1
|
Calzolari M, Mosca A, Montarsi F, Grisendi A, Scremin M, Roberto P, Tessarolo C, Defilippo F, Gobbo F, Casalone C, Lelli D, Albieri A. Distribution and abundance of Aedes caspius (Pallas, 1771) and Aedes vexans (Meigen, 1830) in the Po Plain (northern Italy). Parasit Vectors 2024; 17:452. [PMID: 39501400 PMCID: PMC11539340 DOI: 10.1186/s13071-024-06527-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Knowledge of the distribution and abundance of disease-causing mosquito vectors is fundamental for assessing the risk of disease circulation and introduction. Aedes caspius (Pallas, 1771) and Aedes vexans (Meigen, 1830) have been implicated, to different extents, in the circulation of several arthropod-borne viruses (arboviruses). These two mosquitoes are vectors of Tahyna virus in Europe and are considered potential vectors of Rift Valley fever virus, a virus not present but at risk of introduction on the continent. METHODS In this work, we analysed abundance data collected during West Nile virus (WNV) surveillance in northern Italy (Po Plain) via 292 CO2-baited traps to evaluate the distribution and density of these two non-target mosquitoes. We modelled the distribution and abundance of these two mosquito species in the surveyed area using two distinct spatial analysis approaches (geostatistical and machine learning), which yielded congruent results. RESULTS Both species are more abundant close to the Po River than elsewhere, but Ae. caspius is present in the eastern and western parts of the plain, linked with the occurrence of rice fields and wetlands, while Ae. vexans is observed in the middle area of the plain. CONCLUSIONS Presence and abundance data at the municipality level were obtained and made available through this work. This work demonstrates the importance of maintaining and improving entomological surveillance programs with an adequate sampling effort.
Collapse
Affiliation(s)
- Mattia Calzolari
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "B. Ubertini", Brescia, Italy.
| | - Andrea Mosca
- Istituto per le Piante da Legno e l'Ambiente, Turin, Italy
| | | | - Annalisa Grisendi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "B. Ubertini", Brescia, Italy
| | - Mara Scremin
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "B. Ubertini", Brescia, Italy
| | - Paolo Roberto
- Istituto per le Piante da Legno e l'Ambiente, Turin, Italy
| | - Carlotta Tessarolo
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Francesco Defilippo
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "B. Ubertini", Brescia, Italy
| | - Federica Gobbo
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Cristina Casalone
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Davide Lelli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "B. Ubertini", Brescia, Italy
| | - Alessandro Albieri
- Sanitary Entomology and Zoology Department, Centro Agricoltura Ambiente "G. Nicoli", Crevalcore, Italy
| |
Collapse
|
2
|
Bakhiyi B, Irace-Cima A, Ludwig A, Rakotoarinia MR, Therrien C, Dusfour I, Adam-Poupart A. Public health contributions of entomological surveillance of West Nile virus (WNV) and other mosquito-borne arboviruses in a context of climate change. CANADA COMMUNICABLE DISEASE REPORT = RELEVE DES MALADIES TRANSMISSIBLES AU CANADA 2024; 50:294-304. [PMID: 39257840 PMCID: PMC11383429 DOI: 10.14745/ccdr.v50i09a02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Background Climate change is likely to increase the risk of human transmission of arboviruses endemic to Canada, including West Nile virus (WNV), Eastern equine encephalitis virus (EEEV) and California serogroup virus (CSV), calling for enhanced surveillance, including entomological surveillance targeting mosquito vectors. A scoping review was carried out to document the public health contributions of entomological surveillance of arboviruses of importance in Canada. Methods The Ovid® and EBSCO platforms and the grey literature were searched to identify documents published between 2009 and 2023, in English or French, dealing with entomological surveillance of arboviruses of interest, conducted annually for human health purposes under the aegis of a government authority, with specified public health objectives and actions. Results The 42 selected publications mainly reported two public health objectives of adult mosquito surveillance: early warning of viral circulation and assessment of the level of risk of human transmission. Recommended actions included clinical preparedness, risk communication, promotion of personal protection measures and vector control. The main objectives of immature mosquito surveillance were to identify sites with high larval densities, in order to reduce/eliminate them and target the application of larvicides. Conclusion In a context of climate change favouring the spread of arboviruses, this study highlights the potential public health contributions of regular entomological surveillance of endemic arboviruses of importance in Canada. It helps support concrete actions to protect the health of the population from the risks of arboviral transmission.
Collapse
Affiliation(s)
- Bouchra Bakhiyi
- Department of Biological Risks, Institut national de santé publique du Québec (INSPQ), Montréal, QC
| | - Alejandra Irace-Cima
- Department of Biological Risks, Institut national de santé publique du Québec (INSPQ), Montréal, QC
- School of Public Health of the Université de Montréal (ESPUM), Université de Montréal, Montréal, QC
| | - Antoinette Ludwig
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, QC
- Research Group on Epidemiology of Zoonoses and Public Health, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC
| | - Miarisoa Rindra Rakotoarinia
- Department of Biological Risks, Institut national de santé publique du Québec (INSPQ), Montréal, QC
- Research Group on Epidemiology of Zoonoses and Public Health, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC
| | - Christian Therrien
- Laboratoire de santé publique du Québec, Institut national de santé publique du Québec, Sainte-Anne-de- Bellevue, QC
| | | | - Ariane Adam-Poupart
- Department of Biological Risks, Institut national de santé publique du Québec (INSPQ), Montréal, QC
- School of Public Health of the Université de Montréal (ESPUM), Université de Montréal, Montréal, QC
| |
Collapse
|
3
|
Ippoliti C, Bonicelli L, De Ascentis M, Tora S, Di Lorenzo A, d’Alessio SG, Porrello A, Bonanni A, Cioci D, Goffredo M, Calderara S, Conte A. Spotting Culex pipiens from satellite: modeling habitat suitability in central Italy using Sentinel-2 and deep learning techniques. Front Vet Sci 2024; 11:1383320. [PMID: 39027906 PMCID: PMC11256216 DOI: 10.3389/fvets.2024.1383320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/05/2024] [Indexed: 07/20/2024] Open
Abstract
Culex pipiens, an important vector of many vector borne diseases, is a species capable to feeding on a wide variety of hosts and adapting to different environments. To predict the potential distribution of Cx. pipiens in central Italy, this study integrated presence/absence data from a four-year entomological survey (2019-2022) carried out in the Abruzzo and Molise regions, with a datacube of spectral bands acquired by Sentinel-2 satellites, as patches of 224 × 224 pixels of 20 meters spatial resolution around each site and for each satellite revisit time. We investigated three scenarios: the baseline model, which considers the environmental conditions at the time of collection; the multitemporal model, focusing on conditions in the 2 months preceding the collection; and the MultiAdjacency Graph Attention Network (MAGAT) model, which accounts for similarities in temperature and nearby sites using a graph architecture. For the baseline scenario, a deep convolutional neural network (DCNN) analyzed a single multi-band Sentinel-2 image. The DCNN in the multitemporal model extracted temporal patterns from a sequence of 10 multispectral images; the MAGAT model incorporated spatial and climatic relationships among sites through a graph neural network aggregation method. For all models, we also evaluated temporal lags between the multi-band Earth Observation datacube date of acquisition and the mosquito collection, from 0 to 50 days. The study encompassed a total of 2,555 entomological collections, and 108,064 images (patches) at 20 meters spatial resolution. The baseline model achieved an F1 score higher than 75.8% for any temporal lag, which increased up to 81.4% with the multitemporal model. The MAGAT model recorded the highest F1 score of 80.9%. The study confirms the widespread presence of Cx. pipiens throughout the majority of the surveyed area. Utilizing only Sentinel-2 spectral bands, the models effectively capture early in advance the temporal patterns of the mosquito population, offering valuable insights for directing surveillance activities during the vector season. The methodology developed in this study can be scaled up to the national territory and extended to other vectors, in order to support the Ministry of Health in the surveillance and control strategies for the vectors and the diseases they transmit.
Collapse
Affiliation(s)
- Carla Ippoliti
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Lorenzo Bonicelli
- Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Modena, Italy
| | - Matteo De Ascentis
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Susanna Tora
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Alessio Di Lorenzo
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | | | - Angelo Porrello
- Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Modena, Italy
| | - Americo Bonanni
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Daniela Cioci
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Maria Goffredo
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Simone Calderara
- Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Modena, Italy
| | - Annamaria Conte
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| |
Collapse
|
4
|
Calzolari M, Callegari E, Grisendi A, Munari M, Russo S, Sgura D, Giannini A, Dalmonte G, Scremin M, Dottori M. Arbovirus screening of mosquitoes collected in 2022 in Emilia-Romagna, Italy, with the implementation of a real-time PCR for the detection of Tahyna virus. One Health 2024; 18:100670. [PMID: 38274566 PMCID: PMC10809124 DOI: 10.1016/j.onehlt.2023.100670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
Several Arboviruses (Arthropod-borne virus) are a concrete health risk. While some arboviruses, such as the West Nile virus (WNV) and the Usutu virus (USUV) are actively surveyed, others are neglected, including the Tahyna virus (TAHV). In this work, we tested - searching for all the three viruses - 37,995 mosquitoes collected in 95 attractive traps, baited by carbon dioxide, distributed in the lowlands of Emilia-Romagna, northern Italy, between 19 July and 12 August 2022. Among the 668 pools obtained, WNV was detected in 45 pools of Culex (Cx.) pipiens and USUV was recorded in 24 pools of the same mosquito; ten of these Cx. pipiens pools tested positive for both WNV and USUV. Interestingly, we recorded a significant circulation of both WNV lineage 1 (WNV-L1) and lineage 2 (WNV-L2): WNV-L1 strains were detected in 40 pools, WNV-L2 strains in three pools and both lineages were detected in two pools. TAHV was detected in 8 different species of mosquitoes in a total of 37 pools: Aedes (Ae.) caspius (25), Ae. albopictus (5), Ae. vexans (3), Cx. pipiens (2), Ae. cinereus (1) and Anopheles maculipennis sl (1). The significant number of Ae. caspius-pools tested positive and the estimated viral load suggest that this mosquito is the principal vector in the surveyed area. The potential involvement of other mosquito species in the TAHV cycle could usefully be the subject of further experimental investigation. The results obtained demonstrate that, with adequate sampling effort, entomological surveillance is able to detect arboviruses circulating in a given area. Further efforts must be made to better characterise the TAHV cycle in the surveyed area and to define health risk linked to this virus.
Collapse
Affiliation(s)
- Mattia Calzolari
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “Bruno Ubertini”, via Bianchi, 9-25124 Brescia, Italy
| | - Emanuele Callegari
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “Bruno Ubertini”, via Bianchi, 9-25124 Brescia, Italy
| | - Annalisa Grisendi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “Bruno Ubertini”, via Bianchi, 9-25124 Brescia, Italy
| | - Martina Munari
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “Bruno Ubertini”, via Bianchi, 9-25124 Brescia, Italy
| | - Simone Russo
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “Bruno Ubertini”, via Bianchi, 9-25124 Brescia, Italy
| | - Danilo Sgura
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “Bruno Ubertini”, via Bianchi, 9-25124 Brescia, Italy
| | - Antonio Giannini
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “Bruno Ubertini”, via Bianchi, 9-25124 Brescia, Italy
| | - Gastone Dalmonte
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “Bruno Ubertini”, via Bianchi, 9-25124 Brescia, Italy
| | - Mara Scremin
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “Bruno Ubertini”, via Bianchi, 9-25124 Brescia, Italy
| | - Michele Dottori
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “Bruno Ubertini”, via Bianchi, 9-25124 Brescia, Italy
| |
Collapse
|
5
|
Tamba M, Bonilauri P, Galletti G, Casadei G, Santi A, Rossi A, Calzolari M. West Nile virus surveillance using sentinel birds: results of eleven years of testing in corvids in a region of northern Italy. Front Vet Sci 2024; 11:1407271. [PMID: 38818494 PMCID: PMC11138491 DOI: 10.3389/fvets.2024.1407271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024] Open
Abstract
The natural transmission cycle of West Nile virus (WNV) involves birds as primary hosts and mosquitoes as vectors, but this virus can spread to mammals, human beings included. Asymptomatic infected donors pose a risk to the safety of blood transfusions and organ transplants, as WNV can be transmitted through these medical procedures. Since 2009, the region of Emilia-Romagna in northern Italy has been implementing an integrated surveillance system in order to detect WNV circulation in the environment at an early stage. Here we report the results of the two components of the surveillance system, the active testing of corvids and humans, and demonstrate that bird surveillance alone improves a surveillance system based solely on human case detection. As WNV risk reduction measures are applied on a provincial basis, we assessed the ability of this surveillance system component to detect virus circulation prior to the notification of the first human case for each province. Overall, 99 epidemic seasons were evaluated as a result of 11 years (2013-2023) of surveillance in the nine provinces of the region. In this period, 22,314 corvids were tested for WNV and 642 (2.9%) were found to be infected. WNV was generally first detected in birds in July, with sample prevalence peaks occurring between August and September. During the same period, 469 autochthonous human cases were notified, about 60% of which were reported in August. WNV was detected 79 times out of the 99 seasons considered. The virus was notified in birds 73 times (92.4%) and 60 times (75.9%) in humans. WNV was first or only notified in birds in 57 seasons (72.1%), while it was first or only notified in humans in 22 seasons (27.8%). Active surveillance in corvids generally allows the detection of WNV before the onset of human cases. Failure of virus detection occurred mainly in seasons where the number of birds tested was low. Our results show that active testing of a minimum of 3.8 corvids per 100 km2 provides a satisfactory timeliness in the virus detection, but for early detection of WNV it is crucial to test birds between mid-June and mid-August.
Collapse
Affiliation(s)
- Marco Tamba
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Brescia, Italy
| | | | | | | | | | | | | |
Collapse
|
6
|
Kollas N, Gewehr S, Kioutsioukis I. Empirical dynamic modelling and enhanced causal analysis of short-length Culex abundance timeseries with vector correlation metrics. Sci Rep 2024; 14:3597. [PMID: 38351267 PMCID: PMC10864305 DOI: 10.1038/s41598-024-54054-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/08/2024] [Indexed: 02/16/2024] Open
Abstract
Employing Empirical Dynamic Modelling we investigate whether model free methods could be applied in the study of Culex mosquitoes in Northern Greece. Applying Simplex Projection and S-Map algorithms on yearly timeseries of maximum abundances from 2011 to 2020 we successfully predict the decreasing trend in the maximum number of mosquitoes which was observed in the rural area of Thessaloniki during 2021. Leveraging the use of vector correlation metrics we were able to deduce the main environmental factors driving mosquito abundance such as temperature, rain and wind during 2012 and study the causal interaction between neighbouring populations in the industrial area of Thessaloniki between 2019 and 2020. In all three cases a chaotic and non-linear behaviour of the underlying system was observed. Given the health risk associated with the presence of mosquitoes as vectors of viral diseases these results hint to the usefulness of EDM methods in entomological studies as guides for the construction of more accurate and realistic mechanistic models which are indispensable to public health authorities for the design of targeted control strategies and health prevention measures.
Collapse
Affiliation(s)
- Nikos Kollas
- Department of Physics, University of Patras, 26504, Patras, Greece
| | | | | |
Collapse
|
7
|
Krol L, Blom R, Dellar M, van der Beek JG, Stroo AC, van Bodegom PM, Geerling GW, Koenraadt CJ, Schrama M. Interactive effects of climate, land use and soil type on Culex pipiens/torrentium abundance. One Health 2023; 17:100589. [PMID: 37415720 PMCID: PMC10320611 DOI: 10.1016/j.onehlt.2023.100589] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 04/27/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023] Open
Abstract
The incidence and risk of mosquito-borne disease outbreaks in Northwestern Europe has increased over the last few decades. Understanding the underlying environmental drivers of mosquito population dynamics helps to adequately assess mosquito-borne disease risk. While previous studies have focussed primarily on the effects of climatic conditions (i.e., temperature and precipitation) and/or local environmental conditions individually, it remains unclear how climatic conditions interact with local environmental factors such as land use and soil type, and how these subsequently affect mosquito abundance. Here, we set out to study the interactive effects of land use, soil type and climatic conditions on the abundance of Culex pipiens/torrentium, highly abundant vectors of West Nile virus and Usutu virus. Mosquitoes were sampled at 14 sites throughout the Netherlands. At each site, weekly mosquito collections were carried out between early July and mid-October 2020 and 2021. To assess the effect of the aforementioned environmental factors, we performed a series of generalized linear mixed models and non-parametric statistical tests. Our results show that mosquito abundance and species richness consistently differ among land use- and soil types, with peri-urban areas with peat/clay soils having the highest Cx. pipiens/torrentium abundance and sandy rural areas having the lowest. Furthermore, we observed differences in precipitation-mediated effects on Cx. pipiens/torrentium abundance between (peri-)urban and other land uses and soil types. In contrast, effects of temperature on Cx. pipiens/torrentium abundance remain similar between different land use and soil types. Our study highlights the importance of both land use and soil type in conjunction with climatic conditions for understanding mosquito abundances. Particularly in relation to rainfall events, land use and soil type has a marked effect on mosquito abundance. These findings underscore the importance of local environmental parameters for studies focusing on predicting or mitigating disease risk.
Collapse
Affiliation(s)
- Louie Krol
- Institute of Environmental Sciences, Leiden University, the Netherlands
- Deltares, Daltonlaan 600, Utrecht, the Netherlands
| | - Rody Blom
- Laboratory of Entomology, Wageningen University and Research, Wageningen, the Netherlands
| | - Martha Dellar
- Institute of Environmental Sciences, Leiden University, the Netherlands
- Deltares, Daltonlaan 600, Utrecht, the Netherlands
| | | | - Arjan C.J. Stroo
- Centre for Monitoring of Vectors, Netherlands Food and Consumer Product Safety Authority, Ministry of Agriculture, Nature and Food Quality, Wageningen, the Netherlands
| | | | - Gertjan W. Geerling
- Deltares, Daltonlaan 600, Utrecht, the Netherlands
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | | | - Maarten Schrama
- Institute of Environmental Sciences, Leiden University, the Netherlands
| |
Collapse
|
8
|
Mingione M, Branda F, Maruotti A, Ciccozzi M, Mazzoli S. Monitoring the West Nile virus outbreaks in Italy using open access data. Sci Data 2023; 10:777. [PMID: 37935727 PMCID: PMC10630380 DOI: 10.1038/s41597-023-02676-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/24/2023] [Indexed: 11/09/2023] Open
Abstract
This paper introduces a comprehensive dataset on West Nile virus outbreaks that have occurred in Italy from September 2012 to November 2022. We have digitized bulletins published by the Italian National Institute of Health to demonstrate the potential utilization of this data for the research community. Our aim is to establish a centralized open access repository that facilitates analysis and monitoring of the disease. We have collected and curated data on the type of infected host, along with additional information whenever available, including the type of infection, age, and geographic details at different levels of spatial aggregation. By combining our data with other sources of information such as weather data, it becomes possible to assess potential relationships between West Nile virus outbreaks and environmental factors. We strongly believe in supporting public oversight of government epidemic management, and we emphasize that open data play a crucial role in generating reliable results by enabling greater transparency.
Collapse
Affiliation(s)
- Marco Mingione
- Dept. of Political Sciences, Roma Tre University, Rome, Italy
- Institute of Applied Computing "M. Picone" (IAC-CNR), Rome, Italy
| | - Francesco Branda
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, Rome, Italy.
| | - Antonello Maruotti
- Dept. of Law, Economics, Politics, and Modern Languages, LUMSA University, Rome, Italy
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, Rome, Italy
| | - Sandra Mazzoli
- STDs Centre, Santa Maria Annunziata Hospital, Florence, Italy
| |
Collapse
|
9
|
Musto C, Tamba M, Calzolari M, Rossi A, Grisendi A, Marzani K, Bonilauri P, Delogu M. Detection of West Nile and Usutu Virus RNA in Autumn Season in Wild Avian Hosts in Northern Italy. Viruses 2023; 15:1771. [PMID: 37632113 PMCID: PMC10458002 DOI: 10.3390/v15081771] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
West Nile (WNV) and Usutu (USUV) viruses are two mosquito-borne viruses belonging to the family Flaviviridae and genus Flavivirus. The natural transmission cycle of WNV and USUV involves mosquitoes and birds, while mammals are thought to be accidental hosts. The goal of this study was to report-in the context of "off-season monitoring" and passive surveillance-the detection of WNV and USUV RNA in wild birds. To this end, we analyzed biological samples of wild birds in Northern Italy, from October to May, hence outside of the regional monitoring period (June-September). The virological investigations for the detection of USUV and WNV RNA were performed using real-time PCR on frozen samples of the brain, myocardium, kidney, and spleen. In a total sample of 164 wild birds belonging to 27 different species, sequences of both viruses were detected: four birds (2.44%) were positive for WNV and five (3.05%) for USUV. Off-season infections of WNV and especially USUV are still widely discussed and only a few studies have been published to date. To the best of our knowledge, this study is the first report on the detection of USUV RNA until December 22nd. Although further studies are required, our results confirm the viral circulation out-of-season of Flavivirus in wild birds, suggesting reconsidering the epidemiological monitoring period based on each individual climate zone and taking into consideration global warming which will play an important role in the epidemiology of vector-borne diseases.
Collapse
Affiliation(s)
- Carmela Musto
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Bologna, Italy;
| | - Marco Tamba
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna, 25124 Brescia, Italy; (M.T.); (M.C.); (A.R.); (A.G.); (K.M.); (P.B.)
| | - Mattia Calzolari
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna, 25124 Brescia, Italy; (M.T.); (M.C.); (A.R.); (A.G.); (K.M.); (P.B.)
| | - Arianna Rossi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna, 25124 Brescia, Italy; (M.T.); (M.C.); (A.R.); (A.G.); (K.M.); (P.B.)
| | - Annalisa Grisendi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna, 25124 Brescia, Italy; (M.T.); (M.C.); (A.R.); (A.G.); (K.M.); (P.B.)
| | - Katia Marzani
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna, 25124 Brescia, Italy; (M.T.); (M.C.); (A.R.); (A.G.); (K.M.); (P.B.)
| | - Paolo Bonilauri
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna, 25124 Brescia, Italy; (M.T.); (M.C.); (A.R.); (A.G.); (K.M.); (P.B.)
| | - Mauro Delogu
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Bologna, Italy;
| |
Collapse
|
10
|
L'Ambert G, Gendrot M, Briolant S, Nguyen A, Pages S, Bosio L, Palomo V, Gomez N, Benoit N, Savini H, Pradines B, Durand GA, Leparc-Goffart I, Grard G, Fontaine A. Analysis of trapped mosquito excreta as a noninvasive method to reveal biodiversity and arbovirus circulation. Mol Ecol Resour 2023; 23:410-423. [PMID: 36161270 PMCID: PMC10092573 DOI: 10.1111/1755-0998.13716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/02/2022] [Accepted: 09/16/2022] [Indexed: 01/04/2023]
Abstract
Emerging and endemic mosquito-borne viruses can be difficult to detect and monitor because they often cause asymptomatic infections in human or vertebrate animals or cause nonspecific febrile illness with a short recovery waiting period. Some of these pathogens circulate into complex cryptic cycles involving several animal species as reservoir or amplifying hosts. Detection of cases in vertebrate hosts can be complemented by entomological surveillance, but this method is not adapted to low infection rates in mosquito populations that typically occur in low or nonendemic areas. We identified West Nile virus circulation in Camargue, a wetland area in South of France, using a cost-effective xenomonitoring method based on the molecular detection of virus in excreta from trapped mosquitoes. We also succeeded at identifying the mosquito species community on several sampling sites, together with the vertebrate hosts on which they fed prior to being captured using amplicon-based metabarcoding on mosquito excreta without processing any mosquitoes. Mosquito excreta-based virus surveillance can complement standard surveillance methods because it is cost-effective and does not require personnel with a strong background in entomology. This strategy can also be used to noninvasively explore the ecological network underlying arbovirus circulation.
Collapse
Affiliation(s)
- Grégory L'Ambert
- Entente Interdépartementale Pour la Démoustication du Littoral Méditerranéen (EID Méditerranée), Montpellier, France
| | - Mathieu Gendrot
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées (IRBA), Marseille, France.,IRD, SSA, AP-HM, VITROME, Aix Marseille Univ, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Sébastien Briolant
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées (IRBA), Marseille, France.,IRD, SSA, AP-HM, VITROME, Aix Marseille Univ, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | | | - Sylvain Pages
- Entente Interdépartementale Pour la Démoustication du Littoral Méditerranéen (EID Méditerranée), Montpellier, France
| | - Laurent Bosio
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France.,Centre National de Référence des Arbovirus, Institut de Recherche Biomédicale des Armées, Marseille, France
| | - Vincent Palomo
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France.,Centre National de Référence des Arbovirus, Institut de Recherche Biomédicale des Armées, Marseille, France
| | - Nicolas Gomez
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées (IRBA), Marseille, France.,IRD, SSA, AP-HM, VITROME, Aix Marseille Univ, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Nicolas Benoit
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées (IRBA), Marseille, France.,IRD, SSA, AP-HM, VITROME, Aix Marseille Univ, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Hélène Savini
- IRD, SSA, AP-HM, VITROME, Aix Marseille Univ, Marseille, France.,Service des Maladies Infectieuses, Hôpital d'Instruction des Armées Laveran, Marseille, France
| | - Bruno Pradines
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées (IRBA), Marseille, France.,IRD, SSA, AP-HM, VITROME, Aix Marseille Univ, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Centre National de Référence du Paludisme, Marseille, France
| | - Guillaume André Durand
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France.,Centre National de Référence des Arbovirus, Institut de Recherche Biomédicale des Armées, Marseille, France
| | - Isabelle Leparc-Goffart
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France.,Centre National de Référence des Arbovirus, Institut de Recherche Biomédicale des Armées, Marseille, France
| | - Gilda Grard
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France.,Centre National de Référence des Arbovirus, Institut de Recherche Biomédicale des Armées, Marseille, France
| | - Albin Fontaine
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées (IRBA), Marseille, France.,IRD, SSA, AP-HM, VITROME, Aix Marseille Univ, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| |
Collapse
|
11
|
Worldwide transmission and infection risk of mosquito vectors of West Nile, St. Louis encephalitis, Usutu and Japanese encephalitis viruses: a systematic review. Sci Rep 2023; 13:308. [PMID: 36609450 PMCID: PMC9822987 DOI: 10.1038/s41598-022-27236-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/28/2022] [Indexed: 01/07/2023] Open
Abstract
The increasing trend of mosquito-borne pathogens demands more accurate global estimations of infection and transmission risks between mosquitoes. Here, we systematically review field and laboratory studies to assess the natural field infection and experimental laboratory transmission risk in Culex mosquitoes. We studied four worldwide flaviviruses: West Nile, Usutu, Japanese encephalitis, and St. Louis encephalitis, belonging to the Japanese encephalitis Serocomplex (JES). The PRISMA statement was carried out for both approaches. The Transmission-Infection Risk of the diverse mosquito species for the different viruses was estimated through seven variables. We considered 130 and 95 articles for field and experimental approach, respectively. We identified 30 species naturally infected, and 23 species capable to transmit some of the four flaviviruses. For the JES, the highest Transmission-Infection Risk estimate was recorded in Culex quinquefasciatus (North America). The maximum Infection-Transmission Risk values for West Nile was Culex restuans, for Usutu it was Culex pipiens (Europe), for St. Louis encephalitis Culex quinquefasciatus (North America), and for Japanese encephalitis Culex gelidus (Oceania). We conclude that on a worldwide scale, a combination of field and experimental data offers a better way of understanding natural infection and transmission risks between mosquito populations.
Collapse
|
12
|
Giesen C, Herrador Z, Fernandez B, Figuerola J, Gangoso L, Vazquez A, Gómez-Barroso D. A systematic review of environmental factors related to WNV circulation in European and Mediterranean countries. One Health 2023. [DOI: 10.1016/j.onehlt.2022.100478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
13
|
Riccò M, Zaniboni A, Satta E, Ranzieri S, Cerviere MP, Marchesi F, Peruzzi S. West Nile Virus Infection: A Cross-Sectional Study on Italian Medical Professionals during Summer Season 2022. Trop Med Infect Dis 2022; 7:tropicalmed7120404. [PMID: 36548659 PMCID: PMC9786547 DOI: 10.3390/tropicalmed7120404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
West Nile virus (WNV) has progressively endemized in large areas of continental Europe, and particularly in Northern Italy, in the Po River Valley. During summer season 2022, Italy experienced an unprecedented surge in incidence cases of WNV infections, including its main complications (West Nile fever (WNF) and West Nile neuroinvasive disease (WNND)). As knowledge, attitudes, and practices (KAP) of medical professionals may be instrumental in guaranteeing a prompt diagnosis and an accurate management of incident cases, we performed a cross-sectional study specifically on a sample of Italian medical professionals (1 August 2022-10 September 2022; around 8800 potential recipients). From a total of 332 questionnaires (response rate of 3.8%), 254 participating medical professionals were eventually included in the analyses. Knowledge status of participants was unsatisfying, as most of them exhibited knowledge gaps on the actual epidemiology of WNV, with similar uncertainties on the clinical features of WNF and WNND. Moreover, most of participants substantially overlooked WNV as a human pathogen when compared to SARS-CoV-2, TB, and even HIV. Interestingly, only 65.4% of respondents were either favorable or highly favorable towards a hypothetical WNV vaccine. Overall, acknowledging a higher risk perception on WNV was associated with individual factors such as reporting a seniority ≥ 10 years (adjusted odds ratio [aOR] 2.39, 95% Confidence interval [95%CI] 1.34 to 4.28), reporting a better knowledge score (aOR 2.92, 95%CI 1.60 to 5.30), having previously managed cases of WNV infections (aOR 3.65, 95%CI 1.14 to 14.20), being favorable towards a hypothetic vaccine (aOR 2.16, 95%CI 1.15 to 4.04), and perceiving WNV infections as potentially affecting daily activities (aOR 2.57, 95%CI 1.22 to 5.42). In summary, substantial knowledge gaps and the erratic risk perception collectively enlighten the importance and the urgency for appropriate information campaigns among medical professionals, and particularly among frontline personnel.
Collapse
Affiliation(s)
- Matteo Riccò
- Occupational Health and Safety Service on the Workplace/Servizio di Prevenzione e Sicurezza Ambienti di Lavoro (SPSAL), Department of Public Health, AUSL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy
- Correspondence: or ; Tel.: +39-339-2994343 or +39-522-837587
| | | | - Elia Satta
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Silvia Ranzieri
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | | | - Federico Marchesi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Simona Peruzzi
- Laboratorio Analisi Chimico Cliniche e Microbiologiche, Ospedale Civile di Guastalla, AUSL-IRCCS di Reggio Emilia, 42016 Guastalla, Italy
| |
Collapse
|
14
|
An epidemiological model for mosquito host selection and temperature-dependent transmission of West Nile virus. Sci Rep 2022; 12:19946. [PMID: 36402904 PMCID: PMC9675847 DOI: 10.1038/s41598-022-24527-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022] Open
Abstract
We extend a previously developed epidemiological model for West Nile virus (WNV) infection in humans in Greece, employing laboratory-confirmed WNV cases and mosquito-specific characteristics of transmission, such as host selection and temperature-dependent transmission of the virus. Host selection was defined by bird host selection and human host selection, the latter accounting only for the fraction of humans that develop symptoms after the virus is acquired. To model the role of temperature on virus transmission, we considered five temperature intervals (≤ 19.25 °C; > 19.25 and < 21.75 °C; ≥ 21.75 and < 24.25 °C; ≥ 24.25 and < 26.75 °C; and > 26.75 °C). The capacity of the new model to fit human cases and the week of first case occurrence was compared with the original model and showed improved performance. The model was also used to infer further quantities of interest, such as the force of infection for different temperatures as well as mosquito and bird abundances. Our results indicate that the inclusion of mosquito-specific characteristics in epidemiological models of mosquito-borne diseases leads to improved modelling capacity.
Collapse
|
15
|
Calzolari M, Bonilauri P, Grisendi A, Dalmonte G, Vismarra A, Lelli D, Chiapponi C, Bellini R, Lavazza A, Dottori M. Arbovirus Screening in Mosquitoes in Emilia-Romagna (Italy, 2021) and Isolation of Tahyna Virus. Microbiol Spectr 2022; 10:e0158722. [PMID: 36165787 PMCID: PMC9602283 DOI: 10.1128/spectrum.01587-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/30/2022] [Indexed: 12/31/2022] Open
Abstract
Several viruses can be transmitted by mosquitoes. We searched some of these viruses in 20,778 mosquitoes, collected in 95 traps on the plains of Emilia-Romagna (North of Italy) in 2021. We detected West Nile virus (WNV) and Usutu virus (USUV) in pools of Culex (Cx.) pipiens. In addition, we detected two insect-specific flaviviruses in three pools of Aedes (Ae.) caspius and in two of Ae. vexans. Tahyna virus (TAHV) was detected in six pools, three of Ae. caspius and three of Cx. pipiens, and one isolated strain was obtained from one of the Ae. caspius pools. Moreover, we detected TAHV in pools of several mosquito species (Ae. caspius, Ae. vexans, Ae. albopictus, Anopheles maculipennis s.l.) collected in the previous year of surveillance. Our data indicate Ae. caspius as the species most infected with TAHV in the surveyed area. Together with the likely plasticity of the cycle, we reported strong genome stability of the TAHV, probably linked to a successful adaptation of the virus to its ecological niche. Interestingly, in six pools of Cx. pipiens we detected two associated viruses among USUV, WNV, TAHV and all the three viruses in two pools. This result allows us to assume the presence of particular conditions that prompt the circulation of arboviruses, creating the conditions for viral hot spots. While no human diseases related to Tahyna virus were reported in Italy, its detection over the years suggests that it is worth investigating this virus as a potential cause of disease in humans in order to assess its health burden. IMPORTANCE We reported in this work the detection of three Arboviruses (Arthropod-borne viruses) in mosquitoes collected in Emilia-Romagna in 2021. In addition to West Nile and Usutu viruses, which were reported from more than 10 years in the study area, we detected and isolated Tahyna virus (TAHV). We also reported detections of TAHV obtained in previous years of surveillance in different species of mosquitoes. TAHV is the potential causative agent of summer influenza-like diseases and also of meningitis. Even if human cases of disease referable to this virus are not reported in Italy, its relevant presence in mosquitoes suggests investigating the possibility they could.
Collapse
Affiliation(s)
- Mattia Calzolari
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “B. Ubertini” (IZSLER), Brescia, Italy
| | - Paolo Bonilauri
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “B. Ubertini” (IZSLER), Brescia, Italy
| | - Annalisa Grisendi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “B. Ubertini” (IZSLER), Brescia, Italy
| | - Gastone Dalmonte
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “B. Ubertini” (IZSLER), Brescia, Italy
| | - Alice Vismarra
- Dipartimento di Scienze Medico-Veterinarie, UO di Parassitologia e Malattie Parassitarie, Università di Parma, Parma, Italy
| | - Davide Lelli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “B. Ubertini” (IZSLER), Brescia, Italy
| | - Chiara Chiapponi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “B. Ubertini” (IZSLER), Brescia, Italy
| | - Romeo Bellini
- Centro Agricoltura Ambiente “G.Nicoli,” Crevalcore, Italy
| | - Antonio Lavazza
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “B. Ubertini” (IZSLER), Brescia, Italy
| | - Michele Dottori
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “B. Ubertini” (IZSLER), Brescia, Italy
| |
Collapse
|
16
|
Calzolari M, Romeo G, Munari M, Bonilauri P, Taddei R, Sampieri M, Bariselli S, Rugna G, Dottori M. Sand Flies and Pathogens in the Lowlands of Emilia-Romagna (Northern Italy). Viruses 2022; 14:v14102209. [PMID: 36298764 PMCID: PMC9608450 DOI: 10.3390/v14102209] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/23/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Cases of sand fly-borne diseases in the Emilia-Romagna region, such as meningitis caused by Toscana virus and human leishmaniasis, are reported annually through dedicated surveillance systems. Sand flies are abundant in the hilly part of the region, while the lowland is unsuitable habitat for sand flies, which are found in lower numbers in this environment with respect to the hilly areas. In this study, we retrieved sand flies collected during entomological surveillance of the West Nile virus (from 2018 to 2021) to assess their abundance and screen them for the presence of pathogens. Over the four-year period, we collected 3022 sand flies, more than half in 2021. The most abundant sand fly species was Phlebotomus (Ph.) perfiliewi, followed by Ph. perniciosus; while more rarely sampled species were Ph. papatasi, Ph. mascittii and Sergentomyia minuta. Sand flies were collected from the end of May to the end of September. The pattern of distribution of the species is characterized by an abundant number of Ph. perfiliewi in the eastern part of the region, which then falls to almost none in the western part of the region, while Ph. perniciosus seems more uniformly distributed throughout. We tested more than 1500 female sand flies in 54 pools to detect phleboviruses and Leishmania species using different PCR protocols. Toscana virus and Leishmania infantum, both human pathogens, were detected in 5 pools and 7 pools, respectively. We also detected Fermo virus, a phlebovirus uncharacterized in terms of relevance to public health, in 4 pools. We recorded different sand fly abundance in different seasons in Emilia-Romagna. During the season more favorable for sand flies, we also detected pathogens transmitted by these insects. This finding implies a health risk linked to sand fly-borne pathogens in the surveyed area in lowland, despite being considered a less suitable habitat for sand flies with respect to the hilly areas.
Collapse
|
17
|
Combining host and vector data informs emergence and potential impact of an Usutu virus outbreak in UK wild birds. Sci Rep 2022; 12:10298. [PMID: 35717348 PMCID: PMC9206397 DOI: 10.1038/s41598-022-13258-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Following the first detection in the United Kingdom of Usutu virus (USUV) in wild birds in 2020, we undertook a multidisciplinary investigation that combined screening host and vector populations with interrogation of national citizen science monitoring datasets to assess the potential for population impacts on avian hosts. Pathological findings from six USUV-positive wild passerines were non-specific, highlighting the need for molecular and immunohistochemical examinations to confirm infection. Mosquito surveillance at the index site identified USUV RNA in Culex pipiens s.l. following the outbreak. Although the Eurasian blackbird (Turdus merula) is most frequently impacted by USUV in Europe, national syndromic surveillance failed to detect any increase in occurrence of clinical signs consistent with USUV infection in this species. Furthermore, there was no increase in recoveries of dead blackbirds marked by the national ringing scheme. However, there was regional clustering of blackbird disease incident reports centred near the index site in 2020 and a contemporaneous marked reduction in the frequency with which blackbirds were recorded in gardens in this area, consistent with a hypothesis of disease-mediated population decline. Combining results from multidisciplinary schemes, as we have done, in real-time offers a model for the detection and impact assessment of future disease emergence events.
Collapse
|
18
|
Farooq Z, Rocklöv J, Wallin J, Abiri N, Sewe MO, Sjödin H, Semenza JC. Artificial intelligence to predict West Nile virus outbreaks with eco-climatic drivers. Lancet Reg Health Eur 2022; 17:100370. [PMID: 35373173 PMCID: PMC8971633 DOI: 10.1016/j.lanepe.2022.100370] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Background In Europe, the frequency, intensity, and geographic range of West Nile virus (WNV)-outbreaks have increased over the past decade, with a 7.2-fold increase in 2018 compared to 2017, and a markedly expanded geographic area compared to 2010. The reasons for this increase and range expansion remain largely unknown due to the complexity of the transmission pathways and underlying disease drivers. In a first, we use advanced artificial intelligence to disentangle the contribution of eco-climatic drivers to WNV-outbreaks across Europe using decade-long (2010-2019) data at high spatial resolution. Methods We use a high-performance machine learning classifier, XGBoost (eXtreme gradient boosting) combined with state-of-the-art XAI (eXplainable artificial intelligence) methodology to describe the predictive ability and contribution of different drivers of the emergence and transmission of WNV-outbreaks in Europe, respectively. Findings Our model, trained on 2010-2017 data achieved an AUC (area under the receiver operating characteristic curve) score of 0.97 and 0.93 when tested with 2018 and 2019 data, respectively, showing a high discriminatory power to classify a WNV-endemic area. Overall, positive summer/spring temperatures anomalies, lower water availability index (NDWI), and drier winter conditions were found to be the main determinants of WNV-outbreaks across Europe. The climate trends of the preceding year in combination with eco-climatic predictors of the first half of the year provided a robust predictive ability of the entire transmission season ahead of time. For the extraordinary 2018 outbreak year, relatively higher spring temperatures and the abundance of Culex mosquitoes were the strongest predictors, in addition to past climatic trends. Interpretation Our AI-based framework can be deployed to trigger rapid and timely alerts for active surveillance and vector control measures in order to intercept an imminent WNV-outbreak in Europe. Funding The work was partially funded by the Swedish Research Council FORMAS for the project ARBOPREVENT (grant agreement 2018-05973).
Collapse
|
19
|
Tsioka K, Gewehr S, Kalaitzopoulou S, Pappa S, Stoikou K, Mourelatos S, Papa A. Detection and molecular characterization of West Nile virus in Culex pipiens mosquitoes in Central Macedonia, Greece, 2019-2021. Acta Trop 2022; 230:106391. [PMID: 35271813 DOI: 10.1016/j.actatropica.2022.106391] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/03/2022] [Accepted: 03/06/2022] [Indexed: 11/28/2022]
Abstract
Since 2010 when West Nile virus (WNV) emerged in Greece, it causes seasonal outbreaks of human infections almost every year. During May-October of 2019-2021 a total number of 51,504 Culex pipiens mosquitoes were trapped in all seven regional units of Central Macedonia in northern Greece. They were grouped into 1099 pools and tested for WNV. The virus was detected in 5% of the mosquito pools (1.5%, 3.6% and 9.6% pools in 2019, 2020, and 2021, respectively), with significant rate differences among the regional units and years. The highest maximum likelihood estimation for WNV infection rates calculated per 1000 mosquitoes for 2019 and 2020 were 1.89 and 3.84 in Serres, and 7.08 for 2021 in Pella regional unit. Sixteen whole genome sequences were taken by applying a recently described PCR-based next generation sequencing protocol. Phylogenetic analysis showed that the sequences belonged to the Central European clade of WNV lineage 2, and that a virus strain introduced in Greece in 2019 continued to circulate and spread further during 2020-2021. The data are useful for public health and mosquito control programs' operational scheduling, while the whole genome sequences are an added value for molecular epidemiology and evolutionary studies.
Collapse
Affiliation(s)
- Katerina Tsioka
- National Reference Centre for Arboviruses, Laboratory of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | | | | - Styliani Pappa
- National Reference Centre for Arboviruses, Laboratory of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantina Stoikou
- National Reference Centre for Arboviruses, Laboratory of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Anna Papa
- National Reference Centre for Arboviruses, Laboratory of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
20
|
Defilippo F, Carrera M, Lelli D, Canziani S, Moreno A, Sozzi E, Manarolla G, Chiari M, Marco F, Cerioli MP, Lavazza A. Distribution of Phlebotomine Sand Flies (Diptera: Psychodidae) in the Lombardy Region, Northern Italy. INSECTS 2022; 13:insects13050463. [PMID: 35621798 PMCID: PMC9146192 DOI: 10.3390/insects13050463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 01/27/2023]
Abstract
Simple Summary Pathogens transmitted to humans and animals by Phlebotomines are relatively neglected, as they cause infectious diseases which represent an underestimated burden in most European countries. Several sand fly species are competent vectors of Leishmaniasis, an endemic disease that has spread widely throughout the Mediterranean region in conjunction with sand flies’ movements. In the Lombardy region, information on sand flies is poor and/or outdated. Therefore, the present study was undertaken to preliminarily ascertain the species composition, distribution, and diversity in representative Lombardy localities. The sampling took advantage of regional surveillance plans namely, West Nile virus and leishmaniasis monitoring plans. A focused sampling was also performed in areas identified as favorable for vector presence. Sampling was conducted using CO2–CDC traps conducted every two and/or three weeks. From trapping for the West Nile monitoring plan, 21 out of 44 capture sites were positive for sand flies, while for the leishmaniasis monitoring plan, 11 out of the 40 trapping sites detected sand flies’ presence. Specimen identification was conducted by identifying morphological features. Phlebotomus perniciosus was the most abundant species (87.76% of specimens collected). Adequate and well-structured monitoring of sand fly populations is essential to provide information about distribution patterns of vector species present in defined geographical areas, as they could enhance pathogen circulation. Abstract This study investigated the species composition and density of sand flies in the Lombardy region (Northern Italy). Sand flies were collected using CDC traps baited with CO2 (CO2–CDC traps) between June and August 2021. A total of 670 sand flies were collected. The specimens were identified as seven species belonging to two genera, Phlebotomus and Sergentomyia, namely, S. minuta, Ph. perniciosus, Ph. perfiliewii, Ph. neglectus, Ph. mascitti, Ph. papatasi, and Ph. ariasi. Phlebotomus perniciosus was the most abundant species (87.76%), followed by Ph. perfiliewii (7.31%), Ph. neglectus (3.13%), S. minuta (0.75%), Ph. mascitti (0.6%), Ph. papatasi (0.3%), and Ph. ariasi, for which only one specimen was identified. Among these identified species, five are considered vectors of Leishmania, which causes cutaneous and visceral leishmaniasis. As vector presence increases the risk of vector-borne leishmaniasis, these results suggest that Northern Italy could be a potential area of pathogen circulation over the next few years. These preliminary results suggest that the risk of borne leishmaniasis is high in this region of Northern Italy. Monitoring the distribution of sand fly species in areas suitable for their persistence is important for control programs aimed at reducing the risk of leishmaniasis infection.
Collapse
Affiliation(s)
- Francesco Defilippo
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia-Romagnia, Via Bianchi 9, 24124 Brescia, Italy; (M.C.); (D.L.); (S.C.); (A.M.); (E.S.); (M.P.C.); (A.L.)
- Correspondence:
| | - Maya Carrera
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia-Romagnia, Via Bianchi 9, 24124 Brescia, Italy; (M.C.); (D.L.); (S.C.); (A.M.); (E.S.); (M.P.C.); (A.L.)
| | - Davide Lelli
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia-Romagnia, Via Bianchi 9, 24124 Brescia, Italy; (M.C.); (D.L.); (S.C.); (A.M.); (E.S.); (M.P.C.); (A.L.)
| | - Sabrina Canziani
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia-Romagnia, Via Bianchi 9, 24124 Brescia, Italy; (M.C.); (D.L.); (S.C.); (A.M.); (E.S.); (M.P.C.); (A.L.)
| | - Ana Moreno
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia-Romagnia, Via Bianchi 9, 24124 Brescia, Italy; (M.C.); (D.L.); (S.C.); (A.M.); (E.S.); (M.P.C.); (A.L.)
| | - Enrica Sozzi
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia-Romagnia, Via Bianchi 9, 24124 Brescia, Italy; (M.C.); (D.L.); (S.C.); (A.M.); (E.S.); (M.P.C.); (A.L.)
| | - Giovanni Manarolla
- Welfare Department, Lombardy Region, Piazza Città di Lombardia 1, 20124 Milan, Italy; (G.M.); (M.C.); (F.M.)
| | - Mario Chiari
- Welfare Department, Lombardy Region, Piazza Città di Lombardia 1, 20124 Milan, Italy; (G.M.); (M.C.); (F.M.)
| | - Farioli Marco
- Welfare Department, Lombardy Region, Piazza Città di Lombardia 1, 20124 Milan, Italy; (G.M.); (M.C.); (F.M.)
| | - Monica Pierangela Cerioli
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia-Romagnia, Via Bianchi 9, 24124 Brescia, Italy; (M.C.); (D.L.); (S.C.); (A.M.); (E.S.); (M.P.C.); (A.L.)
| | - Antonio Lavazza
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia-Romagnia, Via Bianchi 9, 24124 Brescia, Italy; (M.C.); (D.L.); (S.C.); (A.M.); (E.S.); (M.P.C.); (A.L.)
| |
Collapse
|
21
|
Assessment of the Costs Related to West Nile Virus Monitoring in Lombardy Region (Italy) between 2014 and 2018. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095541. [PMID: 35564939 PMCID: PMC9101130 DOI: 10.3390/ijerph19095541] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 12/04/2022]
Abstract
In Italy, the West Nile Virus surveillance plan considers a multidisciplinary approach to identify the presence of the virus in the environment (entomological, ornithological, and equine surveillance) and to determine the risk of infections through potentially infected donors (blood and organ donors). The costs associated with the surveillance program for the Lombardy Region between 2014 and 2018 were estimated. The costs of the program were compared with a scenario in which the program was not implemented, requiring individual blood donation nucleic acid amplification tests (NAT) to detect the presence of WNV in human samples throughout the seasonal period of vector presence. Considering the five-year period, the application of the environmental/veterinary surveillance program allowed a reduction in costs incurred in the Lombardy Region of 7.7 million EUR. An integrated surveillance system, including birds, mosquito vectors, and dead-end hosts such as horses and humans, can prevent viral transmission to the human population, as well as anticipate the detection of WNV using NAT in blood and organ donors. The surveillance program within a One Health context has given the possibility to both document the expansion of the endemic area of WNV in northern Italy and avoid most of the NAT-related costs.
Collapse
|
22
|
Porretta D, Mastrantonio V, Lucchesi V, Bellini R, Vontas J, Urbanelli S. Historical samples reveal a combined role of agriculture and public-health applications in vector resistance to insecticides. PEST MANAGEMENT SCIENCE 2022; 78:1567-1572. [PMID: 34984788 PMCID: PMC9303699 DOI: 10.1002/ps.6775] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/28/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Insecticide resistance is the major threat to vector control and for the prevention of vector-borne diseases. Because almost all insecticides used against insect vectors are or have been used in agriculture, a connection between agricultural insecticide use and resistance in insect vectors has been hypothesized. However, it is challenging to find a causal link between past agricultural use of insecticides and current resistance in vector populations without historical data series. Here we investigated the relative contribution across time of agricultural and public-health insecticide applications in selecting for diflubenzuron (DFB) resistance in Culex pipiens populations. Using DNA sequencing, we looked for DFB resistant mutations in current and historical mosquito samples, dating back to the 1980s-1990s, when DFB was used in agriculture but not yet in mosquito control. RESULTS In the samples collected before the introduction of DFB in vector control, we found the resistant mutation I1043M in rural regions but not any of the neighboring urban and natural areas, indicating that the selection pressure was derived by agriculture. However, after the introduction of DFB for vector control, the resistant mutations were found across all study areas showing that the initial selection from agriculture was further boosted by the selection pressure imposed by the mosquito control applications in the 2000s. CONCLUSIONS Our findings support a combined role of agricultural and public-health use of insecticides in vector resistance across time and call for specific actions in integrated resistance management, including increased communication between agriculture and health practitioners. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Daniele Porretta
- Department of Environmental BiologySapienza University of RomeRomeItaly
| | | | | | - Romeo Bellini
- Medical and Veterinary Entomology DepartmentCentro Agricoltura Ambiente ‘G. Nicoli’BolognaItaly
| | - John Vontas
- Department of Crop Science, Pesticide Science LabAgricultural University of AthensAthensGreece
- Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology HellasHeraklion, CreteGreece
| | - Sandra Urbanelli
- Department of Environmental BiologySapienza University of RomeRomeItaly
| |
Collapse
|
23
|
Calzolari M, Romeo G, Bergamini F, Dottori M, Rugna G, Carra E. Host preference and Leishmania infantum natural infection of the sand fly Phlebotomus perfiliewi in northern Italy. Acta Trop 2022; 226:106246. [PMID: 34843690 DOI: 10.1016/j.actatropica.2021.106246] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/13/2021] [Accepted: 11/08/2021] [Indexed: 11/01/2022]
Abstract
The host preference of hematophagous insects is important in determining the cycle of pathogens that they potentially transmit; for example, sand flies are competent vectors of Leishmania parasites. In this work, we evaluated the host preference of sand flies collected in the Emilia-Romagna region of Italy in 2018 and 2019 in an area in which Leishmania infantum circulates actively. Out of about 30,000 sampled sand flies, we obtained 252 engorged females, which were processed to identify the sources of blood meals. Sampling data collected confirmed a positive phototropism of Phlebotomus (Ph.) perfiliewi respect to Ph. perniciosus and the enhanced efficiency of light traps in collecting engorged females compared with traps baited with carbon dioxide. We identified blood source in 185 females (183 Ph. perfiliewi, two Ph. pernicious). The most bitten animal was the roe deer (49.5%), followed by humans (29.2%), hare (7.1%) and cow (4.7%). Other animals, including wild boar, horse, donkey, porcupine, chicken and red fox, were less represented (<2%), while the blood of dogs and rodents were not detected. In addition, we singly screened engorged females for Leishmania founding 5 positive specimens, fed on roe deer (4) and man (1), providing evidence of parasite circulation in a sylvatic environment, where presence of dogs was not common. These findings suggest the existence of an uncharacterized Leishmania reservoir in the surveyed area.
Collapse
|
24
|
First Evidence of West Nile Virus Overwintering in Mosquitoes in Germany. Viruses 2021; 13:v13122463. [PMID: 34960732 PMCID: PMC8703620 DOI: 10.3390/v13122463] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/01/2021] [Accepted: 12/04/2021] [Indexed: 01/31/2023] Open
Abstract
Mosquitoes collected from mid-December 2020 to early March 2021 from hibernacula in northeastern Germany, a region of West Nile virus (WNV) activity since 2018, were examined for WNV-RNA. Among the 6101 mosquitoes tested in 722 pools of up to 12 specimens, one pool of 10 Culex pipiens complex mosquitoes collected in early March 2021 in the cellar of a medieval castle in Rosslau, federal state of Saxony-Anhalt, tested positive. Subsequent mosquito DNA analysis produced Culex pipiens biotype pipiens. The pool homogenate remaining after nucleic acid extraction failed to grow the virus on Vero and C6/36 cells. Sequencing of the viral NS2B-NS3 coding region, however, demonstrated high homology with virus strains previously collected in Germany, e.g., from humans, birds, and mosquitoes, which have been designated the East German WNV clade. The finding confirms the expectation that WNV can overwinter in mosquitoes in Germany, facilitating an early start to the natural transmission season in the subsequent year. On the other hand, the calculated low infection prevalence of 0.016–0.20%, depending on whether one or twelve of the mosquitoes in the positive pool was/were infected, indicates a slow epidemic progress and mirrors the still-hypoendemic situation in Germany. In any case, local overwintering of the virus in mosquitoes suggests its long-term persistence and an enduring public health issue.
Collapse
|
25
|
Marchino M, Paternoster G, Favretto AR, Balduzzi G, Berezowski J, Tomassone L. Process evaluation of integrated West Nile virus surveillance in northern Italy: an example of a One Health approach in public health policy. EVALUATION AND PROGRAM PLANNING 2021; 89:101991. [PMID: 34493380 DOI: 10.1016/j.evalprogplan.2021.101991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 07/28/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
West Nile virus (WNV) is endemic in the Po valley area in northern Italy. Regional health authorities have implemented integrated WNV surveillance following a One Health approach, based on collaboration between human, animal and environmental health institutions. We evaluated this integrated WNV surveillance system in Emilia-Romagna, Lombardy and Piedmont regions by means of a process evaluation. We examined the system's implementation fidelity, dose delivered and received, reach, and we identified strengths and weaknesses in the system. Qualitative and semi-quantitative data were obtained from three regional focus groups. Data were discussed in a follow up focus group, where participants suggested recommendations for improving the surveillance system. Inter-institutional and interdisciplinary integration and the creation of a 'community of practice' were identified as key elements for effective surveillance. We identified differences in the degree of interdisciplinary integration in the three regions, likely due to different epidemiological situations and years of experience in surveillance implementation. Greater collaboration and sharing of information, public engagement and economic assessments of the integrated surveillance approach would facilitate its social recognition and guarantee its sustainability through dedicated funding. We demonstrate that a transdisciplinary research approach based on process evaluation has value for designing and fine-tuning integrated health surveillance systems.
Collapse
Affiliation(s)
- Monica Marchino
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10050, Grugliasco, Italy.
| | - Giulia Paternoster
- Section of Epidemiology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 270, 8057, Zurich, Switzerland.
| | - Anna Rosa Favretto
- Department of Jurisprudence and Political, Economic and Social Sciences, University of Eastern Piedmont, Via Cavour 84, 15121, Alessandria, Italy.
| | - Giacomo Balduzzi
- Department of Jurisprudence and Political, Economic and Social Sciences, University of Eastern Piedmont, Via Cavour 84, 15121, Alessandria, Italy.
| | - John Berezowski
- Scotland's Rural College, 10 Inverness Campus, IV2 5NA, Inverness, UK.
| | - Laura Tomassone
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10050, Grugliasco, Italy.
| |
Collapse
|
26
|
Riccò M, Peruzzi S, Balzarini F. Public Perceptions on Non-Pharmaceutical Interventions for West Nile Virus Infections: A Survey from an Endemic Area in Northern Italy. Trop Med Infect Dis 2021; 6:116. [PMID: 34209481 PMCID: PMC8293337 DOI: 10.3390/tropicalmed6030116] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 12/20/2022] Open
Abstract
During the last decade, cases of West Nile Virus (WNV) have occurred in the Emilia Romagna Region (ERR). Even though the notification rates remain relatively low, ranging from 0.06 to 1.83 cases/100,000 inhabitants, the persistent pathogen's circulation in settings characterized by favorable environmental characteristics suggests that WNV is becoming endemic to the Po River Valley. This study assesses knowledge, attitudes, and preventive practices toward WNV prevention among residents from 10 high-risk municipalities from the provinces of Parma and Reggio Emilia (total population: 82,317 inhabitants, census 2020). A web-based survey, based on the health belief model, was performed during the month of January 2021, with a convenience sampling of 469 participants from a series of closed discussion groups on social media (i.e., 2.1% of the potential responders). A total of 243 participants knew the meaning of WNV: Of them, 61.3% were aware of previous WNV infections in ERR, 76.5% acknowledged WNV infection as a severe one, but only 31.3% expressed any worry about WNV. Our results irregularly report preventive practices, either collective (e.g., draining standing water from items and the environment, 50.7%; spraying pesticides around the home, 33.0%) or individual (e.g., use of skin repellants when going outdoors, 42.6%). In a multivariate analysis, performed through binary logistic regression, participants reporting any worry towards WNV were more likely to characterize WNV as a severe disease (adjusted odds ratio [aOR] = 20.288, 95% confidence interval [CI] = 5.083-80.972). On the contrary, respondents supporting community mosquito control programs were more likely among people working with animals/livestock (aOR = 13.948, 95%CI = 2.793-69.653), and supporting tax exemptions for mosquito control programs (aOR = 4.069, 95%CI 2.098-7.893). In conclusion, our results suggest that future interventions promoting WNV prevention among residents in ERR should focus on perceptions of vulnerability to WNV, emphasizing the benefits of personal protective behaviors.
Collapse
Affiliation(s)
- Matteo Riccò
- Servizio di Prevenzione e Sicurezza Negli Ambienti di Lavoro (SPSAL), AUSL-IRCCS di Reggio Emilia, Via Amendola n.2, I-42122 Reggio Emilia, RE, Italy
| | - Simona Peruzzi
- Laboratorio Analisi Chimico Cliniche e Microbiologiche, Ospedale Civile di Guastalla, AUSL-IRCCS di Reggio Emilia, I-42016 Guastalla, RE, Italy;
| | - Federica Balzarini
- Dipartimento per la Programmazione, Accreditamento, Acquisto delle Prestazioni Sanitarie e Sociosanitarie (P.A.A.P.S.S.), Servizio Autorizzazione e Accreditamento, Agenzia di Tutela della Salute (ATS) di Bergamo, Via Galliccioli, 4, I-24121 Bergamo, BG, Italy;
| |
Collapse
|
27
|
Bakran-Lebl K, Camp JV, Kolodziejek J, Weidinger P, Hufnagl P, Cabal Rosel A, Zwickelstorfer A, Allerberger F, Nowotny N. Diversity of West Nile and Usutu virus strains in mosquitoes at an international airport in Austria. Transbound Emerg Dis 2021; 69:2096-2109. [PMID: 34169666 PMCID: PMC9540796 DOI: 10.1111/tbed.14198] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/21/2021] [Indexed: 11/27/2022]
Abstract
Increased globalization and international transportation have resulted in the inadvertent introduction of exotic mosquitoes and new mosquito‐borne diseases. International airports are among the possible points of entry for mosquitoes and their pathogens. We established a mosquito and mosquito‐borne diseases monitoring programme at the largest international airport in Austria and report the results for the first two years, 2018 and 2019. This included weekly monitoring and sampling of adult mosquitoes, and screening them for the presence of viral nucleic acids by standard molecular diagnostic techniques. Additionally, we surveyed the avian community at the airport, as birds are potentially amplifying hosts. In 2018, West Nile virus (WNV) was detected in 14 pools and Usutu virus (USUV) was detected in another 14 pools of mosquitoes (minimum infection rate [MIR] of 6.8 for each virus). Of these 28 pools, 26 consisted of female Culex pipiens/torrentium, and two contained male Culex sp. mosquitoes. Cx. pipiens/torrentium mosquitoes were the most frequently captured mosquito species at the airport. The detected WNV strains belonged to five sub‐clusters within the sub‐lineage 2d‐1, and all detected USUV strains were grouped to at least seven sub‐clusters among the cluster Europe 2; all strains were previously shown to be endemic in Austria. In 2019, all mosquito pools were negative for any viral nucleic acids tested. Our study suggests that airports may serve as foci of arbovirus activity, particularly during epidemic years, and should be considered when designing mosquito control and arbovirus monitoring programmes.
Collapse
Affiliation(s)
- Karin Bakran-Lebl
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | - Jeremy V Camp
- Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jolanta Kolodziejek
- Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Pia Weidinger
- Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Peter Hufnagl
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | - Adriana Cabal Rosel
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | | | - Franz Allerberger
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | - Norbert Nowotny
- Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria.,Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, United Arab Emirates
| |
Collapse
|
28
|
Schiuma M, Pezzati L, Ballone E, Borghi B, Osio M, Mattavelli D, Galimberti L, Corbellino M, Mileto D, Zanchetta N, Antinori S. Case Report: A Fatal Case of West Nile Virus Meningoencephalomyelitis in a Woman with Systemic Lupus Erythematosus Initially Misdiagnosed as SARS-CoV-2 Infection. Am J Trop Med Hyg 2021; 104:1716-1718. [PMID: 33782207 PMCID: PMC8103457 DOI: 10.4269/ajtmh.21-0041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/08/2021] [Indexed: 11/07/2022] Open
Abstract
We present a fatal case of West Nile virus meningoencephalomyelitis initially misdiagnosed as COVID-19 in a 63-year-old Egyptian woman with a previous diagnosis of systemic lupus erythematosus. The patient's medical history and immunosuppressive therapy, as well as the COVID-19 pandemic, substantially broadened the differential diagnosis of her encephalitis.
Collapse
Affiliation(s)
- Marco Schiuma
- III Division of Infectious Diseases, Luigi Sacco Hospital, Milan, Italy;,Department of Biomedical and Clinical Sciences “Luigi Sacco”, Università degli Studi di Milano, Milano, Italy
| | - Laura Pezzati
- III Division of Infectious Diseases, Luigi Sacco Hospital, Milan, Italy;,Department of Biomedical and Clinical Sciences “Luigi Sacco”, Università degli Studi di Milano, Milano, Italy
| | | | | | | | | | - Laura Galimberti
- III Division of Infectious Diseases, Luigi Sacco Hospital, Milan, Italy
| | - Mario Corbellino
- III Division of Infectious Diseases, Luigi Sacco Hospital, Milan, Italy
| | - Davide Mileto
- Laboratory of Clinical Microbiology, Virology and Bioemergencies, Luigi Sacco Hospital, Milan, Italy
| | - Nadia Zanchetta
- Laboratory of Clinical Microbiology, Virology and Bioemergencies, Luigi Sacco Hospital, Milan, Italy
| | - Spinello Antinori
- III Division of Infectious Diseases, Luigi Sacco Hospital, Milan, Italy;,Department of Biomedical and Clinical Sciences “Luigi Sacco”, Università degli Studi di Milano, Milano, Italy;,Address correspondence to Spinello Antinori, Department of Biomedical and Clinical Sciences “Luigi Sacco,” Università degli Studi di Milano, Via GB Grassi 74, Milano 20157, Italy. E-mail:
| |
Collapse
|
29
|
Riccò M, Peruzzi S, Balzarini F. Epidemiology of West Nile Virus Infections in Humans, Italy, 2012-2020: A Summary of Available Evidences. Trop Med Infect Dis 2021; 6:61. [PMID: 33923347 PMCID: PMC8167603 DOI: 10.3390/tropicalmed6020061] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 11/25/2022] Open
Abstract
In Italy, human cases of West Nile virus (WNV) infection have been recorded since 2008, and seasonal outbreaks have occurred almost annually. In this study, we summarize available evidences on the epidemiology of WNV and West Nile neuro-invasive disease (WNND) in humans reported between 2012 and 2020. In total, 1145 WNV infection cases were diagnosed; of them 487 (42.5%) had WNND. A significant circulation of the pathogen was suggested by studies on blood donors, with annual incidence rates ranging from 1.353 (95% confidence intervals (95% CI) 0.279-3.953) to 19.069 cases per 100,000 specimens (95% CI 13.494-26.174). The annual incidence rates of WNND increased during the study period from 0.047 cases per 100,000 (95% CI 0.031-0.068) in 2012, to 0.074 cases per 100,000 (95% CI 0.054-0.099) in 2020, peaking to 0.377 cases per 100,000 (95% CI 0.330-0.429) in 2018. There were 60 deaths. Cases of WNND were clustered in Northern Italy, particularly in the Po River Valley, during the months of August (56.7%) and September (27.5%). Higher risk for WNND was reported in subjects of male sex (risk ratio (RR) 1.545, 95% CI 1.392-1.673 compared to females), and in older age groups (RR 24.46, 95% CI 15.61-38.32 for 65-74 y.o.; RR 43.7, 95% CI 28.33-67.41 for subjects older than 75 years), while main effectors were identified in average air temperatures (incidence rate ratio (IRR) 1.3219, 95% CI 1.0053-1.7383), population density (IRR 1.0004, 95% CI 1.0001-1.0008), and occurrence of cases in the nearby provinces (IRR 1.0442, 95% CI 1.0340-1.0545). In summary, an enhanced surveillance is vital for the early detection of human cases and the prompt implementation of response measures.
Collapse
Affiliation(s)
- Matteo Riccò
- Servizio di Prevenzione e Sicurezza Negli Ambienti di Lavoro (SPSAL), AUSL-IRCCS di Reggio Emilia, Via Amendola n.2, I-42122 Reggio Emilia, RE, Italy
| | - Simona Peruzzi
- Laboratorio Analisi Chimico Cliniche e Microbiologiche, Ospedale Civile di Guastalla, AUSL-IRCCS di Reggio Emilia, I-42016 Guastalla, RE, Italy;
| | - Federica Balzarini
- Dipartimento P.A.A.P.S.S., Servizio Autorizzazione e Accreditamento, Agenzia di Tutela della Salute (ATS) di Bergamo, Via Galliccioli, 4, I-24121 Bergamo, BG, Italy;
| |
Collapse
|
30
|
Contrasted Epidemiological Patterns of West Nile Virus Lineages 1 and 2 Infections in France from 2015 to 2019. Pathogens 2020; 9:pathogens9110908. [PMID: 33143300 PMCID: PMC7692118 DOI: 10.3390/pathogens9110908] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Since 2015, annual West Nile virus (WNV) outbreaks of varying intensities have been reported in France. Recent intensification of enzootic WNV circulation was observed in the South of France with most horse cases detected in 2015 (n = 49), 2018 (n = 13), and 2019 (n = 13). A WNV lineage 1 strain was isolated from a horse suffering from West Nile neuro-invasive disease (WNND) during the 2015 episode in the Camargue area. A breaking point in WNV epidemiology was achieved in 2018, when WNV lineage 2 emerged in Southeastern areas. This virus most probably originated from WNV spread from Northern Italy and caused WNND in humans and the death of diurnal raptors. WNV lineage 2 emergence was associated with the most important human WNV epidemics identified so far in France (n = 26, including seven WNND cases and two infections in blood and organ donors). Two other major findings were the detection of WNV in areas with no or limited history of WNV circulation (Alpes-Maritimes in 2018, Corsica in 2018–2019, and Var in 2019) and distinct spatial distribution of human and horse WNV cases. These new data reinforce the necessity to enhance French WNV surveillance to better anticipate future WNV epidemics and epizootics and to improve the safety of blood and organ donations.
Collapse
|