1
|
Salama EAA, Kambale R, Gnanapanditha Mohan SV, Premnath A, Fathy Yousef A, Moursy ARA, Abdelsalam NR, Abd El Moneim D, Muthurajan R, Manikanda Boopathi N. Empowering rice breeding with NextGen genomics tools for rapid enhancement nitrogen use efficiency. Gene 2024; 927:148715. [PMID: 38909967 DOI: 10.1016/j.gene.2024.148715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/25/2024]
Abstract
As rice has no physiological capacity of fixing nitrogen in the soil, its production had always been reliant on the external application of nitrogen (N) to ensure enhanced productivity. In the light of improving nitrogen use efficiency (NUE) in rice, several advanced agronomic strategies have been proposed. However, the soared increase of the prices of N fertilizers and subsequent environmental downfalls caused by the excessive use of N fertilizers, reinforces the prerequisite adaptation of other sustainable, affordable, and globally acceptable strategies. An appropriate alternative approach would be to develop rice cultivars with better NUE. Conventional breeding techniques, however, have had only sporadic success in improving NUE, and hence, this paper proposes a new schema that employs the wholesome benefits of the recent advancements in omics technologies. The suggested approach promotes multidisciplinary research, since such cooperation enables the synthesis of many viewpoints, approaches, and data that result in a comprehensive understanding of NUE in rice. Such collaboration also encourages innovation that leads to developing rice varieties that use nitrogen more effectively, facilitate smart technology transfer, and promotes the adoption of NUE practices by farmers and stakeholders to minimize ecological impact and contribute to a sustainable agricultural future.
Collapse
Affiliation(s)
- Ehab A A Salama
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; Agricultural Botany Department (Genetics), Faculty of Agriculture Saba Basha, Alexandria University, Alexandria 21531, Egypt.
| | - Rohit Kambale
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India.
| | - Shobhana V Gnanapanditha Mohan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India.
| | - Ameena Premnath
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India.
| | - Ahmed Fathy Yousef
- Department of Horticulture, College of Agriculture, University of Al-Azhar (Branch Assiut), Assiut 71524, Egypt.
| | - Ali R A Moursy
- Soil and Water Department, Faculty of Agriculture, Sohag University, Sohag 82524, Egypt.
| | - Nader R Abdelsalam
- Agricultural Botany Department (Genetics), Faculty of Agriculture Saba Basha, Alexandria University, Alexandria 21531, Egypt.
| | - Diaa Abd El Moneim
- Department of Plant Production (Genetic Branch), Faculty of Environmental Agricultural Sciences, Arish University, El-Arish 45511, Egypt.
| | - Raveendran Muthurajan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India.
| | - Narayanan Manikanda Boopathi
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India.
| |
Collapse
|
2
|
Barron S, Mus F, Peters JW. Nitrogen-Fixing Gamma Proteobacteria Azotobacter vinelandii-A Blueprint for Nitrogen-Fixing Plants? Microorganisms 2024; 12:2087. [PMID: 39458396 PMCID: PMC11509896 DOI: 10.3390/microorganisms12102087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
The availability of fixed nitrogen limits overall agricultural crop production worldwide. The so-called modern "green revolution" catalyzed by the widespread application of nitrogenous fertilizer has propelled global population growth. It has led to imbalances in global biogeochemical nitrogen cycling, resulting in a "nitrogen problem" that is growing at a similar trajectory to the "carbon problem". As a result of the increasing imbalances in nitrogen cycling and additional environmental problems such as soil acidification, there is renewed and increasing interest in increasing the contributions of biological nitrogen fixation to reduce the inputs of nitrogenous fertilizers in agriculture. Interestingly, biological nitrogen fixation, or life's ability to convert atmospheric dinitrogen to ammonia, is restricted to microbial life and not associated with any known eukaryotes. It is not clear why plants never evolved the ability to fix nitrogen and rather form associations with nitrogen-fixing microorganisms. Perhaps it is because of the large energy demand of the process, the oxygen sensitivity of the enzymatic apparatus, or simply failure to encounter the appropriate selective pressure. Whatever the reason, it is clear that this ability of crop plants, especially cereals, would transform modern agriculture once again. Successfully engineering plants will require creating an oxygen-free niche that can supply ample energy in a tightly regulated manner to minimize energy waste and ensure the ammonia produced is assimilated. Nitrogen-fixing aerobic bacteria can perhaps provide a blueprint for engineering nitrogen-fixing plants. This short review discusses the key features of robust nitrogen fixation in the model nitrogen-fixing aerobe, gamma proteobacteria Azotobacter vinelandii, in the context of the basic requirements for engineering nitrogen-fixing plants.
Collapse
Affiliation(s)
| | | | - John W. Peters
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
3
|
Safaei F, Alirezalu A, Noruzi P, Alirezalu K. Phytochemical and morpho-physiological response of Melissa officinalis L. to different NH 4+ to NO 3̄ ratios under hydroponic cultivation. BMC PLANT BIOLOGY 2024; 24:968. [PMID: 39407126 PMCID: PMC11481551 DOI: 10.1186/s12870-024-05693-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND The utilization of nutrition management, has recently been developed as a means of improving the growth and production of phytochemical compounds in herbs. The present study aimed to improve the growth, physiological, and phytochemical characteristics of lemon balm (Melissa officinalis L.) using different NH4+ (ammonium) to NO3̄ (nitrate) ratios (0:100, 25:75, 50:50, 75:25 and 100:0) under floating culture system (FCS). RESULTS The treatment containing 0:100 - NH4+:NO3̄ ratio showed the most remarkable values for the growth and morpho-physiological characteristics of M. officinalis. The results demonstrated that maximum biomass (105.57 g) earned by using the ratio of 0:100 and minimum at 75:25 ratio of NH4+: NO3̄. The plants treated with high nitrate ratio (0:100 - NH4+:NO3̄) showed the greatest concentration of total phenolics (60.40 mg GAE/g DW), chlorophyll a (31.32 mg/100 g DW), flavonoids (12.97 mg QUE/g DW), and carotenoids (83.06 mg/100 g DW). Using the 75:25 - NH4+:NO3̄ ratio caused the highest dry matter (DM), N and K macronutrients in the leaves. The highest antioxidant activity by both DPPH (37.39 µg AAE/mL) and FRAP (69.55 mM Fe++/g DW) methods was obtained in 75:25 - NH4+:NO3̄ treatment. The p-coumaric acid as a main abundant phenolic composition, was detected by HPLC analysis as the highest content in samples grown under 0:100 - NH4+:NO3̄ treatment. Also, the major compounds in M. officinalis essential oil were identified as geranial, neral, geranyl acetate and geraniol by GC analysis. With increasing NO3̄ application, geraniol and geranyl acetate contents were decreased. CONCLUSIONS The findings of present study suggest that the management of NH4+ to NO3̄ ratios in nutrient solutions could contribute to improving growth, physiological and phytochemical properties of M. officinalis. The plants treated with high nitrate ratio (especially 0:100 - NH4+:NO3̄) showed the greatest effects on improving the growth and production of morpho-physiological and phytochemical compounds. By comprehensively understanding the intricate dynamics among nitrogen sources, plants, and their surroundings, researchers and practitioners can devise inventive approaches to optimize nitrogen management practices and foster sustainable agricultural frameworks.
Collapse
Affiliation(s)
- Farzad Safaei
- Department of Horticultural Sciences, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Abolfazl Alirezalu
- Department of Horticultural Sciences, Faculty of Agriculture, Urmia University, Urmia, Iran.
| | - Parviz Noruzi
- Department of Horticultural Sciences, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Kazem Alirezalu
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| |
Collapse
|
4
|
Sidhu JS, Lopez-Valdivia I, Strock CF, Schneider HM, Lynch JP. Cortical parenchyma wall width regulates root metabolic cost and maize performance under suboptimal water availability. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5750-5767. [PMID: 38661441 PMCID: PMC11427841 DOI: 10.1093/jxb/erae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
Abstract
We describe how increased root cortical parenchyma wall width (CPW) can improve tolerance to drought stress in maize by reducing the metabolic costs of soil exploration. Significant variation (1.0-5.0 µm) for CPW was observed in maize germplasm. The functional-structural model RootSlice predicts that increasing CPW from 2 µm to 4 µm is associated with a ~15% reduction in root cortical cytoplasmic volume, respiration rate, and nitrogen content. Analysis of genotypes with contrasting CPW grown with and without water stress in the field confirms that increased CPW is correlated with an ~32-42% decrease in root respiration. Under water stress in the field, increased CPW is correlated with 125% increased stomatal conductance, 325% increased leaf CO2 assimilation rate, 73-78% increased shoot biomass, and 92-108% increased yield. CPW was correlated with leaf mesophyll midrib parenchyma wall width, indicating pleiotropy. Genome-wide association study analysis identified candidate genes underlying CPW. OpenSimRoot modeling predicts that a reduction in root respiration due to increased CPW would also benefit maize growth under suboptimal nitrogen, which requires empirical testing. We propose CPW as a new phene that has utility under edaphic stress meriting further investigation.
Collapse
Affiliation(s)
- Jagdeep Singh Sidhu
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ivan Lopez-Valdivia
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Christopher F Strock
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Hannah M Schneider
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Physiology and Cell Biology, Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstr 3, D-06466 Seeland, Germany
| | - Jonathan P Lynch
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
5
|
Witt T, Robinson N, Palma AC, Cernusak LA, Pratt S, Redding M, Batstone DJ, Schmidt S, Laycock B. Evaluating novel biodegradable polymer matrix fertilizers for nitrogen-efficient agriculture. JOURNAL OF ENVIRONMENTAL QUALITY 2024; 53:287-299. [PMID: 38453688 DOI: 10.1002/jeq2.20552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 01/24/2024] [Indexed: 03/09/2024]
Abstract
Enhanced efficiency fertilizers (EEFs) can reduce nitrogen (N) losses in temperate agriculture but are less effective in the tropics. We aimed to design a new EEF and evaluate their performance in simple-to-complex tests with tropical soils and crops. We melt-extruded urea at different loadings into biodegradable polymer matrix composites using biodegradable polyhydroxyalkanoate (PHA) or polybutylene adipate-co-terephthalate (PBAT) polymers with urea distributed throughout the pellet. These contrast with commercially coated EEF that have a polymer-coated urea core. We hypothesized that matrix fertilizers would have an intermediate N release rate compared to fast release from urea or slow release from coated EEF. Nitrogen release rates in water and sand-soil columns confirmed that the matrix fertilizer formulations had a more progressive N release than a coated EEF. A more complex picture emerged from testing sorghum [Sorghum bicolor (L.) Moench] grown to maturity in large soil pots, as the different formulations resulted in minor differences in plant N accumulation and grain production. This confirms the need to consider soil interactions, microbial processes, crop physiology, and phenology for evaluating fertilizer performance. Promisingly, crop δ15N signatures emerged as an integrated measure of efficacy, tracking likely N conversions and losses. The three complementary evaluations combine the advantages of standardized high-throughput screening and more resource-intensive and realistic testing in a plant-soil system. We conclude that melt-blended biodegradable polymer matrix fertilizers show promise as EEF because they can be designed toward more abiotically or more microbially driven N release by selecting biopolymer type and N loading rate.
Collapse
Affiliation(s)
- Torsten Witt
- School of Chemical Engineering, The University of Queensland, St Lucia, Queensland, Australia
| | - Nicole Robinson
- School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, Queensland, Australia
| | - Ana C Palma
- College of Science and Engineering, James Cook University, Cairns, Queensland, Australia
| | - Lucas A Cernusak
- College of Science and Engineering, James Cook University, Cairns, Queensland, Australia
| | - Steven Pratt
- School of Chemical Engineering, The University of Queensland, St Lucia, Queensland, Australia
| | - Matthew Redding
- Department of Agriculture and Fisheries, Toowoomba, Queensland, Australia
| | - Damien J Batstone
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Queensland, Australia
| | - Susanne Schmidt
- School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, Queensland, Australia
| | - Bronwyn Laycock
- School of Chemical Engineering, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
6
|
Monterisi S, Garcia-Perez P, Buffagni V, Zuluaga MYA, Ciriello M, Formisano L, El-Nakhel C, Cardarelli M, Colla G, Rouphael Y, Cristofano F, Cesco S, Lucini L, Pii Y. Unravelling the biostimulant activity of a protein hydrolysate in lettuce plants under optimal and low N availability: a multi-omics approach. PHYSIOLOGIA PLANTARUM 2024; 176:e14357. [PMID: 38775128 DOI: 10.1111/ppl.14357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/26/2024] [Accepted: 04/17/2024] [Indexed: 08/24/2024]
Abstract
The application of protein hydrolysates (PH) biostimulants is considered a promising approach to promote crop growth and resilience against abiotic stresses. Nevertheless, PHs bioactivity depends on both the raw material used for their preparation and the molecular fraction applied. The present research aimed at investigating the molecular mechanisms triggered by applying a PH and its fractions on plants subjected to nitrogen limitations. To this objective, an integrated transcriptomic-metabolomic approach was used to assess lettuce plants grown under different nitrogen levels and treated with either the commercial PH Vegamin® or its molecular fractions PH1(>10 kDa), PH2 (1-10 kDa) and PH3 (<1 kDa). Regardless of nitrogen provision, biostimulant application enhanced lettuce biomass, likely through a hormone-like activity. This was confirmed by the modulation of genes involved in auxin and cytokinin synthesis, mirrored by an increase in the metabolic levels of these hormones. Consistently, PH and PH3 upregulated genes involved in cell wall growth and plasticity. Furthermore, the accumulation of specific metabolites suggested the activation of a multifaceted antioxidant machinery. Notwithstanding, the modulation of stress-response transcription factors and genes involved in detoxification processes was observed. The coordinated action of these molecular entities might underpin the increased resilience of lettuce plants against nitrogen-limiting conditions. In conclusion, integrating omics techniques allowed the elucidation of mechanistic aspects underlying PH bioactivity in crops. Most importantly, the comparison of PH with its fraction PH3 showed that, except for a few peculiarities, the effects induced were equivalent, suggesting that the highest bioactivity was ascribable to the lightest molecular fraction.
Collapse
Affiliation(s)
- Sonia Monterisi
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen/Bolzano, Bolzano, Italy
| | - Pascual Garcia-Perez
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Valentina Buffagni
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | | | - Michele Ciriello
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Luigi Formisano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Christophe El-Nakhel
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | | | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Francesco Cristofano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Stefano Cesco
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen/Bolzano, Bolzano, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Youry Pii
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen/Bolzano, Bolzano, Italy
| |
Collapse
|
7
|
Prasanna JA, Mandal VK, Kumar D, Chakraborty N, Raghuram N. Nitrate-responsive transcriptome analysis of rice RGA1 mutant reveals the role of G-protein alpha subunit in negative regulation of nitrogen-sensitivity and use efficiency. PLANT CELL REPORTS 2023; 42:1987-2010. [PMID: 37874341 DOI: 10.1007/s00299-023-03078-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/19/2023] [Indexed: 10/25/2023]
Abstract
KEY MESSAGE Nitrate-responsive transcriptomic, phenotypic and physiological analyses of rice RGA1 mutant revealed many novel RGA1-regulated genes/processes/traits related to nitrogen use efficiency, and provided robust genetic evidence of RGA1-regulation of NUE. Nitrogen (N) use efficiency (NUE) is important for sustainable agriculture. G-protein signalling was implicated in N-response/NUE in rice, but needed firm genetic characterization of the role of alpha subunit (RGA1). The knock-out mutant of RGA1 in japonica rice exhibited lesser nitrate-dose sensitivity than the wild type (WT), in yield and NUE. We, therefore, investigated its genomewide nitrate-response relative to WT. It revealed 3416 differentially expressed genes (DEGs), including 719 associated with development, grain yield and phenotypic traits for NUE. The upregulated DEGs were related to photosynthesis, chlorophyll, tetrapyrrole and porphyrin biosynthesis, while the downregulated DEGs belonged to cellular protein metabolism and transport, small GTPase signalling, cell redox homeostasis, etc. We validated 26 nitrate-responsive DEGs across functional categories by RT-qPCR. Physiological validation of nitrate-response in the mutant and the WT at 1.5 and 15 mM doses revealed higher chlorophyll and stomatal length but decreased stomatal density, conductance and transpiration. The consequent increase in photosynthesis and water use efficiency may have contributed to better yield and NUE in the mutant, whereas the WT was N-dose sensitive. The mutant was not as N-dose-responsive as the WT in shoot/root growth, productive tillers and heading date, but equally responsive as WT in total N and protein content. The RGA1 mutant was less impacted by higher N-dose or salt stress in terms of yield, protein content, photosynthetic performance, relative water content, water use efficiency and catalase activity. PPI network analyses revealed known NUE-related proteins as RGA1 interactors. Therefore, RGA1 negatively regulates N-dose sensitivity and NUE in rice.
Collapse
Affiliation(s)
- Jangam Annie Prasanna
- Centre for Sustainable Nitrogen and Nutrient Management, School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi, 110078, India
| | - Vikas Kumar Mandal
- Centre for Sustainable Nitrogen and Nutrient Management, School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi, 110078, India
- Prof. H.S. Srivastava Foundation for Science and Society, 10B/7, Madan Mohan Malviya Marg, Lucknow, India
| | - Dinesh Kumar
- Division of Agronomy, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, India
| | - Navjyoti Chakraborty
- Centre for Sustainable Nitrogen and Nutrient Management, School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi, 110078, India.
| | - Nandula Raghuram
- Centre for Sustainable Nitrogen and Nutrient Management, School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi, 110078, India.
| |
Collapse
|
8
|
Tokmina-Lukaszewska M, Huang Q, Berry L, Kallas H, Peters JW, Seefeldt LC, Raugei S, Bothner B. Fe protein docking transduces conformational changes to MoFe nitrogenase active site in a nucleotide-dependent manner. Commun Chem 2023; 6:254. [PMID: 37980448 PMCID: PMC10657360 DOI: 10.1038/s42004-023-01046-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/30/2023] [Indexed: 11/20/2023] Open
Abstract
The reduction of dinitrogen to ammonia catalyzed by nitrogenase involves a complex series of events, including ATP hydrolysis, electron transfer, and activation of metal clusters for N2 reduction. Early evidence shows that an essential part of the mechanism involves transducing information between the nitrogenase component proteins through conformational dynamics. Here, millisecond time-resolved hydrogen-deuterium exchange mass spectrometry was used to unravel peptide-level protein motion on the time scale of catalysis of Mo-dependent nitrogenase from Azotobacter vinelandii. Normal mode analysis calculations complemented this data, providing insights into the specific signal transduction pathways that relay information across protein interfaces at distances spanning 100 Å. Together, these results show that conformational changes induced by protein docking are rapidly transduced to the active site, suggesting a specific mechanism for activating the metal cofactor in the enzyme active site.
Collapse
Affiliation(s)
| | - Qi Huang
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Luke Berry
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - Hayden Kallas
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, USA
| | - John W Peters
- Institute of Biological Chemistry, The University of Oklahoma, Norman, OK, USA
| | - Lance C Seefeldt
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, USA
| | - Simone Raugei
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
9
|
Lynch JP, Galindo-Castañeda T, Schneider HM, Sidhu JS, Rangarajan H, York LM. Root phenotypes for improved nitrogen capture. PLANT AND SOIL 2023; 502:31-85. [PMID: 39323575 PMCID: PMC11420291 DOI: 10.1007/s11104-023-06301-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2024]
Abstract
Background Suboptimal nitrogen availability is a primary constraint for crop production in low-input agroecosystems, while nitrogen fertilization is a primary contributor to the energy, economic, and environmental costs of crop production in high-input agroecosystems. In this article we consider avenues to develop crops with improved nitrogen capture and reduced requirement for nitrogen fertilizer. Scope Intraspecific variation for an array of root phenotypes has been associated with improved nitrogen capture in cereal crops, including architectural phenotypes that colocalize root foraging with nitrogen availability in the soil; anatomical phenotypes that reduce the metabolic costs of soil exploration, improve penetration of hard soil, and exploit the rhizosphere; subcellular phenotypes that reduce the nitrogen requirement of plant tissue; molecular phenotypes exhibiting optimized nitrate uptake kinetics; and rhizosphere phenotypes that optimize associations with the rhizosphere microbiome. For each of these topics we provide examples of root phenotypes which merit attention as potential selection targets for crop improvement. Several cross-cutting issues are addressed including the importance of soil hydrology and impedance, phenotypic plasticity, integrated phenotypes, in silico modeling, and breeding strategies using high throughput phenotyping for co-optimization of multiple phenes. Conclusions Substantial phenotypic variation exists in crop germplasm for an array of root phenotypes that improve nitrogen capture. Although this topic merits greater research attention than it currently receives, we have adequate understanding and tools to develop crops with improved nitrogen capture. Root phenotypes are underutilized yet attractive breeding targets for the development of the nitrogen efficient crops urgently needed in global agriculture.
Collapse
Affiliation(s)
- Jonathan P Lynch
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802 USA
| | | | - Hannah M Schneider
- Department of Plant Sciences, Wageningen University and Research, PO Box 430, 6700AK Wageningen, The Netherlands
| | - Jagdeep Singh Sidhu
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802 USA
| | - Harini Rangarajan
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802 USA
| | - Larry M York
- Biosciences Division and Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| |
Collapse
|
10
|
Robertson GP. Denitrification and the challenge of scaling microsite knowledge to the globe. MLIFE 2023; 2:229-238. [PMID: 38817807 PMCID: PMC10989938 DOI: 10.1002/mlf2.12080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/21/2023] [Accepted: 07/16/2023] [Indexed: 06/01/2024]
Abstract
Our knowledge of microbial processes-who is responsible for what, the rates at which they occur, and the substrates consumed and products produced-is imperfect for many if not most taxa, but even less is known about how microsite processes scale to the ecosystem and thence the globe. In both natural and managed environments, scaling links fundamental knowledge to application and also allows for global assessments of the importance of microbial processes. But rarely is scaling straightforward: More often than not, process rates in situ are distributed in a highly skewed fashion, under the influence of multiple interacting controls, and thus often difficult to sample, quantify, and predict. To date, quantitative models of many important processes fail to capture daily, seasonal, and annual fluxes with the precision needed to effect meaningful management outcomes. Nitrogen cycle processes are a case in point, and denitrification is a prime example. Statistical models based on machine learning can improve predictability and identify the best environmental predictors but are-by themselves-insufficient for revealing process-level knowledge gaps or predicting outcomes under novel environmental conditions. Hybrid models that incorporate well-calibrated process models as predictors for machine learning algorithms can provide both improved understanding and more reliable forecasts under environmental conditions not yet experienced. Incorporating trait-based models into such efforts promises to improve predictions and understanding still further, but much more development is needed.
Collapse
Affiliation(s)
- G. Philip Robertson
- W. K. Kellogg Biological StationMichigan State UniversityHickory CornersMichiganUSA
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
- Great Lakes Bioenergy Research CenterMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
11
|
Phan NTH, Draye X, Pham CV, Bertin P. Identification of quantitative trait loci controlling nitrogen use efficiency-related traits in rice at the seedling stage under salt condition by genome-wide association study. FRONTIERS IN PLANT SCIENCE 2023; 14:1197271. [PMID: 37575915 PMCID: PMC10415682 DOI: 10.3389/fpls.2023.1197271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023]
Abstract
Rice cultivation is facing both salt intrusion and overuse of nitrogen fertilizers. Hence, breeding new varieties aiming to improve nitrogen use efficiency (NUE), especially under salt conditions, is indispensable. We selected 2,391 rice accessions from the 3K Rice Genomes Project to evaluate the dry weight under two N concentrations [2.86 mM - standard N (SN), and 0.36 mM - low N (LN)] crossed with two NaCl concentrations [0 (0Na) and 60 mM (60Na)] at the seedling stage. Genome-wide association studies for shoot, root, and plant dry weight (DW) were carried out. A total of 55 QTLs - 32, 16, and 7 in the whole, indica, and japonica panel - associated with one of the tested traits were identified. Among these, 27 QTLs co-localized with previously identified QTLs for DW-related traits while the other 28 were newly detected; 24, 8, 11, and 4 QTLs were detected in SN-0Na, LN-0Na, SN-60Na, and LN-60Na, respectively, and the remaining 8 QTLs were for the relative plant DW between treatments. Three of the 11 QTLs in SN-60Na were close to the regions containing three QTLs detected in SN-0Na. Eleven candidate genes for eight important QTLs were identified. Only one of them was detected in both SN-0Na and SN-60Na, while 5, 0, 3, and 2 candidate genes were identified only once under SN-0Na, LN-0Na, SN-60Na, and LN-60Na, respectively. The identified QTLs and genes provide useful materials and genetic information for future functional characterization and genetic improvement of NUE in rice, especially under salt conditions.
Collapse
Affiliation(s)
- Nhung Thi Hong Phan
- Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
- Agronomy Faculty, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Xavier Draye
- Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Cuong Van Pham
- Agronomy Faculty, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Pierre Bertin
- Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
12
|
Shariatmadary H, O'Hara S, Graham R, Stuiver M. Assessing Sustainability Priorities of U.S. Food Hub Managers: Results from a National Survey. Foods 2023; 12:2458. [PMID: 37444196 DOI: 10.3390/foods12132458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Food hubs have emerged as innovative alternatives to the conventional United States food system. As aggregators of small local farms, food hubs hold the potential to transform food production, distribution, and consumption, while fostering environmental sustainability and social equity. However, assessing their contributions to environmental sustainability and social equity is challenging due to the diverse structures and practices of U.S. food hubs. This study presents the findings of a national survey of food hub managers conducted in 2022 to assess the sustainability objectives and practices of food hubs across the United States. Our survey questions were designed based on a comprehensive framework of social and environmental sustainability criteria. Our results reveal that food hubs make valuable contributions in supporting small producers and providing healthy local food options. However, there is room for improvement in their environmental sustainability practices, as they only meet 47% of the defined environmental sustainability goals. Addressing food insecurity is a high priority for food hubs, although not their top priority, and many offer fresh food access to low-income households. Food hubs also contribute to environmental sustainability by reducing food transportation, promoting healthy food production methods, and minimizing waste. While food hubs meet 67% of the defined social sustainability goals, there are opportunities for improvement in reaching important institutional stakeholders and enhancing consumer education on healthy nutrition and lifestyles. Expanding technical assistance for farmers is also critical. By addressing these opportunities for improvement, food hubs can drive progress towards a more resilient and equitable food system in the United States.
Collapse
Affiliation(s)
- Haniyeh Shariatmadary
- College of Agriculture, Urban Sustainability and Environmental Sciences (CAUSES), University of the District of Columbia (UDC), Washington, DC 20008, USA
| | - Sabine O'Hara
- College of Agriculture, Urban Sustainability and Environmental Sciences (CAUSES), University of the District of Columbia (UDC), Washington, DC 20008, USA
| | - Rebecca Graham
- Institutional Assessment, University of the District of Columbia (UDC), Washington, DC 20008, USA
| | - Marian Stuiver
- Green Cities Programme, Wageningen University and Research (WUR), 6708 PB Wageningen, The Netherlands
| |
Collapse
|
13
|
Huertas R, Torres-Jerez I, Curtin SJ, Scheible W, Udvardi M. Medicago truncatula PHO2 genes have distinct roles in phosphorus homeostasis and symbiotic nitrogen fixation. FRONTIERS IN PLANT SCIENCE 2023; 14:1211107. [PMID: 37409286 PMCID: PMC10319397 DOI: 10.3389/fpls.2023.1211107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/22/2023] [Indexed: 07/07/2023]
Abstract
Three PHO2-like genes encoding putative ubiquitin-conjugating E2 enzymes of Medicago truncatula were characterized for potential roles in phosphorous (P) homeostasis and symbiotic nitrogen fixation (SNF). All three genes, MtPHO2A, B and C, contain miR399-binding sites characteristic of PHO2 genes in other plant species. Distinct spatiotemporal expression patterns and responsiveness of gene expression to P- and N-deprivation in roots and shoots indicated potential roles, especially for MtPHO2B, in P and N homeostasis. Phenotypic analysis of pho2 mutants revealed that MtPHO2B is integral to Pi homeostasis, affecting Pi allocation during plant growth under nutrient-replete conditions, while MtPHO2C had a limited role in controlling Pi homeostasis. Genetic analysis also revealed a connection between Pi allocation, plant growth and SNF performance. Under N-limited, SNF conditions, Pi allocation to different organs was dependent on MtPHO2B and, to a lesser extent, MtPHO2C and MtPHO2A. MtPHO2A also affected Pi homeostasis associated with nodule formation. Thus, MtPHO2 genes play roles in systemic and localized, i.e., nodule, P homeostasis affecting SNF.
Collapse
Affiliation(s)
- Raul Huertas
- Noble Research Institute LLC, Ardmore, OK, United States
| | | | - Shaun J. Curtin
- United States Department of Agriculture, Plant Science Research Unit, St. Paul, MN, United States
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, United States
- Center for Plant Precision Genomics, University of Minnesota, St. Paul, MN, United States
- Center for Genome Engineering, University of Minnesota, St. Paul, MN, United States
| | - Wolf Scheible
- Noble Research Institute LLC, Ardmore, OK, United States
| | | |
Collapse
|
14
|
Sharma N, Madan B, Khan MS, Sandhu KS, Raghuram N. Weighted gene co-expression network analysis of nitrogen (N)-responsive genes and the putative role of G-quadruplexes in N use efficiency (NUE) in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1135675. [PMID: 37351205 PMCID: PMC10282765 DOI: 10.3389/fpls.2023.1135675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 05/10/2023] [Indexed: 06/24/2023]
Abstract
Rice is an important target to improve crop nitrogen (N) use efficiency (NUE), and the identification and shortlisting of the candidate genes are still in progress. We analyzed data from 16 published N-responsive transcriptomes/microarrays to identify, eight datasets that contained the maximum number of 3020 common genes, referred to as N-responsive genes. These include different classes of transcription factors, transporters, miRNA targets, kinases and events of post-translational modifications. A Weighted gene co-expression network analysis (WGCNA) with all the 3020 N-responsive genes revealed 15 co-expression modules and their annotated biological roles. Protein-protein interaction network analysis of the main module revealed the hub genes and their functional annotation revealed their involvement in the ubiquitin process. Further, the occurrences of G-quadruplex sequences were examined, which are known to play important roles in epigenetic regulation but are hitherto unknown in N-response/NUE. Out of the 3020 N-responsive genes studied, 2298 contained G-quadruplex sequences. We compared these N-responsive genes containing G-quadruplex sequences with the 3601 genes we previously identified as NUE-related (for being both N-responsive and yield-associated). This analysis revealed 389 (17%) NUE-related genes containing G-quadruplex sequences. These genes may be involved in the epigenetic regulation of NUE, while the rest of the 83% (1811) genes may regulate NUE through genetic mechanisms and/or other epigenetic means besides G-quadruplexes. A few potentially important genes/processes identified as associated with NUE were experimentally validated in a pair of rice genotypes contrasting for NUE. The results from the WGCNA and G4 sequence analysis of N-responsive genes helped identify and shortlist six genes as candidates to improve NUE. Further, the hitherto unavailable segregation of genetic and epigenetic gene targets could aid in informed interventions through genetic and epigenetic means of crop improvement.
Collapse
Affiliation(s)
- Narendra Sharma
- Centre for Sustainable Nitrogen and Nutrient Management, University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India
| | - Bhumika Madan
- Centre for Sustainable Nitrogen and Nutrient Management, University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India
| | - M. Suhail Khan
- Centre for Sustainable Nitrogen and Nutrient Management, University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India
| | - Kuljeet S. Sandhu
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) - Mohali, Nagar, Punjab, India
| | - Nandula Raghuram
- Centre for Sustainable Nitrogen and Nutrient Management, University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India
| |
Collapse
|
15
|
Sharma N, Jaiswal DK, Kumari S, Dash GK, Panda S, Anandan A, Raghuram N. Genome-Wide Urea Response in Rice Genotypes Contrasting for Nitrogen Use Efficiency. Int J Mol Sci 2023; 24:6080. [PMID: 37047052 PMCID: PMC10093866 DOI: 10.3390/ijms24076080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 04/14/2023] Open
Abstract
Rice is an ideal crop for improvement of nitrogen use efficiency (NUE), especially with urea, its predominant fertilizer. There is a paucity of studies on rice genotypes contrasting for NUE. We compared low urea-responsive transcriptomes of contrasting rice genotypes, namely Nidhi (low NUE) and Panvel1 (high NUE). Transcriptomes of whole plants grown with media containing normal (15 mM) and low urea (1.5 mM) revealed 1497 and 2819 differentially expressed genes (DEGs) in Nidhi and Panvel1, respectively, of which 271 were common. Though 1226 DEGs were genotype-specific in Nidhi and 2548 in Panvel1, there was far higher commonality in underlying processes. High NUE is associated with the urea-responsive regulation of other nutrient transporters, miRNAs, transcription factors (TFs) and better photosynthesis, water use efficiency and post-translational modifications. Many of their genes co-localized to NUE-QTLs on chromosomes 1, 3 and 9. A field evaluation under different doses of urea revealed better agronomic performance including grain yield, transport/uptake efficiencies and NUE of Panvel1. Comparison of our urea-based transcriptomes with our previous nitrate-based transcriptomes revealed many common processes despite large differences in their expression profiles. Our model proposes that differential involvement of transporters and TFs, among others, contributes to better urea uptake, translocation, utilization, flower development and yield for high NUE.
Collapse
Affiliation(s)
- Narendra Sharma
- Centre for Sustainable Nitrogen and Nutrient Management, University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi 110078, India
| | - Dinesh Kumar Jaiswal
- Centre for Sustainable Nitrogen and Nutrient Management, University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi 110078, India
| | - Supriya Kumari
- Centre for Sustainable Nitrogen and Nutrient Management, University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi 110078, India
| | - Goutam Kumar Dash
- Crop Improvement Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack 753006, India
| | - Siddharth Panda
- Crop Improvement Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack 753006, India
- Institute of Agricultural Sciences, SOA (DU), Bhubaneswar 751003, India
| | - Annamalai Anandan
- Crop Improvement Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack 753006, India
- Regional Station, Indian Council of Agricultural Research (ICAR)-Indian Institute of Seed Science, Bengaluru 560065, India
| | - Nandula Raghuram
- Centre for Sustainable Nitrogen and Nutrient Management, University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi 110078, India
| |
Collapse
|
16
|
Liu Y, Hu B, Chu C. Toward improving nitrogen use efficiency in rice: Utilization, coordination, and availability. CURRENT OPINION IN PLANT BIOLOGY 2023; 71:102327. [PMID: 36525788 DOI: 10.1016/j.pbi.2022.102327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/13/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Nitrogen (N) fertilizer drives crop productivity and underlies intensive agriculture, but overuse of fertilizers also causes detrimental effects to ecosystem. To cope with this challenge while meeting the ever-growing demand for food, it is critical and urgent to improve nitrogen use efficiency (NUE) of crops. To date, numerous efforts have been made in developing strategies for NUE improvement with different disciplines. Given the intricate and interconnected route of N for delivering its effect, it is necessary to comprehensively understand various procedures and their interplays in determining NUE. In this review, we expand the scope of NUE improvement, not only the N utilization by plants, but also the N coordination with other resources as well as the N availability in the soil, which represent the major dimensions in manipulating NUE. Moreover, both agronomic practices and genetic improvement in facilitating NUE are also included and discussed. Lastly, we provide our perspective in improving the NUE in the future, particularly highlighting the integration of various agronomic and genetic approaches for NUE improvement underlying the sustainable agriculture.
Collapse
Affiliation(s)
- Yongqiang Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Bin Hu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China.
| | - Chengcai Chu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
17
|
Karavidas I, Ntatsi G, Ntanasi T, Tampakaki A, Giannopoulou A, Pantazopoulou D, Sabatino L, Iannetta PPM, Savvas D. Hydroponic Common-Bean Performance under Reduced N-Supply Level and Rhizobia Application. PLANTS (BASEL, SWITZERLAND) 2023; 12:646. [PMID: 36771728 PMCID: PMC9920343 DOI: 10.3390/plants12030646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
This study aims to explore the possibility of a reduced application of inorganic nitrogen (N) fertiliser on the yield, yield qualities, and biological nitrogen fixation (BNF) of the hydroponic common bean (Phaseolus vulgaris L.), without compromising plant performance, by utilizing the inherent ability of this plant to symbiotically fix N2. Until the flowering stage, plants were supplied with a nutrient solution containing N-concentrations of either a, 100%, conventional standard-practice, 13.8 mM; b, 75% of the standard, 10.35 mM; or c, 50% of the standard, 6.9 mM. During the subsequent reproductive stage, inorganic-N treatments b and c were decreased to 25% of the standard, and the standard (100% level) N-application was not altered. The three different inorganic-N supply treatments were combined with two different rhizobia strains, and a control (no-inoculation) treatment, in a two-factorial experiment. The rhizobia strains applied were either the indigenous strain Rhizobium sophoriradicis PVTN21 or the commercially supplied Rhizobium tropici CIAT 899. Results showed that the 50-25% mineral-N application regime led to significant increases in nodulation, BNF, and fresh-pod yield, compared to the other treatment, with a reduced inorganic-N supply. On the other hand, the 75-25% mineral-N regime applied during the vegetative stage restricted nodulation and BNF, thus incurring significant yield losses. Both rhizobia strains stimulated nodulation and BNF. However, the BNF capacity they facilitated was suppressed as the inorganic-N input increased. In addition, strain PVTN21 was superior to CIAT 899-as 50-25% N-treated plants inoculated with the former showed a yield loss of 11%, compared to the 100%-N-treated plants. In conclusion, N-use efficiency optimises BNF, reduces mineral-N-input dependency, and therefore may reduce any consequential negative environmental consequences of mineral-N over-application.
Collapse
Affiliation(s)
- Ioannis Karavidas
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Georgia Ntatsi
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Theodora Ntanasi
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Anastasia Tampakaki
- Department of Agriculture, Hellenic Mediterranean University, Estavromenos, 71410 Heraklion, Greece
| | - Ariadni Giannopoulou
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Dimitra Pantazopoulou
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Leo Sabatino
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128 Palermo, Italy
| | | | - Dimitrios Savvas
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| |
Collapse
|
18
|
Luo T, Li CN, Yan R, Huang K, Li YR, Liu XY, Lakshmanan P. Physiological and molecular insights into the resilience of biological nitrogen fixation to applied nitrogen in Saccharum spontaneum, wild progenitor of sugarcane. FRONTIERS IN PLANT SCIENCE 2023; 13:1099701. [PMID: 36714748 PMCID: PMC9881415 DOI: 10.3389/fpls.2022.1099701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
Excessive use of nitrogen (N) fertilizer for sugarcane cultivation is a significant cause of greenhouse gas emission. N use-efficiency (NUE) of sugarcane is relatively low, and considerable effort is now directed to exploit biological nitrogen fixation (BNF) in sugarcane. We hypothesize that genetic base-broadening of sugarcane using high-BNF Saccharum spontaneum, a wild progenitor of sugarcane, will help develop N-efficient varieties. We found remarkable genetic variation for BNF and growth in S. spontaneum accessions, and BNF in some accessions remained highly resilient to inorganic N application. Physiological and molecular analyses of two S. spontaneum accessions with high-BNF capacity and growth, namely G152 and G3, grown under N replete and low N conditions showed considerable similarity for total N, NH4-N, soluble sugar, indoleacetic acid, gibberellic acid, zeatin and abscisic acid content; yet, they were strikingly different at molecular level. Global gene expression analysis of G152 and G3 grown under contrasting N supply showed genotype effect explaining much of the gene expression variation observed. Differential gene expression analysis found an over-representation of carbohydrate and amino acid metabolism and transmembrane transport genes in G152 and an enrichment of lipid metabolism and single-organism processes genes in G3, suggesting that distinctly divergent metabolic strategies are driving N-related processes in these accessions. This was attested by the remarkable variation in carbon, N, amino acid and hormone metabolism-related gene expression in G152 and G3 under high- and low-N supply. We conclude that both accessions may be achieving similar BNF and growth phenotypes through overlapping but distinctly different biochemical and molecular mechanisms.
Collapse
Affiliation(s)
- Ting Luo
- Sugarcane Research Institute; Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Chang-Ning Li
- Sugarcane Research Institute; Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Rui Yan
- Sugarcane Research Institute; Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Kejun Huang
- Sugarcane Research Institute; Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yang-Rui Li
- Sugarcane Research Institute; Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Xiao-Yan Liu
- Sugarcane Research Institute; Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Prakash Lakshmanan
- Sugarcane Research Institute; Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Academy of Agricultural Sciences, Nanning, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, China
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
19
|
Mathesius U. Are legumes different? Origins and consequences of evolving nitrogen fixing symbioses. JOURNAL OF PLANT PHYSIOLOGY 2022; 276:153765. [PMID: 35952452 DOI: 10.1016/j.jplph.2022.153765] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 05/14/2023]
Abstract
Nitrogen fixing symbioses between plants and bacteria are ancient and, while not numerous, are formed in diverse lineages of plants ranging from microalgae to angiosperms. One symbiosis stands out as the most widespread one is that between legumes and rhizobia, leading to the formation of nitrogen-fixing nodules. The legume family is one of the largest and most diverse group of plants and legumes have been used by humans since the beginning of agriculture, both as high nitrogen food, as well as pastures and rotation crops. One open question is whether their ability to form a nitrogen-fixing symbiosis has contributed to legumes' success, and whether legumes have any unique characteristics that have made them more diverse and widespread than other groups of plants. This review examines the evolutionary journey that has led to the diversification of legumes, in particular its nitrogen-fixing symbiosis, and asks four questions to investigate which legume traits might have contributed to their success: 1. In what ways do legumes differ from other plant groups that have evolved nitrogen-fixing symbioses? In order to answer this question, the characteristics of the symbioses, and efficiencies of nitrogen fixation are compared between different groups of nitrogen fixing plants. 2. Could certain unique features of legumes be a reason for their success? This section examines the manifestations and possible benefits of a nitrogen-rich 'lifestyle' in legumes. 3. If nitrogen fixation was a reason for such a success, why have some species lost the symbiosis? Formation of symbioses has trade-offs, and while these are less well known for non-legumes, there are known energetic and ecological reasons for loss of symbiotic potential in legumes. 4. What can we learn from the unique traits of legumes for future crop improvements? While exploiting some of the physiological properties of legumes could be used to improve legume breeding, our increasing molecular understanding of the essential regulators of root nodule symbioses raise hope of creating new nitrogen fixing symbioses in other crop species.
Collapse
Affiliation(s)
- Ulrike Mathesius
- Division of Plant Sciences, Research School of Biology, The Australian National University, 134 Linnaeus Way, Canberra, ACT, 2601, Australia.
| |
Collapse
|
20
|
Robertson GP, Hamilton SK, Paustian K, Smith P. Land-based climate solutions for the United States. GLOBAL CHANGE BIOLOGY 2022; 28:4912-4919. [PMID: 35638387 PMCID: PMC9544421 DOI: 10.1111/gcb.16267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Meeting end-of-century global warming targets requires aggressive action on multiple fronts. Recent reports note the futility of addressing mitigation goals without fully engaging the agricultural sector, yet no available assessments combine both nature-based solutions (reforestation, grassland and wetland protection, and agricultural practice change) and cellulosic bioenergy for a single geographic region. Collectively, these solutions might offer a suite of climate, biodiversity, and other benefits greater than either alone. Nature-based solutions are largely constrained by the duration of carbon accrual in soils and forest biomass; each of these carbon pools will eventually saturate. Bioenergy solutions can last indefinitely but carry significant environmental risk if carelessly deployed. We detail a simplified scenario for the United States that illustrates the benefits of combining approaches. We assign a portion of non-forested former cropland to bioenergy sufficient to meet projected mid-century transportation needs, with the remainder assigned to nature-based solutions such as reforestation. Bottom-up mitigation potentials for the aggregate contributions of crop, grazing, forest, and bioenergy lands are assessed by including in a Monte Carlo model conservative ranges for cost-effective local mitigation capacities, together with ranges for (a) areal extents that avoid double counting and include realistic adoption rates and (b) the projected duration of different carbon sinks. The projected duration illustrates the net effect of eventually saturating soil carbon pools in the case of most strategies, and additionally saturating biomass carbon pools in the case of forest management. Results show a conservative end-of-century mitigation capacity of 110 (57-178) Gt CO2 e for the U.S., ~50% higher than existing estimates that prioritize nature-based or bioenergy solutions separately. Further research is needed to shrink uncertainties, but there is sufficient confidence in the general magnitude and direction of a combined approach to plan for deployment now.
Collapse
Affiliation(s)
- G. Philip Robertson
- W.K. Kellogg Biological StationMichigan State UniversityHickory CornersMichiganUSA
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityHickory CornersMichiganUSA
- Great Lakes Bioenergy Research CenterMichigan State UniversityEast LansingMichiganUSA
| | - Stephen K. Hamilton
- W.K. Kellogg Biological StationMichigan State UniversityHickory CornersMichiganUSA
- Great Lakes Bioenergy Research CenterMichigan State UniversityEast LansingMichiganUSA
- Department of Integrative BiologyMichigan State UniversityEast LansingMichiganUSA
- Cary Institute of Ecosystem StudiesMillbrookNew YorkUSA
| | - Keith Paustian
- Department of Soil and Crop Sciences and Natural Resource Ecology LaboratoryColorado State UniversityFort CollinsColoradoUSA
| | - Pete Smith
- Institute of Biological and Environmental SciencesUniversity of AberdeenAberdeenUK
| |
Collapse
|
21
|
Ladha JK, Peoples MB, Reddy PM, Biswas JC, Bennett A, Jat ML, Krupnik TJ. Biological nitrogen fixation and prospects for ecological intensification in cereal-based cropping systems. FIELD CROPS RESEARCH 2022; 283:108541. [PMID: 35782167 PMCID: PMC9133800 DOI: 10.1016/j.fcr.2022.108541] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 03/29/2022] [Accepted: 04/03/2022] [Indexed: 05/02/2023]
Abstract
The demand for nitrogen (N) for crop production increased rapidly from the middle of the twentieth century and is predicted to at least double by 2050 to satisfy the on-going improvements in productivity of major food crops such as wheat, rice and maize that underpin the staple diet of most of the world's population. The increased demand will need to be fulfilled by the two main sources of N supply - biological nitrogen (gas) (N2) fixation (BNF) and fertilizer N supplied through the Haber-Bosch processes. BNF provides many functional benefits for agroecosystems. It is a vital mechanism for replenishing the reservoirs of soil organic N and improving the availability of soil N to support crop growth while also assisting in efforts to lower negative environmental externalities than fertilizer N. In cereal-based cropping systems, legumes in symbiosis with rhizobia contribute the largest BNF input; however, diazotrophs involved in non-symbiotic associations with plants or present as free-living N2-fixers are ubiquitous and also provide an additional source of fixed N. This review presents the current knowledge of BNF by free-living, non-symbiotic and symbiotic diazotrophs in the global N cycle, examines global and regional estimates of contributions of BNF, and discusses possible strategies to enhance BNF for the prospective benefit of cereal N nutrition. We conclude by considering the challenges of introducing in planta BNF into cereals and reflect on the potential for BNF in both conventional and alternative crop management systems to encourage the ecological intensification of cereal and legume production.
Collapse
Affiliation(s)
- Jagdish K. Ladha
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Mark B. Peoples
- Commonwealth Scientific and Industrial Research Organisation, Canberra, Australia
| | | | | | - Alan Bennett
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Mangi L. Jat
- International Maize and Wheat Improvement Center, New Delhi, India
| | | |
Collapse
|
22
|
Sharma N, Kumari S, Jaiswal DK, Raghuram N. Comparative Transcriptomic Analyses of Nitrate-Response in Rice Genotypes With Contrasting Nitrogen Use Efficiency Reveals Common and Genotype-Specific Processes, Molecular Targets and Nitrogen Use Efficiency-Candidates. FRONTIERS IN PLANT SCIENCE 2022; 13:881204. [PMID: 35774823 PMCID: PMC9237547 DOI: 10.3389/fpls.2022.881204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/26/2022] [Indexed: 05/05/2023]
Abstract
The genetic basis for nitrogen (N)-response and N use efficiency (NUE) must be found in N-responsive gene expression or protein regulation. Our transcriptomic analysis of nitrate response in two contrasting rice genotypes of Oryza sativa ssp. Indica (Nidhi with low NUE and Panvel1 with high NUE) revealed the processes/functions underlying differential N-response/NUE. The microarray analysis of low nitrate response (1.5 mM) relative to normal nitrate control (15 mM) used potted 21-days old whole plants. It revealed 1,327 differentially expressed genes (DEGs) exclusive to Nidhi and 666 exclusive to Panvel1, apart from 70 common DEGs, of which 10 were either oppositely expressed or regulated to different extents. Gene ontology analyses revealed that photosynthetic processes were among the very few processes common to both the genotypes in low N response. Those unique to Nidhi include cell division, nitrogen utilization, cytoskeleton, etc. in low N-response, whereas those unique to Panvel1 include signal transduction, protein import into the nucleus, and mitochondria. This trend of a few common but mostly unique categories was also true for transporters, transcription factors, microRNAs, and post-translational modifications, indicating their differential involvement in Nidhi and Panvel1. Protein-protein interaction networks constructed using DEG-associated experimentally validated interactors revealed subnetworks involved in cytoskeleton organization, cell wall, etc. in Nidhi, whereas in Panvel1, it was chloroplast development. NUE genes were identified by selecting yield-related genes from N-responsive DEGs and their co-localization on NUE-QTLs revealed the differential distribution of NUE-genes between genotypes but on the same chromosomes 1 and 3. Such hotspots are important for NUE breeders.
Collapse
Affiliation(s)
| | | | | | - Nandula Raghuram
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| |
Collapse
|
23
|
Qiu Z, Paungfoo-Lonhienne C, Ye J, Garcia AG, Petersen I, Di Bella L, Hobbs R, Ibanez M, Heenan M, Wang W, Reeves S, Schmidt S. Biofertilizers can enhance nitrogen use efficiency of sugarcane. Environ Microbiol 2022; 24:3655-3671. [PMID: 35506306 PMCID: PMC9544788 DOI: 10.1111/1462-2920.16027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 04/21/2022] [Indexed: 12/01/2022]
Abstract
Fertilizers are costly inputs into crop systems. To compensate for inefficiencies and losses from soil, farmers apply on average double the amount of nitrogen (N) fertilizer acquired by crops. We explored if N efficiency improves with biofertilizers formulated with organic waste, mineral N or plant growth-promoting rhizobacteria (PGPR). We compared treatments receiving mineral N fertilizer or biofertilizers at industry-recommended (100%) or lower (60%) N rates at two commercial sugarcane farms. Biofertilizer at the 60% N-rate generated promising results at one farm with significantly higher biomass and sugar yield than the no-N control, which matched the 100% mineral N treatment. This yield difference was accompanied by a shift in microbial diversity and composition. Correlation analysis confirmed that shifts in microbial communities were strongly linked to soil mineral N levels, as well as crop productivity and yield. Microbial co-occurrence networks further revealed that biofertilizer, including treatments with an added PGPR, can enhance bacterial associations, especially in the context of complex fungal networks. Collectively, the results confirm that biofertilizers have quantifiable effects on soil microbial communities in a crop system setting, which underscores the opportunities for biofertilizers to promote N use efficiency and the circular N economy.
Collapse
Affiliation(s)
- Zhiguang Qiu
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia.,School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | | | - Jun Ye
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia
| | - Axa Gonzalez Garcia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Ian Petersen
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Lawrence Di Bella
- Herbert Cane Productivity Services Ltd., Ingham, Qld, 4850, Australia
| | - Richard Hobbs
- Herbert Cane Productivity Services Ltd., Ingham, Qld, 4850, Australia
| | - Minka Ibanez
- Herbert Cane Productivity Services Ltd., Ingham, Qld, 4850, Australia
| | - Marijke Heenan
- Department of Environment and Science, Brisbane, Qld, 4001, Australia
| | - Weijin Wang
- Department of Environment and Science, Brisbane, Qld, 4001, Australia
| | - Steven Reeves
- Department of Environment and Science, Brisbane, Qld, 4001, Australia
| | - Susanne Schmidt
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia
| |
Collapse
|
24
|
Elli EF, Ciampitti IA, Castellano MJ, Purcell LC, Naeve S, Grassini P, La Menza NC, Moro Rosso L, de Borja Reis AF, Kovács P, Archontoulis SV. Climate Change and Management Impacts on Soybean N Fixation, Soil N Mineralization, N 2O Emissions, and Seed Yield. FRONTIERS IN PLANT SCIENCE 2022; 13:849896. [PMID: 35574134 PMCID: PMC9094616 DOI: 10.3389/fpls.2022.849896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/25/2022] [Indexed: 05/28/2023]
Abstract
Limited knowledge about how nitrogen (N) dynamics are affected by climate change, weather variability, and crop management is a major barrier to improving the productivity and environmental performance of soybean-based cropping systems. To fill this knowledge gap, we created a systems understanding of agroecosystem N dynamics and quantified the impact of controllable (management) and uncontrollable (weather, climate) factors on N fluxes and soybean yields. We performed a simulation experiment across 10 soybean production environments in the United States using the Agricultural Production Systems sIMulator (APSIM) model and future climate projections from five global circulation models. Climate change (2020-2080) increased N mineralization (24%) and N2O emissions (19%) but decreased N fixation (32%), seed N (20%), and yields (19%). Soil and crop management practices altered N fluxes at a similar magnitude as climate change but in many different directions, revealing opportunities to improve soybean systems' performance. Among many practices explored, we identified two solutions with great potential: improved residue management (short-term) and water management (long-term). Inter-annual weather variability and management practices affected soybean yield less than N fluxes, which creates opportunities to manage N fluxes without compromising yields, especially in regions with adequate to excess soil moisture. This work provides actionable results (tradeoffs, synergies, directions) to inform decision-making for adapting crop management in a changing climate to improve soybean production systems.
Collapse
Affiliation(s)
- Elvis F. Elli
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | | | | | - Larry C. Purcell
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Seth Naeve
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, United States
| | - Patricio Grassini
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Nicolas C. La Menza
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Luiz Moro Rosso
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | | | - Péter Kovács
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD, United States
| | | |
Collapse
|
25
|
Variability in Soil Parent Materials at Different Development Stages Controlled Phosphorus Fractions and Its Uptake by Maize Crop. SUSTAINABILITY 2022. [DOI: 10.3390/su14095048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
An adequate phosphorus (P) supply in the rhizosphere is essential for proper P uptake through plant roots. Distributions of P varies depending on the soil structure, formation, and the parent material from which it originates. More research is needed to determine whether soil depth and parent materials have an impact on P distribution. It was hypothesized that the type of soil formed by different parent materials is related to P uptake and soil P fractions. Soil samples were taken from different profiles at various stages of development in loess, alluvium, shale, and sandstone parent materials. The samples were analyzed for P fractions using the Jiang and Gu fractionation scheme. In the present study, the P fractions were controlled according to the quantity and the components, such as organic matter, clay minerals, carbonates, iron, and aluminum oxides. Studying the phosphatase enzyme activity related to P fractions, the soil parent material, and their development was highly beneficial in defining which P pools are more accessible to plants, as well as the effect of phosphatase in limiting P availability. Among all the tested parent materials, the total P in soils derived from the loess parent material was higher (792 mg kg−1) than in soils derived from alluvium, shale, and sandstone, respectively. The amount of apatite P in alluvium parent material was higher, accounting for 51–56% of total P. Other P forms varied significantly in parent materials in the following order loess > alluvium > shale >> sandstone. Phosphatase enzyme was found to be an indicator of P availability by limiting its uptake by plants.
Collapse
|
26
|
York LM, Griffiths M, Maaz TM. Whole-plant phenotypic engineering: moving beyond ratios for multi-objective optimization of nutrient use efficiency. Curr Opin Biotechnol 2022; 75:102682. [PMID: 35104719 DOI: 10.1016/j.copbio.2022.102682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/14/2021] [Accepted: 01/03/2022] [Indexed: 02/03/2023]
Abstract
Nutrient use efficiency (NUE) is typically measured as the ratio of yield to soil nutrient availability but ignores contributions of underlying plant traits. Relevant plant traits can be grouped as root acquisition efficiency, shoot radiation use efficiency, and plant metabolic efficiency. The intentional integration of these traits will lead to synergistic improvements of NUE. Recent progress in trait-focused research includes phenotyping root nutrient uptake rates and respiration, engineering reduced photorespiration, and identification of nutrient assimilation pathways. Traits need to be conceptualized in agricultural systems contexts to improve synchrony of plant demand and soil supply of nutrients, including consideration of crop mixtures. Use of simulation modeling and multi-objective optimization will allow accelerating NUE gains beyond selection for a single ratio.
Collapse
Affiliation(s)
- Larry M York
- Center for Bioenergy Innovation and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| | | | - Tai McClellan Maaz
- Department of Tropical Plant and Soil Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
27
|
Mandal VK, Jangam AP, Chakraborty N, Raghuram N. Nitrate-responsive transcriptome analysis reveals additional genes/processes and associated traits viz. height, tillering, heading date, stomatal density and yield in japonica rice. PLANTA 2022; 255:42. [PMID: 35038039 DOI: 10.1007/s00425-021-03816-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/27/2021] [Indexed: 05/22/2023]
Abstract
Our transcriptomic analysis expanded the repertoire of nitrate-responsive genes/processes in rice and revealed their phenotypic association with root/shoot, stomata, tiller, panicle/flowering and yield, with agronomic implications for nitrogen use efficiency. Nitrogen use efficiency (NUE) is a multigenic quantitative trait, involving many N-responsive genes/processes that are yet to be fully characterized. Microarray analysis of early nitrate response in excised leaves of japonica rice revealed 6688 differentially expressed genes (DEGs), including 2640 hitherto unreported across multiple functional categories. They include transporters, enzymes involved in primary/secondary metabolism, transcription factors (TFs), EF-hand containing calcium binding proteins, hormone metabolism/signaling and methytransferases. Some DEGs belonged to hitherto unreported processes viz. alcohol, lipid and trehalose metabolism, mitochondrial membrane organization, protein targeting and stomatal opening. 1158 DEGs were associated with growth physiology and grain yield or phenotypic traits for NUE. We identified seven DEGs for shoot apical meristem, 66 for leaf/culm/root, 31 for tiller, 70 for heading date/inflorescence/spikelet/panicle, 144 for seed and 78 for yield. RT-qPCR validated nitrate regulation of 31 DEGs belonging to various important functional categories/traits. Physiological validation of N-dose responsive changes in plant development revealed that relative to 1.5 mM, 15 mM nitrate significantly increased stomatal density, stomatal conductance and transpiration rate. Further, root/shoot growth, number of tillers and grain yield declined and panicle emergence/heading date delayed, despite increased photosynthetic rate. We report the binding sites of diverse classes of TFs such as WRKY, MYB, HMG etc., in the 1 kb up-stream regions of 6676 nitrate-responsive DEGs indicating their role in regulating nitrate response/NUE. Together, these findings expand the repertoire of genes and processes involved in genomewide nitrate response in rice and reveal their physiological, phenotypic and agronomic implications for NUE.
Collapse
Affiliation(s)
- Vikas Kumar Mandal
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi, India
| | - Annie Prasanna Jangam
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi, India
| | - Navjyoti Chakraborty
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi, India
| | - Nandula Raghuram
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi, India.
| |
Collapse
|
28
|
Cooper M, Messina CD. Can We Harness "Enviromics" to Accelerate Crop Improvement by Integrating Breeding and Agronomy? FRONTIERS IN PLANT SCIENCE 2021; 12:735143. [PMID: 34567047 PMCID: PMC8461239 DOI: 10.3389/fpls.2021.735143] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/16/2021] [Indexed: 05/02/2023]
Abstract
The diverse consequences of genotype-by-environment (GxE) interactions determine trait phenotypes across levels of biological organization for crops, challenging our ambition to predict trait phenotypes from genomic information alone. GxE interactions have many implications for optimizing both genetic gain through plant breeding and crop productivity through on-farm agronomic management. Advances in genomics technologies have provided many suitable predictors for the genotype dimension of GxE interactions. Emerging advances in high-throughput proximal and remote sensor technologies have stimulated the development of "enviromics" as a community of practice, which has the potential to provide suitable predictors for the environment dimension of GxE interactions. Recently, several bespoke examples have emerged demonstrating the nascent potential for enhancing the prediction of yield and other complex trait phenotypes of crop plants through including effects of GxE interactions within prediction models. These encouraging results motivate the development of new prediction methods to accelerate crop improvement. If we can automate methods to identify and harness suitable sets of coordinated genotypic and environmental predictors, this will open new opportunities to upscale and operationalize prediction of the consequences of GxE interactions. This would provide a foundation for accelerating crop improvement through integrating the contributions of both breeding and agronomy. Here we draw on our experience from improvement of maize productivity for the range of water-driven environments across the US corn-belt. We provide perspectives from the maize case study to prioritize promising opportunities to further develop and automate "enviromics" methodologies to accelerate crop improvement through integrated breeding and agronomic approaches for a wider range of crops and environmental targets.
Collapse
Affiliation(s)
- Mark Cooper
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD, Australia
- *Correspondence: Mark Cooper,
| | | |
Collapse
|