1
|
Alsegiani AS, Shah ZA. Age-dependent sex differences in cofilin1 pathway (LIMK1/SSH1) and its association with AD biomarkers after chronic systemic inflammation in mice. Neurobiol Aging 2024; 144:43-55. [PMID: 39265451 DOI: 10.1016/j.neurobiolaging.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/15/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024]
Abstract
Chronic systemic inflammation (CSI) results in neuroinflammation and neurodegeneration. Cofilin1 is a stress protein that activates microglia and induces neuroinflammation, but its role in CSI at different aging stages remains unidentified. Therefore, the study aims to identify cofilin1 and its upstream regulators LIMK1 and SSH1 after CSI in young-, middle-, and advanced-aged mice. CSI was induced by injecting the male and female mice with a sub-lethal dose of Lipopolysaccharide weekly for six weeks. The results showed that normal male mice did not show cofilin pathway dysregulation, but a significant dysregulation was observed in CSI advanced-aged mice. In females, cofilin1 dysregulation was observed in healthy and CSI advanced-aged mice, while significant cofilin1 dysregulation was observed in middle-aged mice during CSI. Furthermore, cofilin1 pathway dysregulations correlated with Alzheimer's disease (AD) biomarkers in the brain and saliva, astrocyte activation, synaptic degeneration, neurobehavioral impairments, gut-microbiota abnormalities, and circulatory inflammation. These results provide new insights into cofilin1 sex and age-dependent mechanistic differences that might help identify targets for modulating neuroinflammation and early onset of AD.
Collapse
Affiliation(s)
- Amsha S Alsegiani
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA.
| |
Collapse
|
2
|
Banks DB, Lierz SL, Cannon RE, Korach KS. Nongenomic ERα-AMPK Signaling Regulates Sex-Dependent Bcrp Transport Activity at the Blood-Brain Barrier. Endocrinology 2024; 165:bqae081. [PMID: 38984714 PMCID: PMC11272090 DOI: 10.1210/endocr/bqae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024]
Abstract
The blood-brain barrier (BBB) is an extensive capillary network that protects the brain from environmental and metabolic toxins while limiting drug delivery to the central nervous system (CNS). The ATP-binding cassette transporter breast cancer resistance protein (Bcrp) reduces drug delivery across the BBB by actively transporting its clinical substrates back into peripheral circulation before their entry into the CNS compartment. 17β-Estradiol (E2)-elicited changes in Bcrp transport activity and expression have been documented previously. We report a novel signaling mechanism by which E2 decreases Bcrp transport activity in mouse brain capillaries via rapid nongenomic signaling through estrogen receptor α. We extended this finding to investigate the effects of different endocrine-disrupting compounds (EDCs) and selective estrogen receptor modulators (SERMs) on Bcrp transport function. We also demonstrate sex-dependent expression of Bcrp and E2-sensitive Bcrp transport activity at the BBB ex vivo. This work establishes an explanted tissue-based model by which to interrogate EDCs and SERMs as modulators of nongenomic estrogenic signaling with implications for sex and hormonal regulation of therapeutic delivery into the CNS.
Collapse
Affiliation(s)
- David B Banks
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
| | - Sydney L Lierz
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
- North Carolina State University College of Veterinary Medicine, Raleigh, NC 27606, USA
| | - Ronald E Cannon
- Laboratory of Toxicology and Toxicokinetics, National Cancer Institute, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Kenneth S Korach
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
3
|
Lakhssassi K, Ureña I, Marín B, Sarto MP, Lahoz B, Alabart JL, Calvo JH, Serrano M. Characterization of the pars tuberalis and hypothalamus transcriptome in female sheep under different reproductive stages. Anim Biotechnol 2023; 34:3461-3474. [PMID: 36534535 DOI: 10.1080/10495398.2022.2155174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
For understanding the molecular events underlying the follicular (F) and luteal (L) phases of estrous cycle, and anestrous (A) phase, the pars tuberalis (PT), and hypothalamus (HT) transcriptomes of 21 ewes were studied. In HT, 72 and 3 differential expression genes (DEGs) were found when comparing F vs. A and L vs. A, respectively. In PT, 6 and 4 DEGs were found in F vs. A and L vs. A comparisons, respectively. Enrichment analysis for DEGs between the F and A phases in the HT revealed significant clusters, mainly associated with actin-binding, and cytoskeleton, that are related to neural plasticity modulated by gonadal steroid hormones, as well as with oxytocin signaling. We found that DEGs in PT had higher differences in expression levels than those found in HT. In this sense, the ITLN was highly upregulated in the F and L vs. A phases, being MRPL57 and IRX4 highly downregulated in L vs. A comparison. The DDC gene in PT, related to LH regulation, was upregulated in the F phase. The gene set enrichment analysis (GSEA) revealed multiple pathways related to neurotransmission and neuronal plasticity. Our study reveals new candidate genes involved in the reproductive stages' transitions in seasonal sheep.
Collapse
Affiliation(s)
- Kenza Lakhssassi
- Departamento de Ciencia Animal, CITA-IA2, Zaragoza, Spain
- INRA Instituts, Rabat, Morocco
| | | | - Belén Marín
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, Zaragoza, Spain
| | | | - Belén Lahoz
- Departamento de Ciencia Animal, CITA-IA2, Zaragoza, Spain
| | | | - Jorge Hugo Calvo
- Departamento de Ciencia Animal, CITA-IA2, Zaragoza, Spain
- ARAID, Zaragoza, Spain
| | | |
Collapse
|
4
|
Vieira ADC, Medeiros EB, Zabot GC, Pereira NDS, do Nascimento NB, Lidio AV, Scheffer ÂK, Rempel LCT, Macarini BMN, Costa MDA, Gonçalves CL, Kucharska E, Rodrigues MS, Moreira JCF, de Oliveira J, Budni J. Neuroprotective effects of combined therapy with memantine, donepezil, and vitamin D in ovariectomized female mice subjected to dementia model. Prog Neuropsychopharmacol Biol Psychiatry 2023; 122:110653. [PMID: 36195205 DOI: 10.1016/j.pnpbp.2022.110653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022]
Abstract
Women older than 60 have a higher risk of dementia, aging-related cognitive decline, and Alzheimer's Disease (AD) than the rest of the population. The main reason is hormonal senescence after menopause, a period characterized by a decline in estrogen levels. Since the effectiveness of drugs currently approved for the treatment of AD is limited, it is necessary to seek the development of new therapeutic strategies. Vitamin D deficiency is prevalent in AD patients and individuals with dementia in general. The supplementation of this vitamin in dementia patients might be an interesting approach for increasing the effectiveness of pre-existing medications for dementia treatment. Thus, the present study aims to investigate the effect of vitamin D treatment associated with memantine and donepezil in female mice submitted to ovariectomy (OVX) for five months and subjected to a dementia animal model induced by intracerebroventricular injection of aggregated amyloid βeta (Aβ1-42). For this purpose, Balb/c mice were divided into five experimental groups, which received 17 days of combined therapy with vitamin D, donepezil, and memantine. Then, animals were subjected to behavioral tests. OVX groups exhibited reduced levels of estradiol (E2) in serum, which was not altered by the combined therapy. Higher levels of vitamin D3 were found in the OVX animals submitted to the triple-association treatment. Mice exposed to both OVX and the dementia animal model presented impairment in short and long-term spatial and habituation memories. Also, female mice exposed to Aβ and OVX exhibited a reduction in brain-derived neurotrophic factor (BDNF) and interleukin-4 (IL-4) levels, and an increase in tumor necrose factor-α (TNFα) levels in the hippocampus. Besides, increased levels of IL-1β in the hippocampus and cerebral cortex were observed, as well as a significant increase in immunoreactivity for glial fibrillary acidic protein (GFAP), an astrocytes marker, in the hippocampus. Notably, triple-association treatment reversed the effects of the exposition of mice to Aβ and OVX in the long-term spatial and habituation memories impairment, as well as reversed changes in TNFα, IL-1β, IL-4, and GFAP immunoreactivity levels in the hippocampus of treated animals. Our results indicate that the therapeutic association of vitamin D, memantine, and donepezil has beneficial effects on memory performance and attenuated the neuroinflammatory response in female mice subjected to OVX associated with a dementia animal model.
Collapse
Affiliation(s)
- Ana Daniela Coutinho Vieira
- Graduate Program in Health Sciences, Academic Unit of Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Eduarda Behenck Medeiros
- Graduate Program in Health Sciences, Academic Unit of Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Gabriel Casagrande Zabot
- Graduate Program in Health Sciences, Academic Unit of Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Nathalia de Souza Pereira
- Graduate Program in Health Sciences, Academic Unit of Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Natália Baltazar do Nascimento
- Graduate Program in Health Sciences, Academic Unit of Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Adrielly Vargas Lidio
- Graduate Program in Health Sciences, Academic Unit of Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Ândrea Kohlrausch Scheffer
- Graduate Program in Health Sciences, Academic Unit of Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Lisienny Campoli Tono Rempel
- Graduate Program in Health Sciences, Academic Unit of Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | | | - Maiara de Aguiar Costa
- Graduate Program in Health Sciences, Academic Unit of Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Cinara Ludvig Gonçalves
- Graduate Program in Health Sciences, Academic Unit of Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Ewa Kucharska
- Akademia Ignatianum w Krakowie Wydział Pedagogiczny Instytut Nauk o Wychowaniu, Krakow, Poland
| | - Matheus Scarpatto Rodrigues
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - José Cláudio Fonseca Moreira
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Jade de Oliveira
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Josiane Budni
- Graduate Program in Health Sciences, Academic Unit of Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil.
| |
Collapse
|
5
|
Wang Q, Han W, Ma C, Wang T, Zhong J. Western blot normalization: Time to choose a proper loading control seriously. Electrophoresis 2023; 44:854-863. [PMID: 36645159 DOI: 10.1002/elps.202200222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/17/2023]
Abstract
Recent research has questioned the validity of housekeeping proteins in Western blot. Our present study proposed new ideas for Western blot normalization that improved the reproducibility of scientific research. We used the Gene Expression Omnibus (GEO) database and the web tool GEO2R to exclude unstable housekeeping genes quickly. In ischemic heart tissues, actin and tubulin changed significantly, whereas no statistically significant changes were observed in the expression of genes relative to glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Besides, the reliability of GAPDH was further examined by Western blot. Additionally, unstable housekeeping genes were found in other animal models of cardiovascular medicine. We also found that sodium dodecyl sulfate and temperature significantly impacted the results of Ponceau S staining. Membranes stained with Ponceau S after immunodetection could avoid this interference, and the coefficients of variation for post-immunodetection staining are lower than those produced by GAPDH immunodetection. Overall, we described a new use of differential gene expression analysis and proposed a modified Ponceau S staining method, which provided researchers with a proper loading control for Western blot and hence could improve reproducibility in research.
Collapse
Affiliation(s)
- Qinhong Wang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Wenqiang Han
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Chuanzhen Ma
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Tianyu Wang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Jingquan Zhong
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China.,Department of Cardiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, P. R. China
| |
Collapse
|
6
|
Rasia-Filho AA, Calcagnotto ME, von Bohlen Und Halbach O. Introduction: What Are Dendritic Spines? ADVANCES IN NEUROBIOLOGY 2023; 34:1-68. [PMID: 37962793 DOI: 10.1007/978-3-031-36159-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dendritic spines are cellular specializations that greatly increase the connectivity of neurons and modulate the "weight" of most postsynaptic excitatory potentials. Spines are found in very diverse animal species providing neural networks with a high integrative and computational possibility and plasticity, enabling the perception of sensorial stimuli and the elaboration of a myriad of behavioral displays, including emotional processing, memory, and learning. Humans have trillions of spines in the cerebral cortex, and these spines in a continuum of shapes and sizes can integrate the features that differ our brain from other species. In this chapter, we describe (1) the discovery of these small neuronal protrusions and the search for the biological meaning of dendritic spines; (2) the heterogeneity of shapes and sizes of spines, whose structure and composition are associated with the fine-tuning of synaptic processing in each nervous area, as well as the findings that support the role of dendritic spines in increasing the wiring of neural circuits and their functions; and (3) within the intraspine microenvironment, the integration and activation of signaling biochemical pathways, the compartmentalization of molecules or their spreading outside the spine, and the biophysical properties that can affect parent dendrites. We also provide (4) examples of plasticity involving dendritic spines and neural circuits relevant to species survival and comment on (5) current research advancements and challenges in this exciting research field.
Collapse
Affiliation(s)
- Alberto A Rasia-Filho
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Elisa Calcagnotto
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Psychiatry and Behavioral Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | |
Collapse
|
7
|
Metzner K, Darawsha O, Wang M, Gaur N, Cheng Y, Rödiger A, Frahm C, Witte OW, Perocchi F, Axer H, Grosskreutz J, Brill MS. Age-dependent increase of cytoskeletal components in sensory axons in human skin. Front Cell Dev Biol 2022; 10:965382. [PMID: 36393849 PMCID: PMC9664158 DOI: 10.3389/fcell.2022.965382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/12/2022] [Indexed: 01/24/2023] Open
Abstract
Aging is a complex process characterized by several molecular and cellular imbalances. The composition and stability of the neuronal cytoskeleton is essential for the maintenance of homeostasis, especially in long neurites. Using human skin biopsies containing sensory axons from a cohort of healthy individuals, we investigate alterations in cytoskeletal content and sensory axon caliber during aging via quantitative immunostainings. Cytoskeletal components show an increase with aging in both sexes, while elevation in axon diameter is only evident in males. Transcriptomic data from aging males illustrate various patterns in gene expression during aging. Together, the data suggest gender-specific changes during aging in peripheral sensory axons, possibly influencing cytoskeletal functionality and axonal caliber. These changes may cumulatively increase susceptibility of aged individuals to neurodegenerative diseases.
Collapse
Affiliation(s)
- Klara Metzner
- Department of Neurology, Jena University Hospital, Jena, Germany,Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
| | - Omar Darawsha
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
| | - Mengzhe Wang
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
| | - Nayana Gaur
- Department of Neurology, Jena University Hospital, Jena, Germany,Laboratory Animal Centre, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Yiming Cheng
- Helmholtz Diabetes Center (HDC), Helmholtz Center Munich, Institute for Diabetes and Obesity, Munich, Germany
| | | | - Christiane Frahm
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Otto W. Witte
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Fabiana Perocchi
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany,Helmholtz Diabetes Center (HDC), Helmholtz Center Munich, Institute for Diabetes and Obesity, Munich, Germany,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Hubertus Axer
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Julian Grosskreutz
- Precision Neurology of the University of Lübeck, Lübeck, Germany,PMI Cluster, University of Lübeck, Lübeck, Germany
| | - Monika S. Brill
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany,*Correspondence: Monika S. Brill,
| |
Collapse
|
8
|
Waszczykowska K, Prażanowska K, Kałuzińska Ż, Kołat D, Płuciennik E. Discovering biomarkers for hormone-dependent tumors: in silico study on signaling pathways implicated in cell cycle and cytoskeleton regulation. Mol Genet Genomics 2022; 297:947-963. [PMID: 35532795 DOI: 10.1007/s00438-022-01900-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/16/2022] [Indexed: 02/07/2023]
Abstract
Malignancies dependent on hormone homeostasis include breast, ovary, cervical, prostate, testis and uterine tumors. Hormones are involved in signal transduction which orchestrate processes, such as apoptosis, proliferation, cell cycle or cytoskeleton organization. Currently, there is a need for novel biomarkers which would help to diagnose cancers efficiently. In this study, the genes implicated in signaling that is important in hormone-sensitive carcinogenesis were investigated regarding their prognostic significance. Data of seven cancer cohorts were collected from FireBrowse. 54 gene sets implicated in specific pathways were browsed through MSig database. Profiling was assessed via Monocle3, while gene ontology through PANTHER. For confirmation, correlation analysis was performed using WGCNA. Protein-protein networks were visualized via Cytoscape and impact of genes on survival, as well as cell cycle or cytoskeleton-related prognostic signatures, was tested. Several differences in expression profile were identified, some of them allowed to distinguish histology. Functional annotation revealed that various regulation of cell cycle, adhesion, migration, apoptosis and angiogenesis underlie these differences. Clinical traits, such as histological type or cancer staging, were found during evaluation of module-trait relationships. Of modules, the TopHubs (COL6A3, TNR, GTF2A1, NKX3-1) interacted directly with, e.g., PDGFB, ITGA10, SP1 or AKT3. Among TopHubs and interacting proteins, many showed an impact on hazard ratio and affected the cell cycle or cytoskeleton-related prognostic signatures, e.g., COL1A1 or PDGFB. In conclusion, this study laid the foundation for further hormone-sensitive carcinogenesis research through identification of genes which prove that crosstalk between cell cycle and cytoskeleton exists, opening avenues for future therapeutic strategies.
Collapse
Affiliation(s)
| | - Karolina Prażanowska
- Faculty of Biomedical Sciences, Medical University of Lodz, 90-752, Lodz, Poland
| | - Żaneta Kałuzińska
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752, Lodz, Poland.
| | - Damian Kołat
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752, Lodz, Poland
| | - Elżbieta Płuciennik
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752, Lodz, Poland
| |
Collapse
|
9
|
Relationship between serum gonadal hormone levels and synkinesis in postmenopausal women and man with idiopathic facial paralysis. Auris Nasus Larynx 2022; 49:782-789. [DOI: 10.1016/j.anl.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/17/2022] [Accepted: 02/13/2022] [Indexed: 11/22/2022]
|
10
|
Muthu SJ, Lakshmanan G, Seppan P. Influence of Testosterone depletion on Neurotrophin-4 in Hippocampal synaptic plasticity and its effects on learning and memory. Dev Neurosci 2022; 44:102-112. [PMID: 35086088 DOI: 10.1159/000522201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/22/2022] [Indexed: 11/19/2022] Open
Abstract
Sex steroids are neuromodulators that play a crucial role in learning, memory, and synaptic plasticity, providing circuit flexibility and dynamic functional connectivity in mammals. Previous studies indicate that testosterone is crucial for neuronal functions and required further investigation on various frontiers. However, it is surprising to note that studies on testosterone-induced NT-4 expression and its influence on synaptic plasticity and learning and memory moderation are scanty. The present study is focused on analyzing the localized influence of neurotrophin-4 (NT4) on hippocampal synaptic plasticity and associated moderation in learning and memory under testosterone deprivation. Adult Wistar albino rats were randomly divided into various groups, control (Cont), orchidectomy (ORX), orchidectomy + testosterone supplementation (ORX+T) and control + testosterone (Cont+T). After two weeks, the serum testosterone level was undetectable in ORX rats. The behavioural assessment showed a decline in the learning ability of ORX rats with increased working and reference memory errors in the behavioural assessment in the 8-arm radial maze. The mRNA and protein expressions of NT-4 and androgen receptors were significantly reduced in the ORX group. In addition, there was a decrease in the number of neuronal dendrites in Golgi-Cox staining. These changes were not seen in ORX+T rats with improved learning behaviour. Indicating that testosterone exerts its protective effect on hippocampal synaptic plasticity through androgen receptor-dependent neurotrophin-4 regulation in learning and memory upgrade.
Collapse
Affiliation(s)
- Sakthi Jothi Muthu
- Department of Anatomy, Dr. Arcot Lakshmanasamy Mudaliar Postgraduate Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | - Ganesh Lakshmanan
- Department of Anatomy, Dr. Arcot Lakshmanasamy Mudaliar Postgraduate Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | - Prakash Seppan
- Department of Anatomy, Dr. Arcot Lakshmanasamy Mudaliar Postgraduate Institute of Basic Medical Sciences, University of Madras, Chennai, India
| |
Collapse
|
11
|
Hartsock MJ, Strnad HK, Spencer RL. Iterative Metaplasticity Across Timescales: How Circadian, Ultradian, and Infradian Rhythms Modulate Memory Mechanisms. J Biol Rhythms 2021; 37:29-42. [PMID: 34781753 DOI: 10.1177/07487304211058256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Work in recent years has provided strong evidence for the modulation of memory function and neuroplasticity mechanisms across circadian (daily), ultradian (shorter-than-daily), and infradian (longer-than-daily) timescales. Despite rapid progress, however, the field has yet to adopt a general framework to describe the overarching role of biological rhythms in memory. To this end, Iyer and colleagues introduced the term iterative metaplasticity, which they define as the "gating of receptivity to subsequent signals that repeats on a cyclic timebase." The central concept is that the cyclic regulation of molecules involved in neuroplasticity may produce cycles in neuroplastic capacity-that is, the ability of neural cells to undergo activity-dependent change. Although Iyer and colleagues focus on the circadian timescale, we think their framework may be useful for understanding how biological rhythms influence memory more broadly. In this review, we provide examples and terminology to explain how the idea of iterative metaplasticity can be readily applied across circadian, ultradian, and infradian timescales. We suggest that iterative metaplasticity may not only support the temporal niching of neuroplasticity processes but also serve an essential role in the maintenance of memory function.
Collapse
Affiliation(s)
- Matthew J Hartsock
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado
| | | | | |
Collapse
|
12
|
Sex Hormone-Binding Globulin (SHBG) in Cerebrospinal Fluid Does Not Discriminate between the Main FTLD Pathological Subtypes but Correlates with Cognitive Decline in FTLD Tauopathies. Biomolecules 2021; 11:biom11101484. [PMID: 34680117 PMCID: PMC8533538 DOI: 10.3390/biom11101484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/22/2021] [Indexed: 12/16/2022] Open
Abstract
Biomarkers to discriminate the main pathologies underlying frontotemporal lobar degeneration (FTLD-Tau, FTLD-TDP) are lacking. Our previous FTLD cerebrospinal fluid (CSF) proteome study revealed that sex hormone-binding globulin (SHBG) was specifically increased in FTLD-Tau patients. Here we investigated the potential of CSF SHBG as a novel biomarker discriminating the main FTLD pathological subtypes. SHBG was measured in CSF samples from patients with FTLD-Tau (n = 23), FTLD-TDP (n = 29) and controls (n = 33) using an automated electro-chemiluminescent immunoassay. Differences in CSF SHBG levels across groups, as well as its association with CSF YKL40, pTau181/total-Tau ratio and cognitive function were analyzed. CSF SHBG did not differ across groups, though a trend towards elevated levels in FTLD-Tau cases compared to FTLD-TDP and controls was observed. CSF SHBG levels were not associated with either CSF YKL40 or the p/tTau ratio. They, however, inversely correlated with the MMSE score (r = -0.307, p = 0.011), an association likely driven by the FTLD-Tau group (r FTLD-Tau = -0.38; r FTLD-TDP = -0.02). CSF SHBG is not a suitable biomarker to discriminate FTLD-Tau from FTLD-TDP.
Collapse
|
13
|
Guglielmotto M, Manassero G, Vasciaveo V, Venezia M, Tabaton M, Tamagno E. Estrogens Inhibit Amyloid-β-Mediated Paired Helical Filament-Like Conformation of Tau Through Antioxidant Activity and miRNA 218 Regulation in hTau Mice. J Alzheimers Dis 2021; 77:1339-1351. [PMID: 32804095 DOI: 10.3233/jad-200707] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The risk of developing Alzheimer's disease as well as its progression and severity are known to be different in men and women, and cognitive decline is greater in women than in men at the same stage of disease and could be correlated at least in part on estradiol levels. OBJECTIVE In our work we found that biological sex influences the effect of amyloid-β42 (Aβ42) monomers on pathological tau conformational change. METHODS In this study we used transgenic mice expressing the wild-type human tau (hTau) which were subjected to intraventricular (ICV) injections of Aβ peptides in nanomolar concentration. RESULTS We found that Aβ42 produces pathological conformational changes and hyperphosphorylation of tau protein in male or ovariectomized female mice but not in control females. The treatment of ovariectomized females with estradiol replacement protects against the pathological conformation of tau and seems to be mediated by antioxidant activity as well as the ability to modulate the expression of miRNA 218 linked to tau phosphorylation. CONCLUSION Our study indicates that factors as age, reproductive stage, hormone levels, and the interplay with other risk factors should be considered in women, in order to identify the best appropriate therapeutic approach in prevention of cognitive impairment.
Collapse
Affiliation(s)
- Michela Guglielmotto
- Department of Neuroscience, University of Torino, Torino, Italy.,Neuroscience Institute of Cavalieri Ottolenghi Foundation (NICO), University of Torino, Orbassano, Torino, Italy
| | - Giusi Manassero
- Department of Neuroscience, University of Torino, Torino, Italy.,Neuroscience Institute of Cavalieri Ottolenghi Foundation (NICO), University of Torino, Orbassano, Torino, Italy
| | - Valeria Vasciaveo
- Department of Neuroscience, University of Torino, Torino, Italy.,Neuroscience Institute of Cavalieri Ottolenghi Foundation (NICO), University of Torino, Orbassano, Torino, Italy
| | - Marika Venezia
- Department of Neuroscience, University of Torino, Torino, Italy.,Neuroscience Institute of Cavalieri Ottolenghi Foundation (NICO), University of Torino, Orbassano, Torino, Italy
| | - Massimo Tabaton
- Unit of Geriatric Medicine, Department of Internal Medicine and Medical Specialties (DIMI), University of Genova, Genova, Italy
| | - Elena Tamagno
- Department of Neuroscience, University of Torino, Torino, Italy.,Neuroscience Institute of Cavalieri Ottolenghi Foundation (NICO), University of Torino, Orbassano, Torino, Italy
| |
Collapse
|
14
|
Zaręba-Kozioł M, Bartkowiak-Kaczmarek A, Roszkowska M, Bijata K, Figiel I, Halder AK, Kamińska P, Müller FE, Basu S, Zhang W, Ponimaskin E, Włodarczyk J. S-Palmitoylation of Synaptic Proteins as a Novel Mechanism Underlying Sex-Dependent Differences in Neuronal Plasticity. Int J Mol Sci 2021; 22:ijms22126253. [PMID: 34200797 PMCID: PMC8230572 DOI: 10.3390/ijms22126253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Although sex differences in the brain are prevalent, the knowledge about mechanisms underlying sex-related effects on normal and pathological brain functioning is rather poor. It is known that female and male brains differ in size and connectivity. Moreover, those differences are related to neuronal morphology, synaptic plasticity, and molecular signaling pathways. Among different processes assuring proper synapse functions are posttranslational modifications, and among them, S-palmitoylation (S-PALM) emerges as a crucial mechanism regulating synaptic integrity. Protein S-PALM is governed by a family of palmitoyl acyltransferases, also known as DHHC proteins. Here we focused on the sex-related functional importance of DHHC7 acyltransferase because of its S-PALM action over different synaptic proteins as well as sex steroid receptors. Using the mass spectrometry-based PANIMoni method, we identified sex-dependent differences in the S-PALM of synaptic proteins potentially involved in the regulation of membrane excitability and synaptic transmission as well as in the signaling of proteins involved in the structural plasticity of dendritic spines. To determine a mechanistic source for obtained sex-dependent changes in protein S-PALM, we analyzed synaptoneurosomes isolated from DHHC7-/- (DHHC7KO) female and male mice. Our data showed sex-dependent action of DHHC7 acyltransferase. Furthermore, we revealed that different S-PALM proteins control the same biological processes in male and female synapses.
Collapse
Affiliation(s)
- Monika Zaręba-Kozioł
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Science, Pasteur Str. 3, 02-093 Warsaw, Poland; (A.B.-K.); (M.R.); (K.B.); (I.F.); (P.K.)
- Correspondence: (M.Z.-K.); (J.W.)
| | - Anna Bartkowiak-Kaczmarek
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Science, Pasteur Str. 3, 02-093 Warsaw, Poland; (A.B.-K.); (M.R.); (K.B.); (I.F.); (P.K.)
| | - Matylda Roszkowska
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Science, Pasteur Str. 3, 02-093 Warsaw, Poland; (A.B.-K.); (M.R.); (K.B.); (I.F.); (P.K.)
| | - Krystian Bijata
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Science, Pasteur Str. 3, 02-093 Warsaw, Poland; (A.B.-K.); (M.R.); (K.B.); (I.F.); (P.K.)
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Izabela Figiel
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Science, Pasteur Str. 3, 02-093 Warsaw, Poland; (A.B.-K.); (M.R.); (K.B.); (I.F.); (P.K.)
| | - Anup Kumar Halder
- Department of Computer Science and Engineering, Jadvapur University, Kolkata 700032, India; (A.K.H.); (S.B.)
| | - Paulina Kamińska
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Science, Pasteur Str. 3, 02-093 Warsaw, Poland; (A.B.-K.); (M.R.); (K.B.); (I.F.); (P.K.)
| | - Franziska E. Müller
- Cellular Neurophysiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625 Hannover, Germany; (F.E.M.); (E.P.)
| | - Subhadip Basu
- Department of Computer Science and Engineering, Jadvapur University, Kolkata 700032, India; (A.K.H.); (S.B.)
| | - Weiqi Zhang
- Department of Mental Health, University of Münster, Albert-Schweitzer-Campus 1/A9, 48149 Munster, Germany;
| | - Evgeni Ponimaskin
- Cellular Neurophysiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625 Hannover, Germany; (F.E.M.); (E.P.)
| | - Jakub Włodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Science, Pasteur Str. 3, 02-093 Warsaw, Poland; (A.B.-K.); (M.R.); (K.B.); (I.F.); (P.K.)
- Correspondence: (M.Z.-K.); (J.W.)
| |
Collapse
|
15
|
Rasia-Filho AA, Guerra KTK, Vásquez CE, Dall’Oglio A, Reberger R, Jung CR, Calcagnotto ME. The Subcortical-Allocortical- Neocortical continuum for the Emergence and Morphological Heterogeneity of Pyramidal Neurons in the Human Brain. Front Synaptic Neurosci 2021; 13:616607. [PMID: 33776739 PMCID: PMC7991104 DOI: 10.3389/fnsyn.2021.616607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
Human cortical and subcortical areas integrate emotion, memory, and cognition when interpreting various environmental stimuli for the elaboration of complex, evolved social behaviors. Pyramidal neurons occur in developed phylogenetic areas advancing along with the allocortex to represent 70-85% of the neocortical gray matter. Here, we illustrate and discuss morphological features of heterogeneous spiny pyramidal neurons emerging from specific amygdaloid nuclei, in CA3 and CA1 hippocampal regions, and in neocortical layers II/III and V of the anterolateral temporal lobe in humans. Three-dimensional images of Golgi-impregnated neurons were obtained using an algorithm for the visualization of the cell body, dendritic length, branching pattern, and pleomorphic dendritic spines, which are specialized plastic postsynaptic units for most excitatory inputs. We demonstrate the emergence and development of human pyramidal neurons in the cortical and basomedial (but not the medial, MeA) nuclei of the amygdala with cells showing a triangular cell body shape, basal branched dendrites, and a short apical shaft with proximal ramifications as "pyramidal-like" neurons. Basomedial neurons also have a long and distally ramified apical dendrite not oriented to the pial surface. These neurons are at the beginning of the allocortex and the limbic lobe. "Pyramidal-like" to "classic" pyramidal neurons with laminar organization advance from the CA3 to the CA1 hippocampal regions. These cells have basal and apical dendrites with specific receptive synaptic domains and several spines. Neocortical pyramidal neurons in layers II/III and V display heterogeneous dendritic branching patterns adapted to the space available and the afferent inputs of each brain area. Dendritic spines vary in their distribution, density, shapes, and sizes (classified as stubby/wide, thin, mushroom-like, ramified, transitional forms, "atypical" or complex forms, such as thorny excrescences in the MeA and CA3 hippocampal region). Spines were found isolated or intermingled, with evident particularities (e.g., an extraordinary density in long, deep CA1 pyramidal neurons), and some showing a spinule. We describe spiny pyramidal neurons considerably improving the connectional and processing complexity of the brain circuits. On the other hand, these cells have some vulnerabilities, as found in neurodegenerative Alzheimer's disease and in temporal lobe epilepsy.
Collapse
Affiliation(s)
- Alberto A. Rasia-Filho
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Kétlyn T. Knak Guerra
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carlos Escobar Vásquez
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Aline Dall’Oglio
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Roman Reberger
- Medical Engineering Program, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Cláudio R. Jung
- Institute of Informatics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Maria Elisa Calcagnotto
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry and Biochemistry Graduate Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
16
|
Zamora-Sánchez CJ, Hernández-Vega AM, Gaona-Domínguez S, Rodríguez-Dorantes M, Camacho-Arroyo I. 5alpha-dihydroprogesterone promotes proliferation and migration of human glioblastoma cells. Steroids 2020; 163:108708. [PMID: 32730775 DOI: 10.1016/j.steroids.2020.108708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/12/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022]
Abstract
Glioblastomas (GBMs) are the most common and deadliest intracranial tumors. Steroid hormones, such as progesterone (P4), at physiological concentrations, promote proliferation, and migration of human GBM cells in vivo and in vitro. Neuronal and glial cells, but also GBMs, metabolize P4 and synthesize different active metabolites such as 5α-dihydroprogesterone (5α-DHP). However, their contribution to GBM malignancy remains unknown. Here, we determined the 5α-DHP effects on the number of cells, proliferation, and migration of the U87 and U251 human GBM-derived cell lines. Of the tested concentrations (1 nM-1 µM), 5α-DHP 10 nM significantly increased the number of U87 and U251 cells from day 2 of treatment, and proliferation (at day 3) in a similar manner as P4 (10 nM). The treatment with the progesterone receptor (PR) antagonist RU486 (mifepristone), blocked the effects of 5α-DHP on the number of cells and proliferation. Besides, in U251 and LN229 GBM cells, 5α-DHP promoted cell migration (from 12 to 24 h). We also determined that GBM cells expressed the 3α-hydroxysteroid oxidoreductases (3α-HSOR), which reversibly reduce 5α-DHP to allopregnanolone (3α-THP). These data indicate that 5α-DHP induces proliferation and migration of human GBM through the activation of PR.
Collapse
Affiliation(s)
- Carmen J Zamora-Sánchez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico
| | - Ana M Hernández-Vega
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico
| | - Saúl Gaona-Domínguez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico
| | - Mauricio Rodríguez-Dorantes
- Instituto Nacional de Medicina Genómica (INMEGEN), Periférico Sur No. 4809, Col. Arenal Tepepan, Delegación Tlalpan, C.P. 14610 Ciudad de Mexico, Mexico.
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico.
| |
Collapse
|
17
|
Abstract
Gonadal hormones contribute to the sexual differentiation of brain and behavior throughout the lifespan, from initial neural patterning to "activation" of adult circuits. Sexual behavior is an ideal system in which to investigate the mechanisms underlying hormonal activation of neural circuits. Sexual behavior is a hormonally regulated, innate social behavior found across species. Although both sexes seek out and engage in sexual behavior, the specific actions involved in mating are sexually dimorphic. Thus, the neural circuits mediating sexual motivation and behavior in males and females are overlapping yet distinct. Furthermore, sexual behavior is strongly dependent on circulating gonadal hormones in both sexes. There has been significant recent progress on elucidating how gonadal hormones modulate physiological properties within sexual behavior circuits with consequences for behavior. Therefore, in this mini-review we review the neural circuits of male and female sexual motivation and behavior, from initial sensory detection of pheromones to the extended amygdala and on to medial hypothalamic nuclei and reward systems. We also discuss how gonadal hormones impact the physiology and functioning of each node within these circuits. By better understanding the myriad of ways in which gonadal hormones impact sexual behavior circuits, we can gain a richer and more complete appreciation for the neural substrates of complex behavior.
Collapse
Affiliation(s)
- Kimberly J Jennings
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| |
Collapse
|
18
|
Frantsiyants EM, Bandovkina VA, Kaplieva IV, Cheryarina ND, Surikova EI, Neskubina IV, Kotieva IM, Shalashnaya EV, Trepitaki LK. [Influence of malignant growth and chronic neurogenic pain on neurosteroid levels in rat brain]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2020; 66:151-155. [PMID: 32420896 DOI: 10.18097/pbmc20206602151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The aim of the study was to determine the level of sex steroid hormones in white matter of the brain of rats with tumors combined with chronic neurogenic pain (CNP), which was modeled by bilateral sciatic nerve ligation. The study included albino male rats (n=74). In the main group, M1 sarcoma was transplanted subcutaneously (n=11) or into the subclavian vein (n=11) 45 days after CNP modeling. Two comparison groups (n=13 each) included sham operated animals (without CNP) with M1 sarcoma transplanted subcutaneously and intravenously. Control groups included animals with CNP and sham operated animals. Rats were euthanized on day 21 of the carcinogenesis. Levels of total and free testosterone (T), estrone (E1), estradiol (E2), estriol (E3) and progesterone (P4) in the brain white matter were measured using ELISA kits ("Cusabio", China). CNP caused a decrease in the total and free T by 1.5 times (p<0.05), E2 and P4 by 1.9 and 3 times, respectively, E3 by 1.6 times (p<0.05), as well as an increase in E1 by 1.4 times (p<0.05) as compared to the corresponding levels in the brain white matter of rats without CNP. CNP stimulated M1 sarcoma growth in both subcutaneous and intravenous transplantation. Regardless of the tumor site, the dynamics of total T, E2 and E3 in the brain had similar features, but the dynamics of free T, P4 and E1 differed. Thus, changes in the level of neurosteroids in the white matter of rat brain with CNP and tumor growth alone or associated with CNP are a reaction to stress.
Collapse
Affiliation(s)
- E M Frantsiyants
- National Medical Research Centre for Oncology, Rostov-on-Don, Russia
| | - V A Bandovkina
- National Medical Research Centre for Oncology, Rostov-on-Don, Russia
| | - I V Kaplieva
- National Medical Research Centre for Oncology, Rostov-on-Don, Russia
| | - N D Cheryarina
- National Medical Research Centre for Oncology, Rostov-on-Don, Russia
| | - E I Surikova
- National Medical Research Centre for Oncology, Rostov-on-Don, Russia
| | - I V Neskubina
- National Medical Research Centre for Oncology, Rostov-on-Don, Russia
| | - I M Kotieva
- National Medical Research Centre for Oncology, Rostov-on-Don, Russia
| | - E V Shalashnaya
- National Medical Research Centre for Oncology, Rostov-on-Don, Russia
| | - L K Trepitaki
- National Medical Research Centre for Oncology, Rostov-on-Don, Russia
| |
Collapse
|
19
|
Estradiol Induces Epithelial to Mesenchymal Transition of Human Glioblastoma Cells. Cells 2020; 9:cells9091930. [PMID: 32825553 PMCID: PMC7564468 DOI: 10.3390/cells9091930] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/02/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
The mesenchymal phenotype of glioblastoma multiforme (GBM), the most frequent and malignant brain tumor, is associated with the worst prognosis. The epithelial–mesenchymal transition (EMT) is a cell plasticity mechanism involved in GBM malignancy. In this study, we determined 17β-estradiol (E2)-induced EMT by changes in cell morphology, expression of EMT markers, and cell migration and invasion assays in human GBM-derived cell lines. E2 (10 nM) modified the shape and size of GBM cells due to a reorganization of actin filaments. We evaluated EMT markers expression by RT-qPCR, Western blot, and immunofluorescence.We found that E2 upregulated the expression of the mesenchymal markers, vimentin, and N-cadherin. Scratch and transwell assays showed that E2 increased migration and invasion of GBM cells. The estrogen receptor-α (ER-α)-selective agonist 4,4’,4’’-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT, 10 nM) affected similarly to E2 in terms of the expression of EMT markers and cell migration, and the treatment with the ER-α antagonist methyl-piperidino-pyrazole (MPP, 1 μM) blocked E2 and PPT effects. ER-β-selective agonist diarylpropionitrile (DNP, 10 nM) and antagonist 4-[2-phenyl-5,7-bis(trifluoromethyl)pyrazole[1,5-a]pyrimidin-3-yl]phenol (PHTPP, 1 μM) showed no effects on EMT marker expression. These data suggest that E2 induces EMT activation through ER-α in human GBM-derived cells.
Collapse
|
20
|
Khaliulin I, Kartawy M, Amal H. Sex Differences in Biological Processes and Nitrergic Signaling in Mouse Brain. Biomedicines 2020; 8:biomedicines8050124. [PMID: 32429146 PMCID: PMC7277573 DOI: 10.3390/biomedicines8050124] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/06/2020] [Accepted: 05/13/2020] [Indexed: 12/15/2022] Open
Abstract
Nitric oxide (NO) represents an important signaling molecule which modulates the functions of different organs, including the brain. S-nitrosylation (SNO), a post-translational modification that involves the binding of the NO group to a cysteine residue, is a key mechanism of nitrergic signaling. Most of the experimental studies are carried out on male animals. However, significant differences exist between males and females in the signaling mechanisms. To investigate the sex differences in the SNO-based regulation of biological functions and signaling pathways in the cortices of 6–8-weeks-old mice, we used the mass spectrometry technique, to identify S-nitrosylated proteins, followed by large-scale computational biology. This work revealed significant sex differences in the NO and SNO-related biological functions in the cortices of mice for the first-time. The study showed significant SNO-induced enrichment of the synaptic processes in female mice, but enhanced SNO-related cytoskeletal processes in the male mice. Proteins, which were S-nitrosylated in the cortices of mice of both groups, were more abundant in the female brain. Finally, we investigated the shared molecular processes that were found in both sexes. This study presents a mechanistic insight into the role of S-nitrosylation in both sexes and provides strong evidence of sex difference in many biological processes and signalling pathways, which will open future research directions on sex differences in neurological disorders.
Collapse
|
21
|
Uzair ID, Flamini MI, Sanchez AM. Rapid Estrogen and Progesterone Signaling to Dendritic Spine Formation via Cortactin/Wave1-Arp2/3 Complex. Neuroendocrinology 2020; 110:535-551. [PMID: 31509830 DOI: 10.1159/000503310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/11/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Synaptic plasticity is the neuronal capacity to modify the function and structure of dendritic spines (DS) in response to neuromodulators. Sex steroids, particularly 17β-estradiol (E2) and progesterone (P4), are key regulators in the control of DS formation through multiprotein complexes including WAVE1 protein, and are thus fundamental for the development of learning and memory. OBJECTIVES The aim of this work was to evaluate the molecular switch Cdk5 kinase/protein phosphatase 2A (PP2A) in the control of WAVE1 protein (phosphorylation/dephosphorylation) and the regulation of WAVE1 and cortactin to the Arp2/3 complex, in response to rapid treatments with E2 and P4 in cortical neuronal cells. RESULTS Rapid treatment with E2 and P4 modified neuronal morphology and significantly increased the number of DS. This effect was reduced by the use of a Cdk5 inhibitor (Roscovitine). In contrast, inhibition of PP2A with PP2A dominant negative construct significantly increased DS formation, evidencing the participation of kinase/phosphatase in the regulation of WAVE1 in DS formation induced by E2 and P4. Cortactin regulates DS formation via Src and PAK1 kinase induced by E2 and P4. Both cortactin and WAVE1 signal to Arp2/3 complex to synergistically promote actin nucleation. CONCLUSION These results suggest that E2 and P4 dynamically regulate neuron morphology through nongenomic signaling via cortactin/WAVE1-Arp2/3 complex. The control of these proteins is tightly orchestrated by phosphorylation, where kinases and phosphatases are essential for actin nucleation and, finally, DS formation. This work provides a deeper understanding of the biological actions of sex steroids in the regulation of DS turnover and neuronal plasticity processes.
Collapse
Affiliation(s)
- Ivonne Denise Uzair
- Laboratory of Signal Transduction and Cell Movement, Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Scientific and Technical Research Council (CONICET), Mendoza, Argentina
| | - Marina Ines Flamini
- Laboratory of Signal Transduction and Cell Movement, Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Scientific and Technical Research Council (CONICET), Mendoza, Argentina
| | - Angel Matias Sanchez
- Laboratory of Signal Transduction and Cell Movement, Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Scientific and Technical Research Council (CONICET), Mendoza, Argentina,
| |
Collapse
|
22
|
Sadrtdinova II, Khizmatullina ZR. [Reactive changes in morphological and morphometric parameters of immunopositive astrocytes of the amygdala in response to hormone level in absence epilepsy]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 118:61-66. [PMID: 30698546 DOI: 10.17116/jnevro201811810261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AIM To study the changes in the morphological and morphometric parameters of immunopositive astrocytes of the amygdala in absence epilepsy depending on hormonal profile. MATERIAL AND METHODS Adult female WAG/Rij rats were used as experimental subjects. The astrocytes were detected on serial sections using a reaction to glial fibrillary acidic protein (GFAP) with pre-stained hematoxylin. Quantitative analysis was carried out for a 204.8´153.6 μm2 field of view. RESULTS In the control group, astrocytes had a relatively regular stellate form and GFAP was moderately expressed in their bodies and processes. The number of astrocytes was 18.20±2.87, and their area was 164±3.29 μm2. After ovariectomy, a high expression of the protein, both in the bodies and in the processes of astrocytes, increasing the cell size to 188.85±4.97 μm2 (p<0.05) was observed. The astrocytes increased to 34.55±3.03 (p<0.05). In addition, the deformation of the processes and their diffuse defibration were observed. After hormone replacement therapy, a decrease in GFAP expression was detected, the area of astrocytes became smaller in comparison with the group after ovariectomy: 173.54±5.48 μm2 (p<0.05). Morphological changes in glial cells were manifested as a decrease in the size of their bodies, the processes became smooth without diffuse sprouting and swelling, which is probably associated with neuroprotective functions of estradiol. CONCLUSION Thus, the results of our study demonstrated that the deficiency of female sex hormones led to the increase in both the amount and area of astrocytes in the anterior cortical nucleus of the amygdala, and hormone replacement therapy positively affected the structural and quantitative characteristics of astrocytes due to the endogenous protective role of estradiol.
Collapse
|
23
|
Dalpian F, Rasia-Filho AA, Calcagnotto ME. Sexual dimorphism, estrous cycle and laterality determine the intrinsic and synaptic properties of medial amygdala neurons in rat. J Cell Sci 2019; 132:jcs.227793. [PMID: 30967401 DOI: 10.1242/jcs.227793] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/29/2019] [Indexed: 01/06/2023] Open
Abstract
The posterodorsal medial amygdala (MePD) is a sex steroid-sensitive area that modulates different social behavior by relaying chemosensorial information to hypothalamic nuclei. However, little is known about MePD cell type diversity and functional connectivity. Here, we have characterized neurons and synaptic inputs in the right and left MePD of adult male and cycling female (in diestrus, proestrus or estrus) rats. Based on their electrophysiological properties and morphology, we found two coexisting subpopulations of spiny neurons that are sexually dimorphic. They were classified as Class I (predominantly bitufted-shaped neurons showing irregular spikes with frequency adaptation) or Class II (predominantly stellate-shaped neurons showing full spike frequency adaptation). Furthermore, excitatory and inhibitory inputs onto MePD cells were modulated by sex, estrous cycle and hemispheric lateralization. In the left MePD, there was an overall increase in the excitatory input to neurons of males compared to cycling females. However, in proestrus, the MePD neurons received mainly inhibitory inputs. Our findings indicate the existence of hemispheric lateralization, estrous cycle and sexual dimorphism influences at cellular and synaptic levels in the adult rat MePD.
Collapse
Affiliation(s)
- Francine Dalpian
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90170-050, Brazil
| | - Alberto A Rasia-Filho
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90170-050, Brazil.,Department of Basic Sciences/Physiology, Federal University of Health Sciences, Porto Alegre, RS 90170-050, Brazil
| | - Maria Elisa Calcagnotto
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90170-050, Brazil .,Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil
| |
Collapse
|
24
|
Montes P, Vigueras-Villaseñor RM, Rojas-Castañeda JC, Monfil T, Cervantes M, Moralí G. Progesterone treatment in rats after severe global cerebral ischemia promotes hippocampal dentate gyrus neurogenesis and functional recovery. Neurol Res 2019; 41:429-436. [PMID: 30762490 DOI: 10.1080/01616412.2019.1576356] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Rats treated with progesterone (P4) after ischemia show an adequate functional performance despite a significant loss of hippocampal pyramidal neurons, suggesting that P4 could favour a permissive microenvironment for cerebral plasticity mechanisms. The possibility of P4 treatment promoting the survival of newly generated hippocampal neurons, in relation to the performance of ischemic rats in a spatial learning task, was assessed in this study. METHODS Adult male rats were subjected to a severe global cerebral ischemia episode (30 min) and treated with P4 or its vehicle at 15 min, 2, 6, 24, 48 and 72 h of reperfusion. From day 4 to 8 post-ischemia 5-bromo-2-deoxyuridine (BrdU) was administered to label proliferating cells. Twenty-one days post-ischemia, the rats were exposed to the Morris water maze to assess behavioral parameters of spatial learning and memory. Subsequently, the brain was perfusion-fixed and immunofluorescence procedures were performed to quantify the number of new mature neurons (BrdU+/NeuN+) in the dentate gyrus (DG) of the hippocampus. RESULTS Rats subjected to severe global cerebral ischemia and treated with P4 had a significantly better performance in spatial learning-memory tests, than those treated with vehicle, and a significantly higher number of new mature neurons (BrdU+/NeuN+) in the DG. CONCLUSION These findings show that post-ischemia P4 treatment, following an episode of severe global cerebral ischemia, promotes the survival of newly generated hippocampal neurons in the DG, which may be one of the mechanisms of cerebral plasticity induced by the hormone, that underlie a successful functional performance in learning and memory tests.
Collapse
Affiliation(s)
- Pedro Montes
- a Unidad de Investigación Médica en Farmacología , CMN Siglo XXI, IMSS , México , México
| | | | | | - Tomas Monfil
- a Unidad de Investigación Médica en Farmacología , CMN Siglo XXI, IMSS , México , México
| | - Miguel Cervantes
- c Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez" , UMSNH , Morelia , México
| | - Gabriela Moralí
- a Unidad de Investigación Médica en Farmacología , CMN Siglo XXI, IMSS , México , México
| |
Collapse
|
25
|
Carmona S, Martínez-García M, Paternina-Die M, Barba-Müller E, Wierenga LM, Alemán-Gómez Y, Pretus C, Marcos-Vidal L, Beumala L, Cortizo R, Pozzobon C, Picado M, Lucco F, García-García D, Soliva JC, Tobeña A, Peper JS, Crone EA, Ballesteros A, Vilarroya O, Desco M, Hoekzema E. Pregnancy and adolescence entail similar neuroanatomical adaptations: A comparative analysis of cerebral morphometric changes. Hum Brain Mapp 2019; 40:2143-2152. [PMID: 30663172 DOI: 10.1002/hbm.24513] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/18/2018] [Accepted: 01/03/2019] [Indexed: 12/20/2022] Open
Abstract
Mapping the impact of pregnancy on the human brain is essential for understanding the neurobiology of maternal caregiving. Recently, we found that pregnancy leads to a long-lasting reduction in cerebral gray matter volume. However, the morphometric features behind the volumetric reductions remain unexplored. Furthermore, the similarity between these reductions and those occurring during adolescence, another hormonally similar transitional period of life, still needs to be investigated. Here, we used surface-based methods to analyze the longitudinal magnetic resonance imaging data of a group of 25 first-time mothers (before and after pregnancy) and compare them to those of a group of 25 female adolescents (during 2 years of pubertal development). For both first-time mothers and adolescent girls, a monthly rate of volumetric reductions of 0.09 mm3 was observed. In both cases, these reductions were accompanied by decreases in cortical thickness, surface area, local gyrification index, sulcal depth, and sulcal length, as well as increases in sulcal width. In fact, the changes associated with pregnancy did not differ from those that characterize the transition during adolescence in any of these measures. Our findings are consistent with the notion that the brain morphometric changes associated with pregnancy and adolescence reflect similar hormonally primed biological processes.
Collapse
Affiliation(s)
- Susanna Carmona
- Sección de Neuroimagen, Laboratorio de Imagen Médica, Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain.,Sección de Neuroimagen, Laboratorio de Imagen Médica, Unidad de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Magdalena Martínez-García
- Sección de Neuroimagen, Laboratorio de Imagen Médica, Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain.,Sección de Neuroimagen, Laboratorio de Imagen Médica, Unidad de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - María Paternina-Die
- Sección de Neuroimagen, Laboratorio de Imagen Médica, Unidad de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Leganés, Spain
| | - Erika Barba-Müller
- Institute of Mental Health Vidal i Barraquer, Ramon Llull University, Barcelona, Spain
| | - Lara M Wierenga
- Brain and Development Laboratory, Leiden University, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| | - Yasser Alemán-Gómez
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.,Department of Radiology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Clara Pretus
- Neuroimaging of mental disorders group, Hospital del Mar Research Institute, Barcelona, Spain.,Unitat de Recerca en Neurociència Cognitiva, Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Spain
| | - Luis Marcos-Vidal
- Sección de Neuroimagen, Laboratorio de Imagen Médica, Unidad de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Leganés, Spain
| | - Laura Beumala
- Unitat de Recerca en Neurociència Cognitiva, Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Spain
| | - Romina Cortizo
- Unitat de Recerca en Neurociència Cognitiva, Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Spain
| | - Cristina Pozzobon
- Assisted Medicine Reproduction, IVI Clinic Barcelona, Barcelona, Spain
| | - Marisol Picado
- Neuroimaging of mental disorders group, Hospital del Mar Research Institute, Barcelona, Spain.,Unitat de Recerca en Neurociència Cognitiva, Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Spain
| | - Florencio Lucco
- Assisted Medicine Reproduction, IVI Clinic Barcelona, Barcelona, Spain
| | - David García-García
- Sección de Neuroimagen, Laboratorio de Imagen Médica, Unidad de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Juan Carlos Soliva
- Unitat de Recerca en Neurociència Cognitiva, Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Spain
| | - Adolf Tobeña
- Unitat de Recerca en Neurociència Cognitiva, Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Spain
| | - Jiska S Peper
- Brain and Development Laboratory, Leiden University, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| | - Eveline A Crone
- Brain and Development Laboratory, Leiden University, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| | | | - Oscar Vilarroya
- Neuroimaging of mental disorders group, Hospital del Mar Research Institute, Barcelona, Spain.,Unitat de Recerca en Neurociència Cognitiva, Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Spain
| | - Manuel Desco
- Sección de Neuroimagen, Laboratorio de Imagen Médica, Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain.,Sección de Neuroimagen, Laboratorio de Imagen Médica, Unidad de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Leganés, Spain.,Unidad de Imagen Avanzada, Centro Nacional de Investigaciones Cardiovasculares Carlos III (F.S.P), Madrid, Spain
| | - Elseline Hoekzema
- Brain and Development Laboratory, Leiden University, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| |
Collapse
|
26
|
Kirshner ZZ, Gibbs RB. Use of the REVERT ® total protein stain as a loading control demonstrates significant benefits over the use of housekeeping proteins when analyzing brain homogenates by Western blot: An analysis of samples representing different gonadal hormone states. Mol Cell Endocrinol 2018; 473:156-165. [PMID: 29396126 PMCID: PMC6045444 DOI: 10.1016/j.mce.2018.01.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/21/2018] [Accepted: 01/22/2018] [Indexed: 01/01/2023]
Abstract
Western blot is routinely used to quantify differences in the levels of target proteins in tissues. Standard methods typically use measurements of housekeeping proteins to control for variations in loading and protein transfer. This is problematic, however, when housekeeping proteins also are affected by experimental conditions such as injury, disease, and/or gonadal hormone manipulations. Our goal was to evaluate an alternative and perhaps superior method for conducting Western blot analysis of brain tissue homogenates from rats with distinct physiologically relevant gonadal hormone states. Tissues were collected from the hippocampus, frontal cortex, and striatum of young adult female rats that either were ovariectomized to model surgical menopause, or were treated with the ovatotoxin 4-vinylcyclohexene diepoxide (VCD) to model transitional menopause. Tissues also were collected from rats with a normal estrous cycle killed at proestrus when estradiol levels are high, and at diestrus when estradiol levels are low. Western blot detection of α-tubulin, β-actin, and GAPDH was performed and were compared for sensitivity and reliability with a fluorescent total protein stain (REVERT®). Results show that the total protein stain was much less variable across samples and had a greater linear range than α-tubulin, β-actin, or GAPDH. The stain was stable and easy to use, and did not interfere with the immunodetection or multiplexed detection of the housekeeping proteins. In addition, we show that normalization of our data to total protein, but not to GAPDH, revealed significant differences in α-tubulin expression in the hippocampus as a function of treatment, and that gel-to-gel consistency in measuring differences between paired samples run on multiple gels was significantly better when data were normalized to total protein than when normalized to GAPDH. These results demonstrate that the REVERT® total protein stain can be used in Western blot analysis of brain tissue homogenates to control for variations in loading and protein transfer, and provides significant advantages over the use of housekeeping proteins for quantifying changes in the levels of multiple target proteins.
Collapse
Affiliation(s)
- Z Z Kirshner
- University of Pittsburgh, Department of Pharmaceutical Sciences, 1004 Salk Hall, Pittsburgh, PA 15261, USA.
| | - R B Gibbs
- University of Pittsburgh, Department of Pharmaceutical Sciences, 1004 Salk Hall, Pittsburgh, PA 15261, USA.
| |
Collapse
|
27
|
Zancan M, Cunha RSR, Schroeder F, Xavier LL, Rasia‐Filho AA. Remodeling of the number and structure of dendritic spines in the medial amygdala: From prepubertal sexual dimorphism to puberty and effect of sexual experience in male rats. Eur J Neurosci 2018; 48:1851-1865. [DOI: 10.1111/ejn.14052] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/18/2018] [Accepted: 06/13/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Mariana Zancan
- Department of Basic Sciences/PhysiologyFederal University of Health Sciences Porto Alegre Brazil
- Graduation Program in NeuroscienceFederal University of Rio Grande do Sul Porto Alegre Brazil
| | - Rick Shandler R. Cunha
- Department of Basic Sciences/PhysiologyFederal University of Health Sciences Porto Alegre Brazil
| | - Francielle Schroeder
- Laboratory of Tissue BiologyFaculty of BiosciencesPontifical Catholic University of Rio Grande do Sul (PUCRS) Porto Alegre Brazil
| | - Léder L. Xavier
- Laboratory of Tissue BiologyFaculty of BiosciencesPontifical Catholic University of Rio Grande do Sul (PUCRS) Porto Alegre Brazil
| | - Alberto A. Rasia‐Filho
- Department of Basic Sciences/PhysiologyFederal University of Health Sciences Porto Alegre Brazil
- Graduation Program in NeuroscienceFederal University of Rio Grande do Sul Porto Alegre Brazil
| |
Collapse
|
28
|
Liu Z, Speroni L, Quinn KP, Alonzo C, Pouli D, Zhang Y, Stuntz E, Sonnenschein C, Soto AM, Georgakoudi I. 3D organizational mapping of collagen fibers elucidates matrix remodeling in a hormone-sensitive 3D breast tissue model. Biomaterials 2018; 179:96-108. [PMID: 29980078 DOI: 10.1016/j.biomaterials.2018.06.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 06/08/2018] [Accepted: 06/22/2018] [Indexed: 12/11/2022]
Abstract
Hormones play an important role in normal and diseased breast tissue development. However, they can also disrupt cell-matrix interactions and their role in extracellular matrix reorganization during epithelial morphogenesis remains poorly understood, partly due to a lack of sensitive approaches for matrix characterization. Here, we assess the hormonal regulation of matrix reorganization in a three-dimensional (3D) breast tissue culture model using a novel metric, i.e., 3D directional variance, to characterize the 3D organization of collagen fibers visualized via high-resolution, second harmonic generation imaging. This metric enables resolving and quantifying patterns of spatial organization throughout the matrix surrounding epithelial structures treated with 17β-estradiol (E2) alone, and E2 in combination with either promegestone, a progestogen, or prolactin. Addition of promegestone results in the most disorganized fibers, while the E2 alone treatment leads to the most organized ones. Location-dependent organization mapping indicates that only the prolactin treatment leads to significant heterogeneities in the regional organization of collagen fibers, with higher levels of alignment observed at the end of the elongated epithelial structures. The observed collagen organization patterns for all groups persist for tens of micrometers. In addition, a comparison between 3D directional variance and typical 2D analysis approaches reveals an improved sensitivity of the 3D metric to identify organizational heterogeneities and differences among treatment groups. These results demonstrate that 3D directional variance is sensitive to subtle changes in the extracellular micro-environment and has the potential to elucidate reciprocal cell-matrix interactions in the context of numerous applications involving the study of normal and diseased tissue morphogenesis.
Collapse
Affiliation(s)
- Zhiyi Liu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA; Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lucia Speroni
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Kyle P Quinn
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA; Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Carlo Alonzo
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Dimitra Pouli
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Yang Zhang
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Emily Stuntz
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Carlos Sonnenschein
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Ana M Soto
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
29
|
Sengelaub DR, Xu XM. Protective effects of gonadal hormones on spinal motoneurons following spinal cord injury. Neural Regen Res 2018; 13:971-976. [PMID: 29926818 PMCID: PMC6022470 DOI: 10.4103/1673-5374.233434] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2018] [Indexed: 11/29/2022] Open
Abstract
Spinal cord injury (SCI) results in lesions that destroy tissue and disrupt spinal tracts, producing deficits in locomotor and autonomic function. The majority of treatment strategies after SCI have concentrated on the damaged spinal cord, for example working to reduce lesion size or spread, or encouraging regrowth of severed descending axonal projections through the lesion, hoping to re-establish synaptic connectivity with caudal targets. In our work, we have focused on a novel target for treatment after SCI, surviving spinal motoneurons and their target musculature, with the hope of developing effective treatments to preserve or restore lost function following SCI. We previously demonstrated that motoneurons, and the muscles they innervate, show pronounced atrophy after SCI. Importantly, SCI-induced atrophy of motoneuron dendrites can be attenuated by treatment with gonadal hormones, testosterone and its active metabolites, estradiol and dihydrotestosterone. Similarly, SCI-induced reductions in muscle fiber cross-sectional areas can be prevented by treatment with androgens. Together, these findings suggest that regressive changes in motoneuron and muscle morphology seen after SCI can be ameliorated by treatment with gonadal hormones, further supporting a role for steroid hormones as neurotherapeutic agents in the injured nervous system.
Collapse
Affiliation(s)
- Dale R. Sengelaub
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
30
|
Sengelaub DR, Han Q, Liu NK, Maczuga MA, Szalavari V, Valencia SA, Xu XM. Protective Effects of Estradiol and Dihydrotestosterone following Spinal Cord Injury. J Neurotrauma 2018; 35:825-841. [PMID: 29132243 PMCID: PMC5863086 DOI: 10.1089/neu.2017.5329] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Spinal cord injury (SCI) results in lesions that destroy tissue and disrupt spinal tracts, producing deficits in locomotor and autonomic function. We previously demonstrated that motoneurons and the muscles they innervate show pronounced atrophy after SCI, and these changes are prevented by treatment with testosterone. Here, we assessed whether the testosterone active metabolites estradiol and dihydrotestosterone have similar protective effects after SCI. Young adult female rats received either sham or T9 spinal cord contusion injuries and were treated with estradiol, dihydrotestosterone, both, or nothing via Silastic capsules. Basso-Beattie-Bresnahan locomotor testing was performed weekly and voiding behavior was assessed at 3 weeks post-injury. Four weeks after SCI, lesion volume and tissue sparing, quadriceps muscle fiber cross-sectional area, and motoneuron dendritic morphology were assessed. Spontaneous locomotor behavior improved after SCI, but hormone treatments had no effect. Voiding behavior was disrupted after SCI, but was significantly improved by treatment with either estradiol or dihydrotestosterone; combined treatment was maximally effective. Treatment with estradiol reduced lesion volume, but dihydrotestosterone alone and estradiol combined with dihydrotestosterone were ineffective. SCI-induced decreases in motoneuron dendritic length were attenuated by all hormone treatments. SCI-induced reductions in muscle fiber cross-sectional areas were prevented by treatment with either dihydrotestosterone or estradiol combined with dihydrotestosterone, but estradiol treatment was ineffective. These findings suggest that deficits in micturition and regressive changes in motoneuron and muscle morphology seen after SCI are ameliorated by treatment with estradiol or dihydrotestosterone, further supporting a role for steroid hormones as neurotherapeutic agents in the injured nervous system.
Collapse
Affiliation(s)
- Dale R. Sengelaub
- Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| | - Qi Han
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Nai-Kui Liu
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Melissa A. Maczuga
- Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| | - Violetta Szalavari
- Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| | | | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
31
|
Rodiño-Janeiro BK, Martínez C, Fortea M, Lobo B, Pigrau M, Nieto A, González-Castro AM, Salvo-Romero E, Guagnozzi D, Pardo-Camacho C, Iribarren C, Azpiroz F, Alonso-Cotoner C, Santos J, Vicario M. Decreased TESK1-mediated cofilin 1 phosphorylation in the jejunum of IBS-D patients may explain increased female predisposition to epithelial dysfunction. Sci Rep 2018; 8:2255. [PMID: 29396473 PMCID: PMC5797119 DOI: 10.1038/s41598-018-20540-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/17/2018] [Indexed: 02/08/2023] Open
Abstract
Disturbed intestinal epithelial barrier and mucosal micro-inflammation characterize irritable bowel syndrome (IBS). Despite intensive research demonstrating ovarian hormones modulation of IBS severity, there is still limited knowledge on the mechanisms underlying female predominance in this disorder. Our aim was to identify molecular pathways involved in epithelial barrier dysfunction and female predominance in diarrhea-predominant IBS (IBS-D) patients. Total RNA and protein were obtained from jejunal mucosal biopsies from healthy controls and IBS-D patients meeting the Rome III criteria. IBS severity was recorded based on validated questionnaires. Gene and protein expression profiles were obtained and data integrated to explore biological and molecular functions. Results were validated by western blot. Tight junction signaling, mitochondrial dysfunction, regulation of actin-based motility by Rho, and cytoskeleton signaling were differentially expressed in IBS-D. Decreased TESK1-dependent cofilin 1 phosphorylation (pCFL1) was confirmed in IBS-D, which negatively correlated with bowel movements only in female participants. In conclusion, deregulation of cytoskeleton dynamics through TESK1/CFL1 pathway underlies epithelial intestinal dysfunction in the small bowel mucosa of IBS-D, particularly in female patients. Further understanding of the mechanisms involving sex-mediated regulation of mucosal epithelial integrity may have significant preventive, diagnostic, and therapeutic implications for IBS.
Collapse
Affiliation(s)
- Bruno K Rodiño-Janeiro
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina), Barcelona, Spain.
| | - Cristina Martínez
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina), Barcelona, Spain
| | - Marina Fortea
- Translational Mucosal Immunology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca; Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina), Barcelona, Spain
| | - Beatriz Lobo
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina), Barcelona, Spain
| | - Marc Pigrau
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina), Barcelona, Spain
| | - Adoración Nieto
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina), Barcelona, Spain
| | - Ana María González-Castro
- Translational Mucosal Immunology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca; Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina), Barcelona, Spain
| | - Eloísa Salvo-Romero
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina), Barcelona, Spain.,Translational Mucosal Immunology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca; Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina), Barcelona, Spain
| | - Danila Guagnozzi
- Translational Mucosal Immunology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca; Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina), Barcelona, Spain
| | - Cristina Pardo-Camacho
- Translational Mucosal Immunology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca; Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina), Barcelona, Spain
| | - Cristina Iribarren
- Translational Mucosal Immunology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca; Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina), Barcelona, Spain
| | - Fernando Azpiroz
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Subdirección General de Investigación Sanitaria, Ministerio de Economía, Industria y Competitividad, Madrid, Spain
| | - Carmen Alonso-Cotoner
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Subdirección General de Investigación Sanitaria, Ministerio de Economía, Industria y Competitividad, Madrid, Spain
| | - Javier Santos
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina), Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Subdirección General de Investigación Sanitaria, Ministerio de Economía, Industria y Competitividad, Madrid, Spain.
| | - Maria Vicario
- Translational Mucosal Immunology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca; Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Subdirección General de Investigación Sanitaria, Ministerio de Economía, Industria y Competitividad, Madrid, Spain
| |
Collapse
|
32
|
Muñoz-Mayorga D, Guerra-Araiza C, Torner L, Morales T. Tau Phosphorylation in Female Neurodegeneration: Role of Estrogens, Progesterone, and Prolactin. Front Endocrinol (Lausanne) 2018; 9:133. [PMID: 29643836 PMCID: PMC5882780 DOI: 10.3389/fendo.2018.00133] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/14/2018] [Indexed: 01/01/2023] Open
Abstract
Sex differences are important to consider when studying different psychiatric, neurodevelopmental, and neurodegenerative disorders, including Alzheimer's disease (AD). These disorders can be affected by dimorphic changes in the central nervous system and be influenced by sex-specific hormones and neuroactive steroids. In fact, AD is more prevalent in women than in men. One of the main characteristics of AD is the formation of neurofibrillary tangles, composed of the phosphoprotein Tau, and neuronal loss in specific brain regions. The scope of this work is to review the existing evidence on how a set of hormones (estrogen, progesterone, and prolactin) affect tau phosphorylation in the brain of females under both physiological and pathological conditions.
Collapse
Affiliation(s)
- Daniel Muñoz-Mayorga
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Christian Guerra-Araiza
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Luz Torner
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Mexico
| | - Teresa Morales
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
- *Correspondence: Teresa Morales,
| |
Collapse
|
33
|
Vitamin D 3 Reverses the Hippocampal Cytoskeleton Imbalance But Not Memory Deficits Caused by Ovariectomy in Adult Wistar Rats. Neuromolecular Med 2017; 19:345-356. [PMID: 28689355 DOI: 10.1007/s12017-017-8449-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 07/01/2017] [Indexed: 01/06/2023]
Abstract
The objective of study was to investigate changes caused by ovariectomy (OVX) on aversive and non-aversive memories, as well as on cytoskeleton phosphorylating system and on vitamin D receptor (VDR) immunocontent in hippocampus. The neuroprotective role of vitamin D was also investigated. Ninety-day-old female Wistar rats were divided into four groups: SHAM, OVX, VITAMIN D and OVX + VITAMIN D; 30 days after the OVX, vitamin D supplementation (500 IU/kg), by gavage, for 30 days was started. Results showed that OVX impaired short-term and long-term recognition, and long-term aversive memories. OVX altered hippocampal cytoskeleton phosphorylating system, evidenced by the hyperphosphorylation of glial fibrillary acidic protein (GFAP), low molecular weight neurofilament subunit (NFL), medium molecular weight neurofilament subunit (NFM) and high molecular weight neurofilament subunit (NFH), and increased the immunocontent of c-Jun N-terminal protein kinases (JNK), Ca2+/calmodulin-dependent protein kinase II (PKCaMII) and of the sites phosphorylated lysine-serine-proline (KSP) repeats, Ser55 and Ser57. Vitamin D reversed the effects caused by OVX on cytoskeleton in hippocampus, but it was not able to reverse the effects on memory.
Collapse
|
34
|
Segura-Uribe JJ, Pinto-Almazán R, Coyoy-Salgado A, Fuentes-Venado CE, Guerra-Araiza C. Effects of estrogen receptor modulators on cytoskeletal proteins in the central nervous system. Neural Regen Res 2017; 12:1231-1240. [PMID: 28966632 PMCID: PMC5607812 DOI: 10.4103/1673-5374.213536] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Estrogen receptor modulators are compounds of interest because of their estrogenic agonistic/antagonistic effects and tissue specificity. These compounds have many clinical applications, particularly for breast cancer treatment and osteoporosis in postmenopausal women, as well as for the treatment of climacteric symptoms. Similar to estrogens, neuroprotective effects of estrogen receptor modulators have been described in different models. However, the mechanisms of action of these compounds in the central nervous system have not been fully described. We conducted a systematic search to investigate the effects of estrogen receptor modulators in the central nervous system, focusing on the modulation of cytoskeletal proteins. We found that raloxifene, tamoxifen, and tibolone modulate some cytoskeletal proteins such as tau, microtuble-associated protein 1 (MAP1), MAP2, neurofilament 38 (NF38) by different mechanisms of action and at different levels: neuronal microfilaments, intermediate filaments, and microtubule-associated proteins. Finally, we emphasize the importance of the study of these compounds in the treatment of neurodegenerative diseases since they present the benefits of estrogens without their side effects.
Collapse
Affiliation(s)
- Julia J Segura-Uribe
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Rodolfo Pinto-Almazán
- Unidad de Investigación Hospital Regional de Alta Especialidad Ixtapaluca, Ixtapaluca, Mexico.,Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA.,Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Angélica Coyoy-Salgado
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
| | - Claudia E Fuentes-Venado
- Clínica de Trastornos del Sueño, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico.,Servicio de Medicina Física y Rehabilitacion, Hospital General de Zona No. 197, Texcoco, Mexico.,Unidad de Investigación Médica en Farmacología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Christian Guerra-Araiza
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|
35
|
Zancan M, Dall'Oglio A, Quagliotto E, Rasia‐Filho AA. Castration alters the number and structure of dendritic spines in the male posterodorsal medial amygdala. Eur J Neurosci 2016; 45:572-580. [DOI: 10.1111/ejn.13460] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/22/2016] [Accepted: 10/31/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Mariana Zancan
- Department of Basic Sciences/Physiology Federal University of Health Sciences Sarmento Leite 245 Porto Alegre RS 90050‐170 Brazil
- Graduation Program in Neuroscience Federal University of Rio Grande do Sul Porto Alegre Brazil
| | - Aline Dall'Oglio
- Department of Basic Sciences/Physiology Federal University of Health Sciences Sarmento Leite 245 Porto Alegre RS 90050‐170 Brazil
| | - Edson Quagliotto
- Department of Basic Sciences/Physiology Federal University of Health Sciences Sarmento Leite 245 Porto Alegre RS 90050‐170 Brazil
| | - Alberto A. Rasia‐Filho
- Department of Basic Sciences/Physiology Federal University of Health Sciences Sarmento Leite 245 Porto Alegre RS 90050‐170 Brazil
- Graduation Program in Neuroscience Federal University of Rio Grande do Sul Porto Alegre Brazil
| |
Collapse
|
36
|
Tsotakos N, Phelps DS, Yengo CM, Chinchilli VM, Floros J. Single-cell analysis reveals differential regulation of the alveolar macrophage actin cytoskeleton by surfactant proteins A1 and A2: implications of sex and aging. Biol Sex Differ 2016; 7:18. [PMID: 26998217 PMCID: PMC4797174 DOI: 10.1186/s13293-016-0071-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/11/2016] [Indexed: 01/02/2023] Open
Abstract
Background Surfactant protein A (SP-A) contributes to lung immunity by regulating inflammation and responses to microorganisms invading the lung. The huge genetic variability of SP-A in humans implies that this protein is highly important in tightly regulating the lung immune response. Proteomic studies have demonstrated that there are differential responses of the macrophages to SP-A1 and SP-A2 and that there are sex differences implicated in these responses. Methods Purified SP-A variants were used for administration to alveolar macrophages from SP-A knockout (KO) mice for in vitro studies, and alveolar macrophages from humanized SP-A transgenic mice were isolated for ex vivo studies. The actin cytoskeleton was examined by fluorescence and confocal microscopy, and the macrophages were categorized according to the distribution of polymerized actin. Results In accordance with previous data, we report that there are sex differences in the response of alveolar macrophages to SP-A1 and SP-A2. The cell size and F-actin content of the alveolar macrophages are sex- and age-dependent. Importantly, there are different subpopulations of cells with differential distribution of polymerized actin. In vitro, SP-A2 destabilizes actin in female, but not male, mice, and the same tendency is observed by SP-A1 in cells from male mice. Similarly, there are differences in the distribution of AM subpopulations isolated from SP-A transgenic mice depending on sex and age. Conclusions There are marked sex- and age-related differences in the alveolar macrophage phenotype as illustrated by F-actin staining between SP-A1 and SP-A2. Importantly, the phenotypic switch caused by the different SP-A variants is subtle, and pertains to the frequency of the observed subpopulations, demonstrating the need for single-cell analysis approaches. The differential responses of alveolar macrophages to SP-A1 and SP-A2 highlight the importance of genotype in immune regulation and the susceptibility to lung disease and the need for development of individualized treatment options.
Collapse
Affiliation(s)
- Nikolaos Tsotakos
- Center for Host Defense, Inflammation and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Rm. C4752, H085, 500 University Drive, PO Box 850, Hershey, PA 17033-0850 USA
| | - David S Phelps
- Center for Host Defense, Inflammation and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Rm. C4752, H085, 500 University Drive, PO Box 850, Hershey, PA 17033-0850 USA
| | - Christopher M Yengo
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA USA
| | - Vernon M Chinchilli
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine, Hershey, PA USA
| | - Joanna Floros
- Center for Host Defense, Inflammation and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Rm. C4752, H085, 500 University Drive, PO Box 850, Hershey, PA 17033-0850 USA ; Department of Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA USA
| |
Collapse
|