1
|
Zhou Z, Jones K, Ivleva EI, Colon-Perez L. Macro- and Micro-Structural Alterations in the Midbrain in Early Psychosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588901. [PMID: 38645197 PMCID: PMC11030414 DOI: 10.1101/2024.04.10.588901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Introduction Early psychosis (EP) is a critical period in the course of psychotic disorders during which the brain is thought to undergo rapid and significant functional and structural changes 1 . Growing evidence suggests that the advent of psychotic disorders is early alterations in the brain's functional connectivity and structure, leading to aberrant neural network organization. The Human Connectome Project (HCP) is a global effort to map the human brain's connectivity in healthy and disease populations; within HCP, there is a specific dataset that focuses on the EP subjects (i.e., those within five years of the initial psychotic episode) (HCP-EP), which is the focus of our study. Given the critically important role of the midbrain function and structure in psychotic disorders (cite), and EP in particular (cite), we specifically focused on the midbrain macro- and micro-structural alterations and their association with clinical outcomes in HCP-EP. Methods We examined macro- and micro-structural brain alterations in the HCP-EP sample (n=179: EP, n=123, Controls, n=56) as well as their associations with behavioral measures (i.e., symptoms severity) using a stepwise approach, incorporating a multimodal MRI analysis procedure. First, Deformation Based Morphometry (DBM) was carried out on the whole brain 3 Tesla T1w images to examine gross brain anatomy (i.e., seed-based and voxel-based volumes). Second, we extracted Fractional Anisotropy (FA), Axial Diffusivity (AD), and Mean Diffusivity (MD) indices from the Diffusion Tensor Imaging (DTI) data; a midbrain mask was created based on FreeSurfer v.6.0 atlas. Third, we employed Tract-Based Spatial Statistics (TBSS) to determine microstructural alterations in white matter tracts within the midbrain and broader regions. Finally, we conducted correlation analyses to examine associations between the DBM-, DTI- and TBSS-based outcomes and the Positive and Negative Syndrome Scale (PANSS) scores. Results DBM analysis showed alterations in the hippocampus, midbrain, and caudate/putamen. A DTI voxel-based analysis shows midbrain reductions in FA and AD and increases in MD; meanwhile, the hippocampus shows an increase in FA and a decrease in AD and MD. Several key brain regions also show alterations in DTI indices (e.g., insula, caudate, prefrontal cortex). A seed-based analysis centered around a midbrain region of interest obtained from freesurfer segmentation confirms the voxel-based analysis of DTI indices. TBSS successfully captured structural differences within the midbrain and complementary alterations in other main white matter tracts, such as the corticospinal tract and cingulum, suggesting early altered brain connectivity in EP. Correlations between these quantities in the EP group and behavioral scores (i.e., PANSS and CAINS tests) were explored. It was found that midbrain volume noticeably correlates with the Cognitive score of PA and all DTI metrics. FA correlates with the several dimensions of the PANSS, while AD and MD do not show many associations with PANSS or CAINS. Conclusions Our findings contribute to understanding the midbrain-focused circuitry involvement in EP and complimentary alteration in EP. Our work provides a path for future investigations to inform specific brain-based biomarkers of EP and their relationships to clinical manifestations of the psychosis course.
Collapse
|
2
|
Hamzehpour L, Bohn T, Jaspers L, Grimm O. Exploring the link between functional connectivity of ventral tegmental area and physical fitness in schizophrenia and healthy controls. Eur Neuropsychopharmacol 2023; 76:77-86. [PMID: 37562082 DOI: 10.1016/j.euroneuro.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 08/12/2023]
Abstract
Decreased physical fitness and being overweight are highly prevalent in schizophrenia, represent a major risk factor for comorbid cardio-vascular diseases and decrease the life expectancy of the patients. Thus, it is important to understand the underlying mechanisms that link psychopathology and weight gain. We hypothesize that the dopaminergic reward system plays an important role in this. We analyzed the seed-based functional connectivity (FC) of the ventral tegmental area (VTA) in a group of schizophrenic patients (n=32) and age-, as well as gender-, matched healthy controls (n=27). We then correlated the resting-state results with physical fitness parameters, obtained in a fitness test, and psychopathology. The FC analysis revealed decreased functional connections between the VTA and the anterior cingulate cortex (ACC), as well as the dorsolateral prefrontal cortex, which negatively correlated with psychopathology, and increased FC between the VTA and the middle temporal gyrus in patients compared to healthy controls, which positively correlated with psychopathology. The decreased FC between the VTA and the ACC of the patient group further positively correlated with total body fat (p = .018, FDR-corr.) and negatively correlated with the overall physical fitness (p = .022). This study indicates a link between decreased physical fitness and higher body fat with functional dysconnectivity between the VTA and the ACC. These findings demonstrate that a dysregulated reward system might also be involved in comorbidities and could pave the way for future lifestyle therapy interventions.
Collapse
Affiliation(s)
- Lara Hamzehpour
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Heinrich-Hoffmann-Straße 10, 60528, Frankfurt am Main, Germany; Goethe University Frankfurt, Faculty 15 Biological Sciences, Frankfurt am Main, Germany.
| | - Tamara Bohn
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Heinrich-Hoffmann-Straße 10, 60528, Frankfurt am Main, Germany
| | - Lucia Jaspers
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Heinrich-Hoffmann-Straße 10, 60528, Frankfurt am Main, Germany
| | - Oliver Grimm
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Heinrich-Hoffmann-Straße 10, 60528, Frankfurt am Main, Germany
| |
Collapse
|
3
|
Wu H, Liu Y, Wang J, Chen S, Xie L, Wu X. Schizophrenia and obesity: May the gut microbiota serve as a link for the pathogenesis? IMETA 2023; 2:e99. [PMID: 38868440 PMCID: PMC10989809 DOI: 10.1002/imt2.99] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 06/14/2024]
Abstract
Schizophrenia (SZ) places a tremendous burden on public health as one of the leading causes of disability and death. SZ patients are more prone to developing obesity than the general population from the clinical practice. The development of obesity frequently causes poor psychiatric outcomes in SZ patients. In turn, maternal obesity during pregnancy has been associated with an increased risk of SZ in offspring, suggesting that these two disorders may have shared neuropathological mechanisms. The gut microbiota is well known to serve as a major regulator of bidirectional interactions between the central nervous system and the gastrointestinal tract. It also plays a critical role in maintaining physical and mental health in humans. Recent studies have shown that the dysbiosis of gut microbiota is intimately associated with the onset of SZ and obesity through shared pathophysiological mechanisms, particularly the stimulation of immune inflammation. Therefore, gut microbiota may serve as a common biological basis for the etiology in both SZ and obesity, and the perturbed gut-brain axis may therefore account for the high prevalence of obesity in patients with SZ. On the basis of these findings, this review provides updated perspectives and intervention approaches on the etiology, prevention, and management of obesity in SZ patients by summarizing the recent findings on the role of gut microbiota in the pathogenesis of SZ and obesity, highlighting the role of gut-derived inflammation.
Collapse
Affiliation(s)
- Hui Wu
- Psychiatry DepartmentThird Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Yaxi Liu
- Psychiatry DepartmentThird Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Jie Wang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of MicrobiologyGuangdong Academy of SciencesGuangzhouChina
- Department of Life SciencesImperial College LondonLondonUnited Kingdom
| | - Shengyun Chen
- Psychiatry DepartmentThird Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Liwei Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of MicrobiologyGuangdong Academy of SciencesGuangzhouChina
| | - Xiaoli Wu
- Psychiatry DepartmentThird Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
4
|
Cheng W, Sun Z, Cai K, Wu J, Dong X, Liu Z, Shi Y, Yang S, Zhang W, Chen A. Relationship between Overweight/Obesity and Social Communication in Autism Spectrum Disorder Children: Mediating Effect of Gray Matter Volume. Brain Sci 2023; 13:brainsci13020180. [PMID: 36831723 PMCID: PMC9954689 DOI: 10.3390/brainsci13020180] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
With advances in medical diagnostic technology, the healthy development of children with autism spectrum disorder (ASD) is receiving more and more attention. In this article, the mediating effect of brain gray matter volume (GMV) between overweight/obesity and social communication (SC) was investigated through the analysis of the relationship between overweight/obesity and SC in autism spectrum disorder children. In total, 101 children with ASD aged 3-12 years were recruited from three special educational centers (Yangzhou, China). Overweight/obesity in children with ASD was indicated by their body mass index (BMI); the Social Responsiveness Scale, Second Edition (SRS-2) was used to assess their social interaction ability, and structural Magnetic Resonance Imaging (sMRI) was used to measure GMV. A mediation model was constructed using the Process plug-in to analyze the mediating effect of GMV between overweight/obesity and SC in children with ASD. The results revealed that: overweight/obesity positively correlated with SRS-2 total points (p = 0.01); gray matter volume in the left dorsolateral superior frontal gyrus (Frontal_Sup_L GMV) negatively correlated with SRS-2 total points (p = 0.001); and overweight/obesity negatively correlated with Frontal_Sup_L GMV (p = 0.001). The Frontal_Sup_L GMV played a partial mediating role in the relationship between overweight/obesity and SC, accounting for 36.6% of total effect values. These findings indicate the significant positive correlation between overweight/obesity and SC; GMV in the left dorsolateral superior frontal gyrus plays a mediating role in the relationship between overweight/obesity and SC. The study may provide new evidence toward comprehensively revealing the overweight/obesity and SC relationship.
Collapse
Affiliation(s)
- Wei Cheng
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
- Institute of Sports, Exercise and Brain, Yangzhou University, Yangzhou 225127, China
| | - Zhiyuan Sun
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
- Institute of Sports, Exercise and Brain, Yangzhou University, Yangzhou 225127, China
| | - Kelong Cai
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
- Institute of Sports, Exercise and Brain, Yangzhou University, Yangzhou 225127, China
| | - Jingjing Wu
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
- Institute of Sports, Exercise and Brain, Yangzhou University, Yangzhou 225127, China
| | - Xiaoxiao Dong
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
- Institute of Sports, Exercise and Brain, Yangzhou University, Yangzhou 225127, China
| | - Zhimei Liu
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
- Institute of Sports, Exercise and Brain, Yangzhou University, Yangzhou 225127, China
| | - Yifan Shi
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
- Institute of Sports, Exercise and Brain, Yangzhou University, Yangzhou 225127, China
| | - Sixin Yang
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
- Institute of Sports, Exercise and Brain, Yangzhou University, Yangzhou 225127, China
| | - Weike Zhang
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
- Institute of Sports, Exercise and Brain, Yangzhou University, Yangzhou 225127, China
| | - Aiguo Chen
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
- Institute of Sports, Exercise and Brain, Yangzhou University, Yangzhou 225127, China
- Correspondence: ; Tel.: +86-139-5272-5968
| |
Collapse
|
5
|
Wu H, Dai G, Aizezi M, Tang J, Zou K, Wu Y, Wu X. Gray matter reduction in bilateral insula mediating adverse psychiatric effects of body mass index in schizophrenia. BMC Psychiatry 2022; 22:639. [PMID: 36221050 PMCID: PMC9552355 DOI: 10.1186/s12888-022-04285-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Both schizophrenia (SZ) and overweight/obesity (OWB) have shown some structural alterations in similar brain regions. As higher body mass index (BMI) often contributes to worse psychiatric outcomes in SZ, this study was designed to examine the effects of OWB on gray matter volume (GMV) in patients with SZ. METHODS Two hundred fifty subjects were included and stratified into four groups (n = 69, SZ patients with OWB, SZ-OWB; n = 74, SZ patients with normal weight, SZ-NW; n = 54, healthy controls with OWB, HC-OWB; and n = 53, HC with NW, HC-NW). All participants were scanned using high-resolution T1-weighted sequence. The whole-brain voxel-based morphometry was applied to examine the GMV alterations, and a 2 × 2 full factorial analysis of variance was performed to identify the main effects of diagnosis (SZ vs HC), BMI (NW vs OWB) factors, and their interactions. Further, the post hoc analysis was conducted to compare the pairwise differences in GMV alterations. RESULTS The main effects of diagnosis were located in right hippocampus, bilateral insula, rectus, median cingulate/paracingulate gyri and thalamus (SZ < HC); while the main effects of BMI were displayed in right amygdala, left hippocampus, bilateral insula, left lingual gyrus, and right superior temporal gyrus (OWB < NW). There were no significant diagnosis-by-BMI interaction effects in the present study, but the results showed that both SZ and OWB were additively associated with lower GMV in bilateral insula. Moreover, mediation analyses revealed the indirect effect of BMI on negative symptom via GMV reduction in bilateral insula. CONCLUSION This study further supports that higher BMI is associated with lower GMV, which may increase the risk of unfavourable disease courses in SZ.
Collapse
Affiliation(s)
- Hui Wu
- grid.412558.f0000 0004 1762 1794Psychiatry Department, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong China ,The Affiliated Kashi Hospital of Sun Yat-Sen University, Kashi, China
| | - Guochao Dai
- The Affiliated Kashi Hospital of Sun Yat-Sen University, Kashi, China ,Radiology Department, The First People’s Hospital of Kashi Prefecture, Kashi, China
| | - Muyeseer Aizezi
- The Affiliated Kashi Hospital of Sun Yat-Sen University, Kashi, China ,Psychiatry Department, The First People’s Hospital of Kashi Prefecture, 120 Yingbin Avenue, Kashi, Xinjiang China
| | - Juan Tang
- The Affiliated Kashi Hospital of Sun Yat-Sen University, Kashi, China ,Psychiatry Department, The First People’s Hospital of Kashi Prefecture, 120 Yingbin Avenue, Kashi, Xinjiang China
| | - Ke Zou
- The Affiliated Kashi Hospital of Sun Yat-Sen University, Kashi, China ,Radiology Department, The First People’s Hospital of Kashi Prefecture, Kashi, China
| | - Yuhua Wu
- The Affiliated Kashi Hospital of Sun Yat-Sen University, Kashi, China. .,Psychiatry Department, The First People's Hospital of Kashi Prefecture, 120 Yingbin Avenue, Kashi, Xinjiang, China.
| | - Xiaoli Wu
- Psychiatry Department, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong, China. .,The Affiliated Kashi Hospital of Sun Yat-Sen University, Kashi, China.
| |
Collapse
|
6
|
McWhinney SR, Brosch K, Calhoun VD, Crespo-Facorro B, Crossley NA, Dannlowski U, Dickie E, Dietze LMF, Donohoe G, Du Plessis S, Ehrlich S, Emsley R, Furstova P, Glahn DC, Gonzalez- Valderrama A, Grotegerd D, Holleran L, Kircher TTJ, Knytl P, Kolenic M, Lencer R, Nenadić I, Opel N, Pfarr JK, Rodrigue AL, Rootes-Murdy K, Ross AJ, Sim K, Škoch A, Spaniel F, Stein F, Švancer P, Tordesillas-Gutiérrez D, Undurraga J, Váquez-Bourgon J, Voineskos A, Walton E, Weickert TW, Weickert CS, Thompson PM, van Erp TGM, Turner JA, Hajek T. Obesity and brain structure in schizophrenia - ENIGMA study in 3021 individuals. Mol Psychiatry 2022; 27:3731-3737. [PMID: 35739320 PMCID: PMC9902274 DOI: 10.1038/s41380-022-01616-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/27/2022] [Accepted: 05/06/2022] [Indexed: 02/08/2023]
Abstract
Schizophrenia is frequently associated with obesity, which is linked with neurostructural alterations. Yet, we do not understand how the brain correlates of obesity map onto the brain changes in schizophrenia. We obtained MRI-derived brain cortical and subcortical measures and body mass index (BMI) from 1260 individuals with schizophrenia and 1761 controls from 12 independent research sites within the ENIGMA-Schizophrenia Working Group. We jointly modeled the statistical effects of schizophrenia and BMI using mixed effects. BMI was additively associated with structure of many of the same brain regions as schizophrenia, but the cortical and subcortical alterations in schizophrenia were more widespread and pronounced. Both BMI and schizophrenia were primarily associated with changes in cortical thickness, with fewer correlates in surface area. While, BMI was negatively associated with cortical thickness, the significant associations between BMI and surface area or subcortical volumes were positive. Lastly, the brain correlates of obesity were replicated among large studies and closely resembled neurostructural changes in major depressive disorders. We confirmed widespread associations between BMI and brain structure in individuals with schizophrenia. People with both obesity and schizophrenia showed more pronounced brain alterations than people with only one of these conditions. Obesity appears to be a relevant factor which could account for heterogeneity of brain imaging findings and for differences in brain imaging outcomes among people with schizophrenia.
Collapse
Affiliation(s)
- Sean R. McWhinney
- grid.55602.340000 0004 1936 8200Department of Psychiatry, Dalhousie University, Halifax, NS Canada
| | - Katharina Brosch
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Vince D. Calhoun
- grid.189967.80000 0001 0941 6502Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, Emory University, Atlanta, GA USA
| | - Benedicto Crespo-Facorro
- grid.469673.90000 0004 5901 7501Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain ,grid.411109.c0000 0000 9542 1158IBiS, University Hospital Virgen del Rocio, Sevilla, Spain ,grid.9224.d0000 0001 2168 1229Department of Psychiatry, School of Medicine, University of Sevilla, Sevilla, Spain
| | - Nicolas A. Crossley
- grid.7870.80000 0001 2157 0406Department of Psychiatry, School of Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile ,grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, King’s College London, London, UK
| | - Udo Dannlowski
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Erin Dickie
- grid.17063.330000 0001 2157 2938Centre for Addiction & Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON Canada
| | - Lorielle M. F. Dietze
- grid.55602.340000 0004 1936 8200Department of Psychiatry, Dalhousie University, Halifax, NS Canada
| | - Gary Donohoe
- grid.6142.10000 0004 0488 0789Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Stefan Du Plessis
- grid.11956.3a0000 0001 2214 904XDepartment of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa ,grid.415021.30000 0000 9155 0024SAMRC Genomics of Brain Disorders Unit, Cape Town, South Africa
| | - Stefan Ehrlich
- grid.4488.00000 0001 2111 7257Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Robin Emsley
- grid.11956.3a0000 0001 2214 904XDepartment of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Petra Furstova
- grid.447902.cNational Institute of Mental Health, Klecany, Czech Republic
| | - David C. Glahn
- grid.2515.30000 0004 0378 8438Department of Psychiatry & Behavioral Sciences, Boston Children’s Hospital, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Psychiatry, Harvard Medical School, Boston, MA USA ,grid.277313.30000 0001 0626 2712Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT USA
| | - Alfonso Gonzalez- Valderrama
- grid.440629.d0000 0004 5934 6911School of Medicine, Universidad Finis Terrae, Santiago, Chile ,Early Intervention in Psychosis Program, Instituto Psiquiátrico ‘Dr. José Horwitz B.’, Santiago, Chile
| | - Dominik Grotegerd
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Laurena Holleran
- grid.6142.10000 0004 0488 0789Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Tilo T. J. Kircher
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Pavel Knytl
- grid.447902.cNational Institute of Mental Health, Klecany, Czech Republic ,grid.4491.80000 0004 1937 116XCharles University, Third Faculty of Medicine, Prague, Czech Republic
| | - Marian Kolenic
- grid.447902.cNational Institute of Mental Health, Klecany, Czech Republic ,grid.4491.80000 0004 1937 116XCharles University, Third Faculty of Medicine, Prague, Czech Republic
| | - Rebekka Lencer
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany ,grid.4562.50000 0001 0057 2672Department of Pscyhiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Igor Nenadić
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Nils Opel
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany ,grid.9613.d0000 0001 1939 2794Department of Psychiatry, Jena University Hospital/Friedrich-Schiller-University Jena, Jena, Germany
| | - Julia-Katharina Pfarr
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Amanda L. Rodrigue
- grid.2515.30000 0004 0378 8438Department of Psychiatry & Behavioral Sciences, Boston Children’s Hospital, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Psychiatry, Harvard Medical School, Boston, MA USA
| | - Kelly Rootes-Murdy
- grid.256304.60000 0004 1936 7400Department of Psychology, Georgia State University, Atlanta, GA USA
| | - Alex J. Ross
- grid.55602.340000 0004 1936 8200Department of Psychiatry, Dalhousie University, Halifax, NS Canada
| | - Kang Sim
- grid.414752.10000 0004 0469 9592West Region, Institute of Mental Health, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore ,grid.59025.3b0000 0001 2224 0361Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Antonín Škoch
- grid.447902.cNational Institute of Mental Health, Klecany, Czech Republic ,grid.418930.70000 0001 2299 1368Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Filip Spaniel
- grid.447902.cNational Institute of Mental Health, Klecany, Czech Republic ,grid.4491.80000 0004 1937 116XCharles University, Third Faculty of Medicine, Prague, Czech Republic
| | - Frederike Stein
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Patrik Švancer
- grid.447902.cNational Institute of Mental Health, Klecany, Czech Republic ,grid.4491.80000 0004 1937 116XCharles University, Third Faculty of Medicine, Prague, Czech Republic
| | - Diana Tordesillas-Gutiérrez
- grid.484299.a0000 0004 9288 8771Department of Radiology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute IDIVAL, Santander, Spain ,grid.469953.40000 0004 1757 2371Computación Avanzada y Ciencia, Instituto de Física de Cantabria, CSIC, Santander, Spain
| | - Juan Undurraga
- Early Intervention in Psychosis Program, Instituto Psiquiátrico ‘Dr. José Horwitz B.’, Santiago, Chile ,grid.412187.90000 0000 9631 4901Department of Neurology and Psychiatry. Faculty of Medicine, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Javier Váquez-Bourgon
- grid.469673.90000 0004 5901 7501Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain ,grid.7821.c0000 0004 1770 272XDepartment of Medicine and Psychiatry, School of Medicine, University of Cantabria, Santander, Spain ,grid.411325.00000 0001 0627 4262Department of Psychiatry, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute IDIVAL, Santander, Spain
| | - Aristotle Voineskos
- grid.17063.330000 0001 2157 2938Centre for Addiction & Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON Canada
| | - Esther Walton
- grid.7340.00000 0001 2162 1699Department of Psychology, University of Bath, Bath, UK
| | - Thomas W. Weickert
- grid.411023.50000 0000 9159 4457Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY USA ,grid.250407.40000 0000 8900 8842Neuroscience Research Australia, Randwick, NSW Australia
| | - Cynthia Shannon Weickert
- grid.411023.50000 0000 9159 4457Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY USA ,grid.250407.40000 0000 8900 8842Neuroscience Research Australia, Randwick, NSW Australia ,grid.1005.40000 0004 4902 0432School of Psychiatry, University of New South Wales, Sydney, NSW Australia
| | - Paul M. Thompson
- grid.42505.360000 0001 2156 6853Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA USA
| | - Theo G. M. van Erp
- grid.266093.80000 0001 0668 7243Psychiatry and Human Behavior, University of California Irvine, Irvine, CA USA ,grid.266093.80000 0001 0668 7243Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA USA
| | - Jessica A. Turner
- grid.256304.60000 0004 1936 7400Department of Psychology, Georgia State University, Atlanta, GA USA
| | - Tomas Hajek
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada. .,National Institute of Mental Health, Klecany, Czech Republic.
| |
Collapse
|
7
|
Luckhoff HK, Asmal L, Scheffler F, Phahladira L, Smit R, van den Heuvel L, Fouche JP, Seedat S, Emsley R, du Plessis S. Associations between BMI and brain structures involved in food intake regulation in first-episode schizophrenia spectrum disorders and healthy controls. J Psychiatr Res 2022; 152:250-259. [PMID: 35753245 DOI: 10.1016/j.jpsychires.2022.06.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/04/2022] [Accepted: 06/10/2022] [Indexed: 11/28/2022]
Abstract
Structural brain differences have been described in first-episode schizophrenia spectrum disorders (FES), and often overlap with those evident in the metabolic syndrome (MetS). We examined the associations between body mass index (BMI) and brain structures involved in food intake regulation in minimally treated FES patients (n = 117) compared to healthy controls (n = 117). The effects of FES diagnosis, BMI and their interactions on our selected prefrontal cortical thickness and subcortical gray matter volume regions of interest (ROIs) were investigated with hierarchical multivariate regressions, followed by post-hoc regressions for the individual ROIs. In a secondary analysis, we examined the relationships of other MetS risk factors and psychopathology with the brain ROIs. Both illness and BMI significantly predicted the grouped prefrontal cortical thickness ROIs, whereas only BMI predicted the grouped subcortical volume ROIs. For the individual ROIs, schizophrenia diagnosis predicted thinner left and right frontal pole and right lateral OFC thickness, and increased BMI predicted thinner left and right caudal ACC thickness. There were no significant main or interaction effects for diagnosis and BMI on any of the individual subcortical volume ROIs. Secondary analyses suggest associations between several brain ROIs and individual MetS risk factors, but not with psychopathology. Our findings indicate differential, independent effects for FES diagnosis and BMI on brain structures. Limited evidence suggests that the BMI effects are more prominent in FES. Exploratory analyses suggest associations between other MetS risk factors and some brain ROIs.
Collapse
Affiliation(s)
- H K Luckhoff
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7550, South Africa.
| | - L Asmal
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7550, South Africa
| | - F Scheffler
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7550, South Africa
| | - L Phahladira
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7550, South Africa
| | - R Smit
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7550, South Africa
| | - L van den Heuvel
- South African Medical Research Council, Stellenbosch University Genomics of Brain Disorders Research Unit, Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7550, South Africa
| | - J P Fouche
- South African Medical Research Council, Stellenbosch University Genomics of Brain Disorders Research Unit, Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7550, South Africa
| | - S Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7550, South Africa
| | - R Emsley
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7550, South Africa
| | - S du Plessis
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7550, South Africa
| |
Collapse
|
8
|
McWhinney SR, Abé C, Alda M, Benedetti F, Bøen E, del Mar Bonnin C, Borgers T, Brosch K, Canales-Rodríguez EJ, Cannon DM, Dannlowski U, Diaz-Zuluaga AM, Lorielle Dietze, Elvsåshagen T, Eyler LT, Fullerton JM, Goikolea JM, Goltermann J, Grotegerd D, Haarman BCM, Hahn T, Howells FM, Ingvar M, Kircher TTJ, Krug A, Kuplicki RT, Landén M, Lemke H, Liberg B, Lopez-Jaramillo C, Malt UF, Martyn FM, Mazza E, McDonald C, McPhilemy G, Meier S, Meinert S, Meller T, Melloni EMT, Mitchell PB, Nabulsi L, Nenadic I, Opel N, Ophoff RA, Overs BJ, Pfarr JK, Pineda-Zapata JA, Pomarol-Clotet E, Raduà J, Repple J, Richter M, Ringwald KG, Roberts G, Ross A, Salvador R, Savitz J, Schmitt S, Schofield PR, Sim K, Stein DJ, Stein F, Temmingh HS, Thiel K, Thomopoulos SI, van Haren NEM, Van Gestel H, Vargas C, Vieta E, Vreeker A, Waltemate L, Yatham LN, Ching CRK, Andreassen O, Thompson PM, Hajek T. Diagnosis of bipolar disorders and body mass index predict clustering based on similarities in cortical thickness-ENIGMA study in 2436 individuals. Bipolar Disord 2022; 24:509-520. [PMID: 34894200 PMCID: PMC9187778 DOI: 10.1111/bdi.13172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AIMS Rates of obesity have reached epidemic proportions, especially among people with psychiatric disorders. While the effects of obesity on the brain are of major interest in medicine, they remain markedly under-researched in psychiatry. METHODS We obtained body mass index (BMI) and magnetic resonance imaging-derived regional cortical thickness, surface area from 836 bipolar disorders (BD) and 1600 control individuals from 14 sites within the ENIGMA-BD Working Group. We identified regionally specific profiles of cortical thickness using K-means clustering and studied clinical characteristics associated with individual cortical profiles. RESULTS We detected two clusters based on similarities among participants in cortical thickness. The lower thickness cluster (46.8% of the sample) showed thinner cortex, especially in the frontal and temporal lobes and was associated with diagnosis of BD, higher BMI, and older age. BD individuals in the low thickness cluster were more likely to have the diagnosis of bipolar disorder I and less likely to be treated with lithium. In contrast, clustering based on similarities in the cortical surface area was unrelated to BD or BMI and only tracked age and sex. CONCLUSIONS We provide evidence that both BD and obesity are associated with similar alterations in cortical thickness, but not surface area. The fact that obesity increased the chance of having low cortical thickness could explain differences in cortical measures among people with BD. The thinner cortex in individuals with higher BMI, which was additive and similar to the BD-associated alterations, may suggest that treating obesity could lower the extent of cortical thinning in BD.
Collapse
Affiliation(s)
| | - Christoph Abé
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Francesco Benedetti
- Vita-Salute San Raffaele University, Milan, Italy.,Division of Neuroscience, Psychiatry and Psychobiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Erlend Bøen
- Unit for Psychosomatics / CL Outpatient Clinic for Adults, Division of Mental Health and Addiction, Oslo University Hospital, Oslo Norway
| | - Caterina del Mar Bonnin
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Tiana Borgers
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | | | - Dara M. Cannon
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Ana M. Diaz-Zuluaga
- Research Group in Psychiatry GIPSI, Department of Psychiatry, Faculty of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Lorielle Dietze
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Torbjørn Elvsåshagen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Neurology, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lisa T. Eyler
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA.,Desert-Pacific MIRECC, VA San Diego Healthcare, San Diego, CA, USA
| | - Janice M. Fullerton
- Neuroscience Research Australia, Randwick, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Jose M. Goikolea
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Janik Goltermann
- Department of Psychiatry, University of Münster, Münster, Germany
| | | | - Bartholomeus C. M. Haarman
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Tim Hahn
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Fleur M. Howells
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa.,Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Martin Ingvar
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tilo T. J. Kircher
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany.,Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | | | - Mikael Landén
- Department of Neuroscience and Physiology, Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Hannah Lemke
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Benny Liberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Carlos Lopez-Jaramillo
- Research Group in Psychiatry GIPSI, Department of Psychiatry, Faculty of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Ulrik F. Malt
- Unit for Psychosomatics / CL Outpatient Clinic for Adults, Division of Mental Health and Addiction, Oslo University Hospital, Oslo Norway.,Institute of Clinical Medicine, Department of Neurology, University of Oslo, Oslo, Norway
| | - Fiona M. Martyn
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Elena Mazza
- Vita-Salute San Raffaele University, Milan, Italy.,Division of Neuroscience, Psychiatry and Psychobiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Colm McDonald
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Genevieve McPhilemy
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Sandra Meier
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Susanne Meinert
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Tina Meller
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Elisa M. T. Melloni
- Vita-Salute San Raffaele University, Milan, Italy.,Division of Neuroscience, Psychiatry and Psychobiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Philip B. Mitchell
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Leila Nabulsi
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Igor Nenadic
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Nils Opel
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Roel A. Ophoff
- UCLA Center for Neurobehavioral Genetics, Los Angeles, CA, USA.,Department of Psychiatry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Julia-Katharina Pfarr
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Julian A. Pineda-Zapata
- Research Group, Instituto de Alta Tecnología Médica, Ayudas diagnósticas SURA, Medellin, Colombia
| | | | - Joaquim Raduà
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain.,Institute of Psychiartry, King’s College Londen, London, UK
| | - Jonathan Repple
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Maike Richter
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Kai G. Ringwald
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Gloria Roberts
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Alex Ross
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Raymond Salvador
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
| | - Jonathan Savitz
- Laureate Institute for Brain Research, Tulsa, OK, USA.,Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK, USA
| | - Simon Schmitt
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Peter R. Schofield
- Neuroscience Research Australia, Randwick, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Kang Sim
- West Region, Institute of Mental Health, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Dan J. Stein
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa.,Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa.,South African MRC Unit on Risk & Resilience in Mental Disorders, University of Cape Town
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Henk S. Temmingh
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Katharina Thiel
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Sophia I. Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Neeltje E. M. van Haren
- Department of Child and Adolescent Psychiatry and Psychology, Erasmus University, Rotterdam, The Netherlands.,Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Holly Van Gestel
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Cristian Vargas
- Research Group in Psychiatry GIPSI, Department of Psychiatry, Faculty of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Eduard Vieta
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Annabel Vreeker
- Department of Child and Adolescent Psychiatry and Psychology, Erasmus University, Rotterdam, The Netherlands
| | - Lena Waltemate
- Department of Psychiatry, University of Münster, Münster, Germany
| | | | - Christopher R. K. Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Ole Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Tomas Hajek
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada.,National Institute of Mental Health, Klecany, Czech Republic
| | | |
Collapse
|
9
|
McWhinney SR, Abé C, Alda M, Benedetti F, Bøen E, Del Mar Bonnin C, Borgers T, Brosch K, Canales-Rodríguez EJ, Cannon DM, Dannlowski U, Díaz-Zuluaga AM, Elvsåshagen T, Eyler LT, Fullerton JM, Goikolea JM, Goltermann J, Grotegerd D, Haarman BCM, Hahn T, Howells FM, Ingvar M, Kircher TTJ, Krug A, Kuplicki RT, Landén M, Lemke H, Liberg B, Lopez-Jaramillo C, Malt UF, Martyn FM, Mazza E, McDonald C, McPhilemy G, Meier S, Meinert S, Meller T, Melloni EMT, Mitchell PB, Nabulsi L, Nenadic I, Opel N, Ophoff RA, Overs BJ, Pfarr JK, Pineda-Zapata JA, Pomarol-Clotet E, Raduà J, Repple J, Richter M, Ringwald KG, Roberts G, Salvador R, Savitz J, Schmitt S, Schofield PR, Sim K, Stein DJ, Stein F, Temmingh HS, Thiel K, van Haren NEM, Gestel HV, Vargas C, Vieta E, Vreeker A, Waltemate L, Yatham LN, Ching CRK, Andreassen O, Thompson PM, Hajek T. Association between body mass index and subcortical brain volumes in bipolar disorders-ENIGMA study in 2735 individuals. Mol Psychiatry 2021; 26:6806-6819. [PMID: 33863996 PMCID: PMC8760047 DOI: 10.1038/s41380-021-01098-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/26/2021] [Accepted: 04/01/2021] [Indexed: 12/27/2022]
Abstract
Individuals with bipolar disorders (BD) frequently suffer from obesity, which is often associated with neurostructural alterations. Yet, the effects of obesity on brain structure in BD are under-researched. We obtained MRI-derived brain subcortical volumes and body mass index (BMI) from 1134 BD and 1601 control individuals from 17 independent research sites within the ENIGMA-BD Working Group. We jointly modeled the effects of BD and BMI on subcortical volumes using mixed-effects modeling and tested for mediation of group differences by obesity using nonparametric bootstrapping. All models controlled for age, sex, hemisphere, total intracranial volume, and data collection site. Relative to controls, individuals with BD had significantly higher BMI, larger lateral ventricular volume, and smaller volumes of amygdala, hippocampus, pallidum, caudate, and thalamus. BMI was positively associated with ventricular and amygdala and negatively with pallidal volumes. When analyzed jointly, both BD and BMI remained associated with volumes of lateral ventricles and amygdala. Adjusting for BMI decreased the BD vs control differences in ventricular volume. Specifically, 18.41% of the association between BD and ventricular volume was mediated by BMI (Z = 2.73, p = 0.006). BMI was associated with similar regional brain volumes as BD, including lateral ventricles, amygdala, and pallidum. Higher BMI may in part account for larger ventricles, one of the most replicated findings in BD. Comorbidity with obesity could explain why neurostructural alterations are more pronounced in some individuals with BD. Future prospective brain imaging studies should investigate whether obesity could be a modifiable risk factor for neuroprogression.
Collapse
Affiliation(s)
- Sean R McWhinney
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Christoph Abé
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Francesco Benedetti
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Neuroscience, Psychiatry and Psychobiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Erlend Bøen
- Unit for Psychosomatics / CL Outpatient Clinic for Adults, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Caterina Del Mar Bonnin
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona Bipolar Disorders and Depressive Unit, Hospital Clinic, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Tiana Borgers
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | | | - Dara M Cannon
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Ana M Díaz-Zuluaga
- Research Group in Psychiatry GIPSI, Department of Psychiatry, Faculty of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Torbjørn Elvsåshagen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurology, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lisa T Eyler
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Desert-Pacific MIRECC, VA San Diego Healthcare, San Diego, CA, USA
| | - Janice M Fullerton
- Neuroscience Research Australia, Randwick, NSW, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Jose M Goikolea
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona Bipolar Disorders and Depressive Unit, Hospital Clinic, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Janik Goltermann
- Department of Psychiatry, University of Münster, Münster, Germany
| | | | - Bartholomeus C M Haarman
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Tim Hahn
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Fleur M Howells
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Martin Ingvar
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tilo T J Kircher
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | | | - Mikael Landén
- Department of Neuroscience and Physiology, Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Hannah Lemke
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Benny Liberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Carlos Lopez-Jaramillo
- Research Group in Psychiatry GIPSI, Department of Psychiatry, Faculty of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Ulrik F Malt
- Unit for Psychosomatics / CL Outpatient Clinic for Adults, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Department of Neurology, University of Oslo, Oslo, Norway
| | - Fiona M Martyn
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Elena Mazza
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Neuroscience, Psychiatry and Psychobiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Colm McDonald
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Genevieve McPhilemy
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Sandra Meier
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Susanne Meinert
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Tina Meller
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Elisa M T Melloni
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Neuroscience, Psychiatry and Psychobiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Philip B Mitchell
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Leila Nabulsi
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Igor Nenadic
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Nils Opel
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Roel A Ophoff
- UCLA Center for Neurobehavioral Genetics, Los Angeles, CA, USA
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Julia-Katharina Pfarr
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Julian A Pineda-Zapata
- Research Group, Instituto de Alta Tecnología Médica, Ayudas diagnósticas SURA, Medellín, Colombia
| | | | - Joaquim Raduà
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona Bipolar Disorders and Depressive Unit, Hospital Clinic, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institute of Psychiartry, King's College Londen, London, UK
| | - Jonathan Repple
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Maike Richter
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Kai G Ringwald
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Gloria Roberts
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Raymond Salvador
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
| | - Jonathan Savitz
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK, USA
| | - Simon Schmitt
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Peter R Schofield
- Neuroscience Research Australia, Randwick, NSW, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Kang Sim
- West Region, Institute of Mental Health, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Dan J Stein
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- South African MRC Unit on Risk & Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Henk S Temmingh
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Katharina Thiel
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Neeltje E M van Haren
- Department of Child and Adolescent Psychiatry and Psychology, Erasmus University, Rotterdam, The Netherlands
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Holly Van Gestel
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Cristian Vargas
- Research Group in Psychiatry GIPSI, Department of Psychiatry, Faculty of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Eduard Vieta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona Bipolar Disorders and Depressive Unit, Hospital Clinic, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Annabel Vreeker
- Department of Child and Adolescent Psychiatry and Psychology, Erasmus University, Rotterdam, The Netherlands
| | - Lena Waltemate
- Department of Psychiatry, University of Münster, Münster, Germany
| | | | - Christopher R K Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Ole Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Tomas Hajek
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada.
- National Institute of Mental Health, Klecany, Czech Republic.
| |
Collapse
|
10
|
McWhinney S, Kolenic M, Franke K, Fialova M, Knytl P, Matejka M, Spaniel F, Hajek T. Obesity as a Risk Factor for Accelerated Brain Ageing in First-Episode Psychosis-A Longitudinal Study. Schizophr Bull 2021; 47:1772-1781. [PMID: 34080013 PMCID: PMC8530396 DOI: 10.1093/schbul/sbab064] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Obesity is highly prevalent in schizophrenia, with implications for psychiatric prognosis, possibly through links between obesity and brain structure. In this longitudinal study in first episode of psychosis (FEP), we used machine learning and structural magnetic resonance imaging (MRI) to study the impact of psychotic illness and obesity on brain ageing/neuroprogression shortly after illness onset. METHODS We acquired 2 prospective MRI scans on average 1.61 years apart in 183 FEP and 155 control individuals. We used a machine learning model trained on an independent sample of 504 controls to estimate the individual brain ages of study participants and calculated BrainAGE by subtracting chronological from the estimated brain age. RESULTS Individuals with FEP had a higher initial BrainAGE than controls (3.39 ± 6.36 vs 1.72 ± 5.56 years; β = 1.68, t(336) = 2.59, P = .01), but similar annual rates of brain ageing over time (1.28 ± 2.40 vs 1.07±1.74 estimated years/actual year; t(333) = 0.93, P = .18). Across both cohorts, greater baseline body mass index (BMI) predicted faster brain ageing (β = 0.08, t(333) = 2.59, P = .01). For each additional BMI point, the brain aged by an additional month per year. Worsening of functioning over time (Global Assessment of Functioning; β = -0.04, t(164) = -2.48, P = .01) and increases especially in negative symptoms on the Positive and Negative Syndrome Scale (β = 0.11, t(175) = 3.11, P = .002) were associated with faster brain ageing in FEP. CONCLUSIONS Brain alterations in psychosis are manifest already during the first episode and over time get worse in those with worsening clinical outcomes or higher baseline BMI. As baseline BMI predicted faster brain ageing, obesity may represent a modifiable risk factor in FEP that is linked with psychiatric outcomes via effects on brain structure.
Collapse
Affiliation(s)
- Sean McWhinney
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Marian Kolenic
- National Institute of Mental Health, Klecany, Czech Republic,Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Katja Franke
- Structural Brain Mapping Group, Department of Neurology, Jena University Hospital, Jena, Germany
| | - Marketa Fialova
- National Institute of Mental Health, Klecany, Czech Republic
| | - Pavel Knytl
- National Institute of Mental Health, Klecany, Czech Republic
| | - Martin Matejka
- National Institute of Mental Health, Klecany, Czech Republic,Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Filip Spaniel
- National Institute of Mental Health, Klecany, Czech Republic,Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tomas Hajek
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada,National Institute of Mental Health, Klecany, Czech Republic,To whom correspondence should be addressed; Department of Psychiatry, Dalhousie University, QEII HSC, A. J. Lane Building, Room 3093, 5909 Veteran’s Memorial Lane, Halifax, Nova Scotia B3H 2E2, Canada; tel: (902) 473-8299, fax: (902) 473-1583, e-mail:
| |
Collapse
|