1
|
Fortier A, Dumais A, Boisvert M, Zouaoui I, Chung CF, Potvin S. Aberrant activity at rest of the associative striatum in schizophrenia: Meta-analyses of the amplitude of low frequency fluctuations. J Psychiatr Res 2024; 179:117-132. [PMID: 39284255 DOI: 10.1016/j.jpsychires.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 11/05/2024]
Abstract
Schizophrenia is a severe psychiatric disorder associated with brain alterations at rest. Amplitude of low-frequency fluctuations (ALFF) and its fractional version (fALFF) have been widely used to investigate alterations in spontaneous brain activity in schizophrenia. However, results are still inconsistent. Furthermore, while these measurements are similar, they showed some differences, and no meta-analysis has been yet performed to compare them in schizophrenia. Thus, we conducted systematic research in five databases and in the grey literature to find articles investigating fALFF and/or ALFF alterations in schizophrenia. Two separate meta-analyses were performed using the SDM-PSI software to identify fALFF and ALFF alterations separately. Then, a conjunction analysis was conducted to determine congruent results between the two approaches. We found that patients with schizophrenia showed altered fALFF activity in the left insula/putamen, the right paracentral lobule and the left middle occipital gyrus compared to healthy individuals. Patients with schizophrenia exhibited ALFF alterations in the bilateral putamen, the bilateral caudate nucleus, the bilateral inferior frontal gyrus, the right precuneus, the right precentral gyrus, the left postcentral gyrus, the right posterior cingulate gyrus, compared to healthy controls. ALFF increased activity in the left putamen was higher in drug-naïve patients and was correlated with positive symptoms. The conjunction analysis revealed a spatial convergence between fALFF and ALFF studies in the left putamen. This left putamen cluster is part of the associative striatum. Its alteration in schizophrenia provides additional support to the influential aberrant salience hypothesis of psychosis.
Collapse
Affiliation(s)
- Alexandra Fortier
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montreal Quebec, Canada; Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Alexandre Dumais
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montreal Quebec, Canada; Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada; Philippe-Pinel National Institute of Legal Psychiatry, Montreal, Canada
| | - Mélanie Boisvert
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montreal Quebec, Canada; Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Inès Zouaoui
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montreal Quebec, Canada; Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Chen-Fang Chung
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montreal Quebec, Canada; Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Stéphane Potvin
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montreal Quebec, Canada; Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada.
| |
Collapse
|
2
|
Merola GP, Tarchi L, Saccaro LF, Delavari F, Piguet C, Van De Ville D, Castellini G, Ricca V. Transdiagnostic markers across the psychosis continuum: a systematic review and meta-analysis of resting state fMRI studies. Front Psychiatry 2024; 15:1378439. [PMID: 38895037 PMCID: PMC11184053 DOI: 10.3389/fpsyt.2024.1378439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/26/2024] [Indexed: 06/21/2024] Open
Abstract
Psychotic symptoms are among the most debilitating and challenging presentations of severe psychiatric diseases, such as schizophrenia, schizoaffective, and bipolar disorder. A pathophysiological understanding of intrinsic brain activity underlying psychosis is crucial to improve diagnosis and treatment. While a potential continuum along the psychotic spectrum has been recently described in neuroimaging studies, especially for what concerns absolute and relative amplitude of low-frequency fluctuations (ALFF and fALFF), these efforts have given heterogeneous results. A transdiagnostic meta-analysis of ALFF/fALFF in patients with psychosis compared to healthy controls is currently lacking. Therefore, in this pre-registered systematic review and meta-analysis PubMed, Scopus, and Embase were searched for articles comparing ALFF/fALFF between psychotic patients and healthy controls. A quantitative synthesis of differences in (f)ALFF between patients along the psychotic spectrum and healthy controls was performed with Seed-based d Mapping, adjusting for age, sex, duration of illness, clinical severity. All results were corrected for multiple comparisons by Family-Wise Error rates. While lower ALFF and fALFF were detected in patients with psychosis in comparison to controls, no specific finding survived correction for multiple comparisons. Lack of this correction might explain the discordant findings highlighted in previous literature. Other potential explanations include methodological issues, such as the lack of standardization in pre-processing or analytical procedures among studies. Future research on ALFF/fALFF differences for patients with psychosis should prioritize the replicability of individual studies. Systematic review registration https://osf.io/, identifier (ycqpz).
Collapse
Affiliation(s)
| | - Livio Tarchi
- Psychiatry Unit, Department of Health Sciences, University of Florence, Florence, Italy
| | - Luigi F. Saccaro
- Psychiatry Department, Geneva University Hospital and Faculty of Medicine, Geneva University Hospital, Geneva, Switzerland
| | - Farnaz Delavari
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
| | - Camille Piguet
- Psychiatry Department, Geneva University Hospital and Faculty of Medicine, Geneva University Hospital, Geneva, Switzerland
- General Pediatric Division, Geneva University Hospital, Geneva, Switzerland
| | - Dimitri Van De Ville
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Giovanni Castellini
- Psychiatry Unit, Department of Health Sciences, University of Florence, Florence, Italy
| | - Valdo Ricca
- Psychiatry Unit, Department of Health Sciences, University of Florence, Florence, Italy
| |
Collapse
|
3
|
Zhang C, Liang J, Yan H, Li X, Li X, Jing H, Liang W, Li R, Ou Y, Wu W, Guo H, Deng W, Xie G, Guo W. Fractional amplitude of low-frequency fluctuations in sensory-motor networks and limbic system as a potential predictor of treatment response in patients with schizophrenia. Schizophr Res 2024; 267:519-527. [PMID: 38704344 DOI: 10.1016/j.schres.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 03/21/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Previous investigations have revealed substantial differences in neuroimaging characteristics between healthy controls (HCs) and individuals diagnosed with schizophrenia (SCZ). However, we are not entirely sure how brain activity links to symptoms in schizophrenia, and there is a need for reliable brain imaging markers for treatment prediction. METHODS In this longitudinal study, we examined 56 individuals diagnosed with 56 SCZ and 51 HCs. The SCZ patients underwent a three-month course of antipsychotic treatment. We employed resting-state functional magnetic resonance imaging (fMRI) along with fractional Amplitude of Low Frequency Fluctuations (fALFF) and support vector regression (SVR) methods for data acquisition and subsequent analysis. RESULTS In this study, we initially noted lower fALFF values in the right postcentral/precentral gyrus and left postcentral gyrus, coupled with higher fALFF values in the left hippocampus and right putamen in SCZ patients compared to the HCs at baseline. However, when comparing fALFF values in brain regions with abnormal baseline fALFF values for SCZ patients who completed the follow-up, no significant differences in fALFF values were observed after 3 months of treatment compared to baseline data. The fALFF values in the right postcentral/precentral gyrus and left postcentral gyrus, and the left postcentral gyrus were useful in predicting treatment effects. CONCLUSION Our findings suggest that reduced fALFF values in the sensory-motor networks and increased fALFF values in the limbic system may constitute distinctive neurobiological features in SCZ patients. These findings may serve as potential neuroimaging markers for the prognosis of SCZ patients.
Collapse
Affiliation(s)
- Chunguo Zhang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Jiaquan Liang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Haohao Yan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xiaoling Li
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Xuesong Li
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Huan Jing
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Wenting Liang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Rongwei Li
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Yangpan Ou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Weibin Wu
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Huagui Guo
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Wen Deng
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Guojun Xie
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China.
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
4
|
Wang X, Yan C, Yang PY, Xia Z, Cai XL, Wang Y, Kwok SC, Chan RCK. Unveiling the potential of machine learning in schizophrenia diagnosis: A meta-analytic study of task-based neuroimaging data. Psychiatry Clin Neurosci 2024; 78:157-168. [PMID: 38013639 DOI: 10.1111/pcn.13625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/01/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
The emergence of machine learning (ML) techniques has opened up new avenues for identifying biomarkers associated with schizophrenia (SCZ) using task-related fMRI (t-fMRI) designs. To evaluate the effectiveness of this approach, we conducted a comprehensive meta-analysis of 31 t-fMRI studies using a bivariate model. Our findings revealed a high overall sensitivity of 0.83 and specificity of 0.82 for t-fMRI studies. Notably, neuropsychological domains modulated the classification performance, with selective attention demonstrating a significantly higher specificity than working memory (β = 0.98, z = 2.11, P = 0.04). Studies involving older, chronic patients with SCZ reported higher sensitivity (P <0.015) and specificity (P <0.001) than those involving younger, first-episode patients or high-risk individuals for psychosis. Additionally, we found that the severity of negative symptoms was positively associated with the specificity of the classification model (β = 7.19, z = 2.20, P = 0.03). Taken together, these results support the potential of using task-based fMRI data in combination with machine learning techniques to identify biomarkers related to symptom outcomes in SCZ, providing a promising avenue for improving diagnostic accuracy and treatment efficacy. Future attempts to deploy ML classification should consider the factors of algorithm choice, data quality and quantity, as well as issues related to generalization.
Collapse
Affiliation(s)
- Xuan Wang
- Key Laboratory of Brain Functional Genomics (MOE&STCSM), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- Shanghai Changning Mental Health Center, Shanghai, China
- Neuropsychology and Applied Cognitive Neuroscience Laboratory; CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Chao Yan
- Key Laboratory of Brain Functional Genomics (MOE&STCSM), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- Shanghai Changning Mental Health Center, Shanghai, China
| | | | - Zheng Xia
- Key Laboratory of Brain Functional Genomics (MOE&STCSM), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Xin-Lu Cai
- Institute of Brain Science and Department of Physiology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yi Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory; CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Sze Chai Kwok
- Key Laboratory of Brain Functional Genomics (MOE&STCSM), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- Shanghai Changning Mental Health Center, Shanghai, China
- Phylo-Cognition Laboratory, Division of Natural and Applied Sciences, Data Science Research Center, Duke Kunshan University, Kunshan, China
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory; CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Han Y, Yan H, Shan X, Li H, Liu F, Li P, Zhao J, Guo W. Disrupted functional connectivity associated with cognitive impairment in generalized anxiety disorder (GAD) and comorbid GAD and depression: a follow-up fMRI study. J Psychiatry Neurosci 2023; 48:E439-E451. [PMID: 37935477 PMCID: PMC10635709 DOI: 10.1503/jpn.230091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/01/2023] [Accepted: 08/26/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Impaired functional connectivity between the bilateral hemispheres may serve as the neural substrate for anxiety and depressive disorders, yet its role in comorbid generalized anxiety disorder (GAD) and depression, as well as the effect of treatment on this connectivity, remains unclear. We sought to examine functional connectivity between homotopic regions of the 2 hemispheres (voxel-mirrored homotopic connectivity [VMHC]) among people with GAD with and without comorbid depression at baseline and after a 4-week paroxetine treatment. METHODS Drug-naïve patients with GAD, with or without comorbid depression and healthy controls underwent functional magnetic resonance imaging and clinical assessments at baseline and after treatment. We compared VMHC and seed-based functional connectivity across the 3 groups. We performed correlation analysis and support vector regression (SVR) to examine the intrinsic relationships between VMHC and symptoms. RESULTS Both patient groups (n = 40 with GAD only, n = 58 with GAD and depression) showed decreased VMHC in the precuneus, posterior cingulate cortex and lingual gyrus compared with healthy controls (n = 54). Moreover, they showed decreased VMHC in different brain regions compared with healthy controls. However, we did not observe any significant differences between the 2 patient groups. Seeds from abnormal VMHC clusters in patient groups had decreased functional connectivity. Voxel-mirrored homotopic connectivity in the precuneus, posterior cingulate cortex and lingual gyrus was negatively correlated with cognitive impairment among patients with GAD only and among all patients. The SVR analysis based on abnormal VMHC showed significant positive correlations (p < 0.0001) between predicted and actual treatment responses. However, we did not observe significant differences in VMHC or functional connectivity after treatment. LIMITATIONS A notable dropout rate and intergroup somatic symptom variations may have biased the results. CONCLUSION Patients with GAD with or without comorbid depression exhibited shared and distinct abnormal VMHC patterns, which might be linked to their cognitive deficits. These patterns have the potential to serve as prognostic biomarkers for GAD.Clinical trial registration: ClinicalTrials.gov NCT03894085.
Collapse
Affiliation(s)
- Yiding Han
- From the Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China (Han, Yan, Shan, Zhao, Guo); the Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China (H. Li); the Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China (Liu); the Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China (P. Li)
| | - Haohao Yan
- From the Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China (Han, Yan, Shan, Zhao, Guo); the Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China (H. Li); the Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China (Liu); the Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China (P. Li)
| | - Xiaoxiao Shan
- From the Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China (Han, Yan, Shan, Zhao, Guo); the Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China (H. Li); the Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China (Liu); the Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China (P. Li)
| | - Huabing Li
- From the Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China (Han, Yan, Shan, Zhao, Guo); the Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China (H. Li); the Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China (Liu); the Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China (P. Li)
| | - Feng Liu
- From the Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China (Han, Yan, Shan, Zhao, Guo); the Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China (H. Li); the Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China (Liu); the Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China (P. Li)
| | - Ping Li
- From the Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China (Han, Yan, Shan, Zhao, Guo); the Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China (H. Li); the Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China (Liu); the Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China (P. Li)
| | - Jingping Zhao
- From the Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China (Han, Yan, Shan, Zhao, Guo); the Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China (H. Li); the Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China (Liu); the Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China (P. Li)
| | - Wenbin Guo
- From the Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China (Han, Yan, Shan, Zhao, Guo); the Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China (H. Li); the Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China (Liu); the Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China (P. Li)
| |
Collapse
|
6
|
Li X, Liu Q, Chen Z, Li Y, Yang Y, Wang X, Guo X, Luo B, Zhang Y, Shi H, Zhang L, Su X, Shao M, Song M, Guo S, Fan L, Yue W, Li W, Lv L, Yang Y. Abnormalities of Regional Brain Activity in Patients With Schizophrenia: A Longitudinal Resting-State fMRI Study. Schizophr Bull 2023; 49:1336-1344. [PMID: 37083900 PMCID: PMC10483477 DOI: 10.1093/schbul/sbad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
BACKGROUND Evidence from functional and structural research suggests that abnormal brain activity plays an important role in the pathophysiology of schizophrenia (SZ). However, limited studies have focused on post-treatment changes, and current conclusions are inconsistent. STUDY DESIGN We recruited 104 SZ patients to have resting-state functional magnetic resonance imaging scans at baseline and 8 weeks of treatment with second-generation antipsychotics, along with baseline scanning of 86 healthy controls (HCs) for comparison purposes. Individual regional homogeneity (ReHo), amplitude of low-frequency fluctuations (ALFF), and degree centrality values were calculated to evaluate the functional activity. The Positive and Negative Syndrome Scale (PANSS) and MATRICS Consensus Cognitive Battery were applied to measure psychiatric symptoms and cognitive impairment in SZ patients. RESULTS Compared with HCs at baseline, SZ patients had higher ALFF and ReHo values in the bilateral inferior temporal gyrus, inferior frontal gyrus, and lower ALFF and ReHo values in fusiform gyrus and precuneus. Following 8 weeks of treatment, ReHo was increased in right medial region of the superior frontal gyrus (SFGmed) and decreased in the left middle occipital gyrus and the left postcentral gyrus. Meanwhile, ReHo of the right SFGmed was increased after treatment in the response group (the reduction rate of PANSS ≥50%). Enhanced ALFF in the dorsolateral of SFG correlated with improvement in depressive factor score. CONCLUSIONS These findings provide novel evidence for the abnormal functional activity hypothesis of SZ, suggesting that abnormality of right SFGmed can be used as a biomarker of treatment response in SZ.
Collapse
Affiliation(s)
- Xue Li
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Qing Liu
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Zhaonian Chen
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Yalin Li
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Ying Yang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Xiujuan Wang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Xiaoge Guo
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Binbin Luo
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Yan Zhang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Han Shi
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Luwen Zhang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Xi Su
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Minglong Shao
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Meng Song
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Suqin Guo
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Lingzhong Fan
- Brainnetome Center & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Weihua Yue
- Institute of Mental Health, Peking University, Beijing, China
- Key Laboratory for Mental Health, Ministry of Health, Beijing, China
| | - Wenqiang Li
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Luxian Lv
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Yongfeng Yang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
- Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang, China
| |
Collapse
|
7
|
Jing H, Zhang C, Yan H, Li X, Liang J, Liang W, Ou Y, Wu W, Guo H, Deng W, Xie G, Guo W. Deviant spontaneous neural activity as a potential early-response predictor for therapeutic interventions in patients with schizophrenia. Front Neurosci 2023; 17:1243168. [PMID: 37727324 PMCID: PMC10505796 DOI: 10.3389/fnins.2023.1243168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/18/2023] [Indexed: 09/21/2023] Open
Abstract
Objective Previous studies have established significant differences in the neuroimaging characteristics between healthy controls (HCs) and patients with schizophrenia (SCZ). However, the relationship between homotopic connectivity and clinical features in patients with SCZ is not yet fully understood. Furthermore, there are currently no established neuroimaging biomarkers available for the diagnosis of SCZ or for predicting early treatment response. The aim of this study is to investigate the association between regional homogeneity and specific clinical features in SCZ patients. Methods We conducted a longitudinal investigation involving 56 patients with SCZ and 51 HCs. The SCZ patients underwent a 3-month antipsychotic treatment. Resting-state functional magnetic resonance imaging (fMRI), regional homogeneity (ReHo), support vector machine (SVM), and support vector regression (SVR) were used for data acquisition and analysis. Results In comparison to HCs, individuals with SCZ demonstrated reduced ReHo values in the right postcentral/precentral gyrus, left postcentral/inferior parietal gyrus, left middle/inferior occipital gyrus, and right middle temporal/inferior occipital gyrus, and increased ReHo values in the right putamen. It is noteworthy that there was decreased ReHo values in the right inferior parietal gyrus after treatment compared to baseline data. Conclusion The observed decrease in ReHo values in the sensorimotor network and increase in ReHo values in the right putamen may represent distinctive neurobiological characteristics of patients with SCZ, as well as a potential neuroimaging biomarker for distinguishing between patients with SCZ and HCs. Furthermore, ReHo values in the sensorimotor network and right putamen may serve as predictive indicators for early treatment response in patients with SCZ.
Collapse
Affiliation(s)
- Huan Jing
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Chunguo Zhang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Haohao Yan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Jiaquan Liang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Wenting Liang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Yangpan Ou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Weibin Wu
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Huagui Guo
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Wen Deng
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Guojun Xie
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
8
|
Li Q, Xu X, Qian Y, Cai H, Zhao W, Zhu J, Yu Y. Resting-state brain functional alterations and their genetic mechanisms in drug-naive first-episode psychosis. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:13. [PMID: 36841861 PMCID: PMC9968350 DOI: 10.1038/s41537-023-00338-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/07/2023] [Indexed: 02/27/2023]
Abstract
Extensive research has established the presence of resting-state brain functional damage in psychosis. However, the genetic mechanisms of such disease phenotype are yet to be unveiled. We investigated resting-state brain functional alterations in patients with drug-naive first-episode psychosis (DFP) by performing a neuroimaging meta-analysis of 8 original studies comprising 500 patients and 469 controls. Combined with the Allen Human Brain Atlas, we further conducted transcriptome-neuroimaging spatial correlations to identify genes whose expression levels were linked to brain functional alterations in DFP, followed by a range of gene functional characteristic analyses. Meta-analysis revealed a mixture of increased and decreased brain function in widespread areas including the default-mode, visual, motor, striatal, and cerebellar systems in DFP. Moreover, these brain functional alterations were spatially associated with the expression of 1662 genes, which were enriched for molecular functions, cellular components, and biological processes of the cerebral cortex, as well as psychiatric disorders including schizophrenia. Specific expression analyses demonstrated that these genes were specifically expressed in the brain tissue, in cortical neurons and immune cells, and during nearly all developmental periods. Concurrently, the genes could construct a protein-protein interaction network supported by hub genes and were linked to multiple behavioral domains including emotion, attention, perception, and motor. Our findings provide empirical evidence for the notion that brain functional damage in DFP involves a complex interaction of polygenes with various functional characteristics.
Collapse
Affiliation(s)
- Qian Li
- grid.459419.4Department of Radiology, Chaohu Hospital of Anhui Medical University, 238000 Hefei, China ,grid.412679.f0000 0004 1771 3402Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, China ,Research Center of Clinical Medical Imaging, Anhui Province, 230032 Hefei, China ,Anhui Provincial Institute of Translational Medicine, 230032 Hefei, China
| | - Xiaotao Xu
- grid.412679.f0000 0004 1771 3402Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, China ,Research Center of Clinical Medical Imaging, Anhui Province, 230032 Hefei, China ,Anhui Provincial Institute of Translational Medicine, 230032 Hefei, China
| | - Yinfeng Qian
- grid.412679.f0000 0004 1771 3402Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, China ,Research Center of Clinical Medical Imaging, Anhui Province, 230032 Hefei, China ,Anhui Provincial Institute of Translational Medicine, 230032 Hefei, China
| | - Huanhuan Cai
- grid.412679.f0000 0004 1771 3402Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, China ,Research Center of Clinical Medical Imaging, Anhui Province, 230032 Hefei, China ,Anhui Provincial Institute of Translational Medicine, 230032 Hefei, China
| | - Wenming Zhao
- grid.412679.f0000 0004 1771 3402Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, China ,Research Center of Clinical Medical Imaging, Anhui Province, 230032 Hefei, China ,Anhui Provincial Institute of Translational Medicine, 230032 Hefei, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China. .,Research Center of Clinical Medical Imaging, Anhui Province, 230032, Hefei, China. .,Anhui Provincial Institute of Translational Medicine, 230032, Hefei, China.
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China. .,Research Center of Clinical Medical Imaging, Anhui Province, 230032, Hefei, China. .,Anhui Provincial Institute of Translational Medicine, 230032, Hefei, China.
| |
Collapse
|
9
|
Lencz T, Moyett A, Argyelan M, Barber AD, Cholewa J, Birnbaum ML, Gallego JA, John M, Szeszko PR, Robinson DG, Malhotra AK. Frontal lobe fALFF measured from resting-state fMRI as a prognostic biomarker in first-episode psychosis. Neuropsychopharmacology 2022; 47:2245-2251. [PMID: 36198875 PMCID: PMC9630308 DOI: 10.1038/s41386-022-01470-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/05/2022] [Accepted: 09/21/2022] [Indexed: 11/09/2022]
Abstract
Clinical response to antipsychotic drug treatment is highly variable, yet prognostic biomarkers are lacking. The goal of the present study was to test whether the fractional amplitude of low-frequency fluctuations (fALFF), as measured from baseline resting-state fMRI data, can serve as a potential biomarker of treatment response to antipsychotics. Patients in the first episode of psychosis (n = 126) were enrolled in two prospective studies employing second-generation antipsychotics (risperidone or aripiprazole). Patients were scanned at the initiation of treatment on a 3T MRI scanner (Study 1, GE Signa HDx, n = 74; Study 2, Siemens Prisma, n = 52). Voxelwise fALFF derived from baseline resting-state fMRI scans served as the primary measure of interest, providing a hypothesis-free (as opposed to region-of-interest) search for regions of the brain that might be predictive of response. At baseline, patients who would later meet strict criteria for clinical response (defined as two consecutive ratings of much or very much improved on the CGI, as well as a rating of ≤3 on psychosis-related items of the BPRS-A) demonstrated significantly greater baseline fALFF in bilateral orbitofrontal cortex compared to non-responders. Thus, spontaneous activity in orbitofrontal cortex may serve as a prognostic biomarker of antipsychotic treatment.
Collapse
Affiliation(s)
- Todd Lencz
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11550, USA.
- Department of Psychiatry, Division of Research, The Zucker Hillside Hospital Division of Northwell Health, Glen Oaks, NY, 11004, USA.
- Institute for Behavioral Science, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA.
| | - Ashley Moyett
- Department of Psychiatry, Division of Research, The Zucker Hillside Hospital Division of Northwell Health, Glen Oaks, NY, 11004, USA
| | - Miklos Argyelan
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11550, USA
- Department of Psychiatry, Division of Research, The Zucker Hillside Hospital Division of Northwell Health, Glen Oaks, NY, 11004, USA
- Institute for Behavioral Science, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Anita D Barber
- Department of Psychiatry, Division of Research, The Zucker Hillside Hospital Division of Northwell Health, Glen Oaks, NY, 11004, USA
- Institute for Behavioral Science, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - John Cholewa
- Department of Psychiatry, Division of Research, The Zucker Hillside Hospital Division of Northwell Health, Glen Oaks, NY, 11004, USA
| | - Michael L Birnbaum
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11550, USA
- Department of Psychiatry, Division of Research, The Zucker Hillside Hospital Division of Northwell Health, Glen Oaks, NY, 11004, USA
- Institute for Behavioral Science, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Juan A Gallego
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11550, USA
- Department of Psychiatry, Division of Research, The Zucker Hillside Hospital Division of Northwell Health, Glen Oaks, NY, 11004, USA
- Institute for Behavioral Science, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Majnu John
- Department of Psychiatry, Division of Research, The Zucker Hillside Hospital Division of Northwell Health, Glen Oaks, NY, 11004, USA
- Institute for Behavioral Science, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
- Department of Mathematics, Hofstra University, Hempstead, NY, 11549, USA
| | - Philip R Szeszko
- James J. Peters VA Medical Center, Bronx, NY, 10468, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Delbert G Robinson
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11550, USA
- Department of Psychiatry, Division of Research, The Zucker Hillside Hospital Division of Northwell Health, Glen Oaks, NY, 11004, USA
- Institute for Behavioral Science, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Anil K Malhotra
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11550, USA
- Department of Psychiatry, Division of Research, The Zucker Hillside Hospital Division of Northwell Health, Glen Oaks, NY, 11004, USA
- Institute for Behavioral Science, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| |
Collapse
|
10
|
Gao Z, Xiao Y, Zhang Y, Zhu F, Tao B, Tang X, Lui S. Comparisons of resting-state brain activity between insomnia and schizophrenia: a coordinate-based meta-analysis. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:80. [PMID: 36207333 PMCID: PMC9547062 DOI: 10.1038/s41537-022-00291-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022]
Abstract
Growing evidence shows that insomnia is closely associated with schizophrenia (SCZ), but the neural mechanism under the association remains unclear. A direct comparison of the patterns of resting-state brain activities would help understand the above question. Using meta-analytic approach, 11 studies of insomnia vs. healthy controls (HC) and 39 studies of SCZ vs. HC were included to illuminate the common and distinct patterns between insomnia and SCZ. Results showed that SCZ and insomnia shared increased resting-state brain activities in frontolimbic structures including the right medial prefrontal gyrus (mPFC) and left parahippocampal gyrus. SCZ additionally revealed greater increased activities in subcortical areas including bilateral putamen, caudate and right insula and greater decreased activities in precentral gyrus and orbitofrontal gyrus. Our study reveals both shared and distinct activation patterns in SCZ and insomnia, which may provide novel insights for understanding the neural basis of the two disorders and enlighten the possibility of the development of treatment strategies for insomnia in SCZ in the future.
Collapse
Affiliation(s)
- Ziyang Gao
- grid.412901.f0000 0004 1770 1022Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Yuan Xiao
- grid.412901.f0000 0004 1770 1022Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Ye Zhang
- grid.412901.f0000 0004 1770 1022Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Fei Zhu
- grid.412901.f0000 0004 1770 1022Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Bo Tao
- grid.412901.f0000 0004 1770 1022Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiangdong Tang
- grid.412901.f0000 0004 1770 1022Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Su Lui
- grid.412901.f0000 0004 1770 1022Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Qiu X, Zhang R, Wen L, Jiang F, Mao H, Yan W, Xie S, Pan X. Alterations in Spontaneous Brain Activity in Drug-Naïve First-Episode Schizophrenia: An Anatomical/Activation Likelihood Estimation Meta-Analysis. Psychiatry Investig 2022; 19:606-613. [PMID: 36059049 PMCID: PMC9441467 DOI: 10.30773/pi.2022.0074] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/21/2022] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE The etiology of schizophrenia is unknown and is associated with abnormal spontaneous brain activity. There are no consistent results regarding the change in spontaneous brain activity of people with schizophrenia. In this study, we determined the specific changes in the amplitude of low-frequency fluctuation/fractional amplitude of low-frequency fluctuation (ALFF/fALFF) and regional homogeneity (ReHo) in patients with drug-naïve first-episode schizophrenia (Dn-FES). METHODS A comprehensive search of databases such as PubMed, Web of Science, and Embase was conducted to find articles on resting-state functional magnetic resonance imaging using ALFF/fALFF and ReHo in schizophrenia patients compared to healthy controls (HCs) and then, anatomical/activation likelihood estimation was performed. RESULTS Eighteen eligible studies were included in this meta-analysis. Compared to the spontaneous brain activity of HCs, we found changes in spontaneous brain activity in Dn-FES based on these two methods, mainly including the frontal lobe, putamen, lateral globus pallidus, insula, cerebellum, and posterior cingulate cortex. CONCLUSION We found that widespread abnormalities of spontaneous brain activity occur in the early stages of the onset of schizophrenia and may provide a reference for the early intervention of schizophrenia.
Collapse
Affiliation(s)
- Xiaolei Qiu
- Department of Psychiatry, Jiangning District Second People's Hospital, Nanjing, China
| | - Rongrong Zhang
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Lu Wen
- Department of Psychiatry, Jiangning District Second People's Hospital, Nanjing, China
| | - Fuli Jiang
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Hongjun Mao
- Department of Psychiatry, Jiangning District Second People's Hospital, Nanjing, China
| | - Wei Yan
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Shiping Xie
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xinming Pan
- Department of Psychiatry, Jiangning District Second People's Hospital, Nanjing, China
| |
Collapse
|
12
|
Deng M, Liu Z, Shen Y, Cao H, Zhang M, Xi C, Zhang W, Tan W, Zhang J, Chen E, Lee E, Pu W. Treatment Effect of Long-Term Antipsychotics on Default-Mode Network Dysfunction in Drug-Naïve Patients With First-Episode Schizophrenia: A Longitudinal Study. Front Pharmacol 2022; 13:833518. [PMID: 35685640 PMCID: PMC9171718 DOI: 10.3389/fphar.2022.833518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 04/13/2022] [Indexed: 11/30/2022] Open
Abstract
Background: The maintenance of antipsychotic treatment is an efficient way to prevent the relapse of schizophrenia (SCZ). Previous studies have identified beneficial effects of antipsychotics on brain structural and functional abnormalities during mostly the acute phase in SCZ, but seldom is known about the effects of long-term antipsychotics on the brain. The present study focused on the long-term antipsychotic effect on the default mode network (DMN) dysfunction in SCZ. Methods: A longitudinal study of the functional connectivity (FC) of 11 DMN subdivisions was conducted in 86 drug-naive first-episode patients with SCZ at the baseline and after a long-term atypical antipsychotic treatment (more than 6 months) based on the resting-state functional magnetic resonance image. In total, 52 patients completed the follow-up of clinical and neuroimaging investigations. Results: At the baseline, relative to healthy controls, altered connectivities within the DMN and between the DMN and the external attention system (EAS) were observed in patients. After treatment, along with significant relief of symptoms, most FC alterations between the DMN and the EAS at the baseline were improved after treatment, although the rehabilitation of FC within the DMN was only observed at the link between the posterior cingulate cortex and precuneus. Greater reductions in negative and positive symptoms were both related to the changes of DMN-EAS FC in patients. Conclusion: Our findings provide evidence that maintenance antipsychotics on SCZ is beneficial for the improvement of DMN-EAS competitive imbalance, which may partly contribute to the efficient relapse prevention of this severe mental disorder.
Collapse
Affiliation(s)
- Mengjie Deng
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- Mental Health Institute of Central South University, Changsha, China
- China National Clinical Research Center for Mental Health Disorders, Changsha, China
| | - Zhening Liu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- Mental Health Institute of Central South University, Changsha, China
- China National Clinical Research Center for Mental Health Disorders, Changsha, China
| | - Yanyu Shen
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Hengyi Cao
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Hempstead, NY, United States
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY, United States
| | - Manqi Zhang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY, United States
- School of Psychology, Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Chang Xi
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- Mental Health Institute of Central South University, Changsha, China
- China National Clinical Research Center for Mental Health Disorders, Changsha, China
| | - Wen Zhang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- Mental Health Institute of Central South University, Changsha, China
- China National Clinical Research Center for Mental Health Disorders, Changsha, China
| | - Wenjian Tan
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- Mental Health Institute of Central South University, Changsha, China
- China National Clinical Research Center for Mental Health Disorders, Changsha, China
| | - Jinqiang Zhang
- Department of Clinical Psychology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Eric Chen
- Department of Psychiatry, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Edwin Lee
- Department of Psychiatry, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Weidan Pu
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
- China National Clinical Research Center for Mental Health Disorders, Changsha, China
- College of Mechatronics and Automation, National University of Defense Technology, Changsha, China
- *Correspondence: Weidan Pu,
| |
Collapse
|
13
|
Association of reduced local activities in the default mode and sensorimotor networks with clinical characteristics in first-diagnosed of schizophrenia. Neuroscience 2022; 495:47-57. [DOI: 10.1016/j.neuroscience.2022.05.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 01/10/2023]
|
14
|
Zhu T, Wang Z, Zhou C, Fang X, Huang C, Xie C, Ge H, Yan Z, Zhang X, Chen J. Meta-analysis of structural and functional brain abnormalities in schizophrenia with persistent negative symptoms using activation likelihood estimation. Front Psychiatry 2022; 13:957685. [PMID: 36238945 PMCID: PMC9552970 DOI: 10.3389/fpsyt.2022.957685] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/05/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Persistent negative symptoms (PNS) include both primary and secondary negative symptoms that persist after adequate treatment, and represent an unmet therapeutic need. Published magnetic resonance imaging (MRI) evidence of structural and resting-state functional brain abnormalities in schizophrenia with PNS has been inconsistent. Thus, the purpose of this meta-analysis is to identify abnormalities in structural and functional brain regions in patients with PNS compared to healthy controls. METHODS We systematically searched PubMed, Web of Science, and Embase for structural and functional imaging studies based on five research methods, including voxel-based morphometry (VBM), diffusion tensor imaging (DTI), functional connectivity (FC), the amplitude of low-frequency fluctuation or fractional amplitude of low-frequency fluctuation (ALFF/fALFF), and regional homogeneity (ReHo). Afterward, we conducted a coordinate-based meta-analysis by using the activation likelihood estimation algorithm. RESULTS Twenty-five structural MRI studies and thirty-two functional MRI studies were included in the meta-analyses. Our analysis revealed the presence of structural alterations in patients with PNS in some brain regions including the bilateral insula, medial frontal gyrus, anterior cingulate gyrus, left amygdala, superior temporal gyrus, inferior frontal gyrus, cingulate gyrus and middle temporal gyrus, as well as functional differences in some brain regions including the bilateral precuneus, thalamus, left lentiform nucleus, posterior cingulate gyrus, medial frontal gyrus, and superior frontal gyrus. CONCLUSION Our study suggests that structural brain abnormalities are consistently located in the prefrontal, temporal, limbic and subcortical regions, and functional alterations are concentrated in the thalamo-cortical circuits and the default mode network (DMN). This study provides new insights for targeted treatment and intervention to delay further progression of negative symptoms. SYSTEMATIC REVIEW REGISTRATION [https://www.crd.york.ac.uk/prospero/], identifier [CRD42022338669].
Collapse
Affiliation(s)
- Tingting Zhu
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zixu Wang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Zhou
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyu Fang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chengbing Huang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Department of Psychiatry, The Third People's Hospital of Huai'an, Huaian, China
| | - Chunming Xie
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine Southeast University, Nanjing, China
| | - Honglin Ge
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zheng Yan
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xiangrong Zhang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jiu Chen
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
Increased Homotopic Connectivity in the Prefrontal Cortex Modulated by Olanzapine Predicts Therapeutic Efficacy in Patients with Schizophrenia. Neural Plast 2021; 2021:9954547. [PMID: 34512748 PMCID: PMC8429031 DOI: 10.1155/2021/9954547] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/08/2021] [Accepted: 08/18/2021] [Indexed: 11/18/2022] Open
Abstract
Background Previous studies have revealed the abnormalities in homotopic connectivity in schizophrenia. However, the relationship of these deficits to antipsychotic treatment in schizophrenia remains unclear. This study explored the effects of antipsychotic therapy on brain homotopic connectivity and whether the homotopic connectivity of these regions might predict individual treatment response in schizophrenic patients. Methods A total of 21 schizophrenic patients and 20 healthy controls were scanned by the resting-state functional magnetic resonance imaging. The patients received olanzapine treatment and were scanned at two time points. Voxel-mirrored homotopic connectivity (VMHC) and pattern classification techniques were applied to analyze the imaging data. Results Schizophrenic patients presented significantly decreased VMHC in the temporal and inferior frontal gyri, medial prefrontal cortex (MPFC), and motor and low-level sensory processing regions (including the fusiform gyrus and cerebellum lobule VI) relative to healthy controls. The VMHC in the superior/middle MPFC was significantly increased in the patients after eight weeks of treatment. Support vector regression (SVR) analyses revealed that VMHC in the superior/middle MPFC at baseline can predict the symptomatic improvement of the positive and negative syndrome scale after eight weeks of treatment. Conclusions This study demonstrated that olanzapine treatment may normalize decreased homotopic connectivity in the superior/middle MPFC in schizophrenic patients. The VMHC in the superior/middle MPFC may predict individual response for antipsychotic therapy. The findings of this study conduce to the comprehension of the therapy effects of antipsychotic medications on homotopic connectivity in schizophrenia.
Collapse
|
16
|
Yang C, Tang J, Liu N, Yao L, Xu M, Sun H, Tao B, Gong Q, Cao H, Zhang W, Lui S. The Effects of Antipsychotic Treatment on the Brain of Patients With First-Episode Schizophrenia: A Selective Review of Longitudinal MRI Studies. Front Psychiatry 2021; 12:593703. [PMID: 34248691 PMCID: PMC8264251 DOI: 10.3389/fpsyt.2021.593703] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 05/28/2021] [Indexed: 02/05/2023] Open
Abstract
A large number of neuroimaging studies have detected brain abnormalities in first-episode schizophrenia both before and after treatment, but it remains unclear how these abnormalities reflect the effects of antipsychotic treatment on the brain. To summarize the findings in this regard and provide potential directions for future work, we reviewed longitudinal structural and functional imaging studies in patients with first-episode schizophrenia before and after antipsychotic treatment. A total of 36 neuroimaging studies was included, involving 21 structural imaging studies and 15 functional imaging studies. Both anatomical and functional brain changes in patients after treatment were consistently observed in the frontal and temporal lobes, basal ganglia, limbic system and several key components within the default mode network (DMN). Alterations in these regions were affected by factors such as antipsychotic type, course of treatment, and duration of untreated psychosis (DUP). Over all we showed that: (a) The striatum and DMN were core target regions of treatment in schizophrenia, and their changes were related to different antipsychotics; (b) The gray matter of frontal and temporal lobes tended to reduce after long-term treatment; and (c) Longer DUP was accompanied with faster hippocampal atrophy after initial treatment, which was also associated with poorer outcome. These findings are in accordance with previous notions but should be interpreted with caution. Future studies are needed to clarify the effects of different antipsychotics in multiple conditions and to identify imaging or other biomarkers that may predict antipsychotic treatment response. With such progress, it may help choose effective pharmacological interventional strategies for individuals experiencing recent-onset schizophrenia.
Collapse
Affiliation(s)
- Chengmin Yang
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, Psychoradiology Research Unit, Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Tang
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Naici Liu
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, Psychoradiology Research Unit, Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Li Yao
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, Psychoradiology Research Unit, Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Mengyuan Xu
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, Psychoradiology Research Unit, Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Hui Sun
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, Psychoradiology Research Unit, Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Tao
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, Psychoradiology Research Unit, Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Qiyong Gong
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, Psychoradiology Research Unit, Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Hengyi Cao
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, United States.,Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY, United States
| | - Wenjing Zhang
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, Psychoradiology Research Unit, Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Su Lui
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, Psychoradiology Research Unit, Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Shan X, Liao R, Ou Y, Pan P, Ding Y, Liu F, Chen J, Zhao J, Guo W, He Y. Increased regional homogeneity modulated by metacognitive training predicts therapeutic efficacy in patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci 2021; 271:783-798. [PMID: 32215727 PMCID: PMC8119286 DOI: 10.1007/s00406-020-01119-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 03/11/2020] [Indexed: 02/07/2023]
Abstract
Previous studies have demonstrated the efficacy of metacognitive training (MCT) in schizophrenia. However, the underlying mechanisms related to therapeutic effect of MCT remain unknown. The present study explored the treatment effects of MCT on brain regional neural activity using regional homogeneity (ReHo) and whether these regions' activities could predict individual treatment response in schizophrenia. Forty-one patients with schizophrenia and 20 healthy controls were scanned using resting-state functional magnetic resonance imaging. Patients were randomly divided into drug therapy (DT) and drug plus psychotherapy (DPP) groups. The DT group received only olanzapine treatment, whereas the DPP group received olanzapine and MCT for 8 weeks. The results revealed that ReHo in the right precuneus, left superior medial prefrontal cortex (MPFC), right parahippocampal gyrus and left rectus was significantly increased in the DPP group after 8 weeks of treatment. Patients in the DT group showed significantly increased ReHo in the left ventral MPFC/anterior cingulate cortex (ACC), left superior MPFC/middle frontal gyrus (MFG), left precuneus, right rectus and left MFG, and significantly decreased ReHo in the bilateral cerebellum VIII and left inferior occipital gyrus (IOG) after treatment. Support vector regression analyses showed that high ReHo levels at baseline in the right precuneus and left superior MPFC could predict symptomatic improvement of Positive and Negative Syndrome Scale (PANSS) after 8 weeks of DPP treatment. Moreover, high ReHo levels at baseline and alterations of ReHo in the left ventral MPFC/ACC could predict symptomatic improvement of PANSS after 8 weeks of DT treatment. This study suggests that MCT is associated with the modulation of ReHo in schizophrenia. ReHo in the right precuneus and left superior MPFC may predict individual therapeutic response for MCT in patients with schizophrenia.
Collapse
Affiliation(s)
- Xiaoxiao Shan
- grid.452708.c0000 0004 1803 0208Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011 Hunan China ,National Clinical Research Center on Mental Disorders, Changsha, 410011 Hunan China
| | - Rongyuan Liao
- grid.412990.70000 0004 1808 322XThe Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan China
| | - Yangpan Ou
- grid.452708.c0000 0004 1803 0208Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011 Hunan China ,National Clinical Research Center on Mental Disorders, Changsha, 410011 Hunan China
| | - Pan Pan
- grid.452708.c0000 0004 1803 0208Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011 Hunan China ,National Clinical Research Center on Mental Disorders, Changsha, 410011 Hunan China
| | - Yudan Ding
- grid.452708.c0000 0004 1803 0208Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011 Hunan China ,National Clinical Research Center on Mental Disorders, Changsha, 410011 Hunan China
| | - Feng Liu
- grid.412645.00000 0004 1757 9434Department of Radiology, Tianjin Medical University General Hospital, Tianjin, 300000 China
| | - Jindong Chen
- grid.452708.c0000 0004 1803 0208Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011 Hunan China ,National Clinical Research Center on Mental Disorders, Changsha, 410011 Hunan China
| | - Jingping Zhao
- grid.452708.c0000 0004 1803 0208Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011 Hunan China ,National Clinical Research Center on Mental Disorders, Changsha, 410011 Hunan China
| | - Wenbin Guo
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China. .,National Clinical Research Center on Mental Disorders, Changsha, 410011, Hunan, China.
| | - Yiqun He
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China.
| |
Collapse
|
18
|
Yao C, Hu N, Cao H, Tang B, Zhang W, Xiao Y, Zhao Y, Gong Q, Lui S. A Multimodal Fusion Analysis of Pretreatment Anatomical and Functional Cortical Abnormalities in Responsive and Non-responsive Schizophrenia. Front Psychiatry 2021; 12:737179. [PMID: 34925087 PMCID: PMC8671303 DOI: 10.3389/fpsyt.2021.737179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/29/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Antipsychotic medications provide limited long-term benefit to ~30% of schizophrenia patients. Multimodal magnetic resonance imaging (MRI) data have been used to investigate brain features between responders and nonresponders to antipsychotic treatment; however, these analytical techniques are unable to weigh the interrelationships between modalities. Here, we used multiset canonical correlation and joint independent component analysis (mCCA + jICA) to fuse MRI data to examine the shared and specific multimodal features between the patients and healthy controls (HCs) and between the responders and non-responders. Method: Resting-state functional and structural MRI data were collected from 55 patients with drug-naïve first-episode schizophrenia (FES) and demographically matched HCs. Based on the decrease in Positive and Negative Syndrome Scale scores from baseline to the 1-year follow-up, FES patients were divided into a responder group (RG) and a non-responder group (NRG). Gray matter volume (GMV), fractional amplitude of low-frequency fluctuation (fALFF), and regional homogeneity (ReHo) maps were used as features in mCCA + jICA. Results: Between FES patients and HCs, there were three modality-specific discriminative independent components (ICs) showing the difference in mixing coefficients (GMV-IC7, GMV-IC8, and fALFF-IC5). The fusion analysis indicated one modality-shared IC (GMV-IC2 and ReHo-IC2) and three modality-specific ICs (GMV-IC1, GMV-IC3, and GMV-IC6) between the RG and NRG. The right postcentral gyrus showed a significant difference in GMV features between FES patients and HCs and modality-shared features (GMV and ReHo) between responders and nonresponders. The modality-shared component findings were highlighted by GMV, mainly in the bilateral temporal gyrus and the right cerebellum associated with ReHo in the right postcentral gyrus. Conclusions: This study suggests that joint anatomical and functional features of the cortices may reflect an early pathophysiological mechanism that is related to a 1-year treatment response.
Collapse
Affiliation(s)
- Chenyang Yao
- Department of Radiology, Huaxi Magnetic Resonance Research Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Department of Imaging Medicine, Inner Mongolia Autonomous Region People's Hospital, Hohhot, China
| | - Na Hu
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Hengyi Cao
- Department of Radiology, Huaxi Magnetic Resonance Research Center, West China Hospital, Sichuan University, Chengdu, China.,Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, United States.,Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY, United States
| | - Biqiu Tang
- Department of Radiology, Huaxi Magnetic Resonance Research Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenjing Zhang
- Department of Radiology, Huaxi Magnetic Resonance Research Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Xiao
- Department of Radiology, Huaxi Magnetic Resonance Research Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Youjin Zhao
- Department of Radiology, Huaxi Magnetic Resonance Research Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiyong Gong
- Department of Radiology, Huaxi Magnetic Resonance Research Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Su Lui
- Department of Radiology, Huaxi Magnetic Resonance Research Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Koyama MS, Molfese PJ, Milham MP, Mencl WE, Pugh KR. Thalamus is a common locus of reading, arithmetic, and IQ: Analysis of local intrinsic functional properties. BRAIN AND LANGUAGE 2020; 209:104835. [PMID: 32738503 PMCID: PMC8087146 DOI: 10.1016/j.bandl.2020.104835] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 06/24/2020] [Accepted: 06/28/2020] [Indexed: 05/04/2023]
Abstract
Neuroimaging studies of basic achievement skills - reading and arithmetic - often control for the effect of IQ to identify unique neural correlates of each skill. This may underestimate possible effects of common factors between achievement and IQ measures on neuroimaging results. Here, we simultaneously examined achievement (reading and arithmetic) and IQ measures in young adults, aiming to identify MRI correlates of their common factors. Resting-state fMRI (rs-fMRI) data were analyzed using two metrics assessing local intrinsic functional properties; regional homogeneity (ReHo) and fractional amplitude low frequency fluctuation (fALFF), measuring local intrinsic functional connectivity and intrinsic functional activity, respectively. ReHo highlighted the thalamus/pulvinar (a subcortical region implied for selective attention) as a common locus for both achievement skills and IQ. More specifically, the higher the ReHo values, the lower the achievement and IQ scores. For fALFF, the left superior parietal lobule, part of the dorsal attention network, was positively associated with reading and IQ. Collectively, our results highlight attention-related regions, particularly the thalamus/pulvinar as a key region related to individual differences in performance on all the three measures. ReHo in the thalamus/pulvinar may serve as a tool to examine brain mechanisms underlying a comorbidity of reading and arithmetic difficulties, which could co-occur with weakness in general intellectual abilities.
Collapse
Affiliation(s)
- Maki S Koyama
- Haskins Laboratories, New Haven, CT, USA; Center for the Developing Brain, Child Mind Institute, New York, NY, USA.
| | - Peter J Molfese
- Haskins Laboratories, New Haven, CT, USA; Section on Functional Imaging Methods, Laboratory of Brain and Cognition, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Michael P Milham
- Center for the Developing Brain, Child Mind Institute, New York, NY, USA; Center for Biomedical Imagingand Neuromodulation, Nathan Kline Institute, Orangeburg, NY, USA.
| | | | - Kenneth R Pugh
- Haskins Laboratories, New Haven, CT, USA; Yale University School of Medicine, Department of Diagnostic Radiology, New Haven, CT, USA; University of Connecticut, Department of Psychology, Storrs, CT, USA.
| |
Collapse
|
20
|
Lai J, Xu T, Zhang H, Xi C, Zhou H, Du Y, Jiang J, Wu L, Zhang P, Xu Y, Hu S, Xu D. Fractional amplitude of low frequency fluctuation in drug-naïve first-episode patients with anorexia nervosa: A resting-state fMRI study. Medicine (Baltimore) 2020; 99:e19300. [PMID: 32118747 PMCID: PMC7478752 DOI: 10.1097/md.0000000000019300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
To characterize the fractional amplitude of low-frequency fluctuation (fALFF) in drug-naïve first-episode female patients with anorexia nervosa (AN) using resting-state functional magnetic resonance imaging (rs-fMRI).Whole brain rs-fMRI data were collected from 7 drug-naïve first-episode female patients with DSM-5 AN and 14 age-matched healthy female controls. fALFF values were calculated and compared between the two groups using a two-sample t test. Correlation analysis between the fALFF values in the entire brain and body mass index (BMI) was performed.Compared with the healthy controls, increased fALFF values were observed in the AN patients in their right hippocampus and left superior frontal gyrus, while decreased fALFF values were observed in their left rectus and left middle occipital gyrus. Moreover, low BMI was significantly associated with decreased fALFF in the left inferior frontal gyrus but increased fALFF in the left calcarine. In particular, the z-standardized fALFF (zfALFF) value of the left rectus was positive associated with BMI.Our findings suggest that spontaneous brain activity in the frontal region, hippocampus and rectus, characterized by fALFF values, was altered in drug-naïve, first-episode female patients with AN.
Collapse
Affiliation(s)
- Jianbo Lai
- Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine
- The Key Laboratory of Mental Disorder's Management in Zhejiang Province
- Brain Research Institute of Zhejiang University
| | - Tingting Xu
- Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine
- Zhejiang University School of Medicine
- Mental Health Centre, Xiaoshan Hospital of Zhejiang Province, Hangzhou
| | - Haorong Zhang
- Shanghai Key Laboratory of Magnetic Resonance Imaging & Institute of Cognitive Neuroscience, East China Normal University, Shanghai, China
| | - Caixi Xi
- Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine
- Zhejiang University School of Medicine
| | - Hetong Zhou
- Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine
- The Key Laboratory of Mental Disorder's Management in Zhejiang Province
- Brain Research Institute of Zhejiang University
| | - Yanli Du
- Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine
- Zhejiang University School of Medicine
| | - Jiajun Jiang
- Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine
- Zhejiang University School of Medicine
| | - Lingling Wu
- Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine
- Zhejiang University School of Medicine
| | - Peifen Zhang
- Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine
- Zhejiang University School of Medicine
| | - Yi Xu
- Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine
- The Key Laboratory of Mental Disorder's Management in Zhejiang Province
- Brain Research Institute of Zhejiang University
| | - Shaohua Hu
- Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine
- The Key Laboratory of Mental Disorder's Management in Zhejiang Province
- Brain Research Institute of Zhejiang University
| | - Dongrong Xu
- Molecular Imaging and Neuropathology Division, Department of Psychiatry, Columbia University & New York State Psychiatric Institute, New York, NY 10032
| |
Collapse
|