1
|
Mirgany TO, Asiri HH, Rahman AFMM, Alanazi MM. Discovery of 1 H-benzo[ d]imidazole-(halogenated) Benzylidenebenzohydrazide Hybrids as Potential Multi-Kinase Inhibitors. Pharmaceuticals (Basel) 2024; 17:839. [PMID: 39065690 PMCID: PMC11279404 DOI: 10.3390/ph17070839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
In an effort to develop improved and effective targeted tyrosine kinase inhibitors (TKIs), a series of twelve novel compounds with the structural motif "(E)-4-(((1H-benzo[d]imidazol-2-yl)methyl)amino)-N'-(halogenated)benzylidenebenzohydrazide" were successfully synthesized in three steps, yielding high product yields (53-97%). Among this new class of compounds, 6c and 6h-j exhibited excellent cytotoxic effects against four different cancer cell lines, with half-maximal inhibitory concentration (IC50) values ranging from 7.82 to 21.48 μM. Notably, compounds 6h and 6i emerged as the most potent inhibitors, demonstrating significant activity against key kinases such as EGFR, HER2, and CDK2. Furthermore, compound 6h displayed potent inhibitory activity against AURKC, while 6i showed potent inhibitory effects against the mTOR enzyme, with excellent IC50 values comparable with well-established TKIs. The mechanistic study of lead compound 6i revealed its ability to induce cell cycle arrest and apoptosis in HepG2 liver cancer cells. This was accompanied by upregulation of pro-apoptotic caspase-3 and Bax and downregulation of anti-apoptotic Bcl-2. Additionally, molecular docking studies indicated that the binding interactions of compounds 6h and 6i with the target enzymes give multiple interactions. These results underscore the ability of compound 6i as a compelling lead candidate warranting further optimization and development as a potent multi-targeted kinase inhibitor, which could have significant implications for the treatment of various cancers. The detailed structural optimization, mechanism of action, and in vivo evaluation of this class of compounds warrant further investigation to assess their therapeutic potential.
Collapse
Affiliation(s)
| | | | - A. F. M. Motiur Rahman
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (T.O.M.); (H.H.A.)
| | - Mohammed M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (T.O.M.); (H.H.A.)
| |
Collapse
|
2
|
Alotaibi AA, Alanazi MM, Rahman AFMM. Discovery of New Pyrrolo[2,3- d]pyrimidine Derivatives as Potential Multi-Targeted Kinase Inhibitors and Apoptosis Inducers. Pharmaceuticals (Basel) 2023; 16:1324. [PMID: 37765132 PMCID: PMC10536928 DOI: 10.3390/ph16091324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
In the pursuit of developing more potent and effective targeted kinase inhibitors (TKIs), a series of new compounds, specifically halogenated '(E)-4-((7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)-N'-benzylidenebenzohydrazides', were successfully synthesized in three steps with high yields. Among these novel compounds, namely 5e, 5h, 5k, and 5l, promising cytotoxic effects were observed against four different cancer cell lines, with IC50 values ranging from 29 to 59 µM. Notably, compound 5k emerged as the most potent inhibitor, exhibiting significant activity against EGFR, Her2, VEGFR2, and CDK2 enzymes, with IC50 values ranging from 40 to 204 nM, comparable to the well-known TKI sunitinib (IC50 = 261 nM). Mechanistic investigations of compound 5k revealed its ability to induce cell cycle arrest and apoptosis in HepG2 cells, accompanied by a notable increase in proapoptotic proteins caspase-3 and Bax, as well as the downregulation of Bcl-2 activity. Furthermore, molecular docking studies indicated similar binding interactions between compound 5k and the four enzymes, as observed with sunitinib. These findings highlight the potential of compound 5k as a promising candidate for further development as a multi-targeted kinase inhibitor with enhanced potency.
Collapse
Affiliation(s)
| | | | - A. F. M. Motiur Rahman
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
3
|
Pathak GA, Singh K, Wendt FR, Fleming TW, Overstreet C, Koller D, Tylee DS, De Angelis F, Cabrera Mendoza B, Levey DF, Koenen KC, Krystal JH, Pietrzak RH, O' Donell C, Gaziano JM, Falcone G, Stein MB, Gelernter J, Pasaniuc B, Mancuso N, Davis LK, Polimanti R. Genetically regulated multi-omics study for symptom clusters of posttraumatic stress disorder highlights pleiotropy with hematologic and cardio-metabolic traits. Mol Psychiatry 2022; 27:1394-1404. [PMID: 35241783 PMCID: PMC9210390 DOI: 10.1038/s41380-022-01488-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 12/15/2022]
Abstract
Posttraumatic stress disorder (PTSD) is a psychiatric disorder that may arise in response to severe traumatic event and is diagnosed based on three main symptom clusters (reexperiencing, avoidance, and hyperarousal) per the Diagnostic Manual of Mental Disorders (version DSM-IV-TR). In this study, we characterized the biological heterogeneity of PTSD symptom clusters by performing a multi-omics investigation integrating genetically regulated gene, splicing, and protein expression in dorsolateral prefrontal cortex tissue within a sample of US veterans enrolled in the Million Veteran Program (N total = 186,689). We identified 30 genes in 19 regions across the three PTSD symptom clusters. We found nine genes to have cell-type specific expression, and over-representation of miRNA-families - miR-148, 30, and 8. Gene-drug target prioritization approach highlighted cyclooxygenase and acetylcholine compounds. Next, we tested molecular-profile based phenome-wide impact of identified genes with respect to 1678 phenotypes derived from the Electronic Health Records of the Vanderbilt University biorepository (N = 70,439). Lastly, we tested for local genetic correlation across PTSD symptom clusters which highlighted metabolic (e.g., obesity, diabetes, vascular health) and laboratory traits (e.g., neutrophil, eosinophil, tau protein, creatinine kinase). Overall, this study finds comprehensive genomic evidence including clinical and regulatory profiles between PTSD, hematologic and cardiometabolic traits, that support comorbidities observed in epidemiologic studies of PTSD.
Collapse
Affiliation(s)
- Gita A Pathak
- Department of Psychiatry, Yale School of Medicine, West Haven, CT, 06516, USA
- VA CT Healthcare Center, West Haven, CT, 06516, USA
| | - Kritika Singh
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Frank R Wendt
- Department of Psychiatry, Yale School of Medicine, West Haven, CT, 06516, USA
- VA CT Healthcare Center, West Haven, CT, 06516, USA
| | - Tyne W Fleming
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cassie Overstreet
- Department of Psychiatry, Yale School of Medicine, West Haven, CT, 06516, USA
- VA CT Healthcare Center, West Haven, CT, 06516, USA
| | - Dora Koller
- Department of Psychiatry, Yale School of Medicine, West Haven, CT, 06516, USA
- VA CT Healthcare Center, West Haven, CT, 06516, USA
| | - Daniel S Tylee
- Department of Psychiatry, Yale School of Medicine, West Haven, CT, 06516, USA
- VA CT Healthcare Center, West Haven, CT, 06516, USA
| | - Flavio De Angelis
- Department of Psychiatry, Yale School of Medicine, West Haven, CT, 06516, USA
- VA CT Healthcare Center, West Haven, CT, 06516, USA
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Brenda Cabrera Mendoza
- Department of Psychiatry, Yale School of Medicine, West Haven, CT, 06516, USA
- VA CT Healthcare Center, West Haven, CT, 06516, USA
| | - Daniel F Levey
- Department of Psychiatry, Yale School of Medicine, West Haven, CT, 06516, USA
- VA CT Healthcare Center, West Haven, CT, 06516, USA
| | - Karestan C Koenen
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | - John H Krystal
- Department of Psychiatry, Yale School of Medicine, West Haven, CT, 06516, USA
- VA CT Healthcare Center, West Haven, CT, 06516, USA
- Clinical Neurosciences Division, U.S. Department of Veterans Affairs National Center for PTSD, VA Connecticut Healthcare System, New Haven, CT, USA
| | - Robert H Pietrzak
- Department of Psychiatry, Yale School of Medicine, West Haven, CT, 06516, USA
- Clinical Neurosciences Division, U.S. Department of Veterans Affairs National Center for PTSD, VA Connecticut Healthcare System, New Haven, CT, USA
| | - Christopher O' Donell
- Cardiology Section, Department of Medicine, VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - J Michael Gaziano
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
| | - Guido Falcone
- Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Yale School of Medicine, 15 York Street, LLCI 1004D, Box 208018, New Haven, CT, 06520, USA
| | - Murray B Stein
- VA San Diego Healthcare System, Psychiatry Service, San Diego, CA, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale School of Medicine, West Haven, CT, 06516, USA
- VA CT Healthcare Center, West Haven, CT, 06516, USA
| | - Bogdan Pasaniuc
- Departments of Computational Medicine, Human Genetics, Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Nicholas Mancuso
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lea K Davis
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Renato Polimanti
- Department of Psychiatry, Yale School of Medicine, West Haven, CT, 06516, USA.
- VA CT Healthcare Center, West Haven, CT, 06516, USA.
| |
Collapse
|