1
|
Abd El-Hack ME, Ashour EA, Youssef IM, Elsherbeni AI, Tellez-Isaias G, Aldhalmi AK, Swelum AA, Farag SA. Formic acid as an antibiotic alternative in broiler diets: effects on growth, carcass characteristics, blood chemistry, and intestinal microbial load. Poult Sci 2024; 103:103973. [PMID: 38972280 PMCID: PMC11264167 DOI: 10.1016/j.psj.2024.103973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024] Open
Abstract
This study explored the ability of formic acid (FA) to replace antibiotics in broiler chicken diets. It examined how FA affected the chickens' growth, carcass characteristics, blood chemistry, and gut bacteria. The experiment randomly assigned 300 one-day-old (Ross 308) broiler chicks to 5 groups, each divided into 6 replicates with 10 unsexed chicks. The following were the treatments: 1st group, negative control (NC): only received a basal diet; 2nd group, positive control (PC): received a basal diet supplemented with 0.5 grams of Colistin antibiotic per kilogram of diet; 3rd, 4th, and 5th groups (FA2, FA4, and FA6) these groups received a basal diet along with formic acid added at increasing levels: 2, 4, and 6 Cm3 per kilogram of diet, respectively. Results found no significant differences in live body weight (LBW) or body weight gain (BWG) between treatment groups, except for LBW at one week and BWG at 0 to 1 and 4 to 5 wk of age. No significant variations were found in feed intake (FI) and feed conversion ratio (FCR) among the treatment groups, excluding FI and FCR at 1 to 2 wk of age. The treatments significantly impacted carcass traits, dressing percentage, breast meat, thigh meat, spleen, giblets, blood levels of urea, creatinine, total protein, globulin, and albumin, as well as the activity of enzymes alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in chicks fed different diets compared to control groups. The addition of FA to the diet significantly impacted antioxidant levels. Also, the FA2 group had the highest total bacterial count (TBC). However, the FA6 group was the opposite; it had the lowest levels of harmful bacteria, such as E. coli and Coliform. Supplementing broiler diets with formic acid improves blood parameters, antioxidant activity, and gut bacteria counts, with 4.0 cm³ formic acid/kg diet supplementation promoting optimal broiler health and product quality.
Collapse
Affiliation(s)
- Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Elwy A Ashour
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Islam M Youssef
- Animal Production Research Institute, Agriculture Research Center, Dokki, Giza 12618, Egypt
| | - Ahmed I Elsherbeni
- Animal Production Research Institute, Agriculture Research Center, Dokki, Giza 12618, Egypt
| | - Guillermo Tellez-Isaias
- Department of Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, 72701 USA
| | - Ahmed K Aldhalmi
- College of Pharmacy, Al- Mustaqbal University, 51001 Babylon, Iraq
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Soha A Farag
- Department of Animal Production, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
2
|
Karpiński TM, Ożarowski M. Plant Organic Acids as Natural Inhibitors of Foodborne Pathogens. APPLIED SCIENCES 2024; 14:6340. [DOI: 10.3390/app14146340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Background: Foodborne infections affect approximately 600 million people annually. Simultaneously, many plants contain substances like organic acids, which have antimicrobial activity. The aim of this study was to examine the effects of 21 organic acids, naturally occurring in plants, on four foodborne bacteria (Staphylococcus aureus, Listeria monocytogenes, Escherichia coli, and Salmonella enterica Typhimurium) and two fungi (Geotrichum candidum and Penicillium candidum). Methods: The minimal inhibitory concentrations (MIC) of the organic acids against foodborne bacteria and in silico toxicity prediction of acids were investigated. Results: Benzoic and salicylic acids exhibit the best activity against foodborne bacteria (mean MIC < 1 mg/mL). Acetic, chlorogenic, formic, malic, nicotinic, and rosmarinic acids demonstrate slightly weaker activity (mean MICs 1–2 mg/mL). Other acids have moderate or poor activity. The effectiveness of organic acids against foodborne fungi is weaker than against bacteria. Most acids require high concentrations (from 10 to >100 mg/mL) to inhibit fungal growth effectively. The predicted LD50 of organic acids ranges from 48 to 5000 mg/kg. Those potentially safe as food preservatives (MIC < LD50) include ascorbic, chlorogenic, malic, nicotinic, rosmarinic, salicylic, succinic, tannic, and tartaric acids. The studied organic acids are not carcinogenic but many can cause adverse effects such as skin sensitization, eye irritation, and potential nephrotoxicity, hepatotoxicity, or neurotoxicity. Conclusions: Most of the investigated plant-derived organic acids exhibit good antibacterial activity and moderate or poor antifungal effects. Among 21 acids, only 9 appear to be safe as food preservatives (MIC < LD50). The relationship between MIC and LD50 is crucial in determining the suitability of organic acids as food preservatives, ensuring that they are effective against bacteria or fungi at concentrations that are not harmful to humans.
Collapse
Affiliation(s)
- Tomasz M. Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Rokietnicka 10, 60-806 Poznań, Poland
| | - Marcin Ożarowski
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants—National Research Institute, Wojska Polskiego 71b, 60-630 Poznań, Poland
| |
Collapse
|
3
|
Sun Y, Zhang X, Han W, Liao W, Huang J, Chen Y, Li H, Chen X, Huang Q, Zhou R, Li L. Dietary supplementation with a novel acidifier sodium diformate improves growth performance by increasing growth-related hormones levels and prevents Salmonella enterica serovar Pullorum infection in chickens. Front Vet Sci 2024; 11:1433514. [PMID: 39100761 PMCID: PMC11295659 DOI: 10.3389/fvets.2024.1433514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/01/2024] [Indexed: 08/06/2024] Open
Abstract
Since the use of antibiotics as growth promoters in animal feed has been restricted or banned in several countries, finding suitable alternatives is crucial for maintaining animal health. In this study, a novel formate acidifier named sodium diformate (NaDF) was synthesized, and the effects on growth performance and the prevention effects against Salmonella enterica serovar Pullorum infections in chickens were assessed. In broilers, NaDF supplementation improved growth performance, as evidenced by increased body weights and reduced feed conversion ratios. At 38 days of age, NaDF supplementation increased the levels of growth-hormone and ghrelin in the serum, lowered pH values in the gut, improved duodenal morphology, as shown by increased villus length/crypt depth ratios. NaDF also modulated the abundance of beneficial and harmful bacteria without changing the general microbiota diversity and short-chain fatty acids levels, which would be beneficial for maintaining gut homeostasis during its use. NaDF exhibited a broad spectrum of antibacterial activity in vitro. Supplementation with NaDF effectively decreased S. Pullorum colonization in the cecum, liver and spleen in chickens, and mitigated pathological changes in the tissues. Therefore, as a novel acidifier, NaDF can improve chicken growth performance by increasing growth-related hormones levels while maintaining the diversity of gut microbiota, and also resist intestinal bacterial infection. These results provided evidences for the application of NaDF as an effective and safe animal feed in poultry farming.
Collapse
Affiliation(s)
- Yufan Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xiaofen Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Weiyao Han
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Weilian Liao
- Animal Disease Prevention and Control Center of Jiangle, Sanming, China
| | - Jing Huang
- Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Yong Chen
- Alliance Biotech Co., Ltd., Sanming, China
| | | | - Xiabing Chen
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Qi Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan, China
| | - Lu Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan, China
| |
Collapse
|
4
|
El-Nagar D, Salem SH, El-Zamik FI, El-Basit HMIA, Galal YGM, Soliman SM, Aziz HAA, Rizk MA, El-Sayed ESR. Bioprospecting endophytic fungi for bioactive metabolites with seed germination promoting potentials. BMC Microbiol 2024; 24:200. [PMID: 38851702 PMCID: PMC11162052 DOI: 10.1186/s12866-024-03337-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/16/2024] [Indexed: 06/10/2024] Open
Abstract
There is an urgent need for new bioactive molecules with unique mechanisms of action and chemistry to address the issue of incorrect use of chemical fertilizers and pesticides, which hurts both the environment and the health of humans. In light of this, research was done for this work to isolate, identify, and evaluate the germination-promoting potential of various plant species' fungal endophytes. Zea mays L. (maize) seed germination was examined using spore suspension of 75 different endophytic strains that were identified. Three promising strains were identified through screening to possess the ability mentioned above. These strains Alternaria alternate, Aspergilus flavus, and Aspergillus terreus were isolated from the stem of Tecoma stans, Delonix regia, and Ricinus communis, respectively. The ability of the three endophytic fungal strains to produce siderophore and indole acetic acid (IAA) was also examined. Compared to both Aspergillus flavus as well as Aspergillus terreus, Alternaria alternata recorded the greatest rates of IAA, according to the data that was gathered. On CAS agar versus blue media, all three strains failed to produce siderophores. Moreover, the antioxidant and antifungal potentials of extracts from these fungi were tested against different plant pathogens. The obtained results indicated the antioxidant and antifungal activities of the three fungal strains. GC-Mass studies were carried out to determine the principal components in extracts of all three strains of fungi. The three strains' fungus extracts included both well-known and previously unidentified bioactive compounds. These results may aid in the development of novel plant growth promoters by suggesting three different fungal strains as sources of compounds that may improve seed germination. According to the study that has been given, as unexplored sources of bioactive compounds, fungal endophytes have great potential.
Collapse
Affiliation(s)
- Dina El-Nagar
- Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - S H Salem
- Department of Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Fatma I El-Zamik
- Department of Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | - Y G M Galal
- Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - S M Soliman
- Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - H A Abdel Aziz
- Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - M A Rizk
- Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - El-Sayed R El-Sayed
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt.
| |
Collapse
|
5
|
Shalaby MA, Saifan HY, Abo-EL-Sooud K, Tony MA, Yassin AM. Sodium butyrate and rosemary herb improve growth performance, biochemical profile, immunity, and carcass traits in broiler chickens. Open Vet J 2024; 14:1243-1250. [PMID: 38938426 PMCID: PMC11199749 DOI: 10.5455/ovj.2024.v14.i5.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/25/2024] [Indexed: 06/29/2024] Open
Abstract
Background Feed additives are products used in poultry nutrition to improve the quality of feed and the safety of food byproducts from animal origin. They are promising antibiotic alternatives for the production of broilers. Aim This study aimed to investigate the effect of sodium butyrate (SB) and RL on growth performance, biochemical profile, immunity, and carcass traits of broilers. Methods Five hundred-one-day-old chicks of the Hubbard breed were reared on floor pens in a privet farm, Giza. The chicks were weighed on arrival (each chick weighted 43-45 gm) and randomly assigned into five equal groups, with four replicates each (25 chicks/replicate). Group 1 was fed on a broiler diet without any additions (control). The diets of groups 2 and 3 were supplemented with 500 g/ton SB and 4 kg/ton RL, respectively. In group 4, the diet was enriched with 250 g/ton SB plus 2 kg/ton RL. Chicks in group 5 were fed on a diet fortified with 500 g/ton SB plus 4 kg/ton RL. Results Supplementation of broiler diet with 500 g/ton SB plus 4 kg /ton RL increased body weight gain (BWG) and feed efficiency ratio (FER) of birds. It decreased serum levels of aspartate aminotransferase, alanine aminotransferase, total cholesterol triglycerides, and malondialdehyde, but increased superoxide dismutase, catalase, and immunoglobulins, phagocytic activity, lysozyme activity, and nitric oxide concentrations. Antibody titers against the Newcastle disease virus were also elevated. Conclusion Supplementation of broiler diet with 500 g/ton SB plus 4 kg/ton RL gives the best result regarding productive efficiency and immunity of broiler chickens.
Collapse
Affiliation(s)
- Mostafa Abbas Shalaby
- Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Hamed Yahya Saifan
- Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Khaled Abo-EL-Sooud
- Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohamed A. Tony
- Nutrition and Clinical Nutrition Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Aya Mohye Yassin
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
6
|
Ye J, Wu H, Feng L, Huang Q, Li Q, Liao W, Wu JC. Characterization of Bacillus amyloliquefaciens PM415 as a potential bio-preserving probiotic. Arch Microbiol 2024; 206:222. [PMID: 38642140 DOI: 10.1007/s00203-024-03953-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/22/2024]
Abstract
Animal feed is vulnerable to fungal infections, and the use of bio-preserving probiotics has received increasing attention. In contrast to Lactobacillus and Bifidobacteria spp., fewer Bacillus spp. have been recognized as antifungal probiotics. Therefore, our objective was to screen antifungal strains and provide more Bacillus candidates to bridge this gap. Here, we screened 56 bacterial strains for cyclic lipopeptide genes and conducted an antifungal assay with Aspergillus niger as a representative fungus. We found that a Bacillus strain Bacillus amyloliquefaciens PM415, isolated from pigeon manure, exhibited the highest fungal inhibition activity as demonstrated by the confrontation assay and morphological observation under scanning electron microscope (SEM). Preliminary safety assessment and probiotic characterization revealed its non-pathogenic feature and stress tolerance capability. Whole genome sequencing of Bacillus amyloliquefaciens PM415 revealed a genome size of 4.16 Mbp and 84 housekeeping genes thereof were used for phylogenetic analysis showing that it is most closely related to Bacillus amyloliquefaciens LFB112. The in silico analysis further supported its non-pathogenic feature at the genomic level and revealed potential biosynthetic gene clusters responsible for its antifungal property. RNA-seq analysis revealed genome-wide changes in transportation, amino acid metabolism, non-ribosomal peptides (NRPs) biosynthesis and glycan degradation during fungal antagonism. Our results suggest that Bacillus amyloliquefaciens PM415 is a safe and effective probiotic strain that can prevent fungal growth in animal feeds.
Collapse
Affiliation(s)
- Jingkang Ye
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Haiyang Wu
- Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510316, P. R. China
| | - Li Feng
- Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510316, P. R. China
| | - Qinghua Huang
- Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510316, P. R. China
| | - Qingxin Li
- Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510316, P. R. China
| | - Weiming Liao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Jin Chuan Wu
- Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510316, P. R. China.
| |
Collapse
|
7
|
Donati L, Casagrande Pierantoni D, Conti A, Calzoni E, Corte L, Santi C, Rosati O, Cardinali G, Emiliani C. Water Extracts from Industrial Hemp Waste Inhibit the Adhesion and Development of Candida Biofilm and Showed Antioxidant Activity on HT-29 Colon Cancer Cells. Int J Mol Sci 2024; 25:3979. [PMID: 38612793 PMCID: PMC11011686 DOI: 10.3390/ijms25073979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
The evolution of regulatory perspectives regarding the health and nutritional properties of industrial hemp-based products (Cannabis sativa L.) has pushed research to focus on the development of new methods for both the extraction and formulation of the bioactive compounds present in hemp extracts. While the psychoactive and medicinal properties of hemp-derived cannabinoid extracts are well known, much less has been investigated on the functional and antimicrobial properties of hemp extracts. Within the hemp value chain, various agricultural wastes and by-products are generated. These materials can be valorised through eco-innovations, ultimately promoting sustainable economic development. In this study, we explored the use of waste from industrial light cannabis production for the extraction of bioactive compounds without the addition of chemicals. The five extracts obtained were tested for their antimicrobial activity on both planktonic and sessile cells of pathogenic strains of the Candida albicans, Candida parapsilosis, and Candida tropicalis species and for their antioxidant activity on HT-29 colon cancer cells under oxidative stress. Our results demonstrated that these extracts display interesting properties both as antioxidants and in hindering the development of fungal biofilm, paving the way for further investigations into the sustainable valorisation of hemp waste for different biomedical applications.
Collapse
Affiliation(s)
- Leonardo Donati
- Department of Pharmaceutical Sciences, University of Perugia, 06121 Perugia, Italy; (L.D.); (D.C.P.); (A.C.); (C.S.); (O.R.); (G.C.)
| | - Debora Casagrande Pierantoni
- Department of Pharmaceutical Sciences, University of Perugia, 06121 Perugia, Italy; (L.D.); (D.C.P.); (A.C.); (C.S.); (O.R.); (G.C.)
| | - Angela Conti
- Department of Pharmaceutical Sciences, University of Perugia, 06121 Perugia, Italy; (L.D.); (D.C.P.); (A.C.); (C.S.); (O.R.); (G.C.)
| | - Eleonora Calzoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06121 Perugia, Italy; (E.C.); (C.E.)
| | - Laura Corte
- Department of Pharmaceutical Sciences, University of Perugia, 06121 Perugia, Italy; (L.D.); (D.C.P.); (A.C.); (C.S.); (O.R.); (G.C.)
- CEMIN Excellence Research Centre, 06123 Perugia, Italy
| | - Claudio Santi
- Department of Pharmaceutical Sciences, University of Perugia, 06121 Perugia, Italy; (L.D.); (D.C.P.); (A.C.); (C.S.); (O.R.); (G.C.)
| | - Ornelio Rosati
- Department of Pharmaceutical Sciences, University of Perugia, 06121 Perugia, Italy; (L.D.); (D.C.P.); (A.C.); (C.S.); (O.R.); (G.C.)
| | - Gianluigi Cardinali
- Department of Pharmaceutical Sciences, University of Perugia, 06121 Perugia, Italy; (L.D.); (D.C.P.); (A.C.); (C.S.); (O.R.); (G.C.)
- CEMIN Excellence Research Centre, 06123 Perugia, Italy
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06121 Perugia, Italy; (E.C.); (C.E.)
| |
Collapse
|
8
|
Sodjinou BD, Leno PF, Millimono G, Akpavi S, Tona K, Houndonougbo FM. Prebiotic effects of Talinum triangulare and Mangifera indica on slow growing broiler chickens (SASSO). Heliyon 2024; 10:e25557. [PMID: 38327443 PMCID: PMC10848016 DOI: 10.1016/j.heliyon.2024.e25557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/21/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024] Open
Abstract
1 The study aim was to evaluate the prebiotic effects of Talinum triangulare and Mangifera indica used on slow growing broiler chickens. 2 Three hundred and sixty (360) slow-growing chicks of four weeks of age and similar weight were selected and divided into four (04) treatments (Positive Control, Negative Control, 2 % T. triangulare and 2 % M. indica) of 6 replicates with, fifteen (15) chicks per replicate, which made ninety (90) chicks per treatment. 3 At 12 week age, blood sample and cecal content were taken from 6 chickens per treatment to determine heamatological profile and fermentation parameters (Short Chain Fatty Acid). The data obtained were submitted to one-way analysis of variance (ANOVA) using the software R version 3.6.2 (R Core Team, 2019). 4 Results showed that growth performance, haematological parameters, acetic, butyric, valeric and caproic acids were similar between broilers fed with the leave powders and the positive control treatment. However, broilers fed with Talinum triangulare and Mangifera indica powders showed a lower mortality rate, compared to the negative and positive control treatments. Moreover, broilers fed with the leave powders showed significantly higher (p < 0.05) formic acid concentration than the other treatments. 5 Talinum triangulare and Mangifera indica leaves could have prebiotic properties because they stimulated the production of short-chain fatty acids that keep animals healthy.
Collapse
Affiliation(s)
- Bruno Dossou Sodjinou
- Regional Center of Excellence on Poultry Sciences (CERSA), University of Lome, Lome, Togo
- Faculty of Agronomic Sciences (FSA), University of Abomey-Calavi, Cotonou, Benin
| | - Pierre Faya Leno
- Regional Center of Excellence on Poultry Sciences (CERSA), University of Lome, Lome, Togo
| | - Germaine Millimono
- Regional Center of Excellence on Poultry Sciences (CERSA), University of Lome, Lome, Togo
| | - Sêmihinva Akpavi
- Laboratory of Botany and Plant Ecology (LBPE), University of Lomé, 01 BP 1515, Lomé 01, Togo
| | - Kokou Tona
- Regional Center of Excellence on Poultry Sciences (CERSA), University of Lome, Lome, Togo
| | | |
Collapse
|
9
|
Gast RK, Dittoe DK, Ricke SC. Salmonella in eggs and egg-laying chickens: pathways to effective control. Crit Rev Microbiol 2024; 50:39-63. [PMID: 36583653 DOI: 10.1080/1040841x.2022.2156772] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/05/2022] [Indexed: 12/31/2022]
Abstract
Eggs contaminated with Salmonella have been internationally significant sources of human illness for several decades. Most egg-associated illness has been attributed to Salmonella serovar Enteritidis, but a few other serovars (notably S. Heidelberg and S. Typhimurium) are also sometimes implicated. The edible interior contents of eggs typically become contaminated with S. Enteritidis because the pathogen's unique virulence attributes enable it to colonize reproductive tissues in systemically infected laying hens. Other serovars are more commonly associated with surface contamination of eggshells. Both research and field experience have demonstrated that the most effective overall Salmonella control strategy in commercial laying flocks is the application of multiple interventions throughout the egg production cycle. At the preharvest (egg production) level, intervention options of demonstrated efficacy include vaccination and gastrointestinal colonization control via treatments such as prebiotics, probiotics, and bacteriophages, Effective environmental management of housing systems used for commercial laying flocks is also essential for minimizing opportunities for the introduction, transmission, and persistence of Salmonella in laying flocks. At the postharvest (egg processing and handling) level, careful regulation of egg storage temperatures is critical for limiting Salmonella multiplication inside the interior contents.
Collapse
Affiliation(s)
- Richard K Gast
- U.S. National Poultry Research Center, USDA Agricultural Research Service, Athens, GA, USA
| | - Dana K Dittoe
- Department of Animal and Dairy Sciences, Meat Science and Animal Biologics Discovery Program, University of Wisconsin, Madison, WI, USA
| | - Steven C Ricke
- Department of Animal and Dairy Sciences, Meat Science and Animal Biologics Discovery Program, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
10
|
Lamichhane B, Mawad AMM, Saleh M, Kelley WG, Harrington PJ, Lovestad CW, Amezcua J, Sarhan MM, El Zowalaty ME, Ramadan H, Morgan M, Helmy YA. Salmonellosis: An Overview of Epidemiology, Pathogenesis, and Innovative Approaches to Mitigate the Antimicrobial Resistant Infections. Antibiotics (Basel) 2024; 13:76. [PMID: 38247636 PMCID: PMC10812683 DOI: 10.3390/antibiotics13010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/24/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
Salmonella is a major foodborne pathogen and a leading cause of gastroenteritis in humans and animals. Salmonella is highly pathogenic and encompasses more than 2600 characterized serovars. The transmission of Salmonella to humans occurs through the farm-to-fork continuum and is commonly linked to the consumption of animal-derived food products. Among these sources, poultry and poultry products are primary contributors, followed by beef, pork, fish, and non-animal-derived food such as fruits and vegetables. While antibiotics constitute the primary treatment for salmonellosis, the emergence of antibiotic resistance and the rise of multidrug-resistant (MDR) Salmonella strains have highlighted the urgency of developing antibiotic alternatives. Effective infection management necessitates a comprehensive understanding of the pathogen's epidemiology and transmission dynamics. Therefore, this comprehensive review focuses on the epidemiology, sources of infection, risk factors, transmission dynamics, and the host range of Salmonella serotypes. This review also investigates the disease characteristics observed in both humans and animals, antibiotic resistance, pathogenesis, and potential strategies for treatment and control of salmonellosis, emphasizing the most recent antibiotic-alternative approaches for infection control.
Collapse
Affiliation(s)
- Bibek Lamichhane
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Asmaa M. M. Mawad
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Mohamed Saleh
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - William G. Kelley
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Patrick J. Harrington
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Cayenne W. Lovestad
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Jessica Amezcua
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Mohamed M. Sarhan
- Faculty of Pharmacy, King Salman International University (KSIU), Ras Sudr 8744304, Egypt
| | - Mohamed E. El Zowalaty
- Veterinary Medicine and Food Security Research Group, Medical Laboratory Sciences Program, Faculty of Health Sciences, Abu Dhabi Women’s Campus, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Hazem Ramadan
- Hygiene and Zoonoses Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Melissa Morgan
- Department of Animal and Food Sciences, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Yosra A. Helmy
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
11
|
Galli GM, Levesque CL, Cantarelli VS, Chaves RF, Silva CC, Fascina VB, Perez-Palencia JY. Effect of protease supplementation on amino acid digestibility of soybean meal fed to growing-finishing pigs in two different ages. J Anim Sci 2024; 102:skae345. [PMID: 39506561 PMCID: PMC11630852 DOI: 10.1093/jas/skae345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/05/2024] [Indexed: 11/08/2024] Open
Abstract
This study was conducted to investigate the effect of protease inclusion level in two different ages on the apparent (AID) and standardized (SID) ileal digestibility of crude protein (CP) and amino acids (AAs) in soybean meal (SBM) fed to growing-finishing pigs. Ten cannulated pigs (21 ± 2 kg) were assigned to experimental diets in a duplicate 5 × 5 Latin square design. In phase I (23 to 30 kg-pigs, 90 ± 17 d of age), ileal digesta was collected in five periods of 7 d (5 d adaptation and 2 d ileal digesta collection). In phase II, (50 to 65 kg-pigs, 140 ± 17 d of age), ileal digesta was collected in 5 more periods of 7 d. For both phases, a corn starch-based diet was formulated with SBM as the sole source of CP and AA and containing titanium as an indigestible marker. Protease was supplemented at 0, 15,000, 30,000, and 45,000 NFP/kg of feed (0, 25, 50, and 75 g/ton of ProAct 360). A nitrogen-free diet was used to estimate basal ileal endogenous AA losses. Pigs were fed at 4% of their body weight, which was adjusted at the end of each period. Orthogonal polynomial contrasts were used to determine the linear and quadratic effects of dietary protease supplementation in each phase. In phase I, increasing levels of protease resulted in a linear increase (P < 0.10) in SID for the 7/11 indispensable AA (Except Arg, His, Met + Cys, and Trp) and the average of all dispensable AA. In phase II, the SID of Ile, Leu, Met, Met + Cys, Val, the average of all indispensable AA, and 4/7 dispensable AA were quadratically increased (P < 0.10). In most cases, supplementation with 30,000 NFP/kg of feed (50 g/ton) resulted in the greatest increase in AA digestibility. However, the linear response in phase I for some AA suggests that diets for younger pigs could be supplemented with a greater level (45,000 NFP/kg or 75 g/ton of feed). Interestingly, younger pigs had consistently increased (P < 0.10) SID of CP and 15/18 AA (Except Arg, Cys, and Ser), being ~5.6% greater for indispensable AA when compared to older pigs. In conclusion, dietary protease supplementation can increase the SID of AA in SBM in both growing and finishing periods. Pig age can potentially influence AA digestibility, possibly related to a greater ileal endogenous AA flow in younger pigs. However, this fact warrants further investigation.
Collapse
Affiliation(s)
- Gabriela M Galli
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA
- Department of Animal Science, Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Crystal L Levesque
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA
| | | | | | | | | | | |
Collapse
|
12
|
Chalana G, Sihag S, Kumar A, Magotra A. Expression profiling of immune genes associated with black pepper ( Piper nigrum) powder supplementation in the diets of broiler chickens. Anim Biotechnol 2023; 34:2336-2342. [PMID: 35732035 DOI: 10.1080/10495398.2022.2088551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The present study was conducted on three hundred commercial broiler chicks with the aim to evaluate the effect of black pepper supplementation on expression of TLR gene where the negative control (T1) group was given basal diet without antibiotic and in the control group (T2) basal diet with antibiotic was fed, third (T3), fourth (T4), fifth (T5) and sixth (T6) groups were supplemented with black pepper powder (BPP) at levels 0.25, 0.5, 0.75 and 1%, respectively in diet. After 42 days, a significant reduction (p < 0.05) in ileal E. coli count and a higher value of Lactobacilli was recorded in the various black pepper powder supplemented groups, and they differed significantly (p < 0.05) from negative control. The mRNA expression levels of Toll-like receptors (TLR 2 and TLR 4) had shown significant (p < 0.05) changes in experimental groups. The TLR 2 and TLR 4 genes revealed differential expression in all black pepper supplemented groups in comparison to negative control and control group, while TLR 7 did not show any significant change. Thus, supplementation of black pepper powder can be exploited as an immunomodulator to enhance adaptive immune response of broiler chicks after validation on large number of samples.
Collapse
Affiliation(s)
- Gunjan Chalana
- Department of Animal Nutrition, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Sajjan Sihag
- Department of Animal Nutrition, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Aman Kumar
- Department of Animal Biotechnology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Ankit Magotra
- Department of Animal Genetics and Breeding, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| |
Collapse
|
13
|
Daneshmand A, Sharma NK, Kheravii SK, Hall L, Wu SB. Buffered formic acid and a monoglyceride blend improve performance and modulate gut bacteria and immunity gene expression in broilers under necrotic enteritis challenge. Poult Sci 2023; 102:102978. [PMID: 37598553 PMCID: PMC10458320 DOI: 10.1016/j.psj.2023.102978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Due to the removal of antibiotics from animal feed, alternatives have been sought to control necrotic enteritis (NE) in broilers. The current study investigated the effects of buffered formic acid (Amasil NA) and monoglycerides of short- and medium-chain fatty acids (Balangut LS P) on the performance and gut health of broilers challenged with NE. A total of 816 as-hatched 1-d-old chicks (Cobb 500) were randomly assigned to 6 treatments with 8 replicates. Treatments were: T1) nonchallenged control; T2) NE challenged control; T3) Amasil NA (challenge plus Amasil NA, 0.3% throughout all phases); T4) Balangut LS P (challenge plus Balangut LS P, 0.5%, 0.3%, and 0.2% in the starter, grower and finisher phases, respectively; T5) Combined (challenge plus combination of T3 and T4); T6) Antibiotic (challenge plus Zn bacitracin, 0.05 % throughout all phases). Birds were orally gavaged with live Eimeria vaccine species (d 9) and with Clostridium perfringens (d 14 and 15). On d 16, birds were sampled to evaluate gut permeability, microbiota, and mRNA abundance in the jejunum. The data were analyzed in JMP software using one-way ANOVA with Tukey's test to separate means, and Kruskal-Wallis test was used for non-normally-distributed parameters. Results showed that Balangut LS P decreased (P<0.05) feed conversion ratio compared to nonchallenged ones at the end of the study. Balangut LS P reduced (P < 0.05) the level of cecal Bacteriods compared to nonchallenged group, whereas Amasil NA shifted the levels of ileal Bifidobacteria, Enterobacteriaceae, and Lactobacillus towards nonchallenged control (P > 0.05). NE challenge upregulated (P < 0.001) the expression of IL-21R, zeta chain of T cell receptor (ZAP70), and dual specificity phosphatase 4 (DUSP4) compared to nonchallenged birds, whereas Balangut LS P showed an intermediate (P > 0.05) expression pattern of these genes towards nonchallenged and antibiotic groups. In conclusion, combination of Balangut LS P and Amasil NA has the potential to be used as an additive to improve the performance and gut health of broiler chickens, especially under challenging conditions such as NE infections.
Collapse
Affiliation(s)
- Ali Daneshmand
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351 Australia
| | - Nishchal K Sharma
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351 Australia
| | - Sarbast K Kheravii
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351 Australia
| | - Leon Hall
- BASF Australia Ltd, 12/28 Freshwater Place, Southbank, VIC 3006, Australia
| | - Shu-Biao Wu
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351 Australia.
| |
Collapse
|
14
|
Winter MG, Hughes ER, Muramatsu MK, Jimenez AG, Chanin RB, Spiga L, Gillis CC, McClelland M, Andrews-Polymenis H, Winter SE. Formate oxidation in the intestinal mucus layer enhances fitness of Salmonella enterica serovar Typhimurium. mBio 2023; 14:e0092123. [PMID: 37498116 PMCID: PMC10470504 DOI: 10.1128/mbio.00921-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/12/2023] [Indexed: 07/28/2023] Open
Abstract
Salmonella enterica serovar Typhimurium induces intestinal inflammation to create a niche that fosters the outgrowth of the pathogen over the gut microbiota. Under inflammatory conditions, Salmonella utilizes terminal electron acceptors generated as byproducts of intestinal inflammation to generate cellular energy through respiration. However, the electron donating reactions in these electron transport chains are poorly understood. Here, we investigated how formate utilization through the respiratory formate dehydrogenase-N (FdnGHI) and formate dehydrogenase-O (FdoGHI) contribute to gut colonization of Salmonella. Both enzymes fulfilled redundant roles in enhancing fitness in a mouse model of Salmonella-induced colitis, and coupled to tetrathionate, nitrate, and oxygen respiration. The formic acid utilized by Salmonella during infection was generated by its own pyruvate-formate lyase as well as the gut microbiota. Transcription of formate dehydrogenases and pyruvate-formate lyase was significantly higher in bacteria residing in the mucus layer compared to the lumen. Furthermore, formate utilization conferred a more pronounced fitness advantage in the mucus, indicating that formate production and degradation occurred predominantly in the mucus layer. Our results provide new insights into how Salmonella adapts its energy metabolism to the local microenvironment in the gut. IMPORTANCE Bacterial pathogens must not only evade immune responses but also adapt their metabolism to successfully colonize their host. The microenvironments encountered by enteric pathogens differ based on anatomical location, such as small versus large intestine, spatial stratification by host factors, such as mucus layer and antimicrobial peptides, and distinct commensal microbial communities that inhabit these microenvironments. Our understanding of how Salmonella populations adapt its metabolism to different environments in the gut is incomplete. In the current study, we discovered that Salmonella utilizes formate as an electron donor to support respiration, and that formate oxidation predominantly occurs in the mucus layer. Our experiments suggest that spatially distinct Salmonella populations in the mucus layer and the lumen differ in their energy metabolism. Our findings enhance our understanding of the spatial nature of microbial metabolism and may have implications for other enteric pathogens as well as commensal host-associated microbial communities.
Collapse
Affiliation(s)
- Maria G. Winter
- Department of Internal Medicine, Division of Infectious Diseases, UC Davis School of Medicine, Davis, California, USA
| | - Elizabeth R. Hughes
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Matthew K. Muramatsu
- Department of Internal Medicine, Division of Infectious Diseases, UC Davis School of Medicine, Davis, California, USA
| | - Angel G. Jimenez
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Rachael B. Chanin
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Luisella Spiga
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Caroline C. Gillis
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, UC Irvine, Irvine, California, USA
| | - Helene Andrews-Polymenis
- Department of Microbial Pathogenesis and Immunology, Texas A&M College of Medicine, College Station, Texas, USA
| | - Sebastian E. Winter
- Department of Internal Medicine, Division of Infectious Diseases, UC Davis School of Medicine, Davis, California, USA
| |
Collapse
|
15
|
Szabó RT, Kovács-Weber M, Zimborán Á, Kovács L, Erdélyi M. Effects of Short- and Medium-Chain Fatty Acids on Production, Meat Quality, and Microbial Attributes-A Review. Molecules 2023; 28:4956. [PMID: 37446617 DOI: 10.3390/molecules28134956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 07/15/2023] Open
Abstract
The non-therapeutic use of antimicrobials in poultry production contributes to the spread of drug-resistant pathogens in both birds and humans. Antibiotics are known to enhance feed efficiency and promote the growth and weight gain of poultry. New regulatory requirements and consumer preferences have led to a reduced use of antibiotics in poultry production and to the discovery of natural alternatives to antibiotic growth promoters. This interest is not only focused on the direct removal or inhibition of causative microorganisms but also on the prevention of diseases caused by enteric pathogens using a range of feed additives. A group of promising feed additives is composed of short- and medium-chain fatty acids (SCFAs and MCFAs) and their derivatives. MCFAs possess antibacterial, anticoccidial, and antiviral effects. In addition, it has been proven that these acids act in synergy if they are used together with organic acids, essential oils, or probiotics. These fatty acids also benefit intestinal health integrity and homeostasis in broilers. Other effects have been documented as well, such as an increase in intestinal angiogenesis and the gene expression of tight junctions. The aim of this review is to provide an overview of SCFAs and MCFAs as alternatives to antibiotic growth promoters and to summarize the current findings in the literature to show their possible benefits on production, meat quality, and gut health in poultry.
Collapse
Affiliation(s)
- Rubina Tünde Szabó
- Institute of Animal Husbandry, Gödöllő Campus, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary
| | - Mária Kovács-Weber
- Institute of Animal Husbandry, Gödöllő Campus, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary
| | - Ágnes Zimborán
- Institute of Animal Husbandry, Gödöllő Campus, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary
| | - Levente Kovács
- Institute of Animal Husbandry, Gödöllő Campus, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary
| | - Márta Erdélyi
- Department of Feed Toxicology, Institute of Physiology and Nutrition, Gödöllő Campus, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary
| |
Collapse
|
16
|
Jenior ML, Glass EM, Papin JA. Reconstructor: a COBRApy compatible tool for automated genome-scale metabolic network reconstruction with parsimonious flux-based gap-filling. Bioinformatics 2023; 39:btad367. [PMID: 37279743 PMCID: PMC10275916 DOI: 10.1093/bioinformatics/btad367] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 06/08/2023] Open
Abstract
MOTIVATION Genome-scale metabolic network reconstructions (GENREs) are valuable for understanding cellular metabolism in silico. Several tools exist for automatic GENRE generation. However, these tools frequently (i) do not readily integrate with some of the widely-used suites of packaged methods available for network analysis, (ii) lack effective network curation tools, (iii) are not sufficiently user-friendly, and (iv) often produce low-quality draft reconstructions. RESULTS Here, we present Reconstructor, a user-friendly, COBRApy-compatible tool that produces high-quality draft reconstructions with reaction and metabolite naming conventions that are consistent with the ModelSEED biochemistry database and includes a gap-filling technique based on the principles of parsimony. Reconstructor can generate SBML GENREs from three input types: annotated protein .fasta sequences (Type 1 input), a BLASTp output (Type 2), or an existing SBML GENRE that can be further gap-filled (Type 3). While Reconstructor can be used to create GENREs of any species, we demonstrate the utility of Reconstructor with bacterial reconstructions. We demonstrate how Reconstructor readily generates high-quality GENRES that capture strain, species, and higher taxonomic differences in functional metabolism of bacteria and are useful for further biological discovery. AVAILABILITY AND IMPLEMENTATION The Reconstructor Python package is freely available for download. Complete installation and usage instructions and benchmarking data are available at http://github.com/emmamglass/reconstructor.
Collapse
Affiliation(s)
- Matthew L Jenior
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States
| | - Emma M Glass
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States
| | - Jason A Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States
- Department of Medicine, Division of Infectious Diseases & International Health, University of Virginia, Charlottesville, Virginia, United States
- Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, Virginia, United States
| |
Collapse
|
17
|
Moreno D, Omosebi A, Jeon BW, Abad K, Kim YH, Thompson J, Liu K. Electrochemical CO2 conversion to formic acid using engineered enzymatic catalysts in a batch reactor. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2023.102441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
18
|
Chuaicham C, Noguchi Y, Shenoy S, Shu K, Trakulmututa J, Srikhaow A, Sekar K, Sasaki K. Simultaneous Photocatalytic Sugar Conversion and Hydrogen Production Using Pd Nanoparticles Decorated on Iron-Doped Hydroxyapatite. Catalysts 2023. [DOI: 10.3390/catal13040675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Pd nanoparticles (PdNPs) were successfully deposited on the surface of Fe(III)-modified hydroxyapatite (HAp), which was subsequently used as a photocatalyst for simultaneous photocatalytic H2 evolution and xylose conversion. The structural phase and morphology of the pristine HAp, FeHAp, and Pd@FeHAp were examined using XRD, SEM, and TEM instruments. At 20 °C, Pd@FeHAp provided a greater xylose conversion than pristine HAp and FeHAp, about 2.15 times and 1.41 times, respectively. In addition, lactic acid and formic acid production was increased by using Pd@FeHAp. The optimal condition was further investigated using Pd@FeHAp, which demonstrated around 70% xylose conversion within 60 min at 30 °C. Moreover, only Pd@FeHAp produced H2 under light irradiation. To clarify the impact of Fe(III) doping in FeHAp and heterojunction between PdNPs and FeHAp in the composite relative to pure Hap, the optical and physicochemical properties of Pd@FeHAp samples were analyzed, which revealed the extraordinary ability of the material to separate and transport photogenerated electron-hole pairs, as demonstrated by a substantial reduction in photoluminescence intensity when compared to Hp and FeHAp. In addition, a decrease in electron trap density in the Pd@FeHAp composite using reversed double-beam photoacoustic spectroscopy was attributed to the higher photocatalytic activity rate. Furthermore, the development of new electronic levels by the addition of Fe(III) to the structure of HAp in FeHAp may improve the ability to absorb light by lessening the energy band gap. The photocatalytic performance of the Pd@FeHAp composite was improved by lowering charge recombination and narrowing the energy band gap. As a result, a newly developed Pd@FeHAp composite might be employed as a photocatalyst to generate both alternative H2 energy and high-value chemicals.
Collapse
Affiliation(s)
- Chitiphon Chuaicham
- Department of Earth Resources Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Yuto Noguchi
- Department of Earth Resources Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Sulakshana Shenoy
- Department of Earth Resources Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Kaiqian Shu
- Department of Earth Resources Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Jirawat Trakulmututa
- Department of Earth Resources Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Assadawoot Srikhaow
- Department of Earth Resources Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Karthikeyan Sekar
- Department of Earth Resources Engineering, Kyushu University, Fukuoka 819-0395, Japan
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Keiko Sasaki
- Department of Earth Resources Engineering, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
19
|
Hodak CR, Bescucci DM, Shamash K, Kelly LC, Montina T, Savage PB, Inglis GD. Antimicrobial Growth Promoters Altered the Function but Not the Structure of Enteric Bacterial Communities in Broiler Chicks ± Microbiota Transplantation. Animals (Basel) 2023; 13:ani13060997. [PMID: 36978538 PMCID: PMC10044420 DOI: 10.3390/ani13060997] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Non-antibiotic alternatives to antimicrobial growth promoters (AGPs) are required, and understanding the mode of action of AGPs may facilitate the development of effective alternatives. The temporal impact of the conventional antibiotic AGP, virginiamycin, and an AGP alternative, ceragenin (CSA-44), on the structure and function of the broiler chicken cecal microbiota was determined using next-generation sequencing and 1H-nuclear magnetic resonance spectroscopy (NMR)-based metabolomics. To elucidate the impact of enteric bacterial diversity, oral transplantation (±) of cecal digesta into 1-day-old chicks was conducted. Microbiota transplantation resulted in the establishment of a highly diverse cecal microbiota in recipient chicks that did not change between day 10 and day 15 post-hatch. Neither virginiamycin nor CSA-44 influenced feed consumption, weight gain, or feed conversion ratio, and did not affect the structure of the cecal microbiota in chicks possessing a low or high diversity enteric microbiota. However, metabolomic analysis of the cecal contents showed that the metabolome of cecal digesta was affected in birds administered virginiamycin and CSA-44 as a function of bacterial community diversity. As revealed by metabolomics, glycolysis-related metabolites and amino acid synthesis pathways were impacted by virginiamycin and CSA-44. Thus, the administration of AGPs did not influence bacterial community structure but did alter the function of enteric bacterial communities. Hence, alterations to the functioning of the enteric microbiota in chickens may be the mechanism by which AGPs impart beneficial health benefits, and this possibility should be examined in future research.
Collapse
Affiliation(s)
- Colten R. Hodak
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Danisa M. Bescucci
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Karen Shamash
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Laisa C. Kelly
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Tony Montina
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Paul B. Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - G. Douglas Inglis
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
- Correspondence:
| |
Collapse
|
20
|
Garavito-Duarte YR, Levesque CL, Herrick K, Perez-Palencia JY. Nutritional value of high protein ingredients fed to growing pigs in comparison to commonly used protein sources in swine diets. J Anim Sci 2023; 101:skad135. [PMID: 37119202 PMCID: PMC10195198 DOI: 10.1093/jas/skad135] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/27/2023] [Indexed: 05/01/2023] Open
Abstract
Two experiments were conducted to test the hypothesis that two high protein dried distillers with solubles and yeast mass added (GDDY) products fed to growing pigs had comparable amino acid (AA) digestibility and metabolizable energy (ME) to feeds commonly used in swine diets. In experiment 1, seven barrows with an initial body weight (BW) of 25 ± 0.8 kg were fitted with a simple T-cannula at the distal ileum to allow for digesta collection. Experimental diets were N-free diets and six cornstarch-based diets containing six ingredients as the sole source of AA: spray dried GDDY, ring dried GDDY, corn distillers dried grains with solubles (DDGS), soybean meal (SBM), enzymatically treated soybean meal (ESBM), and fish meal (FM) provided at 4% of BW. The experiment was conducted as a 7 × 7 Latin square design with seven collection periods of 7 d (5 d adaptation and 2 d ileal digesta collection). In experiment 2, a total of 28 barrows (28.8 ± 1.4 kg BW) were used in a two-period switch-back design with seven diets and four replicate pigs in each period (n = 8 reps per diet). Experimental diets were a corn-based basal diet and six corn-based diets containing spray dried GDDY, ring dried GDDY, DDGS, SBM, ESBM, and FM. Fecal and urine samples were collected using the marker-to-marker approach for 5 d after 7 d of adaptation to determine ME concentration. Overall, standardized ileal digestibility (SID) values were within the mean ± SD of NRC (2012) values for all ingredients evaluated. The SID of AA was greater (P < 0.05) in ESBM than the other protein feedstuffs (90.09% vs. 78.71%-81.51%). There were no significant differences in SID of AA (P > 0.05) in SBM, FM, spray dried GDDY, and ring dried GDDY (81.49%, 78.71%, 81.52%, and 79.20%). With respect to the most common first limiting AA for swine, the SID of Lys was greater (P < 0.05) in spray dried GDDY than ring dried GDDY and DDGS (83.56% vs. 77.33% and 68.53%, respectively). There were no significant differences (P > 0.05) for ME in corn (3,313 kcal/kg), ESBM (3,323 kcal/kg), and FM (3,454 kcal/kg) when compared with spray dried GDDY and ring dried GDDY (3,995 and 3,442 kcal/kg respectively). However, spray dried GDDY had greater DE and ME when compared to SBM. Collectively, this study demonstrates that GDDY products have an AA profile and digestibility comparable to SBM; ME in GDDY products is not different from corn. Therefore, GDDY has the potential as a feed ingredient for pigs, which could provide an alternative source of protein and energy in swine diets.
Collapse
Affiliation(s)
| | - Crystal L Levesque
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA
| | - Kevin Herrick
- Technical Services Department, POET Nutrition, Sioux Falls, SD 57104, USA
| | | |
Collapse
|
21
|
Sharma H, Fidan H, Özogul F, Rocha JM. Recent development in the preservation effect of lactic acid bacteria and essential oils on chicken and seafood products. Front Microbiol 2022; 13:1092248. [PMID: 36620022 PMCID: PMC9816663 DOI: 10.3389/fmicb.2022.1092248] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Chicken and seafood are highly perishable owing to the higher moisture and unsaturated fatty acids content which make them more prone to oxidation and microbial growth. In order to preserve the nutritional quality and extend the shelf-life of such products, consumers now prefer chemical-free alternatives, such as lactic acid bacteria (LAB) and essential oils (EOs), which exert a bio-preservative effect as antimicrobial and antioxidant compounds. This review will provide in-depth information about the properties and main mechanisms of oxidation and microbial spoilage in chicken and seafood. Furthermore, the basic chemistry and mode of action of LAB and EOs will be discussed to shed light on their successful application in chicken and seafood products. Metabolites of LAB and EOs, either alone or in combination, inhibit or retard lipid oxidation and microbial growth by virtue of their principal constituents and bioactive compounds including phenolic compounds and organic acids (lactic acid, propionic acid, and acetic acid) and others. Therefore, the application of LAB and EOs is widely recognized to extend the shelf-life of chicken and seafood products naturally without altering their functional and physicochemical properties. However, the incorporation of any of these agents requires the optimization steps necessary to avoid undesirable sensory changes. In addition, toxicity risks associated with EOs also demand the regularization of an optimum dose for their inclusion in the products.
Collapse
Affiliation(s)
- Heena Sharma
- Food Technology Lab, Dairy Technology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Hafize Fidan
- Department of Tourism and Culinary Management, University of Food Technologies, Plovdiv, Bulgaria
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Çukurova University, Adana, Türkiye
| | - João Miguel Rocha
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal,ALiCE – Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal,*Correspondence: João Miguel Rocha,
| |
Collapse
|
22
|
Folliero V, Ricciardi M, Dell’Annunziata F, Pironti C, Galdiero M, Franci G, Motta O, Proto A. Deployment of a Novel Organic Acid Compound Disinfectant against Common Foodborne Pathogens. TOXICS 2022; 10:768. [PMID: 36548601 PMCID: PMC9780819 DOI: 10.3390/toxics10120768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The disinfection process represents an important activity closely linked to the removal of micro-organisms in common processing systems. Traditional disinfectants are often not sufficient to avoid the spread of food pathogens; therefore, innovative strategies for decontamination are crucial to countering microbial transmission. This study aims to assess the antimicrobial efficiency of tetrapotassium iminodisuccinic acid salt (IDSK) against the most common pathogens present on surfaces, especially in food-borne environments. METHODS IDSK was synthesized from maleic anhydride and characterized through nuclear magnetic resonance (NMR) spectroscopy (both 1H-NMR and 13C-NMR), thermogravimetric analysis (TGA) and Fourier Transform Infrared (FTIR) spectroscopy. The antibacterial activity was performed via the broth microdilution method and time-killing assays against Escherichia coli, Staphylococcus aureus, Salmonella enterica, Enterococcus faecalis and Pseudomonas aeruginosa (IDSK concentration range: 0.5-0.002 M). The biofilm biomass eradicating activity was assessed via a crystal violet (CV) assay. RESULTS The minimum inhibitory concentration (MIC) of IDSK was 0.25 M for all tested strains, exerting bacteriostatic action. IDSK also reduced biofilm biomass in a dose-dependent manner, reaching rates of about 50% eradication at a dose of 0.25 M. The advantages of using this innovative compound are not limited to disinfecting efficiency but also include its high biodegradability and its sustainable synthesis. CONCLUSIONS IDSK could represent an innovative and advantageous disinfectant for food processing and workers' activities, leading to a better quality of food and safer working conditions for the operators.
Collapse
Affiliation(s)
- Veronica Folliero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via S. Maria di Costantinopoli, 16, 80138 Naples, Italy
| | - Maria Ricciardi
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132-84084 Fisciano, Italy
| | - Federica Dell’Annunziata
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via S. Maria di Costantinopoli, 16, 80138 Naples, Italy
| | - Concetta Pironti
- Department of Medicine Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via S. Maria di Costantinopoli, 16, 80138 Naples, Italy
| | - Gianluigi Franci
- Department of Medicine Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
| | - Oriana Motta
- Department of Medicine Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
| | - Antonio Proto
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132-84084 Fisciano, Italy
| |
Collapse
|
23
|
Ratiometric Fluorescent Sensor Based on Tb(III) Functionalized Metal-Organic Framework for Formic Acid. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248702. [PMID: 36557836 PMCID: PMC9781586 DOI: 10.3390/molecules27248702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022]
Abstract
Formic acid is a common chemical raw material, the effective detection of which is of importance to food safety and environmental quality. In this work, the lanthanide functionalized dual-emission metal-organic framework (TH25) was prepared as a ratiometric fluorescent sensor for formic acid. This ratiometric sensor has a good detection performance with high selectivity, sensitivity, and reproducibility. Together with a low limit of detection of 2.1 ppm, these characters promise the ability to sense at low levels as well as a practical detection ability. This work provides ideas for the design and synthesis of effective chemical sensors for organic acids.
Collapse
|
24
|
Phytogenic Blend Improves Intestinal Health and Reduces Obesity, Diabetes, Cholesterol and Cancers: A Path toward Customised Supplementation. Antibiotics (Basel) 2022; 11:antibiotics11101428. [PMID: 36290086 PMCID: PMC9598506 DOI: 10.3390/antibiotics11101428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 12/02/2022] Open
Abstract
Poultry production is among the most challenging industries for pathogen control. High animal density and abundance of faecal material demand strict biosecurity measures and continual vigilance in monitoring animal health parameters. Despite this vigilance, dealing with disease outbreaks is a part of farmers’ routines. Phytogenic feed additives comprised of herbs, spices, essential oils, and oleoresins have potent antimicrobial and anti-inflammatory actions. Related studies are gaining substantial interest in human and animal health worldwide. In this study, a commercial blend phytogenic feed additive was supplemented to layers in an industrial free-range production system with 20,000 birds in both control and treatment groups. At the end of the trial, the ileum tissue was sampled for RNAseq transcriptomic analysis to study the host reaction to the supplement. Phytogenic supplement significantly inhibited four cholesterol-related pathways and reduced the Arteriosclerosis disease category towards improved cardiovascular health. The supplemented birds exhibited reduced disease susceptibility for 26 cancer categories with p-values in the range from 5.23 × 10−4 to 1.02 × 10−25. Major metabolic shifts in Lipid metabolism in combination with Carbohydrate metabolism have resulted in a decrease in the Obesity category, altering the ratio of fat and carbohydrate metabolism toward lower fat storage.
Collapse
|
25
|
The Feed Additive Potassium Diformate Prevents Salmonella enterica Serovar Pullorum Infection and Affects Intestinal Flora in Chickens. Antibiotics (Basel) 2022; 11:antibiotics11091265. [PMID: 36140044 PMCID: PMC9495629 DOI: 10.3390/antibiotics11091265] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/25/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Extensive studies have shown that potassium diformate (KDF), an antibiotic substitute used as a feed additive, improves animal growth performance, although there is less direct evidence of its preventive effect on bacterial infections and its influence on the intestinal flora of animals. In this study, the inhibition effect of KDF on Salmonella enterica serovar Pullorum, an important enteric pathogen causing pullorum disease, was investigated in vitro and on a chicken infection model. The effect of KDF on the diversities and structures of chicken duodenal and cecum flora were also investigated using 16S rRNA gene sequencing. The results showed that addition of 0.5% KDF in feed or 0.1% KDF in drinking water significantly reduced the bacterial loads and the degree of pathological changes in the cecum, improved digestion and reduced the pH of the gastrointestinal tract of chickens infected with S. pullorum. KDF also significantly modified the diversity and abundance of intestinal microflorae in chickens. In particular, it promoted the colonization of several probiotics, such as Bacteroides, Blautia, Ruminococcus_torques_group and Faecalibacteriumm, which are involved in maintenance of the intestinal barrier, modulation of inflammation, energy supply for intestinal cells and pathogen resistance. These results enrich the theoretical basis for the clinical application of KDF in chickens.
Collapse
|
26
|
Bioactive compounds, antibiotics and heavy metals: effects on the intestinal structure and microbiome of monogastric animals – a non-systematic review. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
The intestinal structure and gut microbiota are essential for the animals‘ health. Chemical components taken with food provide the right environment for a specific microbiome which, together with its metabolites and the products of digestion, create an environment, which in turn is affects the population size of specific bacteria. Disturbances in the composition of the gut microbiota can be a reason for the malformation of guts, which has a decisive impact on the animal‘ health. This review aimed to analyse scientific literature, published over the past 20 years, concerning the effect of nutritional factors on gut health, determined by the intestinal structure and microbiota of monogastric animals. Several topics have been investigated: bioactive compounds (probiotics, prebiotics, organic acids, and herbal active substances), antibiotics and heavy metals (essentaial minerals and toxic heavy metals).
Collapse
|
27
|
Ghoshal M, Chuang S, Zhang Y, McLandsborough L. Efficacy of Acidified Oils against Salmonella in Low-Moisture Environments. Appl Environ Microbiol 2022; 88:e0093522. [PMID: 35938829 PMCID: PMC9397106 DOI: 10.1128/aem.00935-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/08/2022] [Indexed: 11/20/2022] Open
Abstract
When processing low-moisture, high-fat foods such as peanut butter and nuts, water-based sanitization is unsuitable due to the immiscible nature of water and fats. Dry sanitization mainly uses flammable compounds such as isopropanol, requiring equipment cooling before application. The use of oils to deliver antimicrobials against foodborne pathogens enables the use of elevated temperatures, thus eliminating processing downtimes associated with dry sanitization. This study delivered organic acids and medium-chain fatty acids (100, 250, and 500 mM) in peanut oil against Salmonella enterica serovar Enteritidis desiccated at 75% relative humidity (RH). Acetic acid in peanut oil (AO) at 45°C was the most effective food-grade acid, causing a 4.4-log reduction in S. Enteritidis at 500 mM. AO caused cellular injury and was effective against a variety of S. Enteritidis strains. Confocal microscopy demonstrated that cells treated with 50 mM and 250 mM AO had significant membrane damage and reduced cellular respiration compared to untreated controls. Treatment efficacy increased with the increase in acid concentration, treatment duration, and treatment temperature from 20 to 45°C. Transmission electron microscopy after treatment with 100 and 250 mM AO revealed membrane ruffling and leakage in cell membranes, especially at 45°C. Reduction of the RH to 33% during desiccation of S. Enteritidis caused a decrease in AO efficacy compared to that at 75% RH, while at a higher RH of 90%, there was an increase in the efficacy of AO. Acidified oils can serve as robust, cost-effective replacements for dry-sanitation methods and improve safety of low moisture foods. IMPORTANCE Currently, dry sanitization products used during food processing often contain flammable compounds which require processing to stop and equipment to cool before application. This leads to processing downtimes and consequently, economic losses. This challenge is compounded by exposure to dryness which frequently renders Salmonella resistant to heat and different antimicrobials. Thus, the development of heat-tolerant oil-based antimicrobial compounds is a novel approach for sanitizing in low-moisture (dry) environments such as those found in peanut butter, tree nuts, and chocolate manufacturing. This study shows that acidified oils, especially acetic acid in peanut oil at elevated temperatures (45°C), was highly effective against desiccated Salmonella. Acidified oils have the potential to replace dry sanitizers, increasing the frequency of sanitization, leading to an improvement in food safety.
Collapse
Affiliation(s)
- Mrinalini Ghoshal
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Shihyu Chuang
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Ying Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Lynne McLandsborough
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
28
|
Kipper D, Mascitti AK, De Carli S, Carneiro AM, Streck AF, Fonseca ASK, Ikuta N, Lunge VR. Emergence, Dissemination and Antimicrobial Resistance of the Main Poultry-Associated Salmonella Serovars in Brazil. Vet Sci 2022; 9:405. [PMID: 36006320 PMCID: PMC9415136 DOI: 10.3390/vetsci9080405] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/22/2022] [Accepted: 07/30/2022] [Indexed: 11/19/2022] Open
Abstract
Salmonella infects poultry, and it is also a human foodborne pathogen. This bacterial genus is classified into several serovars/lineages, some of them showing high antimicrobial resistance (AMR). The ease of Salmonella transmission in farms, slaughterhouses, and eggs industries has made controlling it a real challenge in the poultry-production chains. This review describes the emergence, dissemination, and AMR of the main Salmonella serovars and lineages detected in Brazilian poultry. It is reported that few serovars emerged and have been more widely disseminated in breeders, broilers, and layers in the last 70 years. Salmonella Gallinarum was the first to spread on the farms, remaining as a concerning poultry pathogen. Salmonella Typhimurium and Enteritidis were also largely detected in poultry and foods (eggs, chicken, turkey), being associated with several human foodborne outbreaks. Salmonella Heidelberg and Minnesota have been more widely spread in recent years, resulting in frequent chicken/turkey meat contamination. A few more serovars (Infantis, Newport, Hadar, Senftenberg, Schwarzengrund, and Mbandaka, among others) were also detected, but less frequently and usually in specific poultry-production regions. AMR has been identified in most isolates, highlighting multi-drug resistance in specific poultry lineages from the serovars Typhimurium, Heidelberg, and Minnesota. Epidemiological studies are necessary to trace and control this pathogen in Brazilian commercial poultry production chains.
Collapse
Affiliation(s)
- Diéssy Kipper
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul 95070-560, Rio Grande do Sul, Brazil; (D.K.); (A.K.M.); (A.M.C.); (A.F.S.)
| | - Andréa Karoline Mascitti
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul 95070-560, Rio Grande do Sul, Brazil; (D.K.); (A.K.M.); (A.M.C.); (A.F.S.)
| | - Silvia De Carli
- Molecular Diagnostics Laboratory, Lutheran University of Brazil (ULBRA), Canoas 92425-350, Rio Grande do Sul, Brazil;
| | - Andressa Matos Carneiro
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul 95070-560, Rio Grande do Sul, Brazil; (D.K.); (A.K.M.); (A.M.C.); (A.F.S.)
| | - André Felipe Streck
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul 95070-560, Rio Grande do Sul, Brazil; (D.K.); (A.K.M.); (A.M.C.); (A.F.S.)
| | | | - Nilo Ikuta
- Simbios Biotecnologia, Cachoeirinha 94940-030, Rio Grande do Sul, Brazil; (A.S.K.F.); (N.I.)
| | - Vagner Ricardo Lunge
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul 95070-560, Rio Grande do Sul, Brazil; (D.K.); (A.K.M.); (A.M.C.); (A.F.S.)
- Molecular Diagnostics Laboratory, Lutheran University of Brazil (ULBRA), Canoas 92425-350, Rio Grande do Sul, Brazil;
- Simbios Biotecnologia, Cachoeirinha 94940-030, Rio Grande do Sul, Brazil; (A.S.K.F.); (N.I.)
| |
Collapse
|
29
|
Nualkul M, Yuangsoi B, Hongoh Y, Yamada A, Deevong P. Improving the nutritional value and bioactivity of soybean meal in solid-state fermentation using Bacillus strains newly isolated from the gut of the termite Termes propinquus. FEMS Microbiol Lett 2022; 369:fnac044. [PMID: 35536569 DOI: 10.1093/femsle/fnac044] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/19/2022] [Accepted: 05/06/2022] [Indexed: 12/17/2023] Open
Abstract
The present study aimed to isolate and characterize proteolytic Bacillus spp. from termite guts to test the possibility of application for improving the nutritional value and bioactivity of fermented soybean meal (FSBM). Aerobic endospore-forming bacteria were isolated from the gut of the termite Termes propinquus. Ten isolates with high levels of soy milk degradation were selected and tested for extracellular enzyme production. Among them, two isolates, Tp-5 and Tp-7, exhibited all tested hydrolytic enzyme activities (cellulase, xylanase, pectinase, amylase, protease, lipase and phytase), weak alpha hemolytic and also antagonistic activities against fish pathogenic species of Aeromonas and Streptococcus. Both phylogenetic and biochemical analyses indicated that they were closely related to Bacillus amyloliquefaciens. During solid-state fermentation of SBM, Tp-5 and Tp-7 exhibited the highest protease activity (1127.2 and 1552.4 U g-1, respectively) at 36 h, and the resulting FSBMs showed a significant increase in crude protein content and free radical-scavenging ability (P < 0.05), as well as an improvement in the composition of amino acids, metabolites and other nutrients, while indigestible materials such as fiber, lignin and hemicellulose were decreased. The potential strains, especially Tp-7, improved the nutritional value of FSBM by their strong hydrolytic and antioxidant activities, together with reducing antinutritional components.
Collapse
Affiliation(s)
- Maneeploy Nualkul
- Department of Microbiology, Faculty of Science, Kasetsart University, 10900, Bangkok, Thailand
| | - Bundit Yuangsoi
- Department of Fisheries, Faculty of Agriculture, Khon Kaen University, 40002, Khon Kaen, Thailand
| | - Yuichi Hongoh
- Department of Life Science and Technology, Tokyo Institute of Technology, 152-8550, Tokyo, Japan
| | - Akinori Yamada
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 852-8521, Nagasaki, Japan
| | - Pinsurang Deevong
- Department of Microbiology, Faculty of Science, Kasetsart University, 10900, Bangkok, Thailand
| |
Collapse
|
30
|
Jafarpour D, Hashemi SMB, Mousavifard M. Inactivation kinetics of pathogenic bacteria in persimmon using the combination of thermosonication and formic acid. FOOD SCI TECHNOL INT 2022; 29:383-394. [PMID: 35450450 DOI: 10.1177/10820132221095718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Four models (Baranyi, modified Gompertz, log-logistic and Weibull models) were applied to examine the performance of thermosonication (TS) and formic acid (FA), individually and in combination, at three temperatures (40, 50, and 60°C) for the inactivation of pathogens inoculated on persimmon. Results indicated that all nonlinear kinetic models provided a good fit to data; however, the Baranyi showed the best performance in fitting data. The combined treatment of FA and TS had a higher negative impact on the microbial population compared to each treatment alone. The highest lethal impact was observed at 60 °C and in TS-3%FA treatment, which reduced the initial population of Escherichia coli, Salmonella enterica subsp. enterica, and Listeria monocytogenes (8.1 log CFU/mL) to 2.2, 1.6, and 1.3 log CFU/mL, respectively. Hence, the obtained models can be used to predict the inactivation of pathogens in a food model subjected to the combined treatment of thermosonication and FA.
Collapse
Affiliation(s)
- Dornoush Jafarpour
- Department of Food Science and Technology, Faculty of Agriculture, Fasa Branch, 201541Islamic Azad University, Fasa, Iran
| | | | - Maryam Mousavifard
- Department of Civil Engineering, Faculty of Engineering, 528866Fasa University, Fasa, Iran
| |
Collapse
|
31
|
da Silva MCS, da Luz JMR, Veloso TGR, Gomes WDS, Oliveira ECDS, Anastácio LM, Cunha Neto A, Moreli AP, Guarçoni RC, Kasuya MCM, Pereira LL. Processing techniques and microbial fermentation on microbial profile and chemical and sensory quality of the coffee beverage. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-03980-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
32
|
Olson EG, Dittoe DK, Jendza JA, Stock DA, Ricke SC. Application of Microbial Analyses to Feeds and Potential Implications for Poultry Nutrition. Poult Sci 2022; 101:101789. [PMID: 35346494 PMCID: PMC9079344 DOI: 10.1016/j.psj.2022.101789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Elena G Olson
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA
| | - Dana K Dittoe
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA
| | - Joshua A Jendza
- BASF Corporation, 100 Park Avenue, Florham Park, NJ 07932, USA
| | - David A Stock
- Biology Department, Stetson University, Deland, FL 32723, USA
| | - Steven C Ricke
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
33
|
Grabež V, Egelandsdal B, Cruz A, Hallenstvedt E, Mydland LT, Alvseike O, Kåsin K, Ruud L, Karlsen V, Øverland M. Understanding metabolic phenomena accompanying high levels of yeast in broiler chicken diets and resulting carcass weight and meat quality changes. Poult Sci 2022; 101:101749. [PMID: 35288371 PMCID: PMC8920926 DOI: 10.1016/j.psj.2022.101749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/29/2021] [Accepted: 01/23/2022] [Indexed: 11/28/2022] Open
Abstract
The use of yeast as a protein source was investigated in broiler chicken diets on carcass quality, storage stability, and metabolite changes in leg meat. Male Ross 308 chickens (n = 100) were fed with one of 5 diets: control, control added 0.6% formic acid, or 3 diets where soybean meal was substituted with 10, 20, and 30% crude protein from inactivated yeast Cyberlindnera jadinii (CJ10, CJ20, CJ30, respectively). The yeast-containing diets reduced carcass weight, linoleic acid, and warm-over flavor in chicken leg meat. Protein degradation-related metabolite biomarkers were upregulated in the leg of chickens that were fed yeast-containing diets, indicating an adaptive response to the loss of appetite. Chill-stored leg meat of birds fed yeast diets showed increased browning and metallic taste compared with those fed the control diet. The use of formic acid in the diet reduced cooking loss and had a positive effect on vitamin B content.
Collapse
Affiliation(s)
- Vladana Grabež
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NO-1432, Ås, Norway.
| | - Bjørg Egelandsdal
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NO-1432, Ås, Norway
| | - Ana Cruz
- Felleskjøpet Fôrutvikling AS, NO-7018, Trondheim, Norway
| | | | - Liv Torunn Mydland
- Department of Animal and Aquacultural Sciences, Faculty of Bioscience, Norwegian University of Life Sciences, NO-1432, Ås, Norway
| | | | - Karoline Kåsin
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NO-1432, Ås, Norway
| | - Lene Ruud
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NO-1432, Ås, Norway
| | - Victoria Karlsen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NO-1432, Ås, Norway
| | - Margareth Øverland
- Department of Animal and Aquacultural Sciences, Faculty of Bioscience, Norwegian University of Life Sciences, NO-1432, Ås, Norway
| |
Collapse
|
34
|
Ibrahim SA, Ayivi RD, Zimmerman T, Siddiqui SA, Altemimi AB, Fidan H, Esatbeyoglu T, Bakhshayesh RV. Lactic Acid Bacteria as Antimicrobial Agents: Food Safety and Microbial Food Spoilage Prevention. Foods 2021; 10:3131. [PMID: 34945682 PMCID: PMC8701396 DOI: 10.3390/foods10123131] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
In the wake of continual foodborne disease outbreaks in recent years, it is critical to focus on strategies that protect public health and reduce the incidence of foodborne pathogens and spoilage microorganisms. Currently, there are limitations associated with conventional microbial control methods, such as the use of chemical preservatives and heat treatments. For example, such conventional treatments adversely impact the sensorial properties of food, resulting in undesirable organoleptic characteristics. Moreover, the growing consumer advocacy for safe and healthy food products, and the resultant paradigm shift toward clean labels, have caused an increased interest in natural and effective antimicrobial alternatives. For instance, natural antimicrobial elements synthesized by lactic acid bacteria (LAB) are generally inhibitory to pathogens and significantly impede the action of food spoilage organisms. Bacteriocins and other LAB metabolites have been commercially exploited for their antimicrobial properties and used in many applications in the dairy industry to prevent the growth of undesirable microorganisms. In this review, we summarized the natural antimicrobial compounds produced by LAB, with a specific focus on the mechanisms of action and applications for microbial food spoilage prevention and disease control. In addition, we provide support in the review for our recommendation for the application of LAB as a potential alternative antimicrobial strategy for addressing the challenges posed by antibiotic resistance among pathogens.
Collapse
Affiliation(s)
- Salam A. Ibrahim
- Food and Nutritional Sciences Program, North Carolina A&T State University, Greensboro, NC 27411, USA; (R.D.A.); (T.Z.)
| | - Raphael D. Ayivi
- Food and Nutritional Sciences Program, North Carolina A&T State University, Greensboro, NC 27411, USA; (R.D.A.); (T.Z.)
| | - Tahl Zimmerman
- Food and Nutritional Sciences Program, North Carolina A&T State University, Greensboro, NC 27411, USA; (R.D.A.); (T.Z.)
| | - Shahida Anusha Siddiqui
- Department of Biotechnology and Sustainability, Technical University of Munich (TUM), 94315 Straubing, Germany;
- DIL e.V.—German Institute of Food Technologies, 49610 D-Quakenbrück, Germany
| | - Ammar B. Altemimi
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61004, Iraq;
| | - Hafize Fidan
- Department of Nutrition and Tourism, University of Food Technologies, 26 Maritza Blvd., 40002 Plovdiv, Bulgaria;
| | - Tuba Esatbeyoglu
- Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany;
| | - Reza Vaseghi Bakhshayesh
- Department of Food Biotechnology, Branch for Northwest & West Region, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Tabriz 5355179854, Iran;
- Department of Food Science and Technology, University of Tabriz, Tabriz 5166616471, Iran
| |
Collapse
|
35
|
Wang H, Zhang M, Xu Y, Zong R, Xu N, Guo M. Agrobacterium fabrum atu0526-Encoding Protein Is the Only Chemoreceptor That Regulates Chemoattraction toward the Broad Antibacterial Agent Formic Acid. BIOLOGY 2021; 10:biology10121345. [PMID: 34943260 PMCID: PMC8698456 DOI: 10.3390/biology10121345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 12/25/2022]
Abstract
Soil-born plant pathogens, especially Agrobacterium, generally navigate their way to hosts through recognition of the root exudates by chemoreceptors. However, there is still a lack of appropriate identification of chemoreceptors and their ligands in Agrobacterium. Here, Atu0526, a sCache-type chemoreceptor from Agrobacterium fabrum C58, was confirmed as the receptor of a broad antibacterial agent, formic acid. The binding of formic acid to Atu0526 was screened using a thermo shift assay and verified using isothermal titration calorimetry. Inconsistent with the previously reported antimicrobial properties, formic acid was confirmed to be a chemoattractant to A. fabrum and could promote its growth. The chemotaxis of A. fabrum C58 toward formic acid was completely lost with the knock-out of atu0526, and regained with the complementation of the gene, indicating that Atu0526 is the only chemoreceptor for formic acid in A. fabrum C58. The affinity of formic acid to Atu0526LBD significantly increased after the arginine at position 115 was replaced by alanine. However, in vivo experiments showed that the R115A mutation fully abolished the chemotaxis of A. fabrum toward formic acid. Molecular docking based on a predicted 3D structure of Atu0526 suggested that the arginine may provide "an anchorage" for formic acid to pull the minor loop, thereby forming a conformational change that generates the ligand-binding signal. Collectively, our findings will promote an understanding of sCache-type chemoreceptors and their signal transduction mechanism.
Collapse
|
36
|
Phytogenic Feed Additives in Poultry: Achievements, Prospective and Challenges. Animals (Basel) 2021; 11:ani11123471. [PMID: 34944248 PMCID: PMC8698016 DOI: 10.3390/ani11123471] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Plant secondary metabolites and essential oils also known as phytogenics are biologically active compounds that have recently attracted increased interest as feed additives in poultry production, due to their ability to promote feed efficiency by enhancing the production of digestive secretions and nutrient absorption, reduce pathogenic load in the gut, exert antioxidant properties and decrease the microbial burden on the animal’s immune status. However, the mechanisms are far from being fully elucidated. Better understanding the interaction of phytogenics with gastrointestinal function and health as well as other feed ingredients/additives is crucial to design potentially cost-effective blends. Abstract Phytogenic feed additives have been largely tested in poultry production with the aim to identify their effects on the gastrointestinal function and health, and their implications on the birds’ systemic health and welfare, the production efficiency of flocks, food safety, and environmental impact. These feed additives originating from plants, and consisting of herbs, spices, fruit, and other plant parts, include many different bioactive ingredients. Reviewing published documents about the supplementation of phytogenic feed additives reveals contradictory results regarding their effectiveness in poultry production. This indicates that more effort is still needed to determine the appropriate inclusion levels and fully elucidate their mode of actions. In this frame, this review aimed to sum up the current trends in the use of phytogenic feed additives in poultry with a special focus on their interaction with gut ecosystem, gut function, in vivo oxidative status and immune system as well as other feed additives, especially organic acids.
Collapse
|
37
|
Feye KM, Dittoe DK, Jendza JA, Caldas-Cueva JP, Mallmann BA, Booher B, Tellez-Isaias G, Owens CM, Kidd MT, Ricke SC. A comparison of formic acid or monoglycerides to formaldehyde on production efficiency, nutrient absorption, and meat yield and quality of Cobb 700 broilers. Poult Sci 2021; 100:101476. [PMID: 34710711 PMCID: PMC8560989 DOI: 10.1016/j.psj.2021.101476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/30/2021] [Accepted: 09/03/2021] [Indexed: 11/22/2022] Open
Abstract
After being banned by the European Commission in 2018, the use of formaldehyde as a feed amendment in the United States has come into question. Therefore, this study was conducted to explore alternatives to formaldehyde, such as formic acid and monoglycerides, and their effects on poultry production. In total, 1,728 Cobb 700 broilers were randomly assigned to 96-floor pens on day of hatch (18 birds/pen). Using a randomized complete block design (4 blocks), treatments were assigned to pens with blocking based on location within the barn, with the eastern half of the barn designated for digestibility and the western half designated for production (per experiment: 8 control pens and 10 pens per treatment). All diets were based on a negative control (NC), basal diet. Dietary treatments consisted of: NC, NC + 0.25% formalin (F), NC + 0.25 and 0.50% Amasil NA (AML and AMH; 61% formic acid and 20.5% Na-formate), and NC + SILO Health 104L (SILO; mixture of monoglycerides; 0.5% from 0 to 14 d, 0.4% from 14 to 28 d, and 0.2% from 28 to 42 d). Water and feed were provided ad libitum. Performance data were collected during feed changes on d 0, 14, 28, and 42, with digestibility data collected at d 14 (2 per pen) and carcass quality (6 per pen) assessed at d 46 with a randomly selected group of broilers. A one-way ANOVA followed by Dunnett's multiple comparison, where treatments were evaluated against F were conducted using JMP 14.0 (P ≤ 0.05). Main effect of treatment was significant for performance, nutrient digestibility, and carcass quality. Differences in body weight and ADG were observed from d 14 to d 28, resulting in a trending improvement in lysine digestibility on d 14 and carcass quality on d 46 of birds fed AML and AMH in comparison to those fed F (P < 0.05). Whereas birds fed SILO had reduced digestibility of methionine on d 14 and a decrease in meat quality on d 46 in comparison to those fed F (P < 0.05). Therefore, Amasil NA at 0.25 or 0.50% may be an effective alternative to formaldehyde as a feed amendment for poultry production.
Collapse
Affiliation(s)
- K M Feye
- Department of Food Science, University of Arkansas, Fayetteville, AR, USA
| | - D K Dittoe
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - J P Caldas-Cueva
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - B A Mallmann
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - B Booher
- Department of Food Science, University of Arkansas, Fayetteville, AR, USA
| | - G Tellez-Isaias
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - C M Owens
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - M T Kidd
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - S C Ricke
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
38
|
The in vitro and in vivo anti-virulent effect of organic acid mixtures against Eimeria tenella and Eimeria bovis. Sci Rep 2021; 11:16202. [PMID: 34376718 PMCID: PMC8355357 DOI: 10.1038/s41598-021-95459-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/23/2021] [Indexed: 11/24/2022] Open
Abstract
Eimeria tenella and Eimeria bovis are complex parasites responsible for the condition of coccidiosis, that invade the animal gastrointestinal intestinal mucosa causing severe diarrhoea, loss of appetite or abortions, with devastating impacts on the farming industry. The negative impacts of these parasitic infections are enhanced by their role in promoting the colonisation of the gut by common foodborne pathogens. The aim of this study was to test the anti-Eimeria efficacy of maltodextrin, sodium chloride, citric acid, sodium citrate, silica, malic acid, citrus extract, and olive extract individually, in vitro and in combination, in vivo. Firstly, in vitro infection models demonstrated that antimicrobials reduced (p < 0.05), both singly and in combination (AG), the ability of E. tenella and E. bovis to infect MDBK and CLEC-213 epithelial cells, and the virulence reduction was similar to that of the anti-coccidial drug Robenidine. Secondly, using an in vivo broiler infection model, we demonstrated that AG reduced (p = 0.001) E. tenella levels in the caeca and excreted faeces, reduced inflammatory oxidative stress, improved the immune response through reduced ROS, increased Mn-SOD and SCFA levels. Levels of IgA and IgM were significantly increased in caecal tissues of broilers that received 0.5% AG and were associated with improved (p < 0.0001) tissue lesion scores. A prophylactic approach increased the anti-parasitic effect in vivo, and results indicated that administration from day 0, 5 and 10 post-hatch reduced tissue lesion scores (p < 0.0001) and parasite excretion levels (p = 0.002). Conclusively, our in vitro and in vivo results demonstrate that the natural antimicrobial mixture (AG) reduced parasitic infections through mechanisms that reduced pathogen virulence and attenuated host inflammatory events.
Collapse
|
39
|
Wu Y, Hua C, Liu Z, Yang J, Huang R, Li M, Liu K, Miao R, Fang Y. High-Performance Sensing of Formic Acid Vapor Enabled by a Newly Developed Nanofilm-Based Fluorescent Sensor. Anal Chem 2021; 93:7094-7101. [PMID: 33905230 DOI: 10.1021/acs.analchem.1c00576] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Although it is widely used in industry and food products, formic acid can be dangerous owing to its corrosive properties. Accurate determination of formic acid would not only benefit its qualified uses but also be an effective way to avoid corrosion or injury from inhalation, swallowing, or touching. Herein, we present a nanofilm-based fluorescent sensor for formic acid vapor detection with a wide response range, fast response speed, and high sensitivity and selectivity. The nanofilm was synthesized at a humid air/dimethyl sulfoxide (DMSO) interface through dynamic covalent condensation between two typically designed building blocks, de-tert-butyl calix[4]arene-tetrahydrazide (CATH) and 4,4',4″,4‴-(ethene-1,1,2,2-tetrayl)tetra-benzaldehyde (ETBA). The as-prepared nanofilm is uniform, flexible, fluorescent, and photochemically stable. The thickness and fluorescence intensity of the nanofilm can be facilely adjusted by varying the concentration of the building blocks and the sensing performance of the nanofilm can be optimized accordingly. Based on the nanofilm, a fluorescent sensor with a wide response range (4.4 ppt-4400 ppm) for real-time and online detection of formic acid vapor was built. With the sensor, a trace amount (0.01%) of formic acid in petroleum ether (60-90 °C) can be detected within 3 s. Besides, fluorescence quenching of the nanofilm by formic acid vapor can be visualized. It is believed that the sensor based on the nanofilm would find real-life applications in corrosion and injury prevention from formic acid.
Collapse
Affiliation(s)
- Ying Wu
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Chunxia Hua
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Zhongshan Liu
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Jinglun Yang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Rongrong Huang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Min Li
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Kaiqiang Liu
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Rong Miao
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.,Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| |
Collapse
|
40
|
Gosling RJ, Mawhinney I, Richardson K, Wales A, Davies R. Control of Salmonella and Pathogenic E. coli Contamination of Animal Feed Using Alternatives to Formaldehyde-Based Treatments. Microorganisms 2021; 9:263. [PMID: 33514048 PMCID: PMC7911812 DOI: 10.3390/microorganisms9020263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 11/16/2022] Open
Abstract
This study compared a novel non-formaldehyde combination product developed for pathogen control in animal feed Finio (A), with a panel of three commonly used organic acid feed additive products: Fysal (B), SalCURB K2 (C) and Salgard (D). Products were evaluated for their ability to reduce Salmonella Typhimurium DT104 and avian pathogenic Escherichia coli in poultry feed. A commercial layer-hen mash was treated with each product and then mixed with feed previously contaminated (via inoculated meat and bone meal) with either Salmonella or E. coli. After 24 hours at room temperature, 10 replicate samples were taken from each preparation and plate counts were performed using a selective agar. All concentrations of product A (0.5, 1.0, 1.5, 2.0 and 2.5 kg per metric tonne (MT)) plus the higher concentration of products B and D (6.0 kg MT-1) significantly reduced Salmonella counts compared with those in the untreated control group (p < 0.05). Product C did not significantly reduce levels of Salmonella under these conditions. Because of the poor recovery of E. coli, statistical comparisons for this organism were limited in scope, but only product A at the highest concentration appeared to have eliminated it.
Collapse
Affiliation(s)
- Rebecca J. Gosling
- Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey KT15 3NB, UK;
| | - Ian Mawhinney
- Surveillance and Laboratory Services, Animal and Plant Health Agency, Rougham Hill, Bury St Edmunds, Suffolk IP33 2RX, UK;
| | | | - Andrew Wales
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Veterinary School Main Building, Daphne Jackson Road, Guildford GU2 7AL, UK;
| | - Rob Davies
- Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey KT15 3NB, UK;
| |
Collapse
|
41
|
Sustainable Antibiotic-Free Broiler Meat Production: Current Trends, Challenges, and Possibilities in a Developing Country Perspective. BIOLOGY 2020; 9:biology9110411. [PMID: 33238534 PMCID: PMC7700346 DOI: 10.3390/biology9110411] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 11/16/2022]
Abstract
Simple Summary Chickens are raised with the assistance of the regular use of antibiotics, not only for the prevention and treatment of diseases but, also, for body growth. Overuse and misuse of antibiotics in animals are contributing to the rising threat of antibiotic resistance. Therefore, antibiotic-free broiler meat production is becoming increasingly popular worldwide to meet consumer demand. However, numerous challenges need to be overcome in producing antibiotic-free broiler meat by adopting suitable strategies regarding food safety and chicken welfare issues. This review focuses on the current scenario of antibiotic use, prospects, and challenges in sustainable antibiotic-free broiler meat production. We also discuss the needs and challenges of antibiotic alternatives and provide a future perspective on antibiotic-free broiler meat production. Abstract Antibiotic-free broiler meat production is becoming increasingly popular worldwide due to consumer perception that it is superior to conventional broiler meat. Globally, broiler farming impacts the income generation of low-income households, helping to alleviate poverty and secure food in the countryside and in semi-municipal societies. For decades, antibiotics have been utilized in the poultry industry to prevent and treat diseases and promote growth. This practice contributes to the development of drug-resistant bacteria in livestock, including poultry, and humans through the food chain, posing a global public health threat. Additionally, consumer demand for antibiotic-free broiler meat is increasing. However, there are many challenges that need to be overcome by adopting suitable strategies to produce antibiotic-free broiler meat with regards to food safety and chicken welfare issues. Herein, we focus on the importance and current scenario of antibiotic use, prospects, and challenges in the production of sustainable antibiotic-free broiler meat, emphasizing broiler farming in the context of Bangladesh. Moreover, we also discuss the need for and challenges of antibiotic alternatives and provide a future outlook for antibiotic-free broiler meat production.
Collapse
|