany
| | - Eva Z Reininghaus
- Neurobiological Background and Anthropometrics in Bipolar Affective Disorder, Division of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Guy A Rouleau
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Janusz K Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - Martin Schalling
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Peter R Schofield
- Mental Illness Research Theme, Neuroscience Research Australia, Sydney, NSW, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - K Oliver Schubert
- Discipline of Psychiatry, University of Adelaide, Adelaide, SA, Australia
| | - Thomas G Schulze
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, US Department of Health & Human Services, Bethesda, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
- Institute of Psychiatric Phenomics and Genomics (IPPG) and Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University of Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August University Göttingen, Göttingen, Germany
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Barbara W Schweizer
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Florian Seemüller
- Institute of Psychiatric Phenomics and Genomics (IPPG) and Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Giovanni Severino
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Tatyana Shekhtman
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Administration, San Diego Healthcare System, San Diego, CA, USA
| | - Paul D Shilling
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Kazutaka Shimoda
- Department of Psychiatry, Dokkyo Medical University School of Medicine, Mibu, Japan
| | | | - Claire M Slaney
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Alessio Squassina
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Thomas Stamm
- Department of Psychiatry and Psychotherapy, Charité- Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Pavla Stopkova
- National Institute of Mental Health, Klecany, Czech Republic
| | - Sarah K Tighe
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
- University of Iowa Carver College of Medicine and University of Iowa College of Public Health, VA Quality Scholars Program, Iowa City VA Hospital, Iowa City, IA, USA
| | | | - Gustavo Turecki
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Eduard Vieta
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, ISCIII, Barcelona, Catalonia, Spain
| | - Julia Volkert
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt-Goethe University, Frankfurt am Main, Germany
| | - Stephanie Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Naomi R Wray
- The University of Queensland, Queensland Brain Institute, Brisbane, QLD, Australia
| | - Adam Wright
- School of Psychiatry, University of New South Wales, and Black Dog Institute, Sydney, NSW, Australia
| | - L Trevor Young
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Peter P Zandi
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - John R Kelsoe
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
- Veterans Administration, San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
10
|
Cutler AJ, Laliberté F, Germain G, MacKnight SD, Boudreau J, Wade SW, Parikh M. Healthcare resource utilization and costs associated with first versus subsequent use of cariprazine for bipolar I disorder. J Med Econ 2024; 27:1472-1484. [PMID: 39531329 DOI: 10.1080/13696998.2024.2419721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
AIMS To evaluate the healthcare resource utilization (HRU) and costs of patients who initiated cariprazine as their first versus subsequent atypical antipsychotic (AA) following a bipolar I disorder (BP-I) diagnosis. METHODS Adults with a BP-I diagnosis (first claim = index), commercial, Medicare Supplemental, or Medicaid insurance, and ≥1 outpatient cariprazine dispensing were identified from Merative MarketScan database. Cohorts included patients who initiated cariprazine as either their first or subsequent AA after initial BP-I diagnosis. Characteristics were balanced between cohorts using inverse probability of treatment weighting (IPTW). Outcomes evaluated post-index included all-cause and mental health (MH)-related HRU (hospitalizations, emergency department [ED] visits, outpatient visits), total healthcare costs (medical + pharmacy), and treatment patterns. HRU and healthcare costs were reported per patient-year (PPY) and compared between cohorts using rate ratios and 95% CIs estimated using nonparametric bootstrap procedures. Treatment patterns were analyzed descriptively, with standardized differences ≥10% considered important. RESULTS After IPTW, cohorts included 1,409 patients who initiated cariprazine first and 1,621 patients who initiated cariprazine subsequently; the average (standard deviation, SD) observation period was 678 (373) and 758 (389) days for first and subsequent initiators, respectively. Patients who initiated cariprazine first had 23% fewer all-cause hospitalizations and 28% fewer MH-related hospitalizations PPY (each comparison, p < 0.001). Rates of all-cause and MH-related outpatient visits were significantly lower in patients who initiated cariprazine first versus subsequently (each comparison, p < 0.001), while rates of ED visits were similar. Relative to subsequent initiators, first initiators incurred $2,587 and $2,130 lower all-cause and MH-related total healthcare costs PPY, respectively (each comparison, p < 0.05). Before starting cariprazine, first initiators used fewer BP-I-related medications on average than subsequent initiators (2.6 vs 3.9; standardized difference = 23.9%). LIMITATIONS Potential coding inaccuracies and residual confounding. CONCLUSIONS In this real-world database analysis, patients with BP-I who initiated cariprazine as their first AA had lower rates of HRU and incurred lower costs than patients who initiated cariprazine as a subsequent AA.
Collapse
Affiliation(s)
- Andrew J Cutler
- Department of Psychiatry, SUNY Upstate Medical University, Lakewood Ranch, FL, USA
| | | | | | | | | | - Sally W Wade
- Wade Outcomes Research and Consulting, Salt Lake City, UT, USA
| | - Mousam Parikh
- Health Economics and Outcomes Research, AbbVie, Florham Park, NJ, USA
| |
Collapse
|
11
|
Kelsoe J, Ou A, Rosenthal S, Adli M, Akiyama K, Akula N, Alda M, Amare AT, Ardau R, Arias B, Aubry JM, Backlund L, Banzato C, Bauer M, Baune B, Bellivier F, Benabarre A, Bengesser S, Abesh B, Biernacka J, Bui E, Cervantes P, Chen GB, Chen HC, Chillotti C, Cichon S, Clark S, Colom F, Cousins D, Cruceanu C, Czerski P, Dantas C, Dayer A, Degenhardt F, DePaulo JR, Etain B, Falkai P, Fellendorf F, Ferensztajn-Rochowiak E, Forstner AJ, Frisen L, Frye M, Fullerton J, Gard S, Garnham J, Goes F, Grigoroiu-Serbanescu M, Grof P, Gruber O, Hashimoto R, Hauser J, Heilbronner U, Herms S, Hoffmann P, Hofmann A, Hou L, Jamain S, Jiménez E, Kahn JP, Kassem L, Kato T, Kittel-Schneider S, König B, Kuo PH, Kusumi I, Dalkner N, Laje G, Landén M, Lavebratt C, Leboyer M, Leckband S, Jaramillo CL, MacQueen G, Maj M, Manchia M, Marie-Claire C, Martinsson L, Mattheisen M, McCarthy M, McElroy S, McMahon F, Mitchell P, Mitjans M, Mondimore F, Monteleone P, Nievergelt C, Nöthen M, Novak T, Osby U, Ozaki N, Papiol S, Perlis R, Pfennig A, Potash J, Reich-Erkelenz D, Reif A, Reininghaus E, Rietschel M, Rouleau G, Rybakowski JK, Schalling M, Schofield P, Schubert KO, Schulze T, Schweizer B, Seemüller F, Severino G, Shekhtman T, Shilling P, Shimoda K, Simhandl C, Slaney C, Squassina A, Stamm T, Stopkova P, Tighe S, Tortorella A, Turecki G, Vieta E, Volkert J, Witt S, Wray N, Wright A, Young T, Zandi P, Zompo MD. Lithium Response in Bipolar Disorder is Associated with Focal Adhesion and PI3K-Akt Networks: A Multi-omics Replication Study. RESEARCH SQUARE 2023:rs.3.rs-3258813. [PMID: 37886563 PMCID: PMC10602152 DOI: 10.21203/rs.3.rs-3258813/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Lithium is the gold standard treatment for bipolar disorder (BD). However, its mechanism of action is incompletely understood, and prediction of treatment outcomes is limited. In our previous multi-omics study of the Pharmacogenomics of Bipolar Disorder (PGBD) sample combining transcriptomic and genomic data, we found that focal adhesion, the extracellular matrix (ECM), and PI3K-Akt signaling networks were associated with response to lithium. In this study, we replicated the results of our previous study using network propagation methods in a genome-wide association study of an independent sample of 2,039 patients from the International Consortium on Lithium Genetics (ConLiGen) study. We identified functional enrichment in focal adhesion and PI3K-Akt pathways, but we did not find an association with the ECM pathway. Our results suggest that deficits in the neuronal growth cone and PI3K-Akt signaling, but not in ECM proteins, may influence response to lithium in BD.
Collapse
Affiliation(s)
| | - Anna Ou
- University of California San Diego
| | | | | | - Kazufumi Akiyama
- Department of Biological Psychiatry and Neuroscience, Dokkyo Medical University
| | - Nirmala Akula
- National Institutes of Health, US Dept of Health & Human Services
| | | | | | | | - Bárbara Arias
- Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, CIBERSAM
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Hsi-Chung Chen
- 3Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan 4Department of Psychiatry, Center of Sleep Disorders, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Urs Heilbronner
- Institute of Psychiatric Phenomics and Genomics, University Hospital, LMU Munich
| | | | | | | | - Liping Hou
- National Institute of Mental Health Intramural Research Program, National Institutes of Health
| | | | | | | | | | | | | | | | - Po-Hsiu Kuo
- College of Public Health, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Francis McMahon
- National Institute of Mental Health Intramural Research Program; National Institutes of Health
| | | | - Marina Mitjans
- Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | | | | | | | | | - Tomas Novak
- National Institute of Mental Health, Klecany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Thomas Stamm
- Charité - Universitätsmedizin Berlin, Campus Charité Mitte
| | | | | | | | - Gustavo Turecki
- Douglas Institute, Department of Psychiatry, McGill University
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kong L, Guo X, Shen Y, Xu L, Huang H, Lu J, Hu S. Pushing the Frontiers: Optogenetics for Illuminating the Neural Pathophysiology of Bipolar Disorder. Int J Biol Sci 2023; 19:4539-4551. [PMID: 37781027 PMCID: PMC10535711 DOI: 10.7150/ijbs.84923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/20/2023] [Indexed: 10/03/2023] Open
Abstract
Bipolar disorder (BD), a disabling mental disorder, is featured by the oscillation between episodes of depression and mania, along with disturbance in the biological rhythms. It is on an urgent demand to identify the intricate mechanisms of BD pathophysiology. Based on the continuous progression of neural science techniques, the dysfunction of circuits in the central nervous system was currently thought to be tightly associated with BD development. Yet, challenge exists since it depends on techniques that can manipulate spatiotemporal dynamics of neuron activity. Notably, the emergence of optogenetics has empowered researchers with precise timing and local manipulation, providing a possible approach for deciphering the pathological underpinnings of mental disorders. Although the application of optogenetics in BD research remains preliminary due to the scarcity of valid animal models, this technique will advance the psychiatric research at neural circuit level. In this review, we summarized the crucial aberrant brain activity and function pertaining to emotion and rhythm abnormities, thereby elucidating the underlying neural substrates of BD, and highlighted the importance of optogenetics in the pursuit of BD research.
Collapse
Affiliation(s)
- Lingzhuo Kong
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiaonan Guo
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yuting Shen
- School of Psychiatry, Wenzhou Medical University, Wenzhou 325000, China
| | - Le Xu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Huimin Huang
- School of Psychiatry, Wenzhou Medical University, Wenzhou 325000, China
| | - Jing Lu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou 310003, China
- Brain Research Institute of Zhejiang University, Hangzhou 310003, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou 310003, China
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shaohua Hu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou 310003, China
- Brain Research Institute of Zhejiang University, Hangzhou 310003, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou 310003, China
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
13
|
Salem D, Fecek RJ. Role of microtubule actin crosslinking factor 1 (MACF1) in bipolar disorder pathophysiology and potential in lithium therapeutic mechanism. Transl Psychiatry 2023; 13:221. [PMID: 37353479 DOI: 10.1038/s41398-023-02483-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/05/2023] [Accepted: 05/23/2023] [Indexed: 06/25/2023] Open
Abstract
Bipolar affective disorder (BPAD) are life-long disorders that account for significant morbidity in afflicted patients. The etiology of BPAD is complex, combining genetic and environmental factors to increase the risk of disease. Genetic studies have pointed toward cytoskeletal dysfunction as a potential molecular mechanism through which BPAD may arise and have implicated proteins that regulate the cytoskeleton as risk factors. Microtubule actin crosslinking factor 1 (MACF1) is a giant cytoskeletal crosslinking protein that can coordinate the different aspects of the mammalian cytoskeleton with a wide variety of actions. In this review, we seek to highlight the functions of MACF1 in the nervous system and the molecular mechanisms leading to BPAD pathogenesis. We also offer a brief perspective on MACF1 and the role it may be playing in lithium's mechanism of action in treating BPAD.
Collapse
Affiliation(s)
- Deepak Salem
- Lake Erie College of Osteopathic Medicine at Seton Hill, Department of Microbiology, Greensburg, USA
- University of Maryland Medical Center/Sheppard Pratt Psychiatry Residency Program, Baltimore, USA
| | - Ronald J Fecek
- Lake Erie College of Osteopathic Medicine at Seton Hill, Department of Microbiology, Greensburg, USA.
| |
Collapse
|
14
|
Drljača J, Milošević N, Milanović M, Abenavoli L, Milić N. When the microbiome helps the brain-current evidence. CNS Neurosci Ther 2023; 29 Suppl 1:43-58. [PMID: 36601680 PMCID: PMC10314113 DOI: 10.1111/cns.14076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/05/2022] [Accepted: 12/17/2022] [Indexed: 01/06/2023] Open
Abstract
The gut microbiota-brain axis has been recognized as a network of connections that provides communication between the gut microflora and both central and autonomic nervous system. The gut microbiota alteration has been targeted for therapy in various neurodegenerative and psychiatric disbalances. Psychobiotics are probiotics that contribute beneficially to the brain function and the host mental health as a result of an interaction with the commensal gut bacteria, although their mechanism of action has not been completely revealed. In this state-of-art review, the findings about the potential therapeutic effects of the psychobiotics alone or in combination with conventional medicine in the treatment of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease, as well as in some psychiatric diseases like depression, schizophrenia, and bipolar disorder, have been summarized. The evidence of the psychobiotics therapeutic outcomes obtained in preclinical and clinical trials have been given respectively for the observed neurodegenerative and psychiatric disorders.
Collapse
Affiliation(s)
- Jovana Drljača
- Faculty of Medicine, Department of PharmacyUniversity of Novi SadNovi SadSerbia
| | - Nataša Milošević
- Faculty of Medicine, Department of PharmacyUniversity of Novi SadNovi SadSerbia
| | - Maja Milanović
- Faculty of Medicine, Department of PharmacyUniversity of Novi SadNovi SadSerbia
| | - Ludovico Abenavoli
- Department of Health SciencesUniversity Magna Graecia Campus “Salvatore Venuta”CatanzaroItaly
| | - Nataša Milić
- Faculty of Medicine, Department of PharmacyUniversity of Novi SadNovi SadSerbia
| |
Collapse
|
15
|
Lauritano D, Mastrangelo F, D’Ovidio C, Ronconi G, Caraffa A, Gallenga CE, Frydas I, Kritas SK, Trimarchi M, Carinci F, Conti P. Activation of Mast Cells by Neuropeptides: The Role of Pro-Inflammatory and Anti-Inflammatory Cytokines. Int J Mol Sci 2023; 24:ijms24054811. [PMID: 36902240 PMCID: PMC10002992 DOI: 10.3390/ijms24054811] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Mast cells (MCs) are tissue cells that are derived from bone marrow stem cells that contribute to allergic reactions, inflammatory diseases, innate and adaptive immunity, autoimmunity, and mental disorders. MCs located near the meninges communicate with microglia through the production of mediators such as histamine and tryptase, but also through the secretion of IL-1, IL-6 and TNF, which can create pathological effects in the brain. Preformed chemical mediators of inflammation and tumor necrosis factor (TNF) are rapidly released from the granules of MCs, the only immune cells capable of storing the cytokine TNF, although it can also be produced later through mRNA. The role of MCs in nervous system diseases has been extensively studied and reported in the scientific literature; it is of great clinical interest. However, many of the published articles concern studies on animals (mainly rats or mice) and not on humans. MCs are known to interact with neuropeptides that mediate endothelial cell activation, resulting in central nervous system (CNS) inflammatory disorders. In the brain, MCs interact with neurons causing neuronal excitation with the production of neuropeptides and the release of inflammatory mediators such as cytokines and chemokines. This article explores the current understanding of MC activation by neuropeptide substance P (SP), corticotropin-releasing hormone (CRH), and neurotensin, and the role of pro-inflammatory cytokines, suggesting a therapeutic effect of the anti-inflammatory cytokines IL-37 and IL-38.
Collapse
Affiliation(s)
- Dorina Lauritano
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Filiberto Mastrangelo
- Department of Clinical and Experimental Medicine, School of Dentistry, University of Foggia, 71100 Foggia, Italy
| | - Cristian D’Ovidio
- Section of Legal Medicine, Department of Medicine and Aging Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Gianpaolo Ronconi
- Clinica dei Pazienti del Territorio, Fondazione Policlinico Gemelli, 00185 Rome, Italy
| | | | - Carla E. Gallenga
- Section of Ophthalmology, Department of Biomedical Sciences and Specialist Surgery, University of Ferrara, 44121 Ferrara, Italy
| | - Ilias Frydas
- Department of Parasitology, Aristotle University, 54124 Thessaloniki, Greece
| | - Spyros K. Kritas
- Department of Microbiology and Infectious Diseases, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Macedonia, Greece
| | - Matteo Trimarchi
- Centre of Neuroscience of Milan, Department of Medicine and Surgery, University of Milan, 20122 Milano, Italy
| | - Francesco Carinci
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Pio Conti
- Immunology Division, Postgraduate Medical School, University of Chieti, 66100 Chieti, Italy
- Correspondence:
| |
Collapse
|
16
|
Scotti-Muzzi E, Chile T, Vallada H, Otaduy MCG, Soeiro-de-Souza MG. BDNF rs6265 differentially influences neurometabolites in the anterior cingulate of healthy and bipolar disorder subjects. Brain Imaging Behav 2023; 17:282-293. [PMID: 36630045 DOI: 10.1007/s11682-023-00757-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 12/12/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is the most abundant brain neurotrophin and plays a critical role in neuronal growth, survival and plasticity, implicated in the pathophysiology of Bipolar Disorders (BD). The single-nucleotide polymorphism in the BDNF gene (BDNF rs6265) has been associated with decreased hippocampal BDNF secretion and volume in met carriers in different populations, although the val allele has been reported to be more frequent in BD patients. The anterior cingulate cortex (ACC) is a key center integrating cognitive and affective neuronal connections, where consistent alterations in brain metabolites such as Glx (Glutamate + Glutamine) and N-acetylaspartate (NAA) have been consistently reported in BD. However, little is known about the influence of BDNF rs6265 on neurochemical profile in the ACC of Healthy Controls (HC) and BD subjects. The aim of this study was to assess the influence of BDNF rs6265 on ACC neurometabolites (Glx, NAA and total creatine- Cr) in 124 euthymic BD type I patients and 76 HC, who were genotyped for BDNF rs6265 and underwent a 3-Tesla proton magnetic resonance imaging and spectroscopy scan (1 H-MRS) using a PRESS ACC single-voxel (8cm3) sequence. BDNF rs6265 polymorphism showed a significant two-way interaction (diagnosis × genotype) in relation to NAA/Cr and total Cr. While met carriers presented increased NAA/Cr in HC, BD-I subjects with the val allele revealed higher total Cr, denoting an enhanced ACC metabolism likely associated with increased glutamatergic metabolites observed in BD-I val carriers. However, these results were replicated only in men. Therefore, our results support evidences that the BDNF rs6265 polymorphism exerts a complex pleiotropic effect on ACC metabolites influenced by the diagnosis and sex.
Collapse
Affiliation(s)
- Estêvão Scotti-Muzzi
- Institute of Psychiatry, School of Medicine, University of São Paulo (IPq-FMUSP), São Paulo, Brazil.
| | - Thais Chile
- Genetics and Pharmacogenetics Unit (PROGENE), Institute of Psychiatry, School of Medicine, University of São Paulo (IPq-FMUSP), São Paulo, Brazil
| | - Homero Vallada
- Genetics and Pharmacogenetics Unit (PROGENE), Institute of Psychiatry, School of Medicine, University of São Paulo (IPq-FMUSP), São Paulo, Brazil
| | - Maria Concepción Garcia Otaduy
- Laboratory of Magnetic Resonance in Neuroradiology LIM44, Department and Institute of Radiology, School of Medicine, University of São Paulo (FMUSP), São Paulo, Brazil
| | | |
Collapse
|
17
|
Carli M, Weiss F, Grenno G, Ponzini S, Kolachalam S, Vaglini F, Viaggi C, Pardini C, Tidona S, Longoni B, Maggio R, Scarselli M. Pharmacological Strategies for Bipolar Disorders in Acute Phases and Chronic Management with a Special Focus on Lithium, Valproic Acid, and Atypical Antipsychotics. Curr Neuropharmacol 2023; 21:935-950. [PMID: 36825703 PMCID: PMC10227916 DOI: 10.2174/1570159x21666230224102318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 02/25/2023] Open
Abstract
Bipolar disorders (BDs) are a heterogeneous group of severe affective disorders generally described by the alternation of (hypo)manic, depressive, and mixed phases, with euthymic intervals of variable duration. BDs are burdened with high psychiatric and physical comorbidity, increased suicide risk and reduced life expectancy. In addition, BDs can progress into complicated forms (e.g., mixed states, rapid/irregular cycling), which are more difficult to treat and often require personalized pharmacological combinations. Mood stabilizers, particularly Lithium and Valproic acid (VPA), still represent the cornerstones of both acute and chronic pharmacotherapies of BDs. Lithium is the gold standard in BD-I and BDII with typical features, while VPA seems more effective for atypical forms (e.g., mixed-prevalence and rapid-cycling). However, despite appropriate mood stabilization, many patients show residual symptoms, and more than a half recur within 1-2 years, highlighting the need of additional strategies. Among these, the association of atypical antipsychotics (AAPs) with mood stabilizers is recurrent in the treatment of acute phases, but it is also being growingly explored in the maintenance pharmacotherapy. These combinations are clinically more aggressive and often needed in the acute phases, whereas simplifying pharmacotherapies to mood stabilizers only is preferable in the long-term, whenever possible. When mood stabilizers are not enough for maintenance treatment, Quetiapine and, less consistently, Aripiprazole have been proposed as the most advisable adjunctive strategies, for their safety and tolerability profiles. However, in view of the increased risk of serious adverse effects, a careful patient-centered balance between costs and benefits is mandatory.
Collapse
Affiliation(s)
- Marco Carli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Francesco Weiss
- Psychiatry Unit 2, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giovanna Grenno
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Sergio Ponzini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Shivakumar Kolachalam
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Francesca Vaglini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Cristina Viaggi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Carla Pardini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Simone Tidona
- Psychiatry Unit 2, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Biancamaria Longoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Roberto Maggio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Marco Scarselli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
18
|
Affiliation(s)
- Marco Scarselli
- Department of Translational, Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, Pisa 56126, Italy
| |
Collapse
|
19
|
Ask TF, Sütterlin S. Prefrontally modulated vagal neuroimmunomodulation is associated with telomere length. Front Neurosci 2022; 16:1063162. [PMID: 36605550 PMCID: PMC9807922 DOI: 10.3389/fnins.2022.1063162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Background Accumulated senescent cells are proposed to be one of the main drivers of age-related pathology such as dementia and cancer through disruption of tissue structure and function. We recently proposed the Neuro-Immuno-Senescence Integrative Model (NISIM), which relates prefrontally modulated vagal tone and subsequent balance between vagal and sympathetic input to the spleen to inflammatory responses leading to generation of reactive oxygen species and oxidative telomere damage. Aim In this study, we assess inflammation as a mediator in the relationship between prefrontally modulated vagal tone and leukocyte telomere length (LTL). We also assess the relationship between a recently proposed index of vagal neuroimmunomodulation (vagal tone/inflammation ratio; NIM index) and telomere length. Methods This study uses participant data from a large nationally representative longitudinal study since 1974 with a total of 45,000 Norwegian residents so far. A sub-sample of 131 participants from which ultrashort recordings (30 s) of vagal tone, c reactive protein, and LTL could be obtained were included in the study. Relationships were analyzed with Pearson's correlations and hierarchical multiple linear regression using either vagal tone and CRP or the NIM index to predict telomere length. Results Vagal tone was a significant positive predictor of telomere length but this was not mediated by c reactive protein, even after controlling for confounders. The NIM index was a significant positive predictor of telomere length, also when controlling for confounders. In a follow-up analysis simultaneously comparing telomere length between groups with high and low values of vagal tone, and between groups with high and low NIM index values, telomere length was only significantly different between NIM index groups. Conclusion This is the first study suggesting that prefrontally modulated vagal neuroimmunomodulation is associated with telomere length thus supporting the NISIM. Results indicate that the NIM index is a more sensitive indicator of vagal neuroimmunomodulation than vagal tone and CRP in isolation.
Collapse
Affiliation(s)
- Torvald F. Ask
- Faculty of Health, Welfare and Organisation, Østfold University College, Halden, Norway
- Department of Information Security and Communication Technology, Norwegian University of Science and Technology, Gjøvik, Norway
| | - Stefan Sütterlin
- Faculty of Health, Welfare and Organisation, Østfold University College, Halden, Norway
- Faculty of Computer Science, Albstadt-Sigmaringen University, Sigmaringen, Germany
| |
Collapse
|
20
|
Whitney MS, Scott SL, Perez JA, Barnes S, McVoy MK. Elevation of C-reactive protein in adolescent bipolar disorder vs. anxiety disorders. J Psychiatr Res 2022; 156:308-317. [PMID: 36306709 DOI: 10.1016/j.jpsychires.2022.09.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 08/28/2022] [Accepted: 09/16/2022] [Indexed: 01/20/2023]
Abstract
Bipolar disorder (BD) largely begins in adolescence, but diagnosis lags for years, causing significant morbidity and mortality, and demonstrating the need for better diagnostic tools. Suggesting an association between BD and immune activity, elevated levels of peripheral inflammatory markers, including C-reactive protein (CRP), have been found in adults with BD. As similar data are extremely limited in adolescents, this study examined CRP levels in adolescents with BD (n = 37) compared to those with anxiety disorders (ADs, n = 157) and healthy controls with no psychiatric diagnoses (HCs, n = 2760). CRP blood levels for patients aged 12-17 years were retrieved from a nationwide repository of deidentified clinical data. After excluding patients with inflammatory conditions, differences in CRP were examined using multivariate and weighted regressions (covariates: demographics and BMI). Mean CRP levels were significantly elevated in adolescents with BD relative to those with ADs and HCs. Mean CRP levels were lower in the ADs cohort versus HCs. Although CRP levels were significantly higher in males and younger patients, the significant between-cohort differences in CRP remained after controlling for multiple confounders. To our knowledge, our study is the first to compare CRP levels between adolescent BD, ADs, and HCs, comprising a novel and essential contribution. Our results suggest the presence of a unique immune process in adolescents with BD and indicate that CRP may represent a biomarker with a crucial role in the diagnostic assessment of adolescent BD.
Collapse
Affiliation(s)
| | - Stephen L Scott
- Department of Child and Adolescent Psychiatry, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
| | - Jaime Abraham Perez
- Center for Clinical Research, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
| | - Stephanie Barnes
- Department of Child and Adolescent Psychiatry, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| | - Molly K McVoy
- Department of Child and Adolescent Psychiatry, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Neurological and Behavioral Outcomes Center, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
| |
Collapse
|
21
|
Li Z, Li W, Yan W, Zhang R, Xie S. Data-driven learning to identify biomarkers in bipolar disorder. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 226:107112. [PMID: 36156436 DOI: 10.1016/j.cmpb.2022.107112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/09/2022] [Accepted: 09/04/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND OBJECTIVE Bipolar disorder (BD) is one of the primary causes of disability globally and can be easily misdiagnosed as schizophrenia or major depression due to their similar symptoms. Hence, it is of great significance to explore the pathogenesis of BD. Statistical analysis is currently the most common method for exploring the neuropathological mechanisms of psychiatric disorders. However, this method only considers the relationship between groups and does not reflect the individual-level diagnosis. Therefore, we developed machine learning algorithms to measure pathological brain changes in psychiatric disorders. METHODS An autoencoder and a feature selection method are proposed to identify the abnormal structural patterns of BD in this study. The autoencoder was constructed using structural imaging data from 1113 healthy controls, which aims to define the normal range of anatomical deviations to distinguish healthy individuals from BD patients. The biomarkers of BD were identified by the reconstruction errors in each brain region. The proposed feature selection (FS)-select framework aimed to determine the optimal FS method and identify the most reproducible feature associated with BD. RESULTS We found that the left orbital region of the middle frontal gyrus had the greatest difference between healthy controls and BD patients using a trained autoencoder. The most reproducible feature was the left orbital region of the middle frontal gyrus by FS-select framework when using the different cross-validation strategies. CONCLUSIONS A consistent result was obtained from the above two proposed methods wherein a significant difference between healthy controls and BD patients was identified in the left orbital region of the middle frontal gyrus.
Collapse
Affiliation(s)
- Zhuangzhuang Li
- College of Telecommunication and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Wenmei Li
- School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Wei Yan
- Department of Psychiatry affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China.
| | - Rongrong Zhang
- Department of Psychiatry affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Shiping Xie
- Department of Psychiatry affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
22
|
Mandal PK, Gaur S, Roy RG, Samkaria A, Ingole R, Goel A. Schizophrenia, Bipolar and Major Depressive Disorders: Overview of Clinical Features, Neurotransmitter Alterations, Pharmacological Interventions, and Impact of Oxidative Stress in the Disease Process. ACS Chem Neurosci 2022; 13:2784-2802. [PMID: 36125113 DOI: 10.1021/acschemneuro.2c00420] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Psychiatric disorders are one of the leading causes of disability worldwide and affect the quality of life of both individuals and the society. The current understanding of these disorders points toward receptor dysfunction and neurotransmitter imbalances in the brain. Treatment protocols are hence oriented toward normalizing these imbalances and ameliorating the symptoms. However, recent literature has indicated the possible role of depleted levels of antioxidants like glutathione (GSH) as well as an alteration in the levels of the pro-oxidant, iron in the pathogenesis of major psychiatric diseases, viz., schizophrenia (Sz), bipolar disorder (BD), and major depressive disorder (MDD). This review aims to highlight the involvement of oxidative stress (OS) in these psychiatric disorders. An overview of the clinical features, neurotransmitter abnormalities, and pharmacological treatments concerning these psychiatric disorders has also been presented. Furthermore, it attempts to synthesize literature from existing magnetic resonance spectroscopy (MRS) and quantitative susceptibility mapping (QSM) studies for these disorders, assessing GSH and iron, respectively. This manuscript is a sincere attempt to stimulate research discussion to advance the knowledge base for further understanding of the pathoetiology of Sz, BD, and MDD.
Collapse
Affiliation(s)
- Pravat K Mandal
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Manesar, Haryana 122050, India.,The Florey Institute of Neuroscience and Mental Health, Melbourne School of Medicine Campus, Melbourne 3052, Australia
| | - Shradha Gaur
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Manesar, Haryana 122050, India
| | - Rimil Guha Roy
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Manesar, Haryana 122050, India
| | - Avantika Samkaria
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Manesar, Haryana 122050, India
| | | | - Anshika Goel
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Manesar, Haryana 122050, India
| |
Collapse
|
23
|
Jackson NA, Jabbi MM. Integrating biobehavioral information to predict mood disorder suicide risk. Brain Behav Immun Health 2022; 24:100495. [PMID: 35990401 PMCID: PMC9388879 DOI: 10.1016/j.bbih.2022.100495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/25/2022] Open
Abstract
The will to live and the ability to maintain one's well-being are crucial for survival. Yet, almost a million people die by suicide globally each year (Aleman and Denys, 2014), making premature deaths due to suicide a significant public health problem (Saxena et al., 2013). The expression of suicidal behaviors is a complex phenotype with documented biological, psychological, clinical, and sociocultural risk factors (Turecki et al., 2019). From a brain disease perspective, suicide is associated with neuroanatomical, neurophysiological, and neurochemical dysregulations of brain networks involved in integrating and contextualizing cognitive and emotional regulatory behaviors. From a symptom perspective, diagnostic measures of dysregulated mood states like major depressive symptoms are associated with over sixty percent of suicide deaths worldwide (Saxena et al., 2013). This paper reviews the neurobiological and clinical phenotypic correlates for mood dysregulations and suicidal phenotypes. We further propose machine learning approaches to integrate neurobiological measures with dysregulated mood symptoms to elucidate the role of inflammatory processes as neurobiological risk factors for suicide.
Collapse
Affiliation(s)
- Nicholas A. Jackson
- Department of Psychiatry and Behavioral Sciences, Dell Medical School, The University of Texas at Austin, USA
- Institute for Neuroscience, The University of Texas at Austin, USA
| | - Mbemba M. Jabbi
- Department of Psychiatry and Behavioral Sciences, Dell Medical School, The University of Texas at Austin, USA
- Mulva Clinics for the Neurosciences
- Institute for Neuroscience, The University of Texas at Austin, USA
- Department of Psychology, The University of Texas at Austin, USA
- Center for Learning and Memory, The University of Texas at Austin, USA
| |
Collapse
|
24
|
Misiak B, Kowalski K, Stańczykiewicz B, Bartoli F, Carrà G, Samochowiec J, Samochowiec A, Frydecka D. Appetite-regulating hormones in bipolar disorder: A systematic review and meta-analysis. Front Neuroendocrinol 2022; 67:101013. [PMID: 35792198 DOI: 10.1016/j.yfrne.2022.101013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/21/2022] [Accepted: 06/29/2022] [Indexed: 11/04/2022]
Abstract
Impaired hormonal regulation of appetite may contribute to higher cardiovascular risk in bipolar disorder (BD). We performed a systematic review and meta-analysis of studies investigating peripheral blood levels of appetite-regulating hormones in BD and controls. A total of 32 studies were included. Leptin and insulin levels were significantly elevated in patients with BD during euthymia, but not in other mood states. Greater differences in the number of male participants between patients with BD and healthy controls were associated with higher effect size estimates for the levels of insulin. There were significant positive correlations of effect size estimates for the levels of adiponectin with the percentage of individuals with type I BD and duration of BD. Our findings point to the mechanisms underlying high rates of cardiometabolic comorbidities in BD. Moreover, they suggest that investigating hormonal regulation of appetite might help to understand differences in the neurobiology of BD types.
Collapse
Affiliation(s)
- Błażej Misiak
- Department of Psychiatry, Division of Consultation Psychiatry and Neuroscience, Wroclaw Medical University, Pasteura 10 Street, 50-367 Wroclaw, Poland.
| | - Krzysztof Kowalski
- Department of Psychiatry, Division of Consultation Psychiatry and Neuroscience, Wroclaw Medical University, Pasteura 10 Street, 50-367 Wroclaw, Poland
| | - Bartłomiej Stańczykiewicz
- Department of Psychiatry, Division of Consultation Psychiatry and Neuroscience, Wroclaw Medical University, Pasteura 10 Street, 50-367 Wroclaw, Poland
| | - Francesco Bartoli
- Department of Medicine and Surgery, University of Milano Bicocca, Via Cadore 48 - 20900, Monza, Italy; Department of Mental Health & Addiction, ASST Nord Milano, Viale Matteotti, 83 - 20099, Sesto SG, Milano, Italy
| | - Giuseppe Carrà
- Department of Medicine and Surgery, University of Milano Bicocca, Via Cadore 48 - 20900, Monza, Italy; Department of Mental Health & Addiction, ASST Nord Milano, Viale Matteotti, 83 - 20099, Sesto SG, Milano, Italy; Division of Psychiatry, University College London, 149 Tottenham Court Road, W1T 7NF London, UK
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26 Street, 71-460 Szczecin, Poland
| | - Agnieszka Samochowiec
- Department of Clinical Psychology, Institute of Psychology, University of Szczecin, Krakowska 69 Street, 71-017 Szczecin, Poland
| | - Dorota Frydecka
- Department and Clinic of Psychiatry, Wroclaw Medical University, Pasteura 10 Street, 50-367 Wroclaw, Poland
| |
Collapse
|
25
|
Russo M, Calisi D, De Rosa MA, Evangelista G, Consoli S, Dono F, Santilli M, Gambi F, Onofrj M, Di Giannantonio M, Parruti G, Sensi SL. COVID-19 and first manic episodes: a systematic review. Psychiatry Res 2022; 314:114677. [PMID: 35716481 PMCID: PMC9181635 DOI: 10.1016/j.psychres.2022.114677] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 01/07/2023]
Abstract
Sars-CoV-2 is a respiratory virus that can access the central nervous system, as indicated by the presence of the virus in patients' cerebrospinal fluid and the occurrence of several neurological syndromes during and after COVID-19. Growing evidence indicates that Sars-CoV-2 can also trigger the acute onset of mood disorders or psychotic symptoms. COVID-19-related first episodes of mania, in subjects with no known history of bipolar disorder, have never been systematically analyzed. Thus, the present study assesses a potential link between the two conditions. This systematic review analyzes cases of first appearance of manic episodes associated with COVID-19. Clinical features, pharmacological therapies, and relationships with pre-existing medical conditions are also appraised. Medical records of twenty-three patients fulfilling the current DSM-5 criteria for manic episode were included. Manic episodes started, on average, after 12.71±6.65 days from the infection onset. Psychotic symptoms were frequently reported. 82.61% of patients exhibited delusions, whereas 39.13% of patients presented hallucinations. A large discrepancy in the diagnostic workups was observed. Mania represents an underestimated clinical presentation of COVID-19. Further studies should focus on the pathophysiological substrates of COVID-19-related mania and pursue appropriate and specific diagnostic and therapeutic workups.
Collapse
Affiliation(s)
- Mirella Russo
- Department of Neurosciences, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; CAST - Center for Advanced Studies and Technology, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Dario Calisi
- Department of Neurosciences, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Matteo A De Rosa
- Department of Neurosciences, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Giacomo Evangelista
- Department of Neurosciences, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Stefano Consoli
- Department of Neurosciences, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Fedele Dono
- Department of Neurosciences, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; CAST - Center for Advanced Studies and Technology, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Matteo Santilli
- Department of Neurosciences, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Francesco Gambi
- Department of Neurosciences, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; CAST - Center for Advanced Studies and Technology, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Marco Onofrj
- Department of Neurosciences, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; CAST - Center for Advanced Studies and Technology, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Massimo Di Giannantonio
- Department of Neurosciences, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Giustino Parruti
- Department of Infectious Diseases, Azienda Sanitaria Locale (AUSL) di Pescara, Pescara, Italy
| | - Stefano L Sensi
- Department of Neurosciences, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; CAST - Center for Advanced Studies and Technology, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; ITAB - Institute of Advanced Biomedical Technology, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Institute for Mind Impairments and Neurological Disorders-iMIND, University of California, Irvine, Irvine, CA, United States.
| |
Collapse
|
26
|
Dai W, Liu J, Qiu Y, Teng Z, Li S, Yuan H, Huang J, Xiang H, Tang H, Wang B, Chen J, Wu H. Gut Microbial Dysbiosis and Cognitive Impairment in Bipolar Disorder: Current Evidence. Front Pharmacol 2022; 13:893567. [PMID: 35677440 PMCID: PMC9168430 DOI: 10.3389/fphar.2022.893567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/20/2022] [Indexed: 12/11/2022] Open
Abstract
Recent studies have reported that the gut microbiota influences mood and cognitive function through the gut-brain axis, which is involved in the pathophysiology of neurocognitive and mental disorders, including Parkinson’s disease, Alzheimer’s disease, and schizophrenia. These disorders have similar pathophysiology to that of cognitive dysfunction in bipolar disorder (BD), including neuroinflammation and dysregulation of various neurotransmitters (i.e., serotonin and dopamine). There is also emerging evidence of alterations in the gut microbial composition of patients with BD, suggesting that gut microbial dysbiosis contributes to disease progression and cognitive impairment in BD. Therefore, microbiota-centered treatment might be an effective adjuvant therapy for BD-related cognitive impairment. Given that studies focusing on connections between the gut microbiota and BD-related cognitive impairment are lagging behind those on other neurocognitive disorders, this review sought to explore the potential mechanisms of how gut microbial dysbiosis affects cognitive function in BD and identify potential microbiota-centered treatment.
Collapse
Affiliation(s)
- Wenyu Dai
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jieyu Liu
- Department of Ultrasound Diagnostic, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yan Qiu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ziwei Teng
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Sujuan Li
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hui Yuan
- Department of Ultrasound Diagnostic, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jing Huang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hui Xiang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hui Tang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Bolun Wang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jindong Chen
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haishan Wu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
27
|
Neural Networks to Recognize Patterns in Topographic Images of Cortical Electrical Activity of Patients with Neurological Diseases. Brain Topogr 2022; 35:464-480. [PMID: 35596851 DOI: 10.1007/s10548-022-00901-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 04/25/2022] [Indexed: 11/02/2022]
Abstract
Software such as EEGLab has enabled the treatment and visualization of the tracing and cortical topography of the electroencephalography (EEG) signals. In particular, the topography of the cortical electrical activity is represented by colors, which make it possible to identify functional differences between cortical areas and to associate them with various diseases. The use of cortical topography with EEG origin in the investigation of diseases is often not used due to the representation of colors making it difficult to classify the disease. Thus, the analyses have been carried out, mainly, based on the EEG tracings. Therefore, a computer system that recognizes disease patterns through cortical topography can be a solution to the diagnostic aid. In view of this, this study compared five models of Convolutional Neural Networks (CNNs), namely: Inception v3, SqueezeNet, LeNet, VGG-16 and VGG-19, in order to know the patterns in cortical topography images obtained with EEG, in Parkinson's disease, Depression and Bipolar Disorder. SqueezeNet performed better in the 3 diseases analyzed, with Parkinson's disease being better evaluated for Accuracy (88.89%), Precison (86.36%), Recall (91.94%) and F1 Score (89.06%), the other CNNs had less performance. In the analysis of the values of the Area under ROC Curve (AUC), SqueezeNet reached (93.90%) for Parkinson's disease, (75.70%) for Depression and (72.10%) for Bipolar Disorder. We understand that there is the possibility of classifying neurological diseases from cortical topographies with the use of CNNs and, thus, creating a computational basis for the implementation of software for screening and possible diagnostic assistance.
Collapse
|
28
|
Fernandes TP, Shoshina II, Oliveira MEC, Andreevna VE, Silva GM, Santos NA. Correlates of clinical variables on early-stage visual processing in schizophrenia and bipolar disorder. J Psychiatr Res 2022; 149:323-330. [PMID: 35339912 DOI: 10.1016/j.jpsychires.2022.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/27/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022]
Abstract
The use of noninvasive tools can help understand mental states and changes that are caused by medications, symptom severity, and other clinical variables. We investigated low-level visual processing using the contrast sensitivity function (CSF), a reliable, robust, and widely used approach. Our main purpose was (1) to evaluate visual impairments in schizophrenia (SCZ) and bipolar disorder (BPD) patients and (2) to investigate associations between clinical variables and visual function in both diseases. Fifty-six healthy controls (HCs; mean age = 31.04 years), 42 BPD patients (mean age = 32.84 years) who took only lithium, and 39 SCZ patients who took only olanzapine (mean age = 32.80 years) were recruited for this study. CSF differed between groups. Both groups of patients exhibited lower discrimination at low, mid-, and high spatial frequencies compared with HCs. No differences were observed between patients, with the exception of high spatial frequency. These impairments were also related to clinical variables, revealed by a strong effect in the mediation analyses. These findings may aid investigations of other clinical variables and the role of state- and trait-like effects on visual and cognitive processing in these patient populations. This study underscores the need for visual remediation interventions.
Collapse
Affiliation(s)
- Thiago P Fernandes
- Department of Psychology, Federal University of Paraiba, Joao Pessoa, Brazil; Perception, Neuroscience and Behaviour Laboratory, Federal University of Paraiba, Brazil.
| | - Irina I Shoshina
- Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Milena E C Oliveira
- Department of Psychology, Federal University of Paraiba, Joao Pessoa, Brazil; Perception, Neuroscience and Behaviour Laboratory, Federal University of Paraiba, Brazil
| | | | - Gabriella M Silva
- Department of Psychology, Federal University of Paraiba, Joao Pessoa, Brazil; Perception, Neuroscience and Behaviour Laboratory, Federal University of Paraiba, Brazil
| | - Natanael A Santos
- Department of Psychology, Federal University of Paraiba, Joao Pessoa, Brazil; Perception, Neuroscience and Behaviour Laboratory, Federal University of Paraiba, Brazil
| |
Collapse
|
29
|
Dai W, Liu J, Qiu Y, Teng Z, Li S, Huang J, Xiang H, Tang H, Wang B, Chen J, Wu H. Shared postulations between bipolar disorder and polycystic ovary syndrome pathologies. Prog Neuropsychopharmacol Biol Psychiatry 2022; 115:110498. [PMID: 34929323 DOI: 10.1016/j.pnpbp.2021.110498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 12/06/2021] [Accepted: 12/12/2021] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Women with bipolar disorder (BD) present a high prevalence of polycystic ovary syndrome (PCOS) and other reproductive disorders even before diagnosis or treatment of the disease. Postulations on the potential molecular mechanisms of comorbid PCOS in women with BD remain limited to influence of medications and need further extension. OBJECTIVES This review focuses on evidence suggesting that common metabolic and immune disorders may play an important role in the development of BD and PCOS. RESULTS The literature covered in this review suggests that metabolic and immune disorders, including the dysfunction of the hypothalamic-pituitary-adrenal axis, chronic inflammatory state, gut microbial alterations, adipokine alterations and circadian rhythm disturbance, are observed in patients with BD and PCOS. Such disorders may be responsible for the increased prevalence of PCOS in the BD population and indicate a susceptibility gene overlap between the two diseases. Current evidence supports postulations of common metabolic and immune disorders as endophenotype in BD as well as in PCOS. CONCLUSIONS Metabolic and immune disorders may be responsible for the comorbid PCOS in the BD population. The identification of hallmark metabolic and immune features common to these two diseases will contribute to the clarification of the effect of BD on the reproductive endocrine function and development of symptomatic treatments targeting the biomarkers of the two diseases.
Collapse
Affiliation(s)
- Wenyu Dai
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jieyu Liu
- Department of Ultrasound Diagnostic, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yan Qiu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Ziwei Teng
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Sujuan Li
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jing Huang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Hui Xiang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Hui Tang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Bolun Wang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jindong Chen
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| | - Haishan Wu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
30
|
Abstract
Many patients under treatment for mood disorders, in particular patients with bipolar mood disorders, experience episodes of mood switching from one state to another. Various hypotheses have been proposed to explain the mechanism of mood switching, spontaneously or induced by drug treatment. Animal models have also been used to test the role of psychotropic drugs in the switching of mood states. We examine the possible relationship between the pharmacology of psychotropic drugs and their reported incidents of induced mood switching, with reference to the various hypotheses of mechanisms of mood switching.
Collapse
|
31
|
de Witte LD, Wang Z, Snijders GLJL, Mendelev N, Liu Q, Sneeboer MAM, Boks MPM, Ge Y, Haghighi F. Contribution of Age, Brain Region, Mood Disorder Pathology, and Interindividual Factors on the Methylome of Human Microglia. Biol Psychiatry 2022; 91:572-581. [PMID: 35027166 PMCID: PMC11181298 DOI: 10.1016/j.biopsych.2021.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Transcriptome studies have revealed age-, disease-, and region-associated microglial phenotypes reflecting changes in microglial function during development, aging, central nervous system homeostasis, and pathology. The molecular mechanisms that contribute to these transcriptomic changes are largely unknown. The aim of this study was to characterize the DNA methylation landscape of human microglia and the factors that contribute to variations in the microglia methylome. We hypothesized that both age and brain region would have a large impact on DNA methylation in microglia. METHODS Microglia from postmortem brain tissue of four different brain regions of 22 donors, encompassing 1 patient with schizophrenia, 13 patients with mood disorder pathology, and 8 control subjects, were isolated and assayed using a genome-wide methylation array. RESULTS We found that human microglial cells have a methylation profile distinct from bulk brain tissue and neurons, and age explained a considerable part of the variation. Additionally, we showed that interindividual factors had a much larger effect on the methylation landscape of microglia than brain region, which was also seen at the transcriptome level. In our exploratory analysis, we found various differentially methylated regions that were related to disease status (mood disorder vs. control). This included differentially methylated regions that are linked to gene expression in microglia, as well as to myeloid cell function or neuropsychiatric disorders. CONCLUSIONS Although based on relatively small samples, these findings suggest that the methylation profile of microglia is responsive to interindividual variations and thereby plays an important role in the heterogeneity of microglia observed at the transcriptome level.
Collapse
Affiliation(s)
- Lot D de Witte
- Mental Illness Research, Education and Clinical Center, James J Peters VA Medical Center, Bronx, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Zhaoyu Wang
- Mental Illness Research, Education and Clinical Center, James J Peters VA Medical Center, Bronx, New York; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Gijsje L J L Snijders
- Mental Illness Research, Education and Clinical Center, James J Peters VA Medical Center, Bronx, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Natalia Mendelev
- Mental Illness Research, Education and Clinical Center, James J Peters VA Medical Center, Bronx, New York; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Qingkun Liu
- Mental Illness Research, Education and Clinical Center, James J Peters VA Medical Center, Bronx, New York; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Marjolein A M Sneeboer
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, University Medical Center Utrecht, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands; Department of Translational Neuroscience, University Medical Center Utrecht, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Marco P M Boks
- Department of Psychiatry, University Medical Center Utrecht, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Yongchao Ge
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Fatemeh Haghighi
- Mental Illness Research, Education and Clinical Center, James J Peters VA Medical Center, Bronx, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
32
|
Okanda Nyatega C, Qiang L, Jajere Adamu M, Bello Kawuwa H. Altered striatal functional connectivity and structural dysconnectivity in individuals with bipolar disorder: A resting state magnetic resonance imaging study. Front Psychiatry 2022; 13:1054380. [PMID: 36440395 PMCID: PMC9682136 DOI: 10.3389/fpsyt.2022.1054380] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE Bipolar disorder (BD) is a mood swing illness characterized by episodes ranging from depressive lows to manic highs. Although the specific origin of BD is unknown, genetics, environment, and changes in brain structure and chemistry may all have a role. Through magnetic resonance imaging (MRI) evaluations, this study looked into functional abnormalities involving the striatum between BD group and healthy controls (HC), compared the whole-brain gray matter (GM) morphological patterns between the groups and see whether functional connectivity has its underlying structural basis. MATERIALS AND METHODS We applied sliding windows to functional magnetic resonance imaging (fMRI) data from 49 BD patients and 44 HCs to generate temporal correlations maps to determine strength and variability of the striatum-to-whole-brain-network functional connectivity (FC) in each window whilst also employing voxel-based morphometry (VBM) to high-resolution structural MRI data to uncover structural differences between the groups. RESULTS Our analyses revealed increased striatal connectivity in three consecutive windows 69, 70, and 71 (180, 182, and 184 s) in individuals with BD (p < 0.05; Bonferroni corrected) in fMRI images. Moreover, the VBM findings of structural images showed gray matter (GM) deficits in the left precentral gyrus and middle frontal gyrus of the BD patients (p = 0.001, uncorrected) when compared to HCs. Variability of striatal connectivity did not reveal significant differences between the groups. CONCLUSION These findings revealed that BD was associated with a weakening of the precentral gyrus and middle frontal gyrus, also implying that bipolar illness may be linked to striatal functional brain alterations.
Collapse
Affiliation(s)
- Charles Okanda Nyatega
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China.,Department of Electronics and Telecommunication Engineering, Mbeya University of Science and Technology, Mbeya, Tanzania
| | - Li Qiang
- School of Microelectronics, Tianjin University, Tianjin, China
| | | | | |
Collapse
|
33
|
Gonçalves MCB, Andrejew R, Gubert C. The Purinergic System as a Target for the Development of Treatments for Bipolar Disorder. CNS Drugs 2022; 36:787-801. [PMID: 35829960 PMCID: PMC9345801 DOI: 10.1007/s40263-022-00934-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/15/2022] [Indexed: 11/27/2022]
Abstract
The neurobiological and neurochemical mechanisms underlying the pathophysiology of bipolar disorder are complex and not yet fully understood. From circadian disruption to neuroinflammation, many pathways and signaling molecules are important contributors to bipolar disorder development, some specific to a disease subtype or a cycling episode. Pharmacological agents for bipolar disorder have shown only partial efficacy, including mood stabilizers and antipsychotics. The purinergic hypothesis for bipolar disorder emerges in this scenario as a promising target for further research and drug development, given its role in neurotransmission and neuroinflammation that results in behavioral and mood regulation. Here, we review the basic concepts of purinergic signaling in the central nervous system and its contribution to bipolar disorder pathophysiology. Allopurinol and novel P2X7 receptor antagonists are promising candidates for treating bipolar disorder. We further explore currently available pharmacotherapies and the emerging new purinergic targets for drug development in bipolar disorder.
Collapse
Affiliation(s)
| | - Roberta Andrejew
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Carolina Gubert
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, 30 Royal Parade, Parkville, VIC, 3032, Australia.
| |
Collapse
|
34
|
Palagini L, Geoffroy PA, Riemann D. Sleep markers in psychiatry: do insomnia and disturbed sleep play as markers of disrupted neuroplasticity in mood disorders? A proposed model. Curr Med Chem 2021; 29:5595-5605. [PMID: 34906053 DOI: 10.2174/0929867328666211214164907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/31/2021] [Accepted: 09/05/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Since insomnia and disturbed sleep may affect neuroplasticity, we aimed at reviewing their potential role as markers of disrupted neuroplasticity involved in mood disorders. METHOD We performed a systematic review, according to PRIMA, on PubMed, PsycINFO and Embase electronic databases for literature regarding mood disorders, insomnia, sleep loss/deprivation in relation to different pathways involved in the impairment of neuroplasticity in mood disorders such as 1] alterations in neurodevelopment 2] activation of the stress system 3] neuroinflammation 4] neurodegeneration/neuroprogression, 4] deficit in neuroprotection. RESULTS Sixty-five articles were analyzed and a narrative/ theoretical review was conducted. Studies showed that insomnia, sleep loss and sleep deprivation might impair brain plasticity of those areas involved in mood regulation throughout different pathways. Insomnia and disrupted sleep may act as neurobiological stressors that by over-activating the stress and inflammatory systems may affect neural plasticity causing neuronal damage. In addition, disturbed sleep may favor a deficit in neuroprotection hence contributing to impaired neuroplasticity. CONCLUSIONS Insomnia and disturbed sleep may play a role as markers of alteration in brain plasticity in mood disorders. Assessing and targeting insomnia in the clinical practice may potentially play a neuroprotective role, contributing to "repairing" alterations in neuroplasticity or to the functional recovery of those areas involved in mood and emotion regulation.
Collapse
Affiliation(s)
- Laura Palagini
- Department of Experimental and Clinic Medicine, Section of Psychiatry, University of Pisa, Via Roma 67, 56100, Pisa. Italy
| | - Pierre Alexis Geoffroy
- Département de psychiatrie et d'addictologie, AP-HP, Hopital Bichat - Claude Bernard, F-75018 Paris, France; Université de Paris, NeuroDiderot, Inserm U1141, F-75019 Paris. France
| | - Dieter Riemann
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg. Germany
| |
Collapse
|
35
|
Prefrontal-limbic-striatum dysconnectivity associated with negative emotional endophenotypes in bipolar disorder during depressive episodes. J Affect Disord 2021; 295:422-430. [PMID: 34507222 DOI: 10.1016/j.jad.2021.08.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/24/2021] [Accepted: 08/21/2021] [Indexed: 01/23/2023]
Abstract
BACKGROUND The prefrontal-limbic-subcortical network has been suggested as an important circuitry in the pathophysiology underlying bipolar disorder during depressive episodes (BDD). However, the relationships between disrupted prefrontal-limbic-subcortical connection and the emotional endophenotypes in BDD patients remain largely unclear. METHODS Forty-three BDD patients and 63 matched healthy controls (HCs) underwent the resting-state functional magnetic resonance imaging scan. The altered clusters were first identified by using a spatial pairwise clustering method and then were extracted as regions of interest to calculate the functional connectivity (FC). Group comparisons were conducted to identify the abnormal FCs. Classification analysis was employed to examine whether the altered FCs could distinguish BDD from HCs. The relationships between FC alterations and the emotional endophenotypes as measured by the Affective Neuroscience Personality Scales (ANPS) were further detected in BDD. RESULTS Compared with HCs, BDD patients showed abnormal FCs in the prefrontal-limbic-striatum circuit. Importantly, the altered FCs yielded 84.91% accuracy (p< 1/5000) with 93.65% sensitivity and 72.09% specificity in differentiating between BDD and HCs. Moreover, the decreased FCs in the prefrontal-striatum and prefrontal-limbic systems were positively correlated with negative emotional endophenotypes of Sadness and Fear scores. CONCLUSIONS The findings demonstrated that prefrontal-limbic-striatum disconnection may be identified as a potential effective biomarker for BDD, which could help further explain the neurobiological mechanisms underlying BDD.
Collapse
|
36
|
Marazziti D, Torrigiani S, Carbone MG, Mucci F, Flamini W, Ivaldi T, Osso LD. Neutrophil/lymphocyte, platelet/lymphocyte and monocyte/lymphocyte ratios in mood disorders. Curr Med Chem 2021; 29:5758-5781. [PMID: 34551689 DOI: 10.2174/0929867328666210922160116] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/27/2021] [Accepted: 08/04/2021] [Indexed: 11/22/2022]
Abstract
Major depressive disorder (MDD) and bipolar disorders (BDs), the most severe types of mood disorders (MDs), are considered as among the most disabling illnesses worldwide. Several studies suggested that inflammatory neuroinflammation might be involved in the pathophysiology of MDs, while reporting increasing data on the relationships between these processes and classical neurotransmitters, hypothalamus-pituitary-adrenal axis (HPA), and neurotrophic factors. The assessment of neutrophil/lymphocyte ratio (NLR), platelet/lymphocyte ratio (PLR) and monocyte/lymphocyte ratio (MLR) in peripheral blood represents a simple method to evaluate the inflammatory status. The aim of the present paper was to review the literature on the possible relationships between NLR, PLR and MLR in MDs, and to comment on their possible wider use in clinical research. Thirty-five studies were included in the present review. The majority of them higher values of these parameters, particularly NLR values, in patients with MDs, when compared to healthy subjects. The increase would appear more robust in patients with BD during a manic episode, thus indicating that it could be considered as both state and trait markers. In addition, increased NLR and PLR levels seem to represent prognostic elements for the early discovery of post-stroke depression. The findings of the present review would indicate the need to carry our further studies in this field. In particular, NLR, PLR and MLR seem to be promising tools to detect economically and easily the activation of the inflammatory system, and to perhaps evaluate the etiology and course of MDs. Again, they could suggest some information to better understand the relationship between inflammatory and cardiovascular disease and MDs, and thus, to provide clinical implications in terms of management and treatment.
Collapse
Affiliation(s)
- Donatella Marazziti
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa. Italy
| | - Samuele Torrigiani
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa. Italy
| | - Manuel G Carbone
- Department of Medicine and Surgery, Division of Psychiatry, University of Insubria, 21100 Varese. Italy
| | - Federico Mucci
- Department of Medicine and Surgery, Division of Psychiatry, University of Insubria, 21100 Varese. Italy
| | - Walter Flamini
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa. Italy
| | - Tea Ivaldi
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa. Italy
| | - Liliana Dell' Osso
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa. Italy
| |
Collapse
|
37
|
Rahimian R, Wakid M, O'Leary LA, Mechawar N. The emerging tale of microglia in psychiatric disorders. Neurosci Biobehav Rev 2021; 131:1-29. [PMID: 34536460 DOI: 10.1016/j.neubiorev.2021.09.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/18/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022]
Abstract
As the professional phagocytes of the brain, microglia orchestrate the immunological response and play an increasingly important role in maintaining homeostatic brain functions. Microglia are activated by pathological events or slight alterations in brain homeostasis. This activation is dependent on the context and type of stressor or pathology. Through secretion of cytokines, chemokines and growth factors, microglia can strongly influence the response to a stressor and can, therefore, determine the pathological outcome. Psychopathologies have repeatedly been associated with long-lasting priming and sensitization of cerebral microglia. This review focuses on the diversity of microglial phenotype and function in health and psychiatric disease. We first discuss the diverse homeostatic functions performed by microglia and then elaborate on context-specific spatial and temporal microglial heterogeneity. Subsequently, we summarize microglia involvement in psychopathologies, namely major depressive disorder, schizophrenia and bipolar disorder, with a particular focus on post-mortem studies. Finally, we postulate microglia as a promising novel therapeutic target in psychiatry through antidepressant and antipsychotic treatment.
Collapse
Affiliation(s)
- Reza Rahimian
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada
| | - Marina Wakid
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Liam Anuj O'Leary
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
38
|
Cruz-Sanabria F, Reyes PA, Triviño-Martínez C, García-García M, Carmassi C, Pardo R, Matallana DL. Exploring Signatures of Neurodegeneration in Early-Onset Older-Age Bipolar Disorder and Behavioral Variant Frontotemporal Dementia. Front Neurol 2021; 12:713388. [PMID: 34539558 PMCID: PMC8446277 DOI: 10.3389/fneur.2021.713388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/28/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Older-age bipolar disorder (OABD) may involve neurocognitive decline and behavioral disturbances that could share features with the behavioral variant of frontotemporal dementia (bvFTD), making the differential diagnosis difficult in cases of suspected dementia. Objective: To compare the neuropsychological profile, brain morphometry, and structural connectivity patterns between patients diagnosed with bvFTD, patients classified as OABD with an early onset of the disease (EO-OABD), and healthy controls (HC). Methods: bvFTD patients (n = 25, age: 66 ± 7, female: 64%, disease duration: 6 ± 4 years), EO-OABD patients (n = 17, age: 65 ± 9, female: 71%, disease duration: 38 ± 8 years), and HC (n = 28, age: 62 ± 7, female: 64%) were evaluated through neuropsychological tests concerning attention, memory, executive function, praxis, and language. Brain morphometry was analyzed through surface-based morphometry (SBM), while structural brain connectivity was assessed through diffusion tensor imaging (DTI). Results: Both bvFTD and EO-OABD patients showed lower performance in neuropsychological tests of attention, verbal fluency, working memory, verbal memory, and praxis than HC. Comparisons between EO-OABD and bvFTD showed differences limited to cognitive flexibility delayed recall and intrusion errors in the memory test. SBM analysis demonstrated that several frontal, temporal, and parietal regions were altered in both bvFTD and EO-OABD compared to HC. In contrast, comparisons between bvFTD and EO-OABD evidenced differences exclusively in the right temporal pole and the left entorhinal cortex. DTI analysis showed alterations in association and projection fibers in both EO-OABD and bvFTD patients compared to HC. Commissural fibers were found to be particularly affected in EO-OABD. The middle cerebellar peduncle and the pontine crossing tract were exclusively altered in bvFTD. There were no significant differences in DTI analysis between EO-OABD and bvFTD. Discussion: EO-OABD and bvFTD may share an overlap in cognitive, brain morphometry, and structural connectivity profiles that could reflect common underlying mechanisms, even though the etiology of each disease can be different and multifactorial.
Collapse
Affiliation(s)
- Francy Cruz-Sanabria
- Department of Translational Research, New Surgical, and Medical Technologies, University of Pisa, Pisa, Italy
- Neurosciences Research Group, Institute of Genetics, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Pablo Alexander Reyes
- Ph.D. Program in Neuroscience, Department of Psychiatry, Pontificia Universidad Javeriana, Bogotá, Colombia
- Radiology Department, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Cristian Triviño-Martínez
- Psychiatry Department, School of Medicine, Aging Institute, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Milena García-García
- Ph.D. Program in Neuroscience, Department of Psychiatry, Pontificia Universidad Javeriana, Bogotá, Colombia
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Claudia Carmassi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rodrigo Pardo
- Neurosciences Research Group, Institute of Genetics, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Diana L. Matallana
- Ph.D. Program in Neuroscience, Department of Psychiatry, Pontificia Universidad Javeriana, Bogotá, Colombia
- Psychiatry Department, School of Medicine, Aging Institute, Pontificia Universidad Javeriana, Bogotá, Colombia
- Mental Health Department, Hospital Universitario Fundación Santa Fe, Bogotá, Colombia
- Memory and Cognition Clinic, Intellectus, Hospital Universitario San Ignacio, Bogotá, Colombia
| |
Collapse
|
39
|
Logan RW, Ozburn AR, Arey RN, Ketchesin KD, Winquist A, Crain A, Tobe BTD, Becker-Krail D, Jarpe MB, Xue X, Zong W, Huo Z, Parekh PK, Zhu X, Fitzgerald E, Zhang H, Oliver-Smith J, DePoy LM, Hildebrand MA, Snyder EY, Tseng GC, McClung CA. Valproate reverses mania-like behaviors in mice via preferential targeting of HDAC2. Mol Psychiatry 2021; 26:4066-4084. [PMID: 33235333 PMCID: PMC8141541 DOI: 10.1038/s41380-020-00958-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/20/2020] [Accepted: 11/06/2020] [Indexed: 12/15/2022]
Abstract
Valproate (VPA) has been used in the treatment of bipolar disorder since the 1990s. However, the therapeutic targets of VPA have remained elusive. Here we employ a preclinical model to identify the therapeutic targets of VPA. We find compounds that inhibit histone deacetylase proteins (HDACs) are effective in normalizing manic-like behavior, and that class I HDACs (e.g., HDAC1 and HDAC2) are most important in this response. Using an RNAi approach, we find that HDAC2, but not HDAC1, inhibition in the ventral tegmental area (VTA) is sufficient to normalize behavior. Furthermore, HDAC2 overexpression in the VTA prevents the actions of VPA. We used RNA sequencing in both mice and human induced pluripotent stem cells (iPSCs) derived from bipolar patients to further identify important molecular targets. Together, these studies identify HDAC2 and downstream targets for the development of novel therapeutics for bipolar mania.
Collapse
Affiliation(s)
- Ryan W. Logan
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Angela R. Ozburn
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR 97239, USA.,VA Portland Health Care System, Portland, OR 97239, USA
| | - Rachel N. Arey
- Department of Molecular and Cellular Biology and Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kyle D. Ketchesin
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Alicia Winquist
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Andrew Crain
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Brian T. D. Tobe
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA.,Department of Psychiatry, Veterans Administration Medical Center, La Jolla, CA 92037, USA
| | - Darius Becker-Krail
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Matthew B. Jarpe
- Regenacy Pharmaceuticals, 303 Wyman St, Suite 300, Waltham, MA, 02451, USA
| | - Xiangning Xue
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Wei Zong
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Zhiguang Huo
- Department of Biostatistics, University of Florida, Gainesville, FL, 32611, USA
| | - Puja K. Parekh
- Brain and Mind Research Institute, Department of Psychiatry, and Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Xiyu Zhu
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.,Department of Neuroscience, University of Pittsburgh, PA, 15260, USA
| | - Ethan Fitzgerald
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Hui Zhang
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.,Peking Union Medical College Hospital, Beijing, China 100730
| | - Jeffrey Oliver-Smith
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Lauren M. DePoy
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Mariah A. Hildebrand
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Evan Y. Snyder
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA.,Department of Pediatrics, University of California San Diego, La Jolla, CA, 92037, USA
| | - George C. Tseng
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA.,Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Colleen A. McClung
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.,Corresponding Author: Colleen A. McClung, Ph.D., Department of Psychiatry, 450 Technology Drive, Suite 223, Pittsburgh, PA 15219, , 412-624-5547
| |
Collapse
|
40
|
Gammon D, Cheng C, Volkovinskaia A, Baker GB, Dursun SM. Clozapine: Why Is It So Uniquely Effective in the Treatment of a Range of Neuropsychiatric Disorders? Biomolecules 2021; 11:1030. [PMID: 34356654 PMCID: PMC8301879 DOI: 10.3390/biom11071030] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 12/16/2022] Open
Abstract
Clozapine is superior to other antipsychotics as a therapy for treatment-resistant schizophrenia and schizoaffective disorder with increased risk of suicidal behavior. This drug has also been used in the off-label treatment of bipolar disorder, major depressive disorder (MDD), and Parkinson's disease (PD). Although usually reserved for severe and treatment-refractory cases, it is interesting that electroconvulsive therapy (ECT) has also been used in the treatment of these psychiatric disorders, suggesting some common or related mechanisms. A literature review on the applications of clozapine and electroconvulsive therapy (ECT) to the disorders mentioned above was undertaken, and this narrative review was prepared. Although both treatments have multiple actions, evidence to date suggests that the ability to elicit epileptiform activity and alter EEG activity, to increase neuroplasticity and elevate brain levels of neurotrophic factors, to affect imbalances in the relationship between glutamate and γ-aminobutyric acid (GABA), and to reduce inflammation through effects on neuron-glia interactions are common underlying mechanisms of these two treatments. This evidence may explain why clozapine is effective in a range of neuropsychiatric disorders. Future increased investigations into epigenetic and connectomic changes produced by clozapine and ECT should provide valuable information about these two treatments and the disorders they are used to treat.
Collapse
Affiliation(s)
- Dara Gammon
- Saba University School of Medicine, Saba, The Netherlands; (D.G.); (A.V.)
| | - Catherine Cheng
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2B7, Canada; (C.C.); (G.B.B.)
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Anna Volkovinskaia
- Saba University School of Medicine, Saba, The Netherlands; (D.G.); (A.V.)
| | - Glen B. Baker
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2B7, Canada; (C.C.); (G.B.B.)
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Serdar M. Dursun
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2B7, Canada; (C.C.); (G.B.B.)
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
41
|
Bode A, Kushnick G. Proximate and Ultimate Perspectives on Romantic Love. Front Psychol 2021; 12:573123. [PMID: 33912094 PMCID: PMC8074860 DOI: 10.3389/fpsyg.2021.573123] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 03/12/2021] [Indexed: 12/20/2022] Open
Abstract
Romantic love is a phenomenon of immense interest to the general public as well as to scholars in several disciplines. It is known to be present in almost all human societies and has been studied from a number of perspectives. In this integrative review, we bring together what is known about romantic love using Tinbergen’s “four questions” framework originating from evolutionary biology. Under the first question, related to mechanisms, we show that it is caused by social, psychological mate choice, genetic, neural, and endocrine mechanisms. The mechanisms regulating psychopathology, cognitive biases, and animal models provide further insights into the mechanisms that regulate romantic love. Under the second question, related to development, we show that romantic love exists across the human lifespan in both sexes. We summarize what is known about its development and the internal and external factors that influence it. We consider cross-cultural perspectives and raise the issue of evolutionary mismatch. Under the third question, related to function, we discuss the fitness-relevant benefits and costs of romantic love with reference to mate choice, courtship, sex, and pair-bonding. We outline three possible selective pressures and contend that romantic love is a suite of adaptions and by-products. Under the fourth question, related to phylogeny, we summarize theories of romantic love’s evolutionary history and show that romantic love probably evolved in concert with pair-bonds in our recent ancestors. We describe the mammalian antecedents to romantic love and the contribution of genes and culture to the expression of modern romantic love. We advance four potential scenarios for the evolution of romantic love. We conclude by summarizing what Tinbergen’s four questions tell us, highlighting outstanding questions as avenues of potential future research, and suggesting a novel ethologically informed working definition to accommodate the multi-faceted understanding of romantic love advanced in this review.
Collapse
Affiliation(s)
- Adam Bode
- Human Behavioural Ecology Research Group, School of Archaeology and Anthropology, ANU College of Arts and Social Sciences, The Australian National University, Canberra, ACT, Australia
| | - Geoff Kushnick
- Human Behavioural Ecology Research Group, School of Archaeology and Anthropology, ANU College of Arts and Social Sciences, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
42
|
Grey and white matter alteration in euthymic children with bipolar disorder: a combined source-based morphometry (SBM) and voxel-based morphometry (VBM) study. Brain Imaging Behav 2021; 16:22-30. [PMID: 33846953 DOI: 10.1007/s11682-021-00473-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/18/2021] [Indexed: 01/01/2023]
Abstract
Bipolar disorder (BPD) is a psychiatric condition driving frequent mood swings between periodic extremes of happiness and depression in patients. In this study, a source-based morphometry (SBM) and voxel-based morphometry (VBM) analysis was utilized to measure the differences in the white matter (WM) and grey matter (GM) between euthymic children with BPD and typically developing (TD) children. We adapted both multivariate (SBM) and univariate (VBM) analysis in 20 children with BPD euthymia /remission and compared to the same number of TD age-matched children. The VBM did not reveal any increase in GM and WM voxel values in children with BPD. However, a decrease in the GM voxel values in the bilateral middle frontal and WM voxels in the left hippocampus, left caudate, left orbitofrontal and right inferior parietal cortices was identified. Conversely, SBM analysis in BPD displayed a high GM value in bilateral angular gyrus, bilateral inferior temporal, left supplementary motor area and left middle temporal region, while a low value was observed in left inferior and middle occipital, cerebellum, thalamus, left premotor area and left lingual gyrus. These findings suggested a crucial GM and WM alteration in multiple neural regions in BPD children even during sustained and substantial remission.
Collapse
|
43
|
Loureiro CM, Corsi-Zuelli F, Fachim HA, Shuhama R, Chagas NMDS, Menezes PR, Del-Ben CM, Louzada-Junior P. Plasma prevalence of anti-N-methyl-d-aspartate receptor IgG antibodies in early stages of psychosis. CIENCIA & SAUDE COLETIVA 2021; 26:1085-1094. [PMID: 33729361 DOI: 10.1590/1413-81232021263.07552019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/05/2019] [Indexed: 11/22/2022] Open
Abstract
We investigated the feasibility of including plasma anti-NMDAR antibody screening in the assessment of first-episode psychosis patients in an early intervention programme in the Southern hemisphere. Anti-NMDAR IgG antibodies were assessed by ELISA in 166 patients (64.0% men), 166 matched population-based controls and 76 patients' siblings (30.3% men). Fisher's exact test and ANOVA were performed. Positive anti-NMDAR antibody patients were more often observed in bipolar disorder (10.0%) than schizophrenia (2.4%) or psychotic depression (3.1%), although no significant differences were observed. Our results are not conclusive regarding the inclusion of plasma anti-NMDAR IgG antibodies in differential diagnostic protocols for psychosis.
Collapse
Affiliation(s)
- Camila Marcelino Loureiro
- Departamento de Medicina Interna, Divisão de Imunologia Clínica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP). Av. Bandeirantes 3900, Monte Alegre. 14049-900 Ribeirão Preto SP Brasil.
| | - Fabiana Corsi-Zuelli
- Departamento de Neurociência e Comportamento, Divisão de Psiquiatria, Faculdade de Medicina de Ribeirão Preto, USP. Ribeirão Preto SP Brasil
| | - Helene Aparecida Fachim
- Departamento de Endocrinologia e Metabolismo, Salford Royal Foundation Trust. Salford Reino Unido
| | - Rosana Shuhama
- Departamento de Neurociência e Comportamento, Divisão de Psiquiatria, Faculdade de Medicina de Ribeirão Preto, USP. Ribeirão Preto SP Brasil
| | - Natália Mota de Souza Chagas
- Departamento de Neurociência e Comportamento, Divisão de Psiquiatria, Faculdade de Medicina de Ribeirão Preto, USP. Ribeirão Preto SP Brasil
| | - Paulo Rossi Menezes
- Departamento de Medicina Preventiva, Faculdade de Medicina, USP. São Paulo SP Brasil
| | - Cristina Marta Del-Ben
- Departamento de Neurociência e Comportamento, Divisão de Psiquiatria, Faculdade de Medicina de Ribeirão Preto, USP. Ribeirão Preto SP Brasil
| | - Paulo Louzada-Junior
- Departamento de Medicina Interna, Divisão de Imunologia Clínica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP). Av. Bandeirantes 3900, Monte Alegre. 14049-900 Ribeirão Preto SP Brasil.
| |
Collapse
|
44
|
Tonna M, Trinchieri M, Lucarini V, Ferrari M, Ballerini M, Ossola P, De Panfilis C, Marchesi C. Pattern of occurrence of obsessive-compulsive symptoms in bipolar disorder. Psychiatry Res 2021; 297:113715. [PMID: 33535087 DOI: 10.1016/j.psychres.2021.113715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 01/09/2021] [Indexed: 01/22/2023]
Abstract
Apparent comorbidity between Bipolar Disorder (BD) and Obsessive-Compulsive Disorder (OCD) is a common condition, but its meaning has not been clarified yet. The present study aimed to evaluate the pattern of occurrence of obsessive-compulsive symptoms (OCS) in the different phases of BD. One hundred and sixty-five BD patients, 62 (37.5%) euthymic, 34 (20.6%) in hypomanic/manic phase, 43 (26%) in depressive phase and 26 (15.7%) in mixed state, were assessed with the Yale-Brown Obsessive-Compulsive Scale (YBOCS), the Hamilton Depression Rating Scale (HAM-D), the Young Mania Rating Scale (YMRS) and the Ruminative Response Scale (RRS). In the whole sample, the severity of OCS was associated to the severity of depressive symptoms. The highest severity of OCS (YBOCS total score) was observed in the mixed group and the lowest scores in the hypomanic/manic group. Our findings suggest that OCS in BD patients appear as a state-dependent phenomenon cycling with the mood phases, particularly exacerbating in the context of depressive and mixed states.
Collapse
Affiliation(s)
- Matteo Tonna
- Department of Mental Health, Local Health Service, Parma, Italy; Department of Neuroscience, Psychiatric Unit, University of Parma, Parma, Italy.
| | | | - Valeria Lucarini
- Department of Mental Health, Local Health Service, Parma, Italy.
| | - Martina Ferrari
- Department of Mental Health, Local Health Service, Parma, Italy.
| | | | - Paolo Ossola
- Department of Neuroscience, Psychiatric Unit, University of Parma, Parma, Italy.
| | - Chiara De Panfilis
- Department of Mental Health, Local Health Service, Parma, Italy; Department of Neuroscience, Psychiatric Unit, University of Parma, Parma, Italy.
| | - Carlo Marchesi
- Department of Mental Health, Local Health Service, Parma, Italy; Department of Neuroscience, Psychiatric Unit, University of Parma, Parma, Italy.
| |
Collapse
|
45
|
Sinha P, Cree SL, Miller AL, Pearson JF, Kennedy MA. Transcriptional analysis of sodium valproate in a serotonergic cell line reveals gene regulation through both HDAC inhibition-dependent and independent mechanisms. THE PHARMACOGENOMICS JOURNAL 2021; 21:359-375. [PMID: 33649518 DOI: 10.1038/s41397-021-00215-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/17/2021] [Accepted: 01/27/2021] [Indexed: 11/09/2022]
Abstract
Sodium valproate (VPA) is a histone deacetylase (HDAC) inhibitor, widely prescribed in the treatment of bipolar disorder, and yet the precise modes of therapeutic action for this drug are not fully understood. After exposure of the rat serotonergic cell line RN46A to VPA, RNA-sequencing (RNA-Seq) analysis showed widespread changes in gene expression. Analysis by four bioinformatic pipelines revealed as many as 230 genes were significantly upregulated and 72 genes were significantly downregulated. A subset of 23 differentially expressed genes was selected for validation using the nCounter® platform, and of these we obtained robust validation for ADAM23, LSP1, MAOB, MMP13, PAK3, SERPINB2, SNAP91, WNT6, and ZCCHC12. We investigated the effect of lithium on this subset and found four genes, CDKN1C, LSP1, SERPINB2, and WNT6 co-regulated by lithium and VPA. We also explored the effects of other HDAC inhibitors and the VPA analogue valpromide on the subset of 23 selected genes. Expression of eight of these genes, CDKN1C, MAOB, MMP13, NGFR, SHANK3, VGF, WNT6 and ZCCHC12, was modified by HDAC inhibition, whereas others did not appear to respond to several HDAC inhibitors tested. These results suggest VPA may regulate genes through both HDAC-dependent and independent mechanisms. Understanding the broader gene regulatory effects of VPA in this serotonergic cell model should provide insights into how this drug works and whether other HDAC inhibitor compounds may have similar gene regulatory effects, as well as highlighting molecular processes that may underlie regulation of mood.
Collapse
Affiliation(s)
- Priyanka Sinha
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.,Carney Centre for Pharmacogenomics, University of Otago, Christchurch, New Zealand
| | - Simone L Cree
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.,Carney Centre for Pharmacogenomics, University of Otago, Christchurch, New Zealand
| | - Allison L Miller
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.,Carney Centre for Pharmacogenomics, University of Otago, Christchurch, New Zealand
| | - John F Pearson
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.,Carney Centre for Pharmacogenomics, University of Otago, Christchurch, New Zealand.,Biostatistics and Computational Biology Unit, University of Otago, Christchurch, New Zealand
| | - Martin A Kennedy
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand. .,Carney Centre for Pharmacogenomics, University of Otago, Christchurch, New Zealand.
| |
Collapse
|
46
|
Dolapoğlu N, Yürekli BPŞ, Eker MÇ, Elbi H. Relationship Between Serum Agouti-Related Peptide Levels and Metabolic Syndrome in Euthymic Bipolar Patients. Noro Psikiyatr Ars 2021; 58:16-20. [PMID: 33795947 DOI: 10.29399/npa.25005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 07/15/2020] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION Agouti-Related Peptide (AgRP) is expressed primarily in the hypothalamic arcuate nucleus, stimulates appetite and decreases metabolism and energy expenditure. The aim of our study is to evaluate the relationship between serum Agouti-Related Peptide (AgRP) levels and metabolic syndrome in euthymic bipolar patients. METHODS Forty euthymic bipolar patients who used only mood stabilizer for at least three months and 40 healthy volunteers as control group were included in the study. We measured fasting blood glucose levels and serum levels of AgRP, total cholesterol, triglyceride, high-density lipoprotein (HDL) and low-density lipoprotein (LDL) of all participants. The main outcome measure was the difference between patients and control groups in terms of metabolic syndrome frequency and the relationship between serum AgRP level and metabolic syndrome is also investigated. RESULTS The metabolic syndrome was significantly more common in euthymic bipolar patients than in control group (p=0.039). Additionally, levels of blood glucose and triglyceride were significantly higher in the patient group than in the control group (p=0.006 and 0.01 respectively). Serum AgRP levels did not differ between the patient and control groups (p=0.35). Also, in euthymic bipolar patients, there was no significant difference in serum AgRP levels between patients with metabolic syndrome and those without (p=0.754). CONCLUSION We found significantly higher frequency of metabolic syndrome in euthymic bipolar patients than in the control group. However, there was no significant difference in the levels of serum AgRP between bipolar patients with and without metabolic syndrome in either study groups.
Collapse
Affiliation(s)
- Nazan Dolapoğlu
- Balıkesir Atatürk State Hospital, Psychiatry Clinic, Balıkesir, Turkey.,Ege University Medical School, Department of Psychiatry, İzmir, Turkey
| | - Banu Pınar Şarer Yürekli
- Ege University Medical School, Department of Clinical Endocrinology and Metabolism, İzmir, Turkey
| | | | - Hayriye Elbi
- Ege University Medical School, Department of Psychiatry, İzmir, Turkey
| |
Collapse
|
47
|
Reviewing applications of structural and functional MRI for bipolar disorder. Jpn J Radiol 2021; 39:414-423. [PMID: 33389525 DOI: 10.1007/s11604-020-01074-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023]
Abstract
Bipolar disorders (BDs) represent one of the leading causes of disability and morbidity globally. The use of functional magnetic resonance imaging (fMRI) is being increasingly studied as a tool to improve the diagnosis and treatment of BDs. While morphological biomarkers can be identified through the use of structural magnetic resonance imaging (sMRI), recent studies have demonstrated that varying degrees of both structural and functional impairments indicate differing bipolar subtypes. Within fMRI, resting-state fMRI has specifically drawn increased interest for its capability to detect different neuronal activation patterns compared to task-based fMRI. This study aims to review recently published literature regarding the use of fMRI to investigate structural-functional relationships in BD diagnosis and specifically resting-state fMRI to provide an opinion on fMRI's modern clinical application. All sources in this literature review were collected through searches on both PubMed and Google Scholar databases for terms such as 'resting-state fMRI' and 'functional neuroimaging biomarkers of bipolar disorder'. While there are promising results supporting the use of fMRI for improving differential accuracy and establishing clinically relevant biomarkers, additional evidence will be required before fMRI is considered a dependable component of the overall BD diagnostic process.
Collapse
|
48
|
Rurak GM, Woodside B, Aguilar-Valles A, Salmaso N. Astroglial cells as neuroendocrine targets in forebrain development: Implications for sex differences in psychiatric disease. Front Neuroendocrinol 2021; 60:100897. [PMID: 33359797 DOI: 10.1016/j.yfrne.2020.100897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/05/2020] [Accepted: 12/15/2020] [Indexed: 12/23/2022]
Abstract
Astroglial cells are the most abundant cell type in the mammalian brain. They are implicated in almost every aspect of brain physiology, including maintaining homeostasis, building and maintaining the blood brain barrier, and the development and maturation of neuronal networks. Critically, astroglia also express receptors for gonadal sex hormones, respond rapidly to gonadal hormones, and are able to synthesize hormones. Thus, they are positioned to guide and mediate sexual differentiation of the brain, particularly neuronal networks in typical and pathological conditions. In this review, we describe astroglial involvement in the organization and development of the brain, and consider known sex differences in astroglial responses to understand how astroglial cell-mediated organization may play a role in forebrain sexual dimorphisms in human populations. Finally, we consider how sexually dimorphic astroglial responses and functions in development may lead to sex differences in vulnerability for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Gareth M Rurak
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Barbara Woodside
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada; Concordia University, Montreal, Quebec, Canada
| | | | - Natalina Salmaso
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada.
| |
Collapse
|
49
|
Kidnapillai S, Bortolasci CC, Udawela M, Panizzutti B, Spolding B, Connor T, Sanigorski A, Dean OM, Crowley T, Jamain S, Gray L, Scarr E, Leboyer M, Dean B, Berk M, Walder K. The use of a gene expression signature and connectivity map to repurpose drugs for bipolar disorder. World J Biol Psychiatry 2020; 21:775-783. [PMID: 29956574 DOI: 10.1080/15622975.2018.1492734] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
To create a gene expression signature (GES) to represent the biological effects of a combination of known drugs for bipolar disorder (BD) on cultured human neuronal cells (NT2-N) and rat brains, which also has evidence of differential expression in individuals with BD. To use the GES to identify new drugs for BD using Connectivity Map (CMap).Methods: NT2-N (n = 20) cells and rats (n = 8) were treated with a BD drug combination (lithium, valproate, quetiapine and lamotrigine) or vehicle for 24 and 6 h, respectively. Following next-generation sequencing, the differential expression of genes was assessed using edgeR in R. The derived GES was compared to differentially expressed genes in post-mortem brains of individuals with BD. The GES was then used in CMap analysis to identify similarly acting drugs.Results: A total of 88 genes showed evidence of differential expression in response to the drug combination in both models, and therefore comprised the GES. Six of these genes showed evidence of differential expression in post-mortem brains of individuals with BD. CMap analysis identified 10 compounds (camptothecin, chlorambucil, flupenthixol, valdecoxib, rescinnamine, GW-8510, cinnarizine, lomustine, mifepristone and nimesulide) acting similarly to the BD drug combination.Conclusions: This study shows that GES and CMap can be used as tools to repurpose drugs for BD.
Collapse
Affiliation(s)
- Srisaiyini Kidnapillai
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia
| | - Chiara C Bortolasci
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia
| | - Madhara Udawela
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Bruna Panizzutti
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre (HCPA) and Programa de Pós-graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Briana Spolding
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia
| | - Timothy Connor
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia
| | - Andrew Sanigorski
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia
| | - Olivia M Dean
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia.,IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Australia.,Department of Psychiatry, the University of Melbourne, Parkville, Australia
| | - Tamsyn Crowley
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia.,Bioinformatics Core Research Facility (BCRF), Deakin University, Geelong, Australia
| | - Stéphane Jamain
- INSERM U955, Psychiatrie Translationnelle, Université Paris Est, Créteil, France
| | - Laura Gray
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia.,The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Elizabeth Scarr
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia.,Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Victoria, Australia
| | - Marion Leboyer
- INSERM U955, Psychiatrie Translationnelle, Université Paris Est, Créteil, France
| | - Brian Dean
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia.,Faculty of Health Arts and Design, Centre for Mental Health, Swinburne University, Victoria, Australia
| | - Michael Berk
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia.,IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Australia.,Department of Psychiatry, the University of Melbourne, Parkville, Australia.,Orygen, the National, Centre of Excellence in Youth Mental Health, Parkville, Australia
| | - Ken Walder
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia
| |
Collapse
|
50
|
Prediction of functional regulatory elements of bipolar disorder via data integration analysis. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2020. [DOI: 10.1016/j.jadr.2020.100015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|