1
|
Sandrini S, Perricone V, Cremonesi P, Castiglioni B, Biscarini F, Verdile N, Brevini T, Comi M, Jiang X, Agazzi A. Yeast mixture supplementation modulates faecal microbiota and ileum morphology of weaning pigs. Animal 2024; 18:101275. [PMID: 39153440 DOI: 10.1016/j.animal.2024.101275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/19/2024] Open
Abstract
Different yeast strains benefit postweaning piglets by promoting intestinal health. The objective of this study was to investigate the effect of a yeast mixture containing Kluyveromyces marxianus fragilis, Pichia guilliermondii, and Saccharomyces cerevisiae (Vetoquinol italia s.r.l., Italy) on gut health parameters and growth performance traits of weaned piglets. Forty-eight postweaning castrated male piglets (27 ± 1.7 days, 7.19 ± 0.54 kg) were randomly allocated to two homogeneous experimental groups and involved in a 28-day trial. Both the groups received a basal diet with (yeast mixture, YM) or without (control, CTR) the inclusion of 0.8% yeast mixture during weeks 1 and 2, and 0.6% during weeks 3 and 4. Individual BW and box feed intake were determined on days 0, 14, and 28, and average daily gain and Gain:Feed ratio were subsequently calculated for each administration period (0-14, 14-28). Individual faecal samples were collected for microbiota analysis on days 4, 14, 21, and 28, and faecal score was evaluated on the same days. At the end of the trial, 12 piglets for each group were sacrificed, and ileal tissue was sampled for morphological analysis and the evaluation of mucins profile, using Alcian-Blue/Periodic Acid-Shiff (PAS) staining. On ileum samples, dividing and differentiated epithelial cells were also identified using proliferating cell nuclear antigen and alkaline phosphatase expression, respectively. Differences in the means between the experimental groups were determined by ANOVA, while the metataxonomics analyses were performed by sequencing for V3 and V4 hypervariable regions of the 16S rRNA gene. Growth performance traits were not different among the two experimental groups when considering the whole trial period, while treated animals showed increased faecal consistency on weeks 1 and 4 (P = 0.036 and 0.021, respectively). Yeast mixture administration increased the abundance of Bifidobacterium (P = 0.006) and Coprococcus 2 (P = 0.015), and decreased Clostridium Sensu Stricto 1 (P = 0.019) at all the considered timepoints. Ileum villous height, villous width, and crypt depth were significantly increased by yeast mixture supplementation (P = 0.019; P = 0.013; P = 0.036, respectively), while no differences were observed for the villous:crypt ratio among the groups. The mucin profile showed no differences among experimental groups for acid and neutral glycoconjugates. However, a higher presence of PAS-positive mucins was highlighted in the villi of YM piglets (P < 0.001) compared to CTR. Overall, the administration of a yeast mixture to postweaning piglets showed positive effects on gut health when compared to piglets not receiving the tested product, improving beneficial genera and intestinal morphology.
Collapse
Affiliation(s)
- S Sandrini
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Via dell'Università 6, 2600 Lodi, Italy
| | - V Perricone
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Via dell'Università 6, 2600 Lodi, Italy.
| | - P Cremonesi
- Institute of Agricultural Biology and Biotechnology (IBBA-CNR), Via Einstein, 26900 Lodi, Italy
| | - B Castiglioni
- Institute of Agricultural Biology and Biotechnology (IBBA-CNR), Via Einstein, 26900 Lodi, Italy
| | - F Biscarini
- Institute of Agricultural Biology and Biotechnology (IBBA-CNR), Via Einstein, 26900 Lodi, Italy
| | - N Verdile
- Department of Agricultural and Environmental Sciences, University of Milan, Via Celoria 2, 20133 Milano, Italy
| | - T Brevini
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Via dell'Università 6, 2600 Lodi, Italy
| | - M Comi
- Department of Human Science and Quality of Life Promotion, Telematic University San Raffaele, 00166 Rome, Italy
| | - X Jiang
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - A Agazzi
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Via dell'Università 6, 2600 Lodi, Italy
| |
Collapse
|
2
|
Costello M, Rubinelli P, Brown J, Olson E, Dittoe D, Park SH, Korver D, Lawless Z, Thompson D, Ricke S. Comparison of yeast-derived commercial feed additives on Salmonella Enteritidis survival and microbiota populations in rooster cecal in vitro incubations. PLoS One 2023; 18:e0295657. [PMID: 38096330 PMCID: PMC10721185 DOI: 10.1371/journal.pone.0295657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Yeast-derived products have become more of an interest in the poultry industry as of late because of their use in modulating the gastrointestinal tract (GIT) microbiome to both improve production parameters and prevent infection. This study aimed to evaluate the effects of various yeast-derived products on Salmonella enterica inoculation in un in vitro rooster cecal incubations and associated effects on the cecal microbiome. Cecal contents were obtained from 53-wk old White Leghorn H & N Nick Chick roosters (n = 3) fed a wheat-based, commercial-type basal diet. Cecal contents were diluted 1:3000 in anaerobic dilution solution (ADS) in an anaerobic chamber, with 20 mL aliquoted to each serum bottle. There were three controls (n = 3): basal diet only, diluted cecal contents only, and basal diet and diluted cecal contents; and five treatments containing the basal diet and diluted cecal contents (n = 3): Citristim® (ADM), ImmunoWall® (ICC), Maxi-Gen Plus® (CBS Bio Platforms), Hilyses® (ICC), and Original XPC® (Diamond V). All treatments were applied at a rate of 2.5 kg/tonne or less. All groups were inoculated with a nalidixic acid-resistant strain of Salmonella Enteritidis at 10^7 CFU/mL and incubated at 37 deg C. Samples were collected at 0, 24, and 48 h for S. Enteritidis enumeration and 16S rDNA microbial sequencing. Salmonella data were log-transformed and analyzed in a two-way ANOVA with means separated using Tukey's HSD (P≤0.05). Genomic DNA was extracted, and resulting libraries were prepared and sequenced using an Illumina MiSeq. Sequencing data were analyzed in QIIME2 (2021.4) with diversity metrics (alpha and beta), and an analysis of the composition of microbiomes (ANCOM) was performed. Main effects were considered significant at P≤0.05, with pairwise differences considered significant at Q≤0.05. There was an interaction of treatment and time on the enumeration of Salmonella where treatments of Citristim, Immunowall, Hilyses, and XPC reduced Salmonella by 1 log CFU/mL compared to the controls. At 48 h, each yeast product treatment reduced Salmonella by 3 log CFU/mL compared to the controls. There was no main effect of treatment on the alpha diversity metrics, richness, or evenness (P > 0.05). Treatment affected the beta diversity, abundance, and phylogenetic differences, but there were no pairwise differences (P>0.05, Q>0.05). Using ANCOM at the genus level, the taxa Synergistes, Alloprevotella, Sutterella, and Megasphaera abundance were significantly different (W = 154,147,145,140, respectively). These results demonstrate the potential of these yeast-derived products to reduce foodborne pathogens, such as Salmonella Enteriditis, in vitro, without negatively disrupting the cecal microbiome.
Collapse
Affiliation(s)
- Margaret Costello
- Department of Animal and Dairy Sciences, Meat Science and Animal Biologics Discovery Program, University of Wisconsin, Madison, WI, United States of America
| | - Peter Rubinelli
- Center for Food Safety and Department of Food Science, University of Arkansas, Fayetteville, AR, United States of America
| | - Jessica Brown
- Department of Animal and Dairy Sciences, Meat Science and Animal Biologics Discovery Program, University of Wisconsin, Madison, WI, United States of America
| | - Elena Olson
- Department of Animal and Dairy Sciences, Meat Science and Animal Biologics Discovery Program, University of Wisconsin, Madison, WI, United States of America
| | - Dana Dittoe
- Department of Animal Science, University of Wyoming, Laramie, WY, United States of America
| | - Si Hong Park
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, United States of America
| | - Douglas Korver
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Zachary Lawless
- Department of Computer Science and Computer Engineering, University of Arkansas, Fayetteville, AR, United States of America
| | - Dale Thompson
- Department of Computer Science and Computer Engineering, University of Arkansas, Fayetteville, AR, United States of America
| | - Steven Ricke
- Department of Animal and Dairy Sciences, Meat Science and Animal Biologics Discovery Program, University of Wisconsin, Madison, WI, United States of America
| |
Collapse
|
3
|
Korver DR, Park SH, Costello MK, Olson EG, Saunders-Blades JL, Ricke SC. Research Note: Preliminary assessment of the impact of dietary yeast products on egg production and cecal microbial profiles of laying hens. Poult Sci 2023; 102:102934. [PMID: 37499614 PMCID: PMC10393788 DOI: 10.1016/j.psj.2023.102934] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/29/2023] Open
Abstract
The objective of the current study was to conduct an initial comparison of commercial yeast products in layer hen diets on egg production parameters and the corresponding impact on the cecal microbiota. A short-term feeding study was conducted with 35 laying hens receiving either a control, or 1 of 4 different yeast fermentation products, Immunowall, Hilyses (both from ICC, São Paulo, Brazil), Citristim (ADM, Decatur, IL), and Maxi-Gen Plus (CBS Bio Platforms, Calgary, Canada) with 7 hens per treatment from 40 to 46 wk of age. At the end of the trial, hens were euthanized, the ceca removed and prepared for denatured gradient gel electrophoresis (DGGE) microbial compositional analyses. Although initial shell weight and shell thickness were similar among the treatment groups, hens fed Hilyses had lower shell weight and thickness at the end of the experiment. The most predominant DGGE bands with the strongest intensity were identified as Lactobacillus species and excised double bands were identified as Bacillus, Clostridium, or Lachnospiraceae. In this short-term feeding trial, the commercial yeast products tested had little effect on egg production and shell quality, and only moderately impacted the composition of mature layer hen cecal microbiota.
Collapse
Affiliation(s)
- D R Korver
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Canada T6G 2P5.
| | - S H Park
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, 97331, USA
| | - M K Costello
- Department of Animal and Dairy Sciences, Meat Science and Animal Biologics Discovery Program, University of Wisconsin, Madison, WI, 53706, USA
| | - E G Olson
- Department of Animal and Dairy Sciences, Meat Science and Animal Biologics Discovery Program, University of Wisconsin, Madison, WI, 53706, USA
| | - J L Saunders-Blades
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Canada T6G 2P5
| | - S C Ricke
- Department of Animal and Dairy Sciences, Meat Science and Animal Biologics Discovery Program, University of Wisconsin, Madison, WI, 53706, USA
| |
Collapse
|
4
|
Ju Y, Huang L, Luo H, Huang Y, Huang X, Chen G, Gui J, Liu Z, Yang L, Liu X. Passion fruit peel and its zymolyte enhance gut function in Sanhuang broilers by improving antioxidation and short-chain fatty acids and decreasing inflammatory cytokines. Poult Sci 2023; 102:102672. [PMID: 37104904 PMCID: PMC10160589 DOI: 10.1016/j.psj.2023.102672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
The passion fruit peel (PFP) is the by-product of juice processing and is rich in phenolic compounds and dietary fibers. As the high ADF content in PFP (34.20%), we proceeded to treat PFP with cellulase. The ADF decreased to 16.70% after enzymatic processing, and we supposed that enzymolytic passion fruit peel (EPF) should have a greater growth performance than PFP to broilers. Two trials were conducted to evaluate the effects of dietary PFP or EPF supplementation on growth performance, serum biochemical indices, meat quality, and cecal short-chain fatty acids, microbiota, and metabolites in broilers. In Exp. 1, 180 1-day-old Sanhuang broilers (male, 36.17 ± 2.47 g) were randomly allocated into 3 treatments, with 6 replicates in each treatment. The 3 experimental diets included 1 basal diet (control) and 2 PFP-added diets supplemented with 1 and 2% PFP, respectively. The trial lasted for 42 d. In Exp. 2, 144 Sanhuang broilers (male, 112-day-old, 1.62 ± 0.21 kg) were randomly allocated to 3 treatments. Each treatment was distributed among 6 pens, and each pen contained 8 broilers. The 3 treatment diets included: a control diet, a positive control diet supplementing 75 mg/kg chlortetracycline, and the experimental diet supplementing 3% EPF. The trial lasted for 56 d. Results showed that dietary 1 and 2% PFP addition did not affect growth performance in Exp. 1, and the 3% EPF supplementation had a negative effect on ADFI (P < 0.05) in Exp. 2. A decreased serum triglyceride (P < 0.05) in broilers was observed in Exp. 1. Broilers fed EPF had a higher glutathione peroxidase (GSH-Px) (P < 0.05), and lower levels of tumor necrosis factor-α (TNF-α) (P < 0.05) and glucose (P < 0.05) in Exp. 2. We also found that broilers from PFP or EPF-treated treatments had an increased butyrate content and higher microbial diversity in the cecum. The effects of antioxidation, anti-inflammatory function, and elevated SCFAs were confirmed after the microbe and untargeted metabolomic analysis. Dietary EPF supplementation significantly increased the SCFA-generating bacteria, anti-inflammatory-related bacteria, the antioxidant-related and anti-inflammatory-related metabolites. Moreover, dietary 3% EPF addition positively affects the biosynthesis of phenylpropanoids, which strongly correlate with the antioxidant and anti-inflammatory properties. In conclusion, the proper addition level did not affect the growth performance, and the PFP and EPF could improve the antioxidation state, anti-inflammatory activity, and intestinal functions of Sanhuang broilers to some extent.
Collapse
|
5
|
An In Vitro Model of the Chicken Gastrointestinal Tract with Special Emphasis to the Cecal Microbiota. Poult Sci 2023; 102:102654. [PMID: 37043954 PMCID: PMC10140163 DOI: 10.1016/j.psj.2023.102654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
An in vitro model of the upper gastrointestinal tract as well as the chicken cecum was developed to have a predictive tool for estimating the production performance of animals by analyzing the feeding value of a certain diet. The upper gastrointestinal tract consists of a batch type model, whereas the cecal model is comprised of 4 semi-continuous connected vessels inoculated with cecal or fecal microbes. The upper gastrointestinal tract and cecal simulations were both run with a corn- and a wheat-based diet to simulate 2 typical feed types. Samples were collected after the 5-h cecal simulations and aliquots were frozen to assess inoculum stability. The microbiota was analyzed by 16S rRNA gene sequencing, whereas short chain fatty acids as microbial metabolites were analyzed by using gas chromatography. As expected, some significant differences in microbial abundance after simulation between the cecal and fecal slurry samples (P = 0.001) were detected, as well between the fresh and frozen status (P = 0.001), hence simulations inoculated with cecal and fresh samples being more diverse. For the measured metabolites, almost all of them increased (P < 0.05) significantly when comparing fresh and frozen inoculum. The present chicken intestinal in vitro model represents a rapid systematic screening system for studying dietary related microbial changes and reducing the need of animal sacrifice for experimentation.
Collapse
|
6
|
Nutritional supplements for the control of avian coccidiosis. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2023-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Abstract
Coccidiosis is acclaimed as the most prevalent enteric parasitic ailment of poultry. It is caused by an apicomplexan protozoon of the genus Eimeria, which resides in chicken intestinal epithelium leading to intestinal damage. As a result, bloody droppings are there, feed efficiency is reduced, the growth rate is impaired, and egg production is temporarily decreased. Treatment and prevention of coccidiosis are primarily accomplished by inoculating live vaccines and administering anticoccidial drugs. Due to anticoccidials’ continuous and excessive use, the mounting issue is drug resistant Eimeria strains. The poultry industry has managed resistance-related issues by suggesting shuttle and rotation schemes. Furthermore, new drugs have also been developed and introduced, but it takes a long time and causes cost inflation in the poultry industry. Moreover, government disallows growth promoters and drugs at sub-therapeutic doses in poultry due to increased concerns about the drug residues in poultry products. These constraints have motivated scientists to work on alternative ways to control coccidiosis effectively, safely, and sustainably. Using nutritional supplements is a novel way to solve the constraints mentioned above. The intriguing aspects of using dietary supplements against coccidiosis are that they reduce the risk of drug-resistant pathogen strains, ensure healthy, nutritious poultry products, have less reliance on synthetic drugs, and are typically considered environmentally safe. Furthermore, they improve productivity, enhance nonspecific immunity, preventing oxidation of fats (acting as antioxidants) and inflammation (acting as an anti-inflammatory). The present manuscript focuses on the efficacy, possible mechanism of action, applications, and different facets of nutrition supplements (such as organic acids, minerals, vitamins, probiotics, essential oils, amino acids, dietary nucleotides, feed enzymes, and yeast derivatives) as feed additive for treating poultry coccidiosis.
Collapse
|
7
|
Patterson R, Rogiewicz A, Kiarie EG, Slominski BA. Yeast derivatives as a source of bioactive components in animal nutrition: A brief review. Front Vet Sci 2023; 9:1067383. [PMID: 36686164 PMCID: PMC9853299 DOI: 10.3389/fvets.2022.1067383] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/28/2022] [Indexed: 01/09/2023] Open
Abstract
With a long history of inclusion within livestock feeding programs, yeast and their respective derivatives are well-understood from a nutritional perspective. Originally used as sources of highly digestible protein in young animal rations in order to offset the use of conventional protein sources such as soybean and fish meal, application strategies have expanded in recent years into non-nutritional uses for all animal categories. For the case of yeast derivatives, product streams coming from the downstream processing of nutritional yeast, the expansion in use cases across species groups has been driven by a greater understanding of the composition of each derivative along with deeper knowledge of mechanistic action of key functional components. From improving feed efficiency, to serving as alternatives to antibiotic growth promoters and supporting intestinal health and immunity while mitigating pathogen shedding, new use cases are driven by a recognition that yeast derivatives contain specific bioactive compounds that possess functional properties. This review will attempt to highlight key bioactive categories within industrially applicable yeast derivatives and provide context regarding identification and characterization and mechanisms of action related to efficacy within a range of experimental models.
Collapse
Affiliation(s)
- Rob Patterson
- CBS BioPlatforms Inc., Calgary, AB, Canada,*Correspondence: Rob Patterson
| | - Anna Rogiewicz
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Elijah G. Kiarie
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | | |
Collapse
|
8
|
Dehau T, Ducatelle R, Immerseel FV, Goossens E. Omics technologies in poultry health and productivity - part 1: current use in poultry research. Avian Pathol 2022; 51:407-417. [PMID: 35675291 DOI: 10.1080/03079457.2022.2086447] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In biology, molecular terms with the suffix "-omics" refer to disciplines aiming at the collective characterization of pools of molecules derived from different layers (DNA, RNA, proteins, metabolites) of living organisms using high-throughput technologies. Such omics analyses have been widely implemented in poultry research in recent years. This first part of a bipartite review on omics technologies in poultry health and productivity examines the use of multiple omics and multi-omics techniques in poultry research. More specific present and future applications of omics technologies, not only for the identification of specific diagnostic biomarkers, but also for potential future integration in the daily monitoring of poultry production, are discussed in part 2. Approaches based on omics technologies are particularly used in poultry research in the hunt for genetic markers of economically important phenotypical traits in the host, and in the identification of key bacterial species or functions in the intestinal microbiome. Integrative multi-omics analyses, however, are still scarce. Host physiology is investigated via genomics together with transcriptomics, proteomics and metabolomics techniques, to understand more accurately complex production traits such as disease resistance and fertility. The gut microbiota, as a key player in chicken productivity and health, is also a main subject of such studies, investigating the association between its composition (16S rRNA gene sequencing) or function (metagenomics, metatranscriptomics, metaproteomics, metabolomics) and host phenotypes. Applications of these technologies in the study of other host-associated microbiota and other host characteristics are still in their infancy.
Collapse
Affiliation(s)
- Tessa Dehau
- Livestock Gut Health Team (LiGHT) Ghent, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Richard Ducatelle
- Livestock Gut Health Team (LiGHT) Ghent, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Filip Van Immerseel
- Livestock Gut Health Team (LiGHT) Ghent, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Evy Goossens
- Livestock Gut Health Team (LiGHT) Ghent, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
9
|
Kim E, Kyoung H, Hyung Koh N, Lee H, Lee S, Kim Y, Il Park K, Min Heo J, Song M. Supplementation of live yeast culture modulates intestinal health, immune responses, and microbiota diversity in broiler chickens. J Anim Sci 2022; 100:6566408. [PMID: 35404458 PMCID: PMC9115899 DOI: 10.1093/jas/skac122] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/08/2022] [Indexed: 12/22/2022] Open
Abstract
The present study investigated the effects of live yeast cultures (LYC) on growth performance, gut health indicators, and immune responses in broiler chickens. A total of 720 mixed-sex broilers (40 birds/pen; 9 replicates/treatment) were randomly allocated to two dietary treatments: (1) a basal diet based on corn-soybean meal (CON) and (2) CON with 1 g/kg LYC. At 35 d of age, one bird per replicate pen was chosen for biopsy. LYC group tended (P < 0.10) to increase average daily gain during the grower phase compared with CON group. Broilers fed LYC diet had increased (P = 0.046) duodenal villus height and area but reduced (P = 0.003) duodenal crypt depth compared with those fed CON diet. Birds fed LYC diet presented alleviated (P < 0.05) serum TNF-α, IL-1β, and IL-6 levels compared with those fed CON diet. Further, birds fed LYC diet exhibited upregulated (P < 0.05) ileal tight junction-related proteins and pro-inflammatory cytokines in the ileal tissue compared with those fed CON diet. Inverse Simpson's diversity (P = 0.038) revealed that birds fed CON diet had a more diverse microbiota community in the ileal digesta, compared with those fed LYC diet, while no significant difference between the treatments on Chao1 and Shannon's indices was observed. Based on the weighted UniFrac distance, the PCoA showed that microbiota in the ileal digesta of the LYC group was different from that of the CON group. LYC group increased the abundance of the phyla Firmicutes and genera Lactobacillus, Prevotella, and Enterococcus compared with CON group. The present study demonstrated that supplemental LYC as a feed additive provide supportive effects on enhancing gut functionality by improving the upper intestinal morphology and gut integrity, and modulating the immune system and microbiota communities of birds.
Collapse
Affiliation(s)
- Eunjoo Kim
- School of Environmental and Rural Science, University of New England, Armidale NSW 2351, Australia.,Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, South Korea
| | - Hyunjin Kyoung
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, South Korea
| | - Nae Hyung Koh
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, South Korea
| | - Hanbae Lee
- Pathway Intermediates, Seoul 06253, South Korea
| | - Seonmin Lee
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, South Korea
| | - Yonghee Kim
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, South Korea
| | - Kyeong Il Park
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, South Korea
| | - Jung Min Heo
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, South Korea
| | - Minho Song
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, South Korea
| |
Collapse
|
10
|
Grzymajlo K. The Game for Three: Salmonella–Host–Microbiota Interaction Models. Front Microbiol 2022; 13:854112. [PMID: 35516427 PMCID: PMC9062650 DOI: 10.3389/fmicb.2022.854112] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Abstract
Colonization of the gastrointestinal (GI) tract by enteric pathogens occurs in a context strongly determined by host-specific gut microbiota, which can significantly affect the outcome of infection. The complex gameplay between the trillions of microbes that inhabit the GI tract, the host, and the infecting pathogen defines a specific triangle of interaction; therefore, a complete model of infection should consider all of these elements. Many different infection models have been developed to explain the complexity of these interactions. This review sheds light on current knowledge, along with the strengths and limitations of in vitro and in vivo models utilized in the study of Salmonella–host–microbiome interactions. These models range from the simplest experiment simulating environmental conditions using dedicated growth media through in vitro interaction with cell lines and 3-D organoid structure, and sophisticated “gut on a chip” systems, ending in various animal models. Finally, the challenges facing this field of research and the important future directions are outlined.
Collapse
|
11
|
Alkalbani NS, Osaili TM, Al-Nabulsi AA, Olaimat AN, Liu SQ, Shah NP, Apostolopoulos V, Ayyash MM. Assessment of Yeasts as Potential Probiotics: A Review of Gastrointestinal Tract Conditions and Investigation Methods. J Fungi (Basel) 2022; 8:jof8040365. [PMID: 35448596 PMCID: PMC9027893 DOI: 10.3390/jof8040365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 12/22/2022] Open
Abstract
Probiotics are microorganisms (including bacteria, yeasts and moulds) that confer various health benefits to the host, when consumed in sufficient amounts. Food products containing probiotics, called functional foods, have several health-promoting and therapeutic benefits. The significant role of yeasts in producing functional foods with promoted health benefits is well documented. Hence, there is considerable interest in isolating new yeasts as potential probiotics. Survival in the gastrointestinal tract (GIT), salt tolerance and adherence to epithelial cells are preconditions to classify such microorganisms as probiotics. Clear understanding of how yeasts can overcome GIT and salt stresses and the conditions that support yeasts to grow under such conditions is paramount for identifying, characterising and selecting probiotic yeast strains. This study elaborated the adaptations and mechanisms underlying the survival of probiotic yeasts under GIT and salt stresses. This study also discussed the capability of yeasts to adhere to epithelial cells (hydrophobicity and autoaggregation) and shed light on in vitro methods used to assess the probiotic characteristics of newly isolated yeasts.
Collapse
Affiliation(s)
- Nadia S. Alkalbani
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Tareq M. Osaili
- Department Clinical Nutrition and Dietetics, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Anas A. Al-Nabulsi
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P. O. Box 330127, Zarqa 13133, Jordan;
| | - Shao-Quan Liu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, S14 Level 5, Science Drive 2, Singapore 117542, Singapore;
| | - Nagendra P. Shah
- Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong 999077, China;
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia;
- Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Mutamed M. Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Correspondence:
| |
Collapse
|
12
|
Danladi Y, Loh TC, Foo HL, Akit H, Md Tamrin NA, Mohammad Naeem A. Impact of Feeding Postbiotics and Paraprobiotics Produced From Lactiplantibacillus plantarum on Colon Mucosa Microbiota in Broiler Chickens. Front Vet Sci 2022; 9:859284. [PMID: 35425828 PMCID: PMC9001976 DOI: 10.3389/fvets.2022.859284] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
This study was conducted to evaluate the impact of feeding postbiotics and paraprobiotics produced from Lactiplantibacillus plantarum on colon mucosa microbiota in broiler chickens. In this study, 336 one-day-old COBB 500 chicks were randomly allotted to eight treatment groups and replicated six times with seven birds per replicate. The treatment included T1 (Negative control) = Basal diet, T2 (Positive control) = Basal diet + 0.01% oxytetracycline, T3 = Basal diet + 0.2% postbiotic TL1, T4 = Basal diet + 0.2% postbiotic RS5, T5 = Basal diet + 0.2% paraprobiotic RG11, T6 = Basal diet + 0.2% postbiotic RI11, T7 = Basal diet + 0.2% paraprobiotic RG14, and T8 = Basal diet + 0.2% paraprobiotic RI11. There were reported changes in the bacterial community using 16S rRNA sequencing of the colon mucosa. The results of the sequencing of 16S rRNA genes in the colon mucosa samples indicated that compared to birds fed the negative control diet, birds fed paraprobiotic RI11 diets were recorded to have a lower relative abundance of Proteobacteria, while those fed the positive control were recorded to have a higher proportion of Firmicutes. Also, lower Enterococcus was reported in paraprobiotic RI11, while the most abundant genus was Bacteroides in postbiotic TL1. This study revealed that supplementation of postbiotics and paraprobiotics in the diets of broilers demonstrated positive effects on the microbiota by supporting the increase of beneficial microbes like the Firmicutes while decreasing harmful microbes like the Proteobacteria. Therefore, this study has provided knowledge on the modification of chicken mucosa microbiota through the feeding of postbiotics and paraprobiotics.
Collapse
Affiliation(s)
- Yohanna Danladi
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
| | - Teck Chwen Loh
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Malaysia
- *Correspondence: Teck Chwen Loh
| | - Hooi Ling Foo
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
- Hooi Ling Foo
| | - Henny Akit
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Nur Aida Md Tamrin
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
| | - Azizi Mohammad Naeem
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
13
|
Mohsin Bukhari S, Ahmed Alghamdi H, Ur Rehman K, Andleeb S, Ahmad S, Khalid N. Metagenomics analysis of the fecal microbiota in Ring-necked pheasants ( Phasianus colchicus) and Green pheasants ( Phasianus versicolor) using next generation sequencing. Saudi J Biol Sci 2022; 29:1781-1788. [PMID: 35280539 PMCID: PMC8913415 DOI: 10.1016/j.sjbs.2021.10.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/06/2021] [Accepted: 10/18/2021] [Indexed: 11/26/2022] Open
Abstract
Pheasant reintroduction and conservation efforts have been in place in Pakistan since the 1980 s, yet there is still a scarcity of data on pheasant microbiome and zoonosis. Instead of growing vast numbers of bacteria in the laboratory, to investigate the fecal microbiome, pheasants (green and ring neck pheasant) were analyzed using 16S rRNA metagenomics and using IonS5TMXL sequencing from two flocks more than 10 birds. Operational taxonomic unit (OTU) cluster analysis and phylogenetic tree analysis was performed using Mothur software against the SSUrRNA database of SILVA and the MUSCLE (Version 3.8.31) software. Results of the analysis showed that firmicutes were the most abundant phylum among the top ten phyla, in both pheasant species, followed by other phyla such as actinobacteria and proteobacteria in ring necked pheasant and bacteroidetes in green necked pheasant. Bacillus was the most relatively abundant genus in both pheasants followed by Oceanobacillus and Teribacillus for ring necked pheasant and Lactobacillus for green necked pheasant. Because of their well-known beneficial characteristics, these genus warrants special attention. Bird droppings comprise germs from the urinary system, gut, and reproductive sites, making it difficult to research each anatomical site at the same time. We conclude that metagenomic analysis and classification provides baseline information of the pheasant fecal microbiome that plays a role in disease and health.
Collapse
Affiliation(s)
- Syed Mohsin Bukhari
- Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Huda Ahmed Alghamdi
- Department of Biology, College of Sciences, King Khalid University, Abha, Saudi Arabia
| | - Khalil Ur Rehman
- Department of Environmental Sciences, GCW University, Sailkot 51310, Pakistan
| | - Shahla Andleeb
- Department of Environmental Sciences, GCW University, Sailkot 51310, Pakistan
| | - Shahbaz Ahmad
- Department of Entomology, University of the Punjab, 54590 Lahore, Pakistan
| | - Nimra Khalid
- Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| |
Collapse
|
14
|
Ma J, Long S, Wang J, Gao J, Piao X. Microencapsulated essential oils combined with organic acids improves immune antioxidant capacity and intestinal barrier function as well as modulates the hindgut microbial community in piglets. J Anim Sci Biotechnol 2022; 13:16. [PMID: 35144681 PMCID: PMC8832826 DOI: 10.1186/s40104-021-00670-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 12/14/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The objective of this experiment was to evaluate the effect of a combination of microencapsulated essential oils and organic acids (MOA) on growth performance, immuno-antioxidant status, intestinal barrier function and microbial structure of the hindgut in piglets. A total of 120 piglets (Duroc × [Landrace × Yorkshire]; weighted 7.66 ± 1.79 kg, weaned at d 28) were randomly selected and allocated to 3 treatments with 4 replicates per group and 10 piglets per replicate according to the initial body weight and gender. The dietary treatments were as follows: 1) basal diet (Ctrl); 2) Ctrl + chlortetracycline (75 mg/kg) (AGP); 3) Ctrl+ MOA (1500 mg/kg). The experiment period was lasted for 21 d. RESULTS Compared to the Ctrl group, dietary supplemented MOA alleviated (P < 0.05) the diarrhea rate from d 12 to 21, enhanced (P < 0.05) the concentration of serum interlukin-10 and glutathione peroxidase in piglets on d 11 after weaning and serum superoxide dismutase in 21-day piglets. The MOA group also improved (P < 0.05) the apparent digestibility of dry matter (DM), organic matter (OM) and gross energy (GE), up-regulated (P < 0.05) the mRNA expression level of occludin, claudin-1 and mucin-2 in ileum and increased (P < 0.05) the contents of propionic and butyric acids in the cecum of piglets. The MOA group modulated the cecal and colonic microbial community structure and increased (P < 0.05) the abundance of Faecalibacterium and Muribaculaceae in cecum and Streptococcus and Weissella in colon. Additionally, AGP group decreased (P < 0.05) apparent digestibility of DM, OM and GE as well as down-regulated (P < 0.05) relative gene expression level of claudin-1 in duodenum and jejunum, ZO-1 and mucin-1 in jejunum of piglets. CONCLUSION In summary, dietary supplemented MOA alleviated diarrhea and improved nutrient apparent digestibility in piglets via enhancing immuno-antioxidant properties, increasing digestive enzyme activity, up-regulating the expression of intestinal barrier-related genes, and modifying the microbial community structure of the cecum and colon. Therefore, dietary supplementation with MOA as an alternative to antibiotics was feasible to improve intestinal health of piglets in practical production.
Collapse
Affiliation(s)
- Jiayu Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shenfei Long
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jian Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jie Gao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
15
|
Shehata AM, Paswan VK, Attia YA, Abdel-Moneim AME, Abougabal MS, Sharaf M, Elmazoudy R, Alghafari WT, Osman MA, Farag MR, Alagawany M. Managing Gut Microbiota through In Ovo Nutrition Influences Early-Life Programming in Broiler Chickens. Animals (Basel) 2021; 11:3491. [PMID: 34944266 PMCID: PMC8698130 DOI: 10.3390/ani11123491] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/11/2022] Open
Abstract
The chicken gut is the habitat to trillions of microorganisms that affect physiological functions and immune status through metabolic activities and host interaction. Gut microbiota research previously focused on inflammation; however, it is now clear that these microbial communities play an essential role in maintaining normal homeostatic conditions by regulating the immune system. In addition, the microbiota helps reduce and prevent pathogen colonization of the gut via the mechanism of competitive exclusion and the synthesis of bactericidal molecules. Under commercial conditions, newly hatched chicks have access to feed after 36-72 h of hatching due to the hatch window and routine hatchery practices. This delay adversely affects the potential inoculation of the healthy microbiota and impairs the development and maturation of muscle, the immune system, and the gastrointestinal tract (GIT). Modulating the gut microbiota has been proposed as a potential strategy for improving host health and productivity and avoiding undesirable effects on gut health and the immune system. Using early-life programming via in ovo stimulation with probiotics and prebiotics, it may be possible to avoid selected metabolic disorders, poor immunity, and pathogen resistance, which the broiler industry now faces due to commercial hatching and selection pressures imposed by an increasingly demanding market.
Collapse
Affiliation(s)
- Abdelrazeq M. Shehata
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India;
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt;
| | - Vinod K. Paswan
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India;
| | - Youssef A. Attia
- Agriculture Department, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdel-Moneim Eid Abdel-Moneim
- Nuclear Research Center, Biological Applications Department, Egyptian Atomic Energy Authority, Abu-Zaabal 13759, Egypt;
| | - Mohammed Sh. Abougabal
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt;
| | - Mohamed Sharaf
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China;
- Department of Biochemistry, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt
| | - Reda Elmazoudy
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (R.E.); (M.A.O.)
- Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Wejdan T. Alghafari
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohamed A. Osman
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (R.E.); (M.A.O.)
- Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Mahmoud Alagawany
- Poultry Department, Agriculture Faculty, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
16
|
Aruwa CE, Pillay C, Nyaga MM, Sabiu S. Poultry gut health - microbiome functions, environmental impacts, microbiome engineering and advancements in characterization technologies. J Anim Sci Biotechnol 2021; 12:119. [PMID: 34857055 PMCID: PMC8638651 DOI: 10.1186/s40104-021-00640-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal tract (GIT) health impacts animal productivity. The poultry microbiome has functions which range from protection against pathogens and nutrients production, to host immune system maturation. Fluctuations in the microbiome have also been linked to prevailing environmental conditions. Healthy poultry birds possess a natural resistance to infection. However, the exploration of environmental impacts and other relevant factors on poultry growth and health have been underplayed. Since good performance and growth rate are central to animal production, the host-microbiome relationship remains integral. Prior to the emergence of metagenomic techniques, conventional methods for poultry microbiome studies were used and were low-throughput and associated with insufficient genomic data and high cost of sequencing. Fortunately, the advent of high-throughput sequencing platforms have circumvented some of these shortfalls and paved the way for increased studies on the poultry gut microbiome diversity and functions. Here, we give an up-to-date review on the impact of varied environments on microbiome profile, as well as microbiome engineering and microbiome technology advancements. It is hoped that this paper will provide invaluable information that could guide and inspire further studies on the lingering pertinent questions about the poultry microbiome.
Collapse
Affiliation(s)
- Christiana Eleojo Aruwa
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Charlene Pillay
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Martin M Nyaga
- Next Generation Sequencing Unit, Division of Virology, Faculty of Heath Sciences, University of the Free State, Bloemfontein, South Africa
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa.
| |
Collapse
|
17
|
Potential Replacements for Antibiotic Growth Promoters in Poultry: Interactions at the Gut Level and Their Impact on Host Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:145-159. [PMID: 34807441 DOI: 10.1007/978-3-030-85686-1_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The chicken gastrointestinal tract (GIT) has a complex, biodiverse microbial community of ~ 9 million bacterial genes plus archaea and fungi that links the host diet to its health. This microbial population contributes to host physiology through metabolite signaling while also providing local and systemic nutrients to multiple organ systems. In a homeostatic state, the host-microbial interaction is symbiotic; however, physiological issues are associated with dysregulated microbiota. Manipulating the microbiota is a therapeutic option, and the concept of adding beneficial bacteria to the intestine has led to probiotic and prebiotic development. The gut microbiome is readily changeable by diet, antibiotics, pathogenic infections, and host- and environmental-dependent events. The intestine performs key roles of nutrient absorption, tolerance of beneficial microbiota, yet responding to undesirable microbes or microbial products and preventing translocation to sterile body compartments. During homeostasis, the immune system is actively preventing or modulating the response to known or innocuous antigens. Manipulating the microbiota through nutrition, modulating host immunity, preventing pathogen colonization, or improving intestinal barrier function has led to novel methods to prevent disease, but also resulted in improved body weight, feed conversion, and carcass yield in poultry. This review highlights the importance of adding different feed additives to the diets of poultry in order to manipulate and enhance health and productivity of flocks.
Collapse
|
18
|
Effect of organic acids-essential oils blend and oat fiber combination on broiler chicken growth performance, blood parameters, and intestinal health. ACTA ACUST UNITED AC 2021; 7:1039-1051. [PMID: 34738034 PMCID: PMC8546314 DOI: 10.1016/j.aninu.2021.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 11/20/2022]
Abstract
This study evaluated the effect of organic acids-essential oils blend with or without oat hulls (OH) on growth performance, organ weights, blood parameters, gut morphology, microbiota, and short-chain fatty acids (SCFA) in broiler chickens. Day-old broiler chickens were randomly allocated to 4 dietary treatments consisting of 1) a corn-soybean meal-wheat based diet (BAS), 2) BAS + 0.05% bacitracin methylene disalicylate (BMD), 3) BAS + protected organic acids-essential oils at 300 g/1,000 kg of feed (OE), and 4) BAS + protected organic acids-essential oils at 300 g/1,000 kg of feed + 3% OH (OEOH), in 8 replicate groups. Feeding was in starter (d 0 to 14), grower (d 14 to 24), and finisher (d 24 to 36) phases. Body weight (BW), feed intake (FI), feed conversion ratio (FCR), and mortality were determined weekly. On d 36, 8 chickens per treatment were sampled for blood biochemistry, organ weights, cecal SCFA production, and microbiota. Treatments had no effect on FI and FCR at all phases. Both OE and OEOH treatments reduced (P < 0.001) the body weight gain of birds at the starter phase. Birds fed the OEOH treatment had higher (P < 0.001) gizzard weight, while those offered the BMD diet showed a tendency (P = 0.08) to have higher cecal weight. Birds in the OEOH treatment recorded increased ileal villus height and villus height-to-crypt depth ratio, as well as reduced duodenal crypt depth, while birds in the OE treatment had increased jejunal villus height and villus height-to-crypt depth ratio. Both OEOH and OE treatments increased the number of goblet cells produced in the duodenum and jejunum. Treatments had no effect on SCFA concentrations. Birds in the OE treatment recorded the lowest concentration of blood urea (P = 0.05) and cholesterol (P < 0.05). Both OE and OEOH treatments increased (P < 0.05) the relative abundance of potentially beneficial bacteria in the genus Firmicutes_unclassified, Ruminococcus, Turicibacter, and Erysipelotrichaceae_unclassified, while reducing (P < 0.001) the relative abundance of potentially harmful Coprobacillus. Conclusively, both protected organic acids-essential oils blend and its combination with oat fibers show potential as tools to achieve antibiotics reduction in broiler production.
Collapse
|
19
|
Khomayezi R, Adewole D. Probiotics, prebiotics, and synbiotics: an overview of their delivery routes and effects on growth and health of broiler chickens. WORLD POULTRY SCI J 2021. [DOI: 10.1080/00439339.2022.1988804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Rojman Khomayezi
- Department of Animal Science and Aquaculture, Dalhousie University Faculty of Agriculture, Bible Hill, Canada
| | - Deborah Adewole
- Department of Animal Science and Aquaculture, Dalhousie University Faculty of Agriculture, Bible Hill, Canada
| |
Collapse
|
20
|
Wan Z, Sun N, Luo M, Gan B, Yao Z, Cao X, Wang H, Pan K, Shu G, Zeng Y, Zeng D, Ni X. Promotion of Egg Production Rate and Quality Using Limosilactobacillus oris BSLO 1801, a Potential Probiotic Screened from Feces of Laying Hens with Higher Egg Productive Performance. Probiotics Antimicrob Proteins 2021; 15:535-547. [PMID: 34697775 DOI: 10.1007/s12602-021-09856-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2021] [Indexed: 02/08/2023]
Abstract
In this experiment, laying hens were divided into a high productive group (group H) and a low productive group (group L). The purpose of this experiment was to screen and isolate a potential probiotic associated with the laying rate from group H by comparing the results via 16S rDNA high-throughput sequencing. The high-throughput sequencing analysis results showed that there were some differences in the composition of the gut microbiome between groups H and L on the Phylum and Genus levels. Through isolation and identification, we screened 16 lactobacilli strains. Among the 16 strains, S5 showed good acid tolerance, bile salt tolerance, and cholesterol degradation. Therefore, we chose strain S5 (identified as Limosilactobacillus oris, named Limosilactobacillus oris BSLO 1801) as a potential probiotic to promote the productivity of ordinary laying hens. During the animal experiment, 288 Hy-line white hens (30 weeks old) were divided into four groups, with six replications (n = 12) per group. The control group received the basic diet, and the treatment groups received the same basic diet supplemented with 107 CFU/kg, 108 CFU/kg, and 109 CFU/kg of BSLO 1801. The laying hens were acclimated to the environment for 1 week before the initiation of the experiment. Dietary supplementation with 107 CFU/kg and 109 CFU/kg of BSLO 1801 increased the laying rate significantly, and the potential probiotic improved the egg weight in all treatment groups. Additionally, the cholesterol content of the yolk dropped significantly in the 109 CFU/kg group, and the weight of egg yolk was significantly increased in all treatment groups. However, no significant differences in eggshell strength, eggshell thickness, protein height, and Haugh unit were observed among the four groups. These results revealed that lactobacilli spp. are important bacteria of the intestinal microbiome in highly productive laying hens, and BSLO 1801 was isolated as a potential probiotic. Through these animal experiments, we also found that adding BSLO 1801 to the basic diet of laying hens could effectively improve the laying rate, average egg weight, and yolk weight and reduce the cholesterol content in egg yolk.
Collapse
Affiliation(s)
- Zhiqiang Wan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ning Sun
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Min Luo
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Baoxing Gan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhipeng Yao
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xi Cao
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hesong Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kangcheng Pan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Gang Shu
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yan Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dong Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
21
|
Abstract
Alternative poultry production systems continue to expand as markets for organic and naturally produced poultry meat and egg products increase. However, these production systems represent challenges associated with variable environmental conditions and exposure to foodborne pathogens. Consequently, there is a need to introduce feed additives that can support bird health and performance. There are several candidate feed additives with potential applications in alternative poultry production systems. Prebiotic compounds selectively stimulate the growth of beneficial gastrointestinal microorganisms leading to improved health of the host and limiting the establishment of foodborne pathogens. The shift in the gastrointestinal microbiota and modulation of fermentation can inhibit the establishment of foodborne pathogens such as Campylobacter and Salmonella. Both current and potential applications of prebiotics in alternative poultry production systems will be discussed in this review. Different sources and types of prebiotics that could be developed for alternative poultry production will also be explored.
Collapse
Affiliation(s)
- Steven C Ricke
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI.
| |
Collapse
|
22
|
Meijerink N, de Oliveira JE, van Haarlem DA, Hosotani G, Lamot DM, Stegeman JA, Rutten VPMG, Jansen CA. Glucose Oligosaccharide and Long-Chain Glucomannan Feed Additives Induce Enhanced Activation of Intraepithelial NK Cells and Relative Abundance of Commensal Lactic Acid Bacteria in Broiler Chickens. Vet Sci 2021; 8:110. [PMID: 34204778 PMCID: PMC8231533 DOI: 10.3390/vetsci8060110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 12/25/2022] Open
Abstract
Restrictions on the use of antibiotics in the poultry industry stimulate the development of alternative nutritional solutions to maintain or improve poultry health. This requires more insight in the modulatory effects of feed additives on the immune system and microbiota composition. Compounds known to influence the innate immune system and microbiota composition were selected and screened in vitro, in ovo, and in vivo. Among all compounds, 57 enhanced NK cell activation, 56 increased phagocytosis, and 22 increased NO production of the macrophage cell line HD11 in vitro. Based on these results, availability and regulatory status, six compounds were selected for further analysis. None of these compounds showed negative effects on growth, hatchability, and feed conversion in in ovo and in vivo studies. Based on the most interesting numerical results and highest future potential feasibility, two compounds were analyzed further. Administration of glucose oligosaccharide and long-chain glucomannan in vivo both enhanced activation of intraepithelial NK cells and led to increased relative abundance of lactic acid bacteria (LAB) amongst ileum and ceca microbiota after seven days of supplementation. Positive correlations between NK cell subsets and activation, and relative abundance of LAB suggest the involvement of microbiota in the modulation of the function of intraepithelial NK cells. This study identifies glucose oligosaccharide and long-chain glucomannan supplementation as effective nutritional strategies to modulate the intestinal microbiota composition and strengthen the intraepithelial innate immune system.
Collapse
Affiliation(s)
- Nathalie Meijerink
- Department Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (N.M.); (D.A.v.H.); (V.P.M.G.R.)
| | | | - Daphne A. van Haarlem
- Department Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (N.M.); (D.A.v.H.); (V.P.M.G.R.)
| | - Guilherme Hosotani
- Cargill R&D Center Europe, B-1800 Vilvoorde, Belgium; (J.E.d.O.); (G.H.)
| | - David M. Lamot
- Cargill Animal Nutrition and Health Innovation Center, 5334 LD Velddriel, The Netherlands;
| | - J. Arjan Stegeman
- Department Population Health Sciences, Division Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands;
| | - Victor P. M. G. Rutten
- Department Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (N.M.); (D.A.v.H.); (V.P.M.G.R.)
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria 0110, South Africa
| | - Christine A. Jansen
- Department Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (N.M.); (D.A.v.H.); (V.P.M.G.R.)
| |
Collapse
|
23
|
Naseem S, Willits N, King AJ. Varying combinations of Lactobacillus species: impact on laying hens' performance, nitrogenous compounds in manure, serum profile, and uric acid in the liver. Transl Anim Sci 2021; 5:txab018. [PMID: 33997653 PMCID: PMC8112121 DOI: 10.1093/tas/txab018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 02/16/2021] [Indexed: 11/12/2022] Open
Abstract
This study was conducted to evaluate the effects of various combinations of Lactobacillus species (L. rhamnosus, L. paracasei, and L. plantarum) on closely associated variables of production of laying hens, nitrogenous compounds in manure, the serum concentration of specific chemicals, and liver uric acid (UA) concentrations at peak lay. White Leghorns W-36 (32-week-old) were randomly assigned to five treatments for 8 weeks. Treatments were T1, the Control, a commercial feed; T2, the Control + L. paracasei + L. plantarum; T3, the Control + L. paracasei + L. rhamnosus; T4, the Control + L. plantarum + L. rhamnosus and T5, the Control + L. paracasei + L. plantarum + L. rhamnosus. Each bacterial species was included at 3.33 × 1011cfu/kg feed for a total of 6.66 x 1011 cfu/kg feed for T2–T4 and a total of 1.0 × 1012 cfu/kg feed for T5. Major effects among combinations of probiotics on production were not noted. The interaction of Probiotics by Week (Probiotics*Time) affected feed intake (P = 0.0007) and feed conversion ratio (FCR, P = 0.0049) due to fluctuation by week. Significant effects of time were also recorded for a gradual increase in body weight (BW, P = 0.0007); lowest and greatest feed intake at weeks 2 and 7, respectively (P < 0.0001); an increase in egg production (P = 0.0007) and maximum FCR at week 7 (P < 0.0001). Ammonia (NH3) concentration, ammonium nitrogen (NH4–N), total Kjeldahl nitrogen (TKN), and total nitrogen remained unaffected at P < 0.05. Although there were fluctuations, a trend emerged for the reduction of TKN. Combinations of probiotics did not affect NH3, UA, total protein (TP), albumin (ALB), creatine kinase (CK), and UA in the liver. Temporal (Time as a fixed effect) effects were noted for all nitrogenous compounds present in manure. For ammonia, temporal effects were significant due to fluctuation over time. Week 0 had the lowest value followed by weeks 4 and 8. Week 6 had the greatest value. For ammonium nitrogen, week 8 had the lowest value followed by week 0 and 4 with the next highest value. Week 6 had the greatest value. For TKN, week 4 had the lowest value followed by weeks 6 and 8. Week 0 had the greatest value. For TN, weeks 4, 6, and 8 had similar and lowest values followed by week 0 having the greatest value. However, an overall reduction in NH4-N, TKN, and TN was noted. Fluctuations in NH3 (P = 0.0033) and CK (P = 0.0085) were noted for Time. There was also a trend (P = 0.0706) for the increase of UA in serum. Two or more species of probiotics with yeast should be investigated. If the combination is applicable for increasing production measurements and reducing nitrogenous and serum compounds, the most appropriate time to feed the probiotics from day 1 to the end of production should be investigated.
Collapse
Affiliation(s)
- Sadia Naseem
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Neil Willits
- Department of Statistics, University of California, Davis, CA 95616, USA
| | - Annie J King
- Department of Animal Science, University of California, Davis, CA 95616, USA
| |
Collapse
|
24
|
Bean-Hodgins L, Kiarie EG. Mandated restrictions on the use of medically important antibiotics in broiler chicken production in Canada: implications, emerging challenges, and opportunities for bolstering gastrointestinal function and health– A review. CANADIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1139/cjas-2021-0015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chicken Farmers of Canada has been progressively phasing out prophylactic use of antibiotics in broiler chicken production. Consequently, hatcheries, veterinarians, and nutritionists have been mandated to contend with less reliance on use of preventive antibiotics. A topical concern is the increased risk of proliferation of enteric pathogens leading to poor performance, increased mortality and compromised welfare. Moreover, the gut harbors several taxa such as Campylobacter and Salmonella capable of causing significant illnesses in humans via contaminated poultry products. This has created opportunity for research and development of dietary strategies designed to modulate gastrointestinal environment for enhanced performance and food safety. Albeit with inconsistent responses, literature data suggests that dietary strategies such as feed enzymes, probiotics/prebiotics and phytogenic feed additives can bolster gut health and function in broiler chickens. However, much of the efficacy data was generated at controlled research settings that vary significantly with the complex commercial broiler production operations due to variation in dietary, health and environmental conditions. This review will summarize implications of mandated restrictions on the preventative use of antibiotics and emerging Canadian broiler production programs to meet processor specifications. Challenges and opportunities for integrating alternative dietary strategies in commercial broiler production settings will be highlighted.
Collapse
Affiliation(s)
- Lisa Bean-Hodgins
- New-Life Mills, A division of Parrish & Heimbecker, Cambridge , Ontario, Canada
- University of Guelph, 3653, Department of Animal Biosciences, Guelph, Ontario, Canada
| | - Elijah G. Kiarie
- University of Guelph, Department of Animal Biosciences, 50 Stone Road East, Guelph, Ontario, Canada, N1G 2W1
| |
Collapse
|
25
|
Zhang M, Wen Y, Luo X, Wang X, Li J, Liu A, He L, Chen S, Ao X, Yang Y, Zou L, Liu S. Characterization, mechanism of cypermethrin biosorption by Saccharomyces cerevisiae strains YS81 and HP and removal of cypermethrin from apple and cucumber juices by inactive cells. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124350. [PMID: 33176957 DOI: 10.1016/j.jhazmat.2020.124350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Cypermethrin is a common food contaminant and environmental pollutant that cause health threats to animals and humans. In this study, the characterization, mechanism, and application of cypermethrin removal by Saccharomyces cerevisiae were investigated. The binding of cypermethrin by the strains S. cerevisiae YS81 and HP was rapid and reached equilibrium at 2-8 h. The removal efficiency was dependent on incubation temperature and yeast concentration, whereas cypermethrin binding was not affected by pH. Heat and acid treatments enhanced the binding ability. Both strains survived in simulated digestion juices and removed cypermethrin effectively under simulated gastrointestinal conditions. Among the strains tested, the YS81 strain was the better candidate for cypermethrin concentration reduction. For the two S. cerevisiae strains, the biosorption kinetics and isotherm followed the pseudo-second-order model and Langmuir model well. The cell walls and the protoplasts were the main yeast cell components involved in cypermethrin binding. Fourier transformed infrared spectroscopy analysis revealed that -OH, -NH, -C-N, -COO-, and -C-O played a major role in binding cypermethrin. Inactive cells effectively removed cypermethrin from apple and cucumber juices and did not affect the physico-chemical properties. Therefore, S. cerevisiae strains YS81 and HP may be used for cypermethrin reduction in food or feed.
Collapse
Affiliation(s)
- Mengmei Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Yunling Wen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Xiaoli Luo
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Xingjie Wang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Jianlong Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Aiping Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Li He
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Shujuan Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Xiaolin Ao
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China; Institute of Food Processing and Safety, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Yong Yang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China; Institute of Food Processing and Safety, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan 611130, People's Republic of China
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China; Institute of Food Processing and Safety, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China.
| |
Collapse
|
26
|
Comparative efficacy of spray-dried plasma and bacitracin methylene disalicylate in reducing cecal colonization by Salmonella Enteritidis in broiler chickens. Poult Sci 2021; 100:101134. [PMID: 34089939 PMCID: PMC8182271 DOI: 10.1016/j.psj.2021.101134] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 02/28/2021] [Accepted: 03/04/2021] [Indexed: 12/19/2022] Open
Abstract
Spray-dried plasma (SDP) contains immunoglobulins and glycoproteins that possess antibacterial properties. Two floor-pen trials were conducted to determine the efficacy of dietary SDP and bacitracin methylene disalicylate (BMD) antibiotic in reducing intestinal colonization by Salmonella Enteritidis (SE) in broiler chickens. Experiment 1 was a 2-wk, 3 × 2 factorial design consisting of 6 treatments. Treatment CON consisted of chicks fed unmedicated corn-soybean meal (SBM) basal without SDP. Treatment BMD consisted of chicks given unmedicated corn-SBM basal into which BMD was added at 0.055g/kg diet. Treatment SDP consisted of chicks given unmedicated corn-SBM basal into which SDP was added at 30g/kg diet. Treatments CON-SE, BMD-SE, and SDP-SE consisted of chicks that were given diets similar to CON, BMD, and SDP, respectively, and were each inoculated with 7.46 × 108 CFU SE /mL at 1 day of age. Experiment 2 was a 42-day trial that was similar to Experiment 1 in design, except that chicks were placed on fresh clean litter. On d 3, 7, 14, and 28 post-challenge (PC), ceca SE concentration was enumerated on xylose lysine tergitol-4 (XLT4) agar. Body weight gain (BWG) and feed conversion ratio (FCR) were also recorded. Results for d 3 showed that BMD- and SDP-fed chicks had similar (P > 0.05) cecal SE (3.39 log 10 CFU / g and 3.58 log 10 CFU / g, respectively), but these levels were lower (P < 0.05) than that of CON-fed chicks (5.68 log 10 CFU / g). A similar trend was observed on d 7 and 14 PC. The BMD- and SDP-fed chicks also had higher BWG and FCR (P < 0.05) when compared with CON-fed chicks up to d 14. Thereafter, only BMD treatment sustained this growth-promoting effect till d 42 in SE-challenged birds. In conclusion, BMD and SDP showed similar efficacy in reducing cecal Salmonella and in mitigating consequent growth-depressing effect(s) in broiler chicks up to 2 wk of age.
Collapse
|
27
|
Holanda DM, Kim SW. Mycotoxin Occurrence, Toxicity, and Detoxifying Agents in Pig Production with an Emphasis on Deoxynivalenol. Toxins (Basel) 2021; 13:toxins13020171. [PMID: 33672250 PMCID: PMC7927007 DOI: 10.3390/toxins13020171] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 11/16/2022] Open
Abstract
This review aimed to investigate the occurrence of mycotoxins, their toxic effects, and the detoxifying agents discussed in scientific publications that are related to pig production. Mycotoxins that are of major interest are aflatoxins and Fusarium toxins, such as deoxynivalenol and fumonisins, because of their elevated frequency at a global scale and high occurrence in corn, which is the main feedstuff in pig diets. The toxic effects of aflatoxins, deoxynivalenol, and fumonisins include immune modulation, disruption of intestinal barrier function, and cytotoxicity leading to cell death, which all result in impaired pig performance. Feed additives, such as mycotoxin-detoxifying agents, that are currently available often combine organic and inorganic sources to enhance their adsorbability, immune stimulation, or ability to render mycotoxins less toxic. In summary, mycotoxins present challenges to pig production globally because of their increasing occurrences in recent years and their toxic effects impairing the health and growth of pigs. Effective mycotoxin-detoxifying agents must be used to boost pig health and performance and to improve the sustainable use of crops.
Collapse
|
28
|
Khattab AAA, El Basuini MFM, El-Ratel IT, Fouda SF. Dietary probiotics as a strategy for improving growth performance, intestinal efficacy, immunity, and antioxidant capacity of white Pekin ducks fed with different levels of CP. Poult Sci 2020; 100:100898. [PMID: 33518354 PMCID: PMC7936136 DOI: 10.1016/j.psj.2020.11.067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/24/2020] [Accepted: 11/29/2020] [Indexed: 12/26/2022] Open
Abstract
The potential impacts of probiotics on the performance and health status of white Pekin ducks fed with optimal or suboptimal dietary CP were evaluated during the growing period. A total of 180 male white Pekin ducks (14-day-old ducks with an initial weight of 415.65 ± 2.20 g) were randomly divided into 4 experimental groups (45 in each group of 5 replicates) in a 2 × 2 factorial design. The main factors included 2 dietary CP levels (18 or 14%) and dietary probiotic addition (with or without probiotics). The probiotic source was supplemented at 0.2 g per kilogram of diet from a blend of Lactobacillus acidophilus and Lactobacillus casei. The results showed that the diet containing 18% CP and probiotics significantly increases the final and total weight gain. Activities of intestinal enzymes (amylase, lipase, and protease), morphometrics (villus length, goblet cell count, and cryptal depth), and carcass percentage were also increased significantly. Total protein content, lysozyme activity, bactericidal activity, nitro blue tetrazolium levels, alternative complement pathway, superoxide dismutase activity, and catalase activity were significantly increased, whereas glucose, cortisol, and total cholesterol levels were decreased when treated with diet containing 18% CP and probiotics. Conversely, the group treated with diet containing 14% CP without probiotics showed the poorest performance, carcass properties, immune response, and antioxidant potential. In conclusion, probiotic addition to the 14% CP diet improved the performance of white Pekin ducks caused by reduced CP diet to performance due to the 18% CP diet without probiotic supplementation.
Collapse
Affiliation(s)
- Ahmed A A Khattab
- Department of Animal Production, Faculty of Agriculture, Tanta University, 31527 Tanta, Egypt
| | - Mohammed F M El Basuini
- Department of Animal Production, Faculty of Agriculture, Tanta University, 31527 Tanta, Egypt; Faculty of Desert Agriculture, King Salman International University, South Sinai, Egypt.
| | - Ibrahim T El-Ratel
- Department of Poultry Production, Faculty of Agriculture, Damietta University, 34517 Damietta, Egypt
| | - Sara F Fouda
- Department of Poultry Production, Faculty of Agriculture, Mansoura University, 35516 Mansoura, Egypt
| |
Collapse
|
29
|
Bacillus subtilis delivery route: effect on growth performance, intestinal morphology, cecal short-chain fatty acid concentration, and cecal microbiota in broiler chickens. Poult Sci 2020; 100:100809. [PMID: 33518343 PMCID: PMC7936168 DOI: 10.1016/j.psj.2020.10.063] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/09/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
As the poultry industry recedes from the use of antibiotic growth promoters, the need to evaluate the efficacy of possible alternatives and the delivery method that maximizes their effectiveness arises. This study aimed at expounding knowledge on the effect of the delivery method of a probiotic product (Bacillus subtilis fermentation extract) on performance and gut parameters in broiler chickens. A total of 450 fertile eggs sourced from Cobb 500 broiler breeders were randomly allotted to 3 groups: in ovo probiotic (n = 66), in ovo saline (n = 66), and noninjection (n = 200) and incubated for 21 d. On day 18.5 of incubation, 200 μL of either probiotic (10 × 106 cfu) or saline was injected into the amnion. At hatch, chicks were reallotted to 6 new treatment groups: in ovo probiotic, in ovo saline, in-feed antibiotics, in-water probiotic, in-feed probiotics, and control (corn-wheat-soybean diet) in 6 replicate cages and raised for 28 d. Of all hatch parameters evaluated, only percentage pipped eggs was found significant (P < 0.05) with the noninjection group having higher percentage pipped eggs than the other groups. Treatments did not affect the incidence of necrotic enteritis on day 28 (P > 0.05). Irrespective of the delivery method, the probiotic treatments had no significant effect on growth performance. The ileum villus width of the in ovo probiotic treatment was 18% higher than the in ovo saline group (P = 0.05) but not statistically higher than other groups. The jejunum villus height was 23% higher (P = 0.000) in the in ovo probiotic group than in the control group. There was no effect of treatment on total cecal short-chain fatty acid concentration and cecal gut microbiota composition and diversity (P > 0.05), although few unique bacteria differential abundance were recorded per treatment. Conclusively, although probiotic treatments (irrespective of the delivery route) did not affect growth performance, in ovo delivery of the probiotic product enhanced intestinal morphology, without compromising hatch performance and gut homeostasis.
Collapse
|
30
|
Belizário JE, Sircili MP. Novel biotechnological approaches for monitoring and immunization against resistant to antibiotics Escherichia coli and other pathogenic bacteria. BMC Vet Res 2020; 16:420. [PMID: 33138825 PMCID: PMC7607641 DOI: 10.1186/s12917-020-02633-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 10/21/2020] [Indexed: 01/12/2023] Open
Abstract
The application of next-generation molecular, biochemical and immunological methods for developing new vaccines, antimicrobial compounds, probiotics and prebiotics for zoonotic infection control has been fundamental to the understanding and preservation of the symbiotic relationship between animals and humans. With increasing rates of antibiotic use, resistant bacterial infections have become more difficult to diagnose, treat, and eradicate, thereby elevating the importance of surveillance and prevention programs. Effective surveillance relies on the availability of rapid, cost-effective methods to monitor pathogenic bacterial isolates. In this opinion article, we summarize the results of some research program initiatives for the improvement of live vaccines against avian enterotoxigenic Escherichia coli using virulence factor gene deletion and engineered vaccine vectors based on probiotics. We also describe methods for the detection of pathogenic bacterial strains in eco-environmental headspace and aerosols, as well as samples of animal and human breath, based on the composition of volatile organic compounds and fatty acid methyl esters. We explain how the introduction of these low-cost biotechnologies and protocols will provide the opportunity to enhance co-operation between networks of resistance surveillance programs and integrated routine workflows of veterinary and clinical public health microbiology laboratories.
Collapse
Affiliation(s)
- José E Belizário
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Lineu Prestes, 1524, São Paulo, SP, CEP 05508-900, Brazil.
| | - Marcelo P Sircili
- Laboratory of Genetics, Butantan Institute, Av. Vital Brazil, 1500, São Paulo, SP, CEP 05503-900, Brazil
| |
Collapse
|
31
|
Bonato M, Borges LL, Ingberman M, Fávaro C, Mesa D, Caron LF, Beirão BC. Effects of yeast cell wall on immunity, microbiota, and intestinal integrity of Salmonella-infected broilers. J APPL POULTRY RES 2020. [DOI: 10.1016/j.japr.2020.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
32
|
BILAL RM, HASSAN F, SAEED M, AYASAN TUGAY, RASHED N, AKHTAR MU, SEIDAVI ALIREZA. Prospects of yeast based feed additives in poultry nutrition: Potential effects and applications. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2020. [DOI: 10.56093/ijans.v90i4.104177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Yeast and its derivatives are extensively utilized as feed additives in poultry industry owing to their desirable health and growth promoting effects. Exhaustive number of studies had reported positive effects of yeast based additives on growth, meat quality, immunity, antioxidant status, and gastrointestinal functions in poultry birds. Owing to their prebiotic/probiotic properties, they also play significant role in gut development and modulation of gut microbiome by favouring beneficial microbes while reducing colonization of pathogenic microbes by competitive exclusion. They also possess effective potential for binding of dietary toxins in addition to improving digestion and utilization of nutrients. Moreover, yeast based additives have exhibited desirable effects on humoral immunity by increasing serum immunoglobulin (Ig) A levels. These additives have been also used as immune adjuvants to boost innate immune response under any pathogenic challenges in birds. Due to their diverse biological activities, yeast products are potentially capable for immune hemostasis by mediating balance between pro- and anti-inflammatory activities. These unique properties of yeast based products make them promising feed additive to promote health and productivity leading to efficient poultry production. Yeast can be supplemented in poultry diets @ 5.0–10.0 g/kg of feed. Numerous studies had reported significant improvement in body weight gain (3 to 8%) and FCR (1.6 to 12%) in broilers in response to supplementation of yeast based additives. Moreover, yeast supplementation also improved hemoglobin (Hb g/dl) levels up to 2.59 to 6.62%, total protein (>0.69%) while reducing serum cholesterol (mg/dl) up to 3.68 to 13.38%. Despite the potential properties and beneficial effects, use of yeast and its derivatives as feed additives in poultry industry is not matching its inherent potential due to many reasons. This review aims to highlight the importance and potential role of yeast and its products as natural growth promoter to replace in feed antibiotics to address the issues of antibiotic residues and microbial resistance. This article provides insights on functional role of yeast based additives in poultry diets and their importance as commercially viable alternatives of antibiotic growth promoters in poultry feed industry.
Collapse
|
33
|
Holanda DM, Yiannikouris A, Kim SW. Investigation of the Efficacy of a Postbiotic Yeast Cell Wall-Based Blend on Newly-Weaned Pigs under a Dietary Challenge of Multiple Mycotoxins with Emphasis on Deoxynivalenol. Toxins (Basel) 2020; 12:toxins12080504. [PMID: 32781569 PMCID: PMC7472238 DOI: 10.3390/toxins12080504] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/20/2022] Open
Abstract
Pigs are highly susceptible to mycotoxins. This study investigated the effects of a postbiotic yeast cell wall-based blend (PYCW; Nicholasville, KY, USA) on growth and health of newly-weaned pigs under dietary challenge of multiple mycotoxins. Forty-eight newly-weaned pigs (21 d old) were individually allotted to four dietary treatments, based on a three phase-feeding, in a randomized complete block design (sex; initial BW) with two factors for 36 d. Two factors were dietary mycotoxins (deoxynivalenol: 2000 μg/kg supplemented in three phases; and aflatoxin: 200 μg/kg supplemented only in phase 3) and PYCW (0.2%). Growth performance (weekly), blood serum (d 34), and jejunal mucosa immune and oxidative stress markers (d 36) data were analyzed using MIXED procedure of SAS. Mycotoxins reduced (p < 0.05) average daily feed intake (ADFI) and average daily gain (ADG) during the entire period whereas PYCW did not affect growth performance. Mycotoxins reduced (p < 0.05) serum protein, albumin, creatinine, and alanine aminotransferase whereas PYCW decreased (p < 0.05) serum creatine phosphokinase. Neither mycotoxins nor PYCW affected pro-inflammatory cytokines and oxidative damage markers in the jejunal mucosa. No interaction was observed indicating that PYCW improved hepatic enzymes regardless of mycotoxin challenge. In conclusion, deoxynivalenol (2000 μg/kg, for 7 to 25 kg body weight) and aflatoxin B1 (200 μg/kg, for 16 to 25 kg body weight) impaired growth performance and nutrient digestibility of newly-weaned pigs, whereas PYCW could partially improve health of pigs regardless of mycotoxin challenge.
Collapse
Affiliation(s)
| | - Alexandros Yiannikouris
- Alltech Inc., Center for Animal Nutrigenomics and Applied Animal Nutrition, 3031 Catnip Hill Road, Nicholasville, KY 40356, USA;
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA;
- Correspondence:
| |
Collapse
|
34
|
Suresh G, Santos DU, Rouissi T, Hegde K, Kaur Brar S, Mehdi Y, Godbout S, Chorfi Y, Avalos Ramirez A. In-field poultry tests to evaluate efficacy of bioformulation consisting of enzymes and yeast biomass. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Ricke SC, Lee SI, Kim SA, Park SH, Shi Z. Prebiotics and the poultry gastrointestinal tract microbiome. Poult Sci 2020; 99:670-677. [PMID: 32029153 PMCID: PMC7587714 DOI: 10.1016/j.psj.2019.12.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Indexed: 12/16/2022] Open
Abstract
Feed additives that can modulate the poultry gastrointestinal tract and provide benefit to bird performance and health have recently received more interest for commercial applications. Such feed supplements offer an economic advantage because they may directly benefit poultry producers by either decreasing mortality rates of farm animals, increasing bird growth rates, or improve feed efficieny. They can also limit foodborne pathogen establishment in bird flocks by modifying the gastrointestinal microbial population. Prebiotics are known as non-digestible carbohydrates that selectively stimulate the growth of beneficial bacteria, thus improving the overall health of the host. Once prebiotics are introduced to the host, 2 major modes of action can potentially occur. Initially, the corresponding prebiotic reaches the intestine of the chicken without being digested in the upper part of the gastrointestinal tract but are selectively utilized by certain bacteria considered beneficial to the host. Secondly, other gut activities occur due to the presence of the prebiotic, including generation of short-chain fatty acids and lactic acid as microbial fermentation products, a decreased rate of pathogen colonization, and potential bird health benefits. In the current review, the effect of prebiotics on the gastrointestinal tract microbiome will be discussed as well as future directions for further research.
Collapse
Affiliation(s)
- Steven C Ricke
- Center of Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR 72704; Cell and Molecular Biology Graduate Program, Department of Food Science, University of Arkansas, Fayetteville, AR 72701.
| | - Sang In Lee
- Center of Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR 72704; Cell and Molecular Biology Graduate Program, Department of Food Science, University of Arkansas, Fayetteville, AR 72701
| | - Sun Ae Kim
- Center of Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR 72704
| | - Si Hong Park
- Center of Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR 72704
| | - Zhaohao Shi
- Center of Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR 72704
| |
Collapse
|
36
|
Poloni V, Magnoli A, Fochesato A, Cristofolini A, Caverzan M, Merkis C, Montenegro M, Cavaglieri L. A Saccharomyces cerevisiae RC016-based feed additive reduces liver toxicity, residual aflatoxin B1 levels and positively influences intestinal morphology in broiler chickens fed chronic aflatoxin B1-contaminated diets. ACTA ACUST UNITED AC 2019; 6:31-38. [PMID: 32211526 PMCID: PMC7082645 DOI: 10.1016/j.aninu.2019.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/28/2019] [Accepted: 11/15/2019] [Indexed: 11/24/2022]
Abstract
The present study was conducted to investigate the ability of Saccharomyces cerevisiae RC016 (Sc)-based feed additive to reduce liver toxicity, residual aflatoxin B1 (AFB1) levels and influence intestinal structure in broiler chickens fed chronic aflatoxin B1-contaminated diets. A total of 100 one-day-old male commercial line (Ross) broiler chickens were divided into 4 treatments, with 5 pens per treatment and 5 broiler chickens per pen. Birds were randomly assigned to 4 treatments, which were namely treatment 1 (T1), control diet (CD); T2, CD + Sc at 1 g/kg; T3, CD + AFB1 at 100 μg/kg; T4, CD + Sc at 1 g/kg + AFB1 at 100 μg/kg. The liver histopathology of broiler chickens fed diets with AFB1 showed diffused microvacuolar fatty degeneration. The addition of Sc showed normal hepatocytes similar to the control. The small intestine villi from AFB1 group showed atrophy, hyperplasia of goblet cells, prominent inflammatory infiltrate and oedema. In contrast, the small intestine villi from birds that received the yeast plus AFB1 showed an absence of inflammatory infiltrate, and atrophy; moreover, a lower number of goblet cells compared to the groups with AFB1 was observed. The morphometric intestine studies showed that a significant decrease (P < 0.05) in the crypt depth values when Sc was applied to AFB1-contaminated diets. Although the intestinal villus height and apparent adsorption area did not show significant differences (P > 0.05), there was a tendency to improve these parameters. The residual levels of AFB1 in livers were significantly reduced (P < 0.05) in the presence of the yeast. The present work demonstrated that the addition of Sc alone or in combination with AFB1 in the broiler chicken diets had a beneficial effect in counteracting the toxic effects of AFB1 in livers besides improving the histomorphometric parameters and modulating the toxic effect of AFB1 in the intestine.
Collapse
Affiliation(s)
- Valeria Poloni
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - Alejandra Magnoli
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - Analía Fochesato
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - Andrea Cristofolini
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina.,Departamento de Microscopía Electrónica, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| | - Matías Caverzan
- Departamento de Microscopía Electrónica, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| | - Cecilia Merkis
- Departamento de Microscopía Electrónica, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| | - Mariana Montenegro
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina.,Centro de Investigaciones y Transferencia Villa María, Universidad Nacional de Villa María, Villa María, Argentina
| | - Lilia Cavaglieri
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
37
|
Kiarie EG, Leung H, Akbari Moghaddam Kakhki R, Patterson R, Barta JR. Utility of Feed Enzymes and Yeast Derivatives in Ameliorating Deleterious Effects of Coccidiosis on Intestinal Health and Function in Broiler Chickens. Front Vet Sci 2019; 6:473. [PMID: 31921926 PMCID: PMC6933770 DOI: 10.3389/fvets.2019.00473] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022] Open
Abstract
Coccidiosis induced necrotic lesions impair digestive capacity and barrier function in concurrence with increased risks for secondary bacterial infections. The industry has been successful in controlling coccidiosis with anticoccidials and vaccination. However, concerns over Eimeria species resistant to anticoccidials, gaps in vaccination and restriction on antibiotics is stimulating research and application of alternative and/or complimentary strategies for coccidiosis control. The aim of this paper is to appraise literature on the utility of feed enzymes and yeast derivatives in modulating coccidiosis. Feed enzymes can complement endogenous enzymes (protease, amylase, and lipase) that may become insufficient in coccidiosis afflicted birds. Coccidiosis in the upper small intestine creates conditions that enhances efficacy of phytase and there are reports indicating supplemental phytase can mitigate the negative impact of coccidiosis on bone quality. Increase in intestinal short chain fatty acids due supplemental fiber degrading enzymes has been linked with reduced survivability of Eimeria. There is evidence whole yeast (live or dead) and derivatives can modulate coccidiosis. Immunomudulation properties of the yeast derivatives have been shown to enhance cellular and humoral immunity in Eimeria challenge models which is critical for effectiveness of coccidial vaccination. Moreover, yeast nucleotides have been shown to be beneficial in stimulating healing of intestinal mucosal surface. Other novel work has shown that certain yeast cells can produce derivatives with anticoccidial compounds effective in attenuating oocysts shedding. Yeast cell surface has also been shown to be an effective oral Eimeria vaccine delivery vehicle. Overall, while further refinement research is warranted to address inconsistencies in responses and commercial application, there is evidence feed enzymes and yeast derivatives could complement strategies for maintaining intestinal function to bolster growth performance in broilers compromised with coccidiosis. However, broilers receive diets containing several feed additives with distinct mode of actions and yet there is dearth of empirical data on the expected responses.Future evaluations should consider combinations of additives to document animal responses and potential synergies.
Collapse
Affiliation(s)
- Elijah G. Kiarie
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Haley Leung
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | | | - Rob Patterson
- Department of Technical Services and Innovation, Canadian Bio-Systems Inc., Calgary, AL, Canada
| | - John R. Barta
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
38
|
Characterization of the microbiome along the gastrointestinal tracts of semi-artificially reared bar-headed geese (Anser indicus). Folia Microbiol (Praha) 2019; 65:533-543. [PMID: 31768913 DOI: 10.1007/s12223-019-00758-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 11/01/2019] [Indexed: 10/25/2022]
Abstract
As one of the dominant waterfowl species of wetland areas in the Qinghai-Tibet Plateau, since 2003, artificial rearing of bar-headed geese (Anser indicus) has increased in several provinces of China for the purpose of conservation and economic development. In this study, we systematically characterized the microbial community diversity, compositions and predicted functions of semi-artificially reared bar-headed geese by sampling five different gut locations (the oropharynxs, crops, gizzards, ceca, and cloacae) along the gastrointestinal tracts of three individuals. Alpha diversity analyses showed that the gizzards had the richest species diversity and that the ceca had the least. Beta diversity analyses showed that the cecal samples formed their own cluster, while samples from the oropharynxs, crops, gizzards, and cloacae overlapped with each other. At the phylum level, Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, and Fusobacteria constituted the top five dominant phyla among all five gastrointestinal sections. At the genus level, a total of 10 genera with proportions above 2.5% were found to be significantly different among the gastrointestinal sections. Furthermore, 53 genera were detected in all gastrointestinal sections of bar-headed geese. PICRUSt data also predicted a group of microbial functions overrepresented in the different segments of the gastrointestinal tracts. Understanding the microbiota along the bar-headed geese gastrointestinal tracts is essential for future microbiological study of this bird and may contribute to the development of geese husbandry.
Collapse
|
39
|
Slinger KR, Stewart AH, Daniel ZCTR, Hall H, Masey O’Neill HV, Bedford MR, Parr T, Brameld JM. The association between faecal host DNA or faecal calprotectin and feed efficiency in pigs fed yeast-enriched protein concentrate. Animal 2019; 13:2483-2491. [PMID: 31062686 PMCID: PMC6801643 DOI: 10.1017/s1751731119000818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 02/18/2019] [Accepted: 03/18/2019] [Indexed: 01/15/2023] Open
Abstract
Gut cell losses contribute to overall feed efficiency due to the energy requirement for cell replenishment. Intestinal epithelial cells are sloughed into the intestinal lumen as digesta passes through the gastrointestinal tract, where cells are degraded by endonucleases. This leads to fragmented DNA being present in faeces, which may be an indicator of gut cell loss. Therefore, measuring host faecal DNA content could have potential as a non-invasive marker of gut cell loss and result in a novel technique for the assessment of how different feed ingredients impact upon gut health. Faecal calprotectin (CALP) is a marker of intestinal inflammation. This was a pilot study designed to test a methodology for extracting and quantifying DNA from pig faeces, and to assess whether any differences in host faecal DNA and CALP could be detected. An additional aim was to determine whether any differences in the above measures were related to the pig performance response to dietary yeast-enriched protein concentrate (YPC). Newly weaned (∼26.5 days of age) Large White × Landrace × Pietrain piglets (8.37 kg ±1.10, n = 180) were assigned to one of four treatment groups (nine replicates of five pigs), differing in dietary YPC content: 0% (control), 2.5%, 5% and 7.5% (w/w). Pooled faecal samples were collected on days 14 and 28 of the 36-day trial. Deoxyribonucleic acid was extracted and quantitative PCR was used to assess DNA composition. Pig genomic DNA was detected using primers specific for the pig cytochrome b (CYTB) gene, and bacterial DNA was detected using universal 16S primers. A pig CALP ELISA was used to assess gut inflammation. Dietary YPC significantly reduced feed conversion ratio (FCR) from weaning to day 14 (P<0.001), but not from day 14 to day 28 (P = 0.220). Pig faecal CYTB DNA content was significantly (P = 0.008) reduced in YPC-treated pigs, with no effect of time, whereas total faecal bacterial DNA content was unaffected by diet or time (P>0.05). Faecal CALP levels were significantly higher at day 14 compared with day 28, but there was no effect of YPC inclusion and no relationship with FCR. In conclusion, YPC reduced faecal CYTB DNA content and this correlated positively with FCR, but was unrelated to gut inflammation, suggesting that it could be a non-invasive marker of gut cell loss. However, further validation experiments by an independent method are required to verify the origin of pig faecal CYTB DNA as being from sloughed intestinal epithelial cells.
Collapse
Affiliation(s)
- K. R. Slinger
- Nutritional Sciences, School of Biosciences, Sutton Bonington Campus, The University of Nottingham, Leicestershire LE12 5RD, United Kingdom
| | - A. H. Stewart
- Animal Production, Welfare and Veterinary Sciences, Harper Adams University, Newport, Shropshire TF10 8NB, United Kingdom
| | - Z. C. T. R. Daniel
- Nutritional Sciences, School of Biosciences, Sutton Bonington Campus, The University of Nottingham, Leicestershire LE12 5RD, United Kingdom
| | - H. Hall
- AB Agri Limited, Innovation Way, Lynch Wood, Peterborough PE2 6FL, United Kingdom
| | - H. V. Masey O’Neill
- AB Agri Limited, Innovation Way, Lynch Wood, Peterborough PE2 6FL, United Kingdom
| | - M. R. Bedford
- AB Vista, Woodstock Ct, Marlborough SN8 4AN, United Kingdom
| | - T. Parr
- Nutritional Sciences, School of Biosciences, Sutton Bonington Campus, The University of Nottingham, Leicestershire LE12 5RD, United Kingdom
| | - J. M. Brameld
- Nutritional Sciences, School of Biosciences, Sutton Bonington Campus, The University of Nottingham, Leicestershire LE12 5RD, United Kingdom
| |
Collapse
|
40
|
Elghandour M, Tan Z, Abu Hafsa S, Adegbeye M, Greiner R, Ugbogu E, Cedillo Monroy J, Salem A. Saccharomyces cerevisiaeas a probiotic feed additive to non and pseudo‐ruminant feeding: a review. J Appl Microbiol 2019; 128:658-674. [DOI: 10.1111/jam.14416] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 07/06/2019] [Accepted: 07/25/2019] [Indexed: 12/12/2022]
Affiliation(s)
- M.M.Y. Elghandour
- Facultad de Medicina Veterinaria y Zootecnia Universidad Autónoma del Estado de MéxicoEstado de México México
| | - Z.L. Tan
- CAS Key Laboratory for Agro‐Ecological Processes in Subtropical Region The Chinese Academy of Sciences Changsha China
| | - S.H. Abu Hafsa
- Department of Livestock Research Arid Lands Cultivation Research InstituteCity of Scientific Research and Technological Applications Alexandria Egypt
| | - M.J. Adegbeye
- Department of Animal Science, College of Agriculture Joseph Ayo Babalola University Ilesha Osun State Nigeria
| | - R. Greiner
- Department of Food Technology and Bioprocess Engineering Max Rubner‐InstitutFederal Research Institute of Nutrition and Food Karlsruhe Germany
| | - E.A. Ugbogu
- Department of Biochemistry Abia State University Uturu Abia State Nigeria
| | - J. Cedillo Monroy
- Centro Universitario UAEM‐Temascaltepec Universidad Autónoma del Estado de México Toluca México
| | - A.Z.M. Salem
- Facultad de Medicina Veterinaria y Zootecnia Universidad Autónoma del Estado de MéxicoEstado de México México
| |
Collapse
|
41
|
Adhikari B, Hernandez-Patlan D, Solis-Cruz B, Kwon YM, Arreguin MA, Latorre JD, Hernandez-Velasco X, Hargis BM, Tellez-Isaias G. Evaluation of the Antimicrobial and Anti-inflammatory Properties of Bacillus-DFM (Norum™) in Broiler Chickens Infected With Salmonella Enteritidis. Front Vet Sci 2019; 6:282. [PMID: 31508436 PMCID: PMC6718558 DOI: 10.3389/fvets.2019.00282] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/07/2019] [Indexed: 12/18/2022] Open
Abstract
Restrictions of in-feed antibiotics use in poultry has pushed research toward finding appropriate alternatives such as Direct-Fed Microbials (DFM). In this study, previously tested Bacillus isolates (B. subtilis and B. amyloliquefaciens) were used to evaluate their therapeutic and prophylactic effects against Salmonella enterica serovar Enteritidis (S. Enteritidis) in broiler chickens. For this purpose, initial antibacterial activity of Bacillus-DFM (104 spores/g or 106 spores/g) against S. Enteritidis colonization in crop, proventriculus and intestine was investigated using an in vitro digestive model. Furthermore, to evaluate therapeutic and prophylactic effects of Bacillus-DFM (104 spores/g) against S. Enteritidis colonization, altogether 60 (n = 30/group) and 30 (n = 15/group) 1-day-old broiler chickens were randomly allocated to either DFM or control group (without Bacillus-DFM), respectively. Chickens were orally gavaged with 104 cfu of S. Enteritidis per chicken at 1-day old, and cecal tonsils (CT) and crop were collected 3 and 10 days later during the therapeutic study, whereas they were orally gavaged with 107 cfu of S. Enteritidis per chicken at 6-day-old, and CT and crop were collected 24 h later from two independent trials during the prophylactic study. Serum superoxide dismutase (SOD), FITC-d and intestinal IgA levels were reported for both chicken studies, in addition cecal microbiota analysis was performed during the therapeutic study. DFM significantly reduced S. Enteritidis concentration in the intestine compartment, and in both proventriculus and intestine compartments as compared to the control when used at 104 spores/g and 106 spores/g, respectively (p < 0.05). DFM significantly reduced FITC-d and IgA as well as SOD and IgA levels (p < 0.05) compared to the control in therapeutic and prophylactic studies, respectively. Interestingly, in the therapeutic study, there were significant differences in bacterial community structure and predicted metabolic pathways between DFM and control. Likewise, phylum Actinobacteria and the genera Bifidobacterium, Roseburia, Proteus, and cc_115 were decreased, while the genus Streptococcus was enriched significantly in the DFM group as compared to the control (MetagenomeSeq, p < 0.05). Thus, the overall results suggest that the Bacillus-DFM can reduce S. Enteritidis colonization and improve the intestinal health in chickens through mechanism(s) that might involve the modulation of gut microbiota and their metabolic pathways.
Collapse
Affiliation(s)
- Bishnu Adhikari
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Daniel Hernandez-Patlan
- Unidad de Investigación Multidisciplinaria, Laboratorio 5: LEDEFAR, Facultad de Estudios Superiores (FES) Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli, Mexico
| | - Bruno Solis-Cruz
- Unidad de Investigación Multidisciplinaria, Laboratorio 5: LEDEFAR, Facultad de Estudios Superiores (FES) Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli, Mexico
| | - Young Min Kwon
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | | | - Juan D Latorre
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Xochitl Hernandez-Velasco
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Billy M Hargis
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | | |
Collapse
|
42
|
Ahiwe EU, Abdallh ME, Chang'a EP, Omede AA, Al-Qahtani M, Gausi H, Graham H, Iji PA. Influence of dietary supplementation of autolyzed whole yeast and yeast cell wall products on broiler chickens. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 33:579-587. [PMID: 31480191 PMCID: PMC7054603 DOI: 10.5713/ajas.19.0220] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/11/2019] [Indexed: 12/14/2022]
Abstract
Objective This study evaluated the effect of yeast products on growth performance, visceral organ weights, endogenous enzyme activities, ileal nutrient digestibility and meat yield of broiler chickens fed diets containing autolyzed whole yeast (WY) and yeast cell walls (YCW) at varying levels of inclusion. Methods Nine dietary treatments consisting of WY or YCW included at 0.5, 1.0, 1.5, or 2.0 g/kg diet and a control diet without yeast supplementation was used in the experiment. Each of the nine treatments was replicated six times with nine birds per replicate. Birds were housed in cages, in climate-controlled rooms and fed starter, grower and finisher diets. Results There was an improvement (p<0.05) in body weight gain and feed conversion ratio on d 10, 24, and 35 for birds fed 1.0 to 2.0 g/kg WY or YCW diet. Small intestine weight was heavier on d 10 and 24 for birds on higher levels of WY and YCW compared to the control group. On d 10 and 24, there was a significant increase (p<0.05) in tissue protein content and pancreatic enzyme activities (trypsin and chymotrypsin) of birds on 1.5 to 2.0 g/kg WY and YCW diets compared to the control group. Compared to the control group, birds on WY (2.0 g/kg diet) and YCW (at 1.5 and 2.0 g/kg diet) had better (p<0.05) protein digestibility on d 24. On d 35, there was significant improvement (p<0.05) in percentage of carcass, absolute and relative breast weight for broiler chickens fed WY and YCW mostly at 2 g/kg diet compared to birds on the control diet. Conclusion Supplementation of diets with autolyzed WY and YCW products especially at 1.5 to 2.0 g/kg diet improved broiler chicken performance and meat yield through their positive effects on ileal protein digestibility and pancreatic enzyme activities.
Collapse
Affiliation(s)
- Emmanuel Uchenna Ahiwe
- School of Environmental and Rural Sciences, University of New England, Armidale NSW, 2351 Australia.,Department of Animal Science and Technology, Federal University of Technology, Owerri, PMB 1526, Imo State, Nigeria
| | - Medani Eldow Abdallh
- School of Environmental and Rural Sciences, University of New England, Armidale NSW, 2351 Australia.,Department of Poultry Production, University of Khartoum, Khartoum 13314, Sudan
| | - Edwin Peter Chang'a
- School of Environmental and Rural Sciences, University of New England, Armidale NSW, 2351 Australia.,Tanzania Livestock Research Institute (TALIRI), P. O. Box 352, Mwanza, Tanzania
| | - Apeh Akwu Omede
- School of Environmental and Rural Sciences, University of New England, Armidale NSW, 2351 Australia.,Department of Animal Production, Kogi State University, Anyigba, PMB 1008, Kogi State, Nigeria
| | - Mohammed Al-Qahtani
- School of Environmental and Rural Sciences, University of New England, Armidale NSW, 2351 Australia
| | - Harriet Gausi
- School of Environmental and Rural Sciences, University of New England, Armidale NSW, 2351 Australia
| | | | - Paul Ade Iji
- School of Environmental and Rural Sciences, University of New England, Armidale NSW, 2351 Australia.,College of Agriculture, Fisheries and Forestry, Fiji National University, P.O. Box 1544, Nausori, Fiji
| |
Collapse
|
43
|
Bodie AR, Micciche AC, Atungulu GG, Rothrock MJ, Ricke SC. Current Trends of Rice Milling Byproducts for Agricultural Applications and Alternative Food Production Systems. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00047] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
44
|
Micciche A, Rothrock MJ, Yang Y, Ricke SC. Essential Oils as an Intervention Strategy to Reduce Campylobacter in Poultry Production: A Review. Front Microbiol 2019; 10:1058. [PMID: 31139172 PMCID: PMC6527745 DOI: 10.3389/fmicb.2019.01058] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/26/2019] [Indexed: 12/19/2022] Open
Abstract
Campylobacter is a major foodborne pathogen and can be acquired through consumption of poultry products. With 1.3 million United States cases a year, the high prevalence of Campylobacter within the poultry gastrointestinal tract is a public health concern and thus a target for the development of intervention strategies. Increasing demand for antibiotic-free products has led to the promotion of various alternative pathogen control measures both at the farm and processing level. One such measure includes utilizing essential oils in both pre- and post-harvest settings. Essential oils are derived from plant-based extracts, and there are currently over 300 commercially available compounds. They have been proposed to control Campylobacter in the gastrointestinal tract of broilers. When used in concentrations low enough to not influence sensory characteristics, essential oils have also been proposed to decrease bacterial contamination of the poultry product during processing. This review explores the use of essential oils, particularly thymol, carvacrol, and cinnamaldehyde, and their role in reducing Campylobacter concentrations both pre- and post-harvest. This review also details the suggested mechanisms of action of essential oils on Campylobacter.
Collapse
Affiliation(s)
- Andrew Micciche
- Center of Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Michael J. Rothrock
- United States Department of Agriculture, Agricultural Research Service, Athens, GA, United States
| | - Yichao Yang
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Steven C. Ricke
- Center of Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
45
|
Leung H, Yitbarek A, Snyder R, Patterson R, Barta JR, Karrow N, Kiarie E. Responses of broiler chickens to Eimeria challenge when fed a nucleotide-rich yeast extract. Poult Sci 2019; 98:1622-1633. [PMID: 30481335 PMCID: PMC6414034 DOI: 10.3382/ps/pey533] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/30/2018] [Indexed: 01/03/2023] Open
Abstract
Nucleotide-rich yeast extract (YN) was investigated for effects on growth performance, jejunal physiology, and cecal microbial activity in Eimeria-challenged broiler chickens. A total of 360-day-old male chicks (Ross × Ross 708) were placed on floor pens and provided a corn-soybean meal-based diet without or with YN (500 g/MT; n = 12). On d 10, 6 replicates per diet were orally administered with 1 mL of E. acervulina and E. maxima sporulated oocysts and the rest (non-challenged control) were administered with 1 mL of distilled water. On d 15, 5 birds/pen were then necropsied for intestinal lesion scores, histomorphology and cecal digesta pH, short chain fatty acids (SCFA), and microbial community using Illumina Miseq platform. Supplemental YN improved (P = 0.01) Feed conversion ratio (FCR) during the prechallenge phase (d 0 to 10). In the postchallenge period (d 11 to 15), Eimeria depressed (P < 0.05) Body weight gain (BWG) relative to non-challenged birds, whereas YN-fed birds had a higher (P = 0.05) BWG compared to that of non-YN-fed birds. There was an interaction between YN and Eimeria on jejunal villi height (VH) (P = 0.001) and expression of cationic amino acid transporter 1(CAT1) (P = 0.04). Specifically, in the absence of Eimeria, YN-fed birds had a shorter VH (892 vs. 1,020 μm) relative to that of control but longer VH (533 vs. 447 μm) in the presence of Eimeria. With respect to CAT1, YN-fed birds had a higher (1.65 vs. 0.78) expression when subjected to Eimeria than when not challenged. Independently, Eimeria decreased (P < 0.01) the jejunal expression of maltase, Na glucose transporter 1 and occludin genes, ceca digesta abundance of genus Clostridium cluster XlVa and Oscillibacter but increased (P < 0.01) jejunal proliferating cell nuclear antigen and interleukin 10. Interaction between YN and Eimeria was observed for ceca digesta pH (P = 0.04) and total SCFA (P = 0.01) such that YN increased SCFA in the absence of Eimeria but reduced SCFA and increased pH in the presence of Eimeria. In summary, Eimeria impaired performance and gut function and shifted gut microbiome; YN improved performance independently, attenuated Eimeria damage on indices of gut function, and modulated cecal microbiome.
Collapse
Affiliation(s)
- H Leung
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - A Yitbarek
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - R Snyder
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - R Patterson
- Canadian Bio-Systems Inc., Calgary, AL T2C 0J7, Canada
| | - J R Barta
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - N Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - E Kiarie
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
46
|
|
47
|
Drovetski SV, O'Mahoney MJV, Matterson KO, Schmidt BK, Graves GR. Distinct microbiotas of anatomical gut regions display idiosyncratic seasonal variation in an avian folivore. Anim Microbiome 2019; 1:2. [PMID: 33499946 PMCID: PMC7803122 DOI: 10.1186/s42523-019-0002-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/29/2018] [Indexed: 11/29/2022] Open
Abstract
Background Current knowledge about seasonal variation in the gut microbiota of vertebrates is limited to a few studies based on mammalian fecal samples. Seasonal changes in the microbiotas of functionally distinct gut regions remain unexplored. We investigated seasonal variation (summer versus winter) and regionalization of the microbiotas of the crop, ventriculus, duodenum, cecum, and colon of the greater sage-grouse (Centrocercus urophasianus), an avian folivore specialized on the toxic foliage of sagebrush (Artemesia spp.) in western North America. Results We sequenced the V4 region of the 16S rRNA gene on an Illumina MiSeq and obtained 6,639,051 sequences with a median of 50,232 per sample. These sequences were assigned to 457 bacterial and 4 archaeal OTUs. Firmicutes (53.0%), Bacteroidetes (15.2%), Actinobacteria (10.7%), and Proteobacteria (10.1%)were the most abundant and diverse phyla. Microbial composition and richness showed significant differences among gut regions and between summer and winter. Gut region explained almost an order of magnitude more variance in our dataset than did season or the gut region × season interaction. The effect of season was uneven among gut regions. Microbiotas of the crop and cecum showed the greatest seasonal differences. Conclusions Our data suggest that seasonal differences in gut microbiota reflect seasonal variation in the microbial communities associated with food and water. Strong differentiation and uneven seasonal changes in the composition and richness of the microbiota among functionally distinct gut regions demonstrate the necessity of wider anatomical sampling for studies of composition and dynamics of the gut microbiota. Electronic supplementary material The online version of this article (10.1186/s42523-019-0002-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sergei V Drovetski
- Laboratories of Analytical Biology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20004, USA.
| | - Michael J V O'Mahoney
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20004, USA
| | - Kenan O Matterson
- Laboratories of Analytical Biology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20004, USA
| | - Brian K Schmidt
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20004, USA
| | - Gary R Graves
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20004, USA.,Center for Macroecology, Evolution and Climate, National Museum of Denmark, University of Copenhagen, DK-2100, Copenhagen Ø, Denmark
| |
Collapse
|
48
|
Kim SA, Jang MJ, Kim SY, Yang Y, Pavlidis HO, Ricke SC. Potential for Prebiotics as Feed Additives to Limit Foodborne Campylobacter Establishment in the Poultry Gastrointestinal Tract. Front Microbiol 2019; 10:91. [PMID: 30804900 PMCID: PMC6371025 DOI: 10.3389/fmicb.2019.00091] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/16/2019] [Indexed: 12/13/2022] Open
Abstract
Campylobacter as an inhabitant of the poultry gastrointestinal tract has proven to be difficult to reduce with most feed additives. In-feed antibiotics have been taken out of poultry diets due to the negative reactions of consumers along with concerns regarding the generation of antibiotic resistant bacteria. Consequently, interest in alternative feed supplements to antibiotics has grown. One of these alternatives, prebiotics, has been examined as a potential animal and poultry feed additive. Prebiotics are non-digestible ingredients by host enzymes that enhance growth of indigenous gastrointestinal bacteria that elicit metabolic characteristics considered beneficial to the host and depending on the type of metabolite, antagonistic to establishment of pathogens. There are several carbohydrate polymers that qualify as prebiotics and have been fed to poultry. These include mannan-oligosaccharides and fructooligosaccharides as the most common ones marketed commercially that have been used as feed supplements in poultry. More recently, several other non-digestible oligosaccharides have also been identified as possessing prebiotic properties when implemented as feed supplements. While there is evidence that prebiotics may be effective in poultry and limit establishment of foodborne pathogens such as Salmonella in the gastrointestinal tract, less is known about their impact on Campylobacter. This review will focus on the potential of prebiotics to limit establishment of Campylobacter in the poultry gastrointestinal tract and future research directions.
Collapse
Affiliation(s)
- Sun Ae Kim
- Department of Food Science and Engineering, Ewha Womans University, Seoul, South Korea
| | - Min Ji Jang
- Department of Food Science and Engineering, Ewha Womans University, Seoul, South Korea
| | - Seo Young Kim
- Department of Food Science and Engineering, Ewha Womans University, Seoul, South Korea
| | - Yichao Yang
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | | | - Steven C Ricke
- Center for Food Safety and Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
49
|
Kraimi N, Calandreau L, Zemb O, Germain K, Dupont C, Velge P, Guitton E, Lavillatte S, Parias C, Leterrier C. Effects of a gut microbiota transfer on emotional reactivity in Japanese quails (Coturnix japonica). J Exp Biol 2019; 222:jeb.202879. [DOI: 10.1242/jeb.202879] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/08/2019] [Indexed: 01/01/2023]
Abstract
The interaction between the gut microbiota (GM) and the brain has led to the concept of the microbiota-gut-brain axis but data in birds remain scarce. We tested the hypothesis that colonization of germ-free chicks from a quail line selected for a high emotional reactivity (E+) with GM from a line with low emotional reactivity (E-) would reduce their emotional behaviour in comparison with germ-free chicks from E+ line colonized with GM from the same E+ line. The GM composition analysis of both groups revealed a shift in term of microbial diversity and richness between Day 21 and Day 35 and the GM of the two groups of quails were closer to each other at Day 35 than at Day 21 at a phylum level. Quails that received GM from the E- line expressed a lower emotional reactivity than the quails colonized by GM from the E+line in the tonic immobility and the novel environment tests proceeded during the second week of age. This result was reversed in a second tonic immobility test and an open-field run two weeks later. These behavioural and GM modifications over time could be the consequence of the resilience of the GM to recover its equilibrium present in the E+ host, which is in part driven by the host genotype. This study shows for the first time that a gut microbiota transfer can influence emotional reactivity in Japanese quails strengthening the existence of a microbiota-gut-brain axis in this species of bird.
Collapse
Affiliation(s)
- Narjis Kraimi
- INRA, CNRS, Université de Tours, IFCE, UMR PRC, Nouzilly, France
| | | | - Olivier Zemb
- INRA-INPT-ENSAT, Université de Toulouse, GenPhySE, Castanet-Tolosan, 31326, France
| | - Karine Germain
- INRA, UE1206 Elevage Alternatif et Santé des Monogastriques, Domaine du Magneraud, F-17700 Saint-Pierred'Amilly, France
| | - Christèle Dupont
- INRA, UE1206 Elevage Alternatif et Santé des Monogastriques, Domaine du Magneraud, F-17700 Saint-Pierred'Amilly, France
| | - Philippe Velge
- INRA, Université de Tours, UMR 1282, ISP, Nouzilly, France
| | - Edouard Guitton
- INRA, UE Plate-Forme d'Infectiologie Expérimentale, Nouzilly, France
| | | | - Céline Parias
- INRA, CNRS, Université de Tours, IFCE, UMR PRC, Nouzilly, France
| | | |
Collapse
|
50
|
dos Santos M, Ramachandran R, Kiess A, Wamsley K, McDaniel C. The Impact of Dietary Yeast Fermentation Product Derived from Saccharomyces cerevisiae on Semen Quality and Semen Microbiota of Aged White Leghorn roosters. J APPL POULTRY RES 2018. [DOI: 10.3382/japr/pfy050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|