1
|
Chu X, Ge S, Zuo Y, Cui J, Sha Z, Han N, Wu B, Ni B, Zhang H, Lv Y, Wang Z, Xiao Y. Thoughts on the research of African swine fever live-attenuated vaccines. Vaccine 2024; 42:126052. [PMID: 38906762 DOI: 10.1016/j.vaccine.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/05/2024] [Accepted: 06/06/2024] [Indexed: 06/23/2024]
Abstract
African swine fever (ASF) is a contagious and fatal disease caused by the African swine fever virus (ASFV), which can infect pigs of all breeds and ages. Most infected pigs have poor prognosis, leading to substantial economic losses for the global pig industry. Therefore, it is imperative to develop a safe and efficient commercial vaccine against ASF. The development of ASF vaccine can be traced back to 1960. However, because of its large genome, numerous encoded proteins, and complex virus particle structure, currently, no effective commercial vaccine is available. Several strategies have been applied in vaccine design, some of which are potential candidates for vaccine development. This review provides a comprehensive analysis on the safety and effectiveness, suboptimal immunization effects at high doses, absence of standardized evaluation criteria, notable variations among strains of the same genotype, and the substantial impact of animal health on the protective efficacy against viral challenge. All the information will be helpful to the ASF vaccine development.
Collapse
Affiliation(s)
- Xuefei Chu
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong Province 271018, China
| | - Shengqiang Ge
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, China; Qingdao Key Laboratory of Modern Bioengineering and Animal Disease Research, Qingdao 266032, China; Key Laboratory of Animal Biosafety Risk Warning Prevention and Control (South China), Ministry of Agriculture and Rural Affairs, Qingdao, Shandong 266032, China
| | - Yuanyuan Zuo
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, China
| | - Jin Cui
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, China
| | - Zhou Sha
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, China
| | - Naijun Han
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, China
| | - Bingrong Wu
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong Province 271018, China
| | - Bo Ni
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, China
| | - Hui Zhang
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, China
| | - Yan Lv
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, China
| | - Zhiliang Wang
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, China.
| | - Yihong Xiao
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong Province 271018, China.
| |
Collapse
|
2
|
Pavone S, Bellini S, Iscaro C, Farioli M, Chiari M, Lavazza A, Ruocco L, Lelli D, Pintus G, Prati P, Feliziani F. Strategic Challenges to the Eradication of African Swine Fever Genotype II in Domestic Pigs in North Italy. Animals (Basel) 2024; 14:1295. [PMID: 38731299 PMCID: PMC11083415 DOI: 10.3390/ani14091295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
African swine fever (ASF) is a severe viral disease characterized by high lethality in suids and caused by the African Swine Fever Virus (ASFV). The ASF genotype I virus was introduced to Europe in 1957, marking the onset of the first European epidemic wave. In 2007, ASFV genotype II was detected in Georgia, affecting domestic pigs and wild boars before spreading to various European and extra-European countries, including Italy. The first case of ASFV in Italy was documented on 7 January 2022, in a wild boar in the Piedmont region. Since then, several ASFV-positive wild boar carcasses have been identified in the Piedmont and Liguria regions. By June 2023, ASFV had spread to Lombardy, one of the major pig-producing regions in northern Italy; the virus was first detected in early summer in wild boar carcasses. Two months later, it was diagnosed in a commercial pig farm as a consequence of the disease's spread amongst wild boars and an increase in the viral environmental load. This report aims to describe the features of ASFV domestic pig outbreaks that occurred in the Zinasco municipality (Lombardy) and the joint efforts to mitigate potential direct and indirect economic impacts on the Italian and global pig industry. The epidemiological investigation and the measures implemented, which were all performed according to national and European regulations, as well as exceptional ad hoc measures aimed at protecting the pig industry, are described in order to provide a practical and effective approach to combating ASF.
Collapse
Affiliation(s)
- Silvia Pavone
- National Reference Laboratory for Pestivirus and Asfivirus, Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati” (IZSUM), Via G. Salvemini, 1, 06126 Perugia, Italy; (C.I.); (F.F.)
| | - Silvia Bellini
- Istituto Zooprofilattico della Lombardia ed Emilia-Romagna, Via A. Bianchi 7/9, 25124 Brescia, Italy; (S.B.); (A.L.); (D.L.); (P.P.)
| | - Carmen Iscaro
- National Reference Laboratory for Pestivirus and Asfivirus, Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati” (IZSUM), Via G. Salvemini, 1, 06126 Perugia, Italy; (C.I.); (F.F.)
| | - Marco Farioli
- Regione Lombardia UO Veterinaria Direzione Generale Welfare, Piazza Città di Lombardia, 1, 20124 Milano, Italy; (M.F.); (M.C.)
| | - Mario Chiari
- Regione Lombardia UO Veterinaria Direzione Generale Welfare, Piazza Città di Lombardia, 1, 20124 Milano, Italy; (M.F.); (M.C.)
| | - Antonio Lavazza
- Istituto Zooprofilattico della Lombardia ed Emilia-Romagna, Via A. Bianchi 7/9, 25124 Brescia, Italy; (S.B.); (A.L.); (D.L.); (P.P.)
| | - Luigi Ruocco
- Ministero della Salute Direzione Generale della Sanità Animale e del Farmaco Veterinario, Ufficio III Sanità Animale e Gestione Operativa del Centro Nazionale di Lotta ed Emergenza Contro le Malattie Animali e Unità Centrale di Crisi, Viale Giorgio Ribotta, 5, 00144 Roma, Italy;
| | - Davide Lelli
- Istituto Zooprofilattico della Lombardia ed Emilia-Romagna, Via A. Bianchi 7/9, 25124 Brescia, Italy; (S.B.); (A.L.); (D.L.); (P.P.)
| | - Giorgia Pintus
- Local Health Authority (ATS), Via Indipendenza, 3, 27100 Pavia, Italy;
| | - Paola Prati
- Istituto Zooprofilattico della Lombardia ed Emilia-Romagna, Via A. Bianchi 7/9, 25124 Brescia, Italy; (S.B.); (A.L.); (D.L.); (P.P.)
| | - Francesco Feliziani
- National Reference Laboratory for Pestivirus and Asfivirus, Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati” (IZSUM), Via G. Salvemini, 1, 06126 Perugia, Italy; (C.I.); (F.F.)
| |
Collapse
|
3
|
Coradduzza E, Loi F, Porcu F, Mandas D, Secci F, Pisanu ME, Pasini C, Zuddas C, Cherchi M, Denurra D, Bandino E, Pintore A, Guberti V, Cappai S. Passive Surveillance as a Key Tool for African Swine Fever Eradication in Wild Boar: A Protocol to Find Carcasses Tested and Validated in the Mediterranean Island of Sardinia. Viruses 2024; 16:136. [PMID: 38257836 PMCID: PMC10820949 DOI: 10.3390/v16010136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
African swine fever (ASF) is one of the most important and serious contagious hemorrhagic viral diseases affecting domestic pigs and wild boar and is associated with high mortality rates while also having an extensive sanitary and socioeconomic impact on the international trade of animal and swine products. The early detection of the disease is often hampered by inadequate surveillance. Among the surveillance strategies used, passive surveillance of wild boars is considered the most effective method for controlling the African swine fever virus (ASFV). Otherwise, the design of a sufficiently sensitive ASF surveillance system requires a solid understanding of the epidemiology related to the local eco-social context, especially in the absence of virus detection. Even if the number of carcasses needed to demonstrate ASF eradication has been established, the scientific context lacks detail compared to protocols applied in the active search for wild boar carcasses. The aim of this study was to describe the protocol applied in the active search for carcasses, providing detailed information on the number of people and dogs as well as the amount of time and space used within the Mediterranean area. Using a specific tool developed to record, trace, and share field data (the GAIA observer app), a total of 33 active searches for wild boar carcasses were organized during 2021-2023. Most of these searches were planned to find carcasses that had previously been reported by hunters. A total of 24 carcasses were found, with only 2 carcasses not previously reported. The final protocol applied involved four people, with an average speed of 1.5 km/h. When a carcass had been previously reported, about 2 km of distance had to be covered in about 1.5 h to find the carcass, and even less time was spent when a dog (untrained) was present. In conclusion, it can be stated that, when searching for carcasses, solid collaboration with local hunters or other forest visitors is necessary to ensure carcasses are reported. The process involves small groups of experts actively searching for carcasses, possibly with the use of hunting dogs without special training. The data presented could be of valid support for those countries characterized by Mediterranean vegetation that are faced with the need to plan active carcass searches.
Collapse
Affiliation(s)
| | - Federica Loi
- Osservatorio Epidemiologico Veterinario Regionale, Istituto Zooprofilattico Sperimentale della Sardegna, 09125 Cagliari, Italy
| | - Francesca Porcu
- Osservatorio Epidemiologico Veterinario Regionale, Istituto Zooprofilattico Sperimentale della Sardegna, 09125 Cagliari, Italy
| | - Daniela Mandas
- Osservatorio Epidemiologico Veterinario Regionale, Istituto Zooprofilattico Sperimentale della Sardegna, 09125 Cagliari, Italy
| | - Fabio Secci
- Local Sanitary Agency of Sulcis Iglesiente, 09013 Carbonia, Italy
| | | | - Cinzia Pasini
- Osservatorio Epidemiologico Veterinario Regionale, Istituto Zooprofilattico Sperimentale della Sardegna, 09125 Cagliari, Italy
| | - Carlo Zuddas
- Osservatorio Epidemiologico Veterinario Regionale, Istituto Zooprofilattico Sperimentale della Sardegna, 09125 Cagliari, Italy
| | - Marcella Cherchi
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | - Daniele Denurra
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | - Ennio Bandino
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | - Antonio Pintore
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | - Vittorio Guberti
- Institute for Environmental Protection and Research (ISPRA), 00144 Roma, Italy
| | - Stefano Cappai
- Osservatorio Epidemiologico Veterinario Regionale, Istituto Zooprofilattico Sperimentale della Sardegna, 09125 Cagliari, Italy
| |
Collapse
|
4
|
Dei Giudici S, Loi F, Ghisu S, Angioi PP, Zinellu S, Fiori MS, Carusillo F, Brundu D, Franzoni G, Zidda GM, Tolu P, Bandino E, Cappai S, Oggiano A. The Long-Jumping of African Swine Fever: First Genotype II Notified in Sardinia, Italy. Viruses 2023; 16:32. [PMID: 38257733 PMCID: PMC10820622 DOI: 10.3390/v16010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
African swine fever (ASF) is a devastating infectious disease of domestic pigs and wild boar that is spreading quickly around the world and causing huge economic losses. Although the development of effective vaccines is currently being attempted by several labs, the absence of globally recognized licensed vaccines makes disease prevention and early detection even more crucial. ASF has spread across many countries in Europe and about two years ago affected the Italian susceptible population. In Italy, the first case of ASF genotype II in wild boar dates back to January 2022, while the first outbreak in a domestic pig farm was notified in August 2023. Currently, four clusters of infection are still ongoing in northern (Piedmont-Liguria and Lombardy), central (Lazio), and southern Italy (Calabria and Campania). In early September 2023, the first case of ASFV genotype II was detected in a domestic pig farm in Sardinia, historically affected by genotype I and in the final stage of eradication. Genomic characterization of p72, p54, and I73R/I329L genome regions revealed 100% similarity to those obtained from isolates that have been circulating in mainland Italy since January 2022 and also with international strains. The outbreak was detected and confirmed due to the passive surveillance plan on domestic pig farms put in place to provide evidence on genotype I's absence. Epidemiological investigations suggest 24 August as the most probable time of ASFV genotype II's arrival in Sardinia, likely due to human activities.
Collapse
Affiliation(s)
- Silvia Dei Giudici
- Laboratory of Virology, Deapartment of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (S.D.G.); (P.P.A.); (S.Z.); (M.S.F.); (G.F.); (A.O.)
| | - Federica Loi
- Osservatorio Epidemiologico Veterinario Regionale della Sardegna, Istituto Zooprofilattico Sperimentale della Sardegna, 09125 Cagliari, Italy;
| | - Sonia Ghisu
- Diagnostic Laboratories, Istituto Zooprofilattico Sperimentale della Sardegna, 08100 Nuoro, Italy; (S.G.); (F.C.); (D.B.); (E.B.)
| | - Pier Paolo Angioi
- Laboratory of Virology, Deapartment of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (S.D.G.); (P.P.A.); (S.Z.); (M.S.F.); (G.F.); (A.O.)
| | - Susanna Zinellu
- Laboratory of Virology, Deapartment of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (S.D.G.); (P.P.A.); (S.Z.); (M.S.F.); (G.F.); (A.O.)
| | - Mariangela Stefania Fiori
- Laboratory of Virology, Deapartment of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (S.D.G.); (P.P.A.); (S.Z.); (M.S.F.); (G.F.); (A.O.)
| | - Francesca Carusillo
- Diagnostic Laboratories, Istituto Zooprofilattico Sperimentale della Sardegna, 08100 Nuoro, Italy; (S.G.); (F.C.); (D.B.); (E.B.)
| | - Diego Brundu
- Diagnostic Laboratories, Istituto Zooprofilattico Sperimentale della Sardegna, 08100 Nuoro, Italy; (S.G.); (F.C.); (D.B.); (E.B.)
| | - Giulia Franzoni
- Laboratory of Virology, Deapartment of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (S.D.G.); (P.P.A.); (S.Z.); (M.S.F.); (G.F.); (A.O.)
| | | | - Paolo Tolu
- Azienda Sanitaria Locale della Sardegna, 08100 Nuoro, Italy; (G.M.Z.); (P.T.)
| | - Ennio Bandino
- Diagnostic Laboratories, Istituto Zooprofilattico Sperimentale della Sardegna, 08100 Nuoro, Italy; (S.G.); (F.C.); (D.B.); (E.B.)
| | - Stefano Cappai
- Osservatorio Epidemiologico Veterinario Regionale della Sardegna, Istituto Zooprofilattico Sperimentale della Sardegna, 09125 Cagliari, Italy;
| | - Annalisa Oggiano
- Laboratory of Virology, Deapartment of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (S.D.G.); (P.P.A.); (S.Z.); (M.S.F.); (G.F.); (A.O.)
| |
Collapse
|
5
|
Pepin KM, Borowik T, Frant M, Plis K, Podgórski T. Risk of African swine fever virus transmission among wild boar and domestic pigs in Poland. Front Vet Sci 2023; 10:1295127. [PMID: 38026636 PMCID: PMC10657852 DOI: 10.3389/fvets.2023.1295127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction African swine fever (ASF) is a notifiable disease of swine that impacts global pork trade and food security. In several countries across the globe, the disease persists in wild boar (WB) populations sympatric to domestic pig (DP) operations, with continued detections in both sectors. While there is evidence of spillover and spillback between the sectors, the frequency of occurrence and relative importance of different risk factors for transmission at the wildlife-livestock interface remain unclear. Methods To address this gap, we leveraged ASF surveillance data from WB and DP across Eastern Poland from 2014-2019 in an analysis that quantified the relative importance of different risk factors for explaining variation in each of the ASF surveillance data from WB and DP. Results ASF prevalence exhibited different seasonal trends across the sectors: apparent prevalence was much higher in summer (84% of detections) in DP, but more consistent throughout the year in WB (highest in winter with 45%, lowest in summer at 15%). Only 21.8% of DP-positive surveillance data included surveillance in WB nearby (within 5 km of the grid cell within the last 4 weeks), while 41.9% of WB-positive surveillance samples included any DP surveillance samples nearby. Thus, the surveillance design afforded twice as much opportunity to find DP-positive samples in the recent vicinity of WB-positive samples compared to the opposite, yet the rate of positive WB samples in the recent vicinity of a positive DP sample was 48 times as likely than the rate of positive DP samples in the recent vicinity of a positive WB sample. Our machine learning analyses found that positive samples in WB were predicted by WB-related risk factors, but not to DP-related risk factors. In contrast, WB risk factors were important for predicting detections in DP on a few spatial and temporal scales of data aggregation. Discussion Our results highlight that spillover from WB to DP might be more frequent than the reverse, but that the structure of current surveillance systems challenge quantification of spillover frequency and risk factors. Our results emphasize the importance of, and provide guidance for, improving cross-sector surveillance designs.
Collapse
Affiliation(s)
- Kim M. Pepin
- National Wildlife Research Center, USDA, APHIS, Wildlife Services, Fort Collins, CO, United States
| | - Tomasz Borowik
- Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland
| | - Maciej Frant
- Department of Swine Diseases, National Veterinary Research Institute, Puławy, Poland
| | - Kamila Plis
- Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland
| | - Tomasz Podgórski
- Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czechia
| |
Collapse
|
6
|
Pavone S, Iscaro C, Dettori A, Feliziani F. African Swine Fever: The State of the Art in Italy. Animals (Basel) 2023; 13:2998. [PMID: 37835604 PMCID: PMC10571570 DOI: 10.3390/ani13192998] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
African swine fever (ASF) is a severe viral disease of domestic pigs and Eurasian wild boars (Sus scrofa) caused by the African swine fever virus (ASFV). ASF is endemic in sub-Saharan Africa, where 24 genotypes of the virus have been reported. Between the late 1950s and the early 1980s, genotype I ASFV emerged in Europe, including Italy. In June 2007, a second ASF epidemic wave caused by genotype II was registered, involving several European and extra-European countries, including Italy in 2022. The present paper aims to provide the state of the art of ASF in Italy, describing the course of ASF in wild boars and domestic pigs as an example of multiple concurring different scenarios. Sardinia is coping with the last phase of the eradication of the disease by applying the exit strategy. Conversely, four clusters of infection located in North, Central, and South Italy are still ongoing. The unique and complex Italian experience in ASF-controlling may be useful to increase know-how on the efficacy of strategies and measures, as well as issues that could be further improved.
Collapse
Affiliation(s)
- Silvia Pavone
- National Reference Laboratory for Pestivirus and Asfivirus, Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy; (C.I.); (F.F.)
| | - Carmen Iscaro
- National Reference Laboratory for Pestivirus and Asfivirus, Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy; (C.I.); (F.F.)
| | - Annalisa Dettori
- Regional Veterinary Epidemiology Observatory, Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy;
| | - Francesco Feliziani
- National Reference Laboratory for Pestivirus and Asfivirus, Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy; (C.I.); (F.F.)
| |
Collapse
|
7
|
Bandino E, Gomez-Morales MA, Brundu D, Soddu M, Ludovisi A, Cabras PA, Loi F, Pintore A, Pozio E. The illegal rearing and slaughtering of pigs in the wild on the Mediterranean island of Sardinia favor an increase in the biomass of Trichinella britovi in wild boars (Sus scrofa) but do not affect the serological prevalence of infection. Parasit Vectors 2023; 16:323. [PMID: 37697408 PMCID: PMC10496314 DOI: 10.1186/s13071-023-05927-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/14/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Worms of the nematode genus Trichinella are zoonotic pathogens with a worldwide distribution. The first report of Trichinella on the Mediterranean island of Sardinia was for Trichinella britovi, one of the four species of this genus circulating in Europe, which was identified in 2005 following an outbreak of trichinellosis in humans due to the consumption of pork from pigs reared in the wild. Since then, T. britovi larvae have been repeatedly isolated from free-ranging pigs, foxes (Vulpes vulpes) and wild boars (Sus scrofa) sampled in the central-eastern region of the island (Orgosolo municipality), but have never been isolated from samples from other areas of the island. The aim of this study was to investigate the parasitological and serological prevalence of T. britovi infection in wild boars in Sardinia over space [eight wild boar hunting management units (HMUs)] and time (seven wild boar hunting seasons). METHODS Muscle and serum samples of boars killed in the 2014-2015 to 2020-2121 hunting seasons were collected from eight HMUs of central and south-western Sardinia. Trichinella sp. larvae were detected by artificial digestion of predilection muscles. A total of 4111 serum samples of wild boar were collected from the investigated HMUs and tested by enzyme-linked immunosorbent assay as a screening test and by western blot as a confirmatory test using excretory/secretory antigens. RESULTS Trichinella britovi muscle larvae were detected in six (0.03%) of the 17,786 wild boars tested. All of the Trichinella sp.-positive wild boars had been hunted in Orgosolo municipality (central-eastern area of the island), except for one, hunted in a neighboring municipality. An overall serological prevalence of 3.8% (95% confidence interval, 3.3-4.5) was detected by western blot. No statistical differences were detected between the HMUs where T. britovi larvae were detected in wild boars, foxes, and free-ranging pigs and those where wild boars, foxes and free-ranging pigs tested negative. CONCLUSIONS The serological prevalence did not vary between the wild boar populations in which the larval load was detectable by artificial digestion (Orgosolo municipality) and those in which the larval load was below the detection limit. Furthermore, the serological prevalence of anti-Trichinella immunoglobulin G in the wild boar populations remained constant during the study period, which covered seven wild boar hunting seasons. As the transmission events (i.e., the serological prevalence) are stable, the high biomass of the parasite in Orgosolo municipality can only have arisen as a consequence of factors independent of its natural cycle, i.e., the presence of a high number of free-ranging pigs, and the concomitant presence of African swine fever, due to illegal pig slaughtering in the field. This epidemiological situation suggests that the natural cycle of T. britovi may be influenced by inappropriate pig husbandry and slaughtering practices.
Collapse
Affiliation(s)
- Ennio Bandino
- Istituto Zooprofilattico Sperimentale della Sardegna, Nuoro, Italy
| | | | - Diego Brundu
- Istituto Zooprofilattico Sperimentale della Sardegna, Nuoro, Italy
| | - Manuela Soddu
- Istituto Zooprofilattico Sperimentale della Sardegna, Nuoro, Italy
| | - Alessandra Ludovisi
- European Union Reference Laboratory for Parasites, Istituto Superiore di Sanità, Rome, Italy
| | | | - Federica Loi
- Osservatorio Epidemiologico Veterinario Regionale, Istituto Zooprofilattico Sperimentale della Sardegna, Cagliari, Italy
| | - Antonio Pintore
- Laboratorio Fauna Selvatica, Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
| | - Edoardo Pozio
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
8
|
Ankhanbaatar U, Auer A, Ulziibat G, Settypalli TBK, Gombo-Ochir D, Basan G, Takemura T, Tseren-Ochir EO, Ouled Ahmed H, Meki IK, Datta S, Soumare B, Metlin A, Cattoli G, Lamien CE. Comparison of the Whole-Genome Sequence of the African Swine Fever Virus from a Mongolian Wild Boar with Genotype II Viruses from Asia and Europe. Pathogens 2023; 12:1143. [PMID: 37764951 PMCID: PMC10536492 DOI: 10.3390/pathogens12091143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
African swine fever (ASF) is a highly contagious and severe viral hemorrhagic disease in domestic and wild pigs. ASF seriously affects the global swine industry as the mortality rate can reach 100% with highly virulent strains. In 2007, ASF was introduced into the Caucasus and spread to Russia and later into other European and Asian countries. This study reported the first whole-genome sequence (WGS) of the ASF virus (ASFV) that was detected in a Mongolian wild boar. This sequence was then compared to other WGS samples from Asia and Europe. Results show that the ASFV Genotype II from Mongolia is similar to the Asian Genotype II WGS. However, there were three nucleotide differences found between the Asian and European genome sequences, two of which were non-synonymous. It was also observed that the European Genotype II ASFV WGS was more diverse than that of the Asian counterparts. The study demonstrates that the ASFV Genotype II variants found in wild boars and domestic pigs are highly similar, suggesting these animals might have had direct or indirect contact, potentially through outdoor animal breeding. In conclusion, this study provides a WGS and mutation spectrum of the ASFV Genotype II WGS in Asia and Europe and thus provides important insights into the origin and spread of ASFV in Mongolia.
Collapse
Affiliation(s)
- Ulaankhuu Ankhanbaatar
- Laboratory of Viral Animal Diseases Diagnostic and Surveillance, State Central Veterinary Laboratory, Ulaanbaatar 17029, Mongolia
- School of Veterinary Medicine, Mongolian University of Life Sciences, Ulaanbaatar 17029, Mongolia
| | - Agathe Auer
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre for Nuclear Applications in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Friedenstrasse 1, 2444 Seibersdorf, Austria
- Food and Agriculture Organization of the United Nations (FAO-UN), Viale delle Terme di Caracalla, 00153 Rome, Italy
| | - Gerelmaa Ulziibat
- Laboratory of Viral Animal Diseases Diagnostic and Surveillance, State Central Veterinary Laboratory, Ulaanbaatar 17029, Mongolia
| | - Tirumala B. K. Settypalli
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre for Nuclear Applications in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Friedenstrasse 1, 2444 Seibersdorf, Austria
| | - Delgerzul Gombo-Ochir
- Laboratory of Viral Animal Diseases Diagnostic and Surveillance, State Central Veterinary Laboratory, Ulaanbaatar 17029, Mongolia
| | - Ganzorig Basan
- Laboratory of Viral Animal Diseases Diagnostic and Surveillance, State Central Veterinary Laboratory, Ulaanbaatar 17029, Mongolia
| | - Taichiro Takemura
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre for Nuclear Applications in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Friedenstrasse 1, 2444 Seibersdorf, Austria
| | | | - Hatem Ouled Ahmed
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre for Nuclear Applications in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Friedenstrasse 1, 2444 Seibersdorf, Austria
| | - Irene Kasindi Meki
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre for Nuclear Applications in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Friedenstrasse 1, 2444 Seibersdorf, Austria
| | - Sneha Datta
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre for Nuclear Applications in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Friedenstrasse 1, 2444 Seibersdorf, Austria
| | - Baba Soumare
- Food and Agriculture Organization of the United Nations (FAO-UN), Viale delle Terme di Caracalla, 00153 Rome, Italy
| | - Artem Metlin
- Food and Agriculture Organization of the United Nations (FAO-UN), Viale delle Terme di Caracalla, 00153 Rome, Italy
| | - Giovanni Cattoli
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre for Nuclear Applications in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Friedenstrasse 1, 2444 Seibersdorf, Austria
| | - Charles E. Lamien
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre for Nuclear Applications in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Friedenstrasse 1, 2444 Seibersdorf, Austria
| |
Collapse
|
9
|
Penrith ML, van Heerden J, Pfeiffer DU, Oļševskis E, Depner K, Chenais E. Innovative Research Offers New Hope for Managing African Swine Fever Better in Resource-Limited Smallholder Farming Settings: A Timely Update. Pathogens 2023; 12:355. [PMID: 36839627 PMCID: PMC9963711 DOI: 10.3390/pathogens12020355] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 02/23/2023] Open
Abstract
African swine fever (ASF) in domestic pigs has, since its discovery in Africa more than a century ago, been associated with subsistence pig keeping with low levels of biosecurity. Likewise, smallholder and backyard pig farming in resource-limited settings have been notably affected during the ongoing epidemic in Eastern Europe, Asia, the Pacific, and Caribbean regions. Many challenges to managing ASF in such settings have been identified in the ongoing as well as previous epidemics. Consistent implementation of biosecurity at all nodes in the value chain remains most important for controlling and preventing ASF. Recent research from Asia, Africa, and Europe has provided science-based information that can be of value in overcoming some of the hurdles faced for implementing biosecurity in resource-limited contexts. In this narrative review we examine a selection of these studies elucidating innovative solutions such as shorter boiling times for inactivating ASF virus in swill, participatory planning of interventions for risk mitigation for ASF, better understanding of smallholder pig-keeper perceptions and constraints, modified culling, and safe alternatives for disposal of carcasses of pigs that have died of ASF. The aim of the review is to increase acceptance and implementation of science-based approaches that increase the feasibility of managing, and the possibility to prevent, ASF in resource-limited settings. This could contribute to protecting hundreds of thousands of livelihoods that depend upon pigs and enable small-scale pig production to reach its full potential for poverty alleviation and food security.
Collapse
Affiliation(s)
- Mary-Louise Penrith
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria 0110, South Africa
| | - Juanita van Heerden
- Transboundary Animal Diseases, Onderstepoort Veterinary Research, Agricultural Research Council, Pretoria 0110, South Africa
| | - Dirk U. Pfeiffer
- Centre for Applied One Health Research and Policy Advice, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Department of Pathobiology and Population Sciences, Veterinary Epidemiology, Economics, and Public Health Group, Royal Veterinary College, Hatfield AL9 7TA, UK
| | - Edvīns Oļševskis
- Food and Veterinary Service, LV-1050 Riga, Latvia
- Institute of Food Safety, Animal Health and Environment, “BIOR“, LV-1076 Riga, Latvia
| | - Klaus Depner
- Friedrich-Loeffler-Institute, Greifswald-Insel Riems, 17493 Greifswald, Germany
| | - Erika Chenais
- Department of Disease Control and Epidemiology, National Veterinary Institute, S-751 89 Uppsala, Sweden
| |
Collapse
|
10
|
Artificial Insemination as an Alternative Transmission Route for African Swine Fever Virus. Pathogens 2022; 11:pathogens11121539. [PMID: 36558873 PMCID: PMC9785317 DOI: 10.3390/pathogens11121539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
The rapid spread of the African swine fever virus (ASFV), causing severe disease with often high fatality rates in Eurasian suids, prevails as a threat for pig populations and dependent industries worldwide. Although advancing scientific progress continually enhances our understanding of ASFV pathogenesis, alternative transmission routes for ASFV have yet to be assessed. Here, we demonstrate that ASFV can efficiently be transferred from infected boars to naïve recipient gilts through artificial insemination (AI). In modern pig production, semen from boar studs often supplies many sow herds. Thus, the infection of a boar stud presents the risk of rapidly and widely distributing ASFV within or between countries. Daily blood and semen collection from four boars after intramuscular inoculation with ASFV strain 'Estonia 2014' resulted in the detection of ASFV genomes in the semen as early as 2 dpi, in blood at 1 dpi while semen quality remained largely unaffected. Ultimately, after insemination with extended semen, 7 of 14 gilts were ASFV positive by 7 days post insemination, and all gilts were ASFV positive by 35 days post insemination. Twelve out of 13 pregnant gilts aborted or resorbed at the onset of fever. A proportion of fetuses originating from the remaining gilt showed both abnormalities and replication of ASFV in fetal tissues. Thus, we present evidence for the efficient transmission of ASFV to gilts via AI and also to implanted embryos. These results underline the critical role that boar semen could play in ASFV transmission.
Collapse
|
11
|
Schambow R, Reyes R, Morales J, Diaz A, Perez AM. A qualitative assessment of alternative eradication strategies for African swine fever in the Dominican Republic. Front Vet Sci 2022; 9:1054271. [PMID: 36467653 PMCID: PMC9714749 DOI: 10.3389/fvets.2022.1054271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/02/2022] [Indexed: 08/26/2023] Open
Abstract
Since its recent detection in July 2021, the reintroduction of African swine fever (ASF) in the Dominican Republic (DR) has generated much discourse on various measures for its effective control. Strategies range from complete depopulation of the swine population, as was done in 1978, to a system of passive surveillance with endemicity, with many in-between. Currently, ASF-decision makers need a peer evaluation and comparison and contrast of these potential strategies that incorporates both private and public perspectives. To achieve this, we used strengths, weaknesses, opportunities, and threats (SWOT) analysis to evaluate three different theoretical ASF control scenarios with the aim of contributing evaluations of alternatives strategies to mitigate the epidemic's impact. These included total depopulation of all pigs in the DR, partial depopulation, and continuation of current control measures. Relevant experts from the DR private swine industry were identified through "snowball sampling" techniques. Five experts completed the SWOT questionnaire and additional questions considering aspects of financial cost, social impact, feasibility, animal welfare, and regional policy. The summarized responses were presented to the full group of experts initially nominated for final review and later to representatives of the DR government. The SWOT analysis highlighted that although there are certain benefits associated with each of the proposed strategies, there are also important drawbacks and disadvantages for all. This analysis is a tool for facilitating cooperating between the private-public industries, and ultimately it supports the development of strategies that will reduce ASF burden in the DR in a way suitable for all relevant stakeholders.
Collapse
Affiliation(s)
- Rachel Schambow
- Center for Animal Health and Food Safety, University of Minnesota, St. Paul, MN, United States
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Raysa Reyes
- Instituto del Estudio de las Enfermedades Zoonóticas, Universidad Autónoma de Santo Domingo, Santo Domingo, Dominican Republic
| | - Jose Morales
- Instituto del Estudio de las Enfermedades Zoonóticas, Universidad Autónoma de Santo Domingo, Santo Domingo, Dominican Republic
| | - Alan Diaz
- Instituto del Estudio de las Enfermedades Zoonóticas, Universidad Autónoma de Santo Domingo, Santo Domingo, Dominican Republic
| | - Andres M. Perez
- Center for Animal Health and Food Safety, University of Minnesota, St. Paul, MN, United States
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
12
|
Fiori MS, Ferretti L, Di Nardo A, Zhao L, Zinellu S, Angioi PP, Floris M, Sechi AM, Denti S, Cappai S, Franzoni G, Oggiano A, Dei Giudici S. A Naturally Occurring Microhomology-Mediated Deletion of Three Genes in African Swine Fever Virus Isolated from Two Sardinian Wild Boars. Viruses 2022; 14:2524. [PMID: 36423133 PMCID: PMC9693351 DOI: 10.3390/v14112524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 11/16/2022] Open
Abstract
African swine fever virus (ASFV) is the etiological agent of a lethal disease of domestic pigs and wild boars. ASF threatens the pig industry worldwide due to the lack of a licensed vaccine or treatment. The disease has been endemic for more than 40 years in Sardinia (Italy), but an intense campaign pushed it close to eradication; virus circulation was last detected in wild boars in 2019. In this study, we present a genomic analysis of two ASFV strains isolated in Sardinia from two wild boars during the 2019 hunting season. Both isolates presented a deletion of 4342 base pairs near the 5' end of the genome, encompassing the genes MGF 360-6L, X69R, and MGF 300-1L. The phylogenetic evidence suggests that the deletion recently originated within the Sardinia ecosystem and that it is most likely the result of a non-allelic homologous recombination driven by a microhomology present in most Sardinian ASFV genomes. These results represent a striking example of a genomic feature promoting the rapid evolution of structural variations and plasticity in the ASFV genome. They also raise interesting questions about the functions of the deleted genes and the potential link between the evolutionary timing of the deletion appearance and the eradication campaign.
Collapse
Affiliation(s)
- Mariangela Stefania Fiori
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | - Luca Ferretti
- Nuffield Department of Medicine, Big Data Institute and Pandemic Sciences Institute, University of Oxford, Oxford OX1 4BH, UK
| | | | - Lele Zhao
- Nuffield Department of Medicine, Big Data Institute and Pandemic Sciences Institute, University of Oxford, Oxford OX1 4BH, UK
| | - Susanna Zinellu
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | - Pier Paolo Angioi
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | - Matteo Floris
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Anna Maria Sechi
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | - Stefano Denti
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | - Stefano Cappai
- Osservatorio Epidemiologico Veterinario Regionale, Istituto Zooprofilattico Sperimentale della Sardegna, 09125 Cagliari, Italy
| | - Giulia Franzoni
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | - Annalisa Oggiano
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | - Silvia Dei Giudici
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| |
Collapse
|
13
|
Penrith ML, Van Heerden J, Heath L, Abworo EO, Bastos ADS. Review of the Pig-Adapted African Swine Fever Viruses in and Outside Africa. Pathogens 2022; 11:pathogens11101190. [PMID: 36297247 PMCID: PMC9609104 DOI: 10.3390/pathogens11101190] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 12/04/2022] Open
Abstract
The region in eastern, central and southern Africa (ECSA) where African swine fever (ASF) originated in a sylvatic cycle is home to all the p72 genotypes of ASF virus identified so far. While 20 of the 24 genotypes have been isolated from outbreaks in domestic pigs in the region, only five of the genotypes (I, II, VIII, IX, X) have an extended field presence associated with domestic pigs. Of the genotypes that appear to be strongly adapted to domestic pigs, two have spread beyond the African continent and have been the focus of efforts to develop vaccines against ASF. Most of the experimental ASF vaccines described do not protect against a wider spectrum of viruses and may be less useful in the event of incursions of different strains or where multiple genotypes co-exist. The other three pig-adapted strains that are currently restricted to the ECSA region might spread, and priority should be given to understanding not only the genetic and antigenic characteristics of these viruses but also their history. We review historic and current knowledge of the distribution of these five virus genotypes, and note that as was the case for genotype II, some pig-associated viruses have the propensity for geographical range expansion. These features are valuable for prioritizing vaccine-development efforts to ensure a swift response to virus escape. However, whilst ASF vaccines are critical for high-production systems, global food security relies on parallel efforts to improve biosecurity and pig production in Africa and on continued ASFV surveillance and characterisation in the ECSA region.
Collapse
Affiliation(s)
- Mary-Louise Penrith
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria 0110, South Africa
- Correspondence: or
| | - Juanita Van Heerden
- Transboundary Animal Diseases, Onderstepoort Veterinary Research, Agricultural Research Council, Pretoria 0110, South Africa
| | - Livio Heath
- Transboundary Animal Diseases, Onderstepoort Veterinary Research, Agricultural Research Council, Pretoria 0110, South Africa
| | - Edward Okoth Abworo
- Biosciences, Animal and Human Health Program, International Livestock Research Institute (ILRI), Nairobi 00100, Kenya
| | - Armanda D. S. Bastos
- Department of Zoology and Entomology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
14
|
O'Hara KC, Beltrán-Alcrudo D, Hovari M, Tabakovski B, Martínez-López B. Network analysis of live pig movements in North Macedonia: Pathways for disease spread. Front Vet Sci 2022; 9:922412. [PMID: 36016804 PMCID: PMC9396142 DOI: 10.3389/fvets.2022.922412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 07/19/2022] [Indexed: 11/27/2022] Open
Abstract
Globalization of trade, and the interconnectivity of animal production systems, continues to challenge efforts to control disease. A better understanding of trade networks supports development of more effective strategies for mitigation for transboundary diseases like African swine fever (ASF), classical swine fever (CSF), and foot-and-mouth disease (FMD). North Macedonia, bordered to the north and east by countries with ongoing ASF outbreaks, recently reported its first incursion of ASF. This study aimed to describe the distribution of pigs and pig farms in North Macedonia, and to characterize the live pig movement network. Network analyses on movement data from 2017 to 2019 were performed for each year separately, and consistently described weakly connected components with a few primary hubs that most nodes shipped to. In 2019, the network demonstrated a marked decrease in betweenness and increase in communities. Most shipments occurred within 50 km, with movements <6 km being the most common (22.5%). Nodes with the highest indegree and outdegree were consistent across years, despite a large turnover among smallholder farms. Movements to slaughterhouses predominated (85.6%), with movements between farms (5.4%) and movements to market (5.8%) playing a lesser role. This description of North Macedonia's live pig movement network should enable implementation of more efficient and cost-effective mitigation efforts strategies in country, and inform targeted educational outreach, and provide data for future disease modeling, in the region.
Collapse
Affiliation(s)
- Kathleen C. O'Hara
- Center for Animal Disease Modeling and Surveillance (CADMS), School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Daniel Beltrán-Alcrudo
- Food and Agriculture Organization of the United Nations (FAO), Regional Office for Europe and Central Asia, Budapest, Hungary
| | - Mark Hovari
- Food and Agriculture Organization of the United Nations (FAO), Regional Office for Europe and Central Asia, Budapest, Hungary
| | - Blagojcho Tabakovski
- Food and Veterinary Agency, Republic of North Macedonia, Skopje, North Macedonia
| | - Beatriz Martínez-López
- Center for Animal Disease Modeling and Surveillance (CADMS), School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- *Correspondence: Beatriz Martínez-López
| |
Collapse
|
15
|
Desvars-Larrive A, Käsbohrer A. Surveillance and Control of African Swine Fever in the Early Phase of the COVID-19 Pandemic, March-May 2020: A Multi-Country E-Survey. Front Vet Sci 2022; 9:867631. [PMID: 35774983 PMCID: PMC9238323 DOI: 10.3389/fvets.2022.867631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/04/2022] [Indexed: 12/04/2022] Open
Abstract
Stringent COVID-19 public health and social measures (PHSMs) have challenged the work of animal health professionals, especially in the early phase of the pandemic. We aimed to qualitatively describe how COVID-19 PHSMs have affected the surveillance and control of African swine fever (ASF) in Europe, assess how professionals engaged in these activities perceived the impact of the COVID-19 crisis, and identify potential areas of improvement. An online questionnaire was proposed via email between 9 December 2020 and 22 January 2021 to professionals engaged in ASF-related activities in Europe and Eastern neighboring countries. The questionnaire contained questions pertaining to ASF surveillance and control activities between March and May 2020, respondent's perception of the impact of COVID-19 PHSMs on these activities, and respondent's opinion on potential improvements to prepare for future crises. Economic and sanitary variables were used to describe the national contexts over the study period. Twenty-seven respondents from 24 countries participated to the study. Essential activities related to surveillance and management of ASF were reduced and/or adapted but maintained in most surveyed countries. Communication was mentioned as the first area of improvement during crisis while maintenance of efficient veterinary services and surveillance activities were cited second and third top priorities. The need for the development of remote procedures was also recognized. Some respondents highlighted difficulties in ensuring biosecurity and biosafety of the field actors due to shortage in protective equipment. Only a small majority (52%) of the survey participants agreed that their institution/working group is better prepared to future lockdown-type situations. Our study emphasizes that short-term measures were globally successful to tackle the immediate impacts of the COVID-19 crisis on the routine duties of professionals involved in ASF surveillance and control. Our findings suggest that country-specific improvements are necessary to support and advance the preparedness of the actors involved in infectious animal disease surveillance and control in case lockdown-like measures are implemented. Overall, our results highlight the crucial importance of recognizing animal health services as essential activities during crisis.
Collapse
Affiliation(s)
- Amélie Desvars-Larrive
- Institute of Food Safety, Food Technology and Veterinary Public Health, Unit of Veterinary Public Health and Epidemiology, University of Veterinary Medicine, Vienna, Austria
- VetFarm, University of Veterinary Medicine, Pottenstein, Austria
- Complexity Science Hub, Vienna, Austria
| | - Annemarie Käsbohrer
- Institute of Food Safety, Food Technology and Veterinary Public Health, Unit of Veterinary Public Health and Epidemiology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
16
|
Jiang D, Ma T, Hao M, Ding F, Sun K, Wang Q, Kang T, Wang D, Zhao S, Li M, Xie X, Fan P, Meng Z, Zhang S, Qian Y, Edwards J, Chen S, Li Y. Quantifying risk factors and potential geographic extent of African swine fever across the world. PLoS One 2022; 17:e0267128. [PMID: 35446903 PMCID: PMC9022809 DOI: 10.1371/journal.pone.0267128] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 04/02/2022] [Indexed: 11/26/2022] Open
Abstract
African swine fever (ASF) has spread to many countries in Africa, Europe and Asia in the past decades. However, the potential geographic extent of ASF infection is unknown. Here we combined a modeling framework with the assembled contemporary records of ASF cases and multiple covariates to predict the risk distribution of ASF at a global scale. Local spatial variations in ASF risk derived from domestic pigs is influenced strongly by livestock factors, while the risk of having ASF in wild boars is mainly associated with natural habitat covariates. The risk maps show that ASF is to be ubiquitous in many areas, with a higher risk in areas in the northern hemisphere. Nearly half of the world’s domestic pigs (1.388 billion) are in the high-risk zones. Our results provide a better understanding of the potential distribution beyond the current geographical scope of the disease.
Collapse
Affiliation(s)
- Dong Jiang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Tian Ma
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Mengmeng Hao
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Fangyu Ding
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Kai Sun
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Qian Wang
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Tingting Kang
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
| | - Di Wang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Shen Zhao
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Meng Li
- School of Geographic Sciences, Nantong University, Nantong, China
| | - Xiaolan Xie
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Peiwei Fan
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Ze Meng
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Shize Zhang
- Computer Network Information Center, Chinese Academy of Sciences, Beijing, China
| | - Yushu Qian
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - John Edwards
- School of Veterinary Medicine, Centre for Biosecurity and One Health, Murdoch University, Perth, Australia
| | - Shuai Chen
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yin Li
- School of Veterinary Medicine, Centre for Biosecurity and One Health, Murdoch University, Perth, Australia.,Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia
| |
Collapse
|
17
|
Trotta A, Marinaro M, Cavalli A, Cordisco M, Piperis A, Buonavoglia C, Corrente M. African Swine Fever-How to Unravel Fake News in Veterinary Medicine. Animals (Basel) 2022; 12:ani12050656. [PMID: 35268224 PMCID: PMC8909113 DOI: 10.3390/ani12050656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/24/2022] Open
Abstract
In recent years, fake scientific news has spread much faster through the Internet and social media within the so-called "infodemic". African Swine Fever (ASF) is a perfect case study to prove how fake news can undermine the public health response, even in the veterinary field. ASF is a highly contagious infective disease affecting exclusively domestic and wild pigs such as wild boars. ASF can cause social damage and economic losses both directly (due to the high mortality rate) and indirectly (due to international sanctions). Although ASF is not a threat to human health, since 2018 newspapers have often reported false or misleading news, ranging from misinterpreted findings/data to fake or alarmistic news. In some cases, fake news was spread, such as the use of snipers at the border of nations to kill wild boars, or those reports concerning possible risks to human health. In order to provide real and fact-based news on epidemics, some organizations have created easy-to-read infographic and iconographic materials, available on their websites, to help the readers identifying the fake news. Indeed, it is crucial that governments and scientific organizations work against fear and anxiety, using simple and clear communication.
Collapse
Affiliation(s)
- Adriana Trotta
- Department of Veterinary Medicine, University of Bari “Aldo Moro”, Str. Prov. per Casamassima Km 3, 70010 Valenzano, Italy; (A.C.); (M.C.); (A.P.); (C.B.); (M.C.)
- Correspondence: or
| | - Mariarosaria Marinaro
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Alessandra Cavalli
- Department of Veterinary Medicine, University of Bari “Aldo Moro”, Str. Prov. per Casamassima Km 3, 70010 Valenzano, Italy; (A.C.); (M.C.); (A.P.); (C.B.); (M.C.)
| | - Marco Cordisco
- Department of Veterinary Medicine, University of Bari “Aldo Moro”, Str. Prov. per Casamassima Km 3, 70010 Valenzano, Italy; (A.C.); (M.C.); (A.P.); (C.B.); (M.C.)
| | - Angela Piperis
- Department of Veterinary Medicine, University of Bari “Aldo Moro”, Str. Prov. per Casamassima Km 3, 70010 Valenzano, Italy; (A.C.); (M.C.); (A.P.); (C.B.); (M.C.)
| | - Canio Buonavoglia
- Department of Veterinary Medicine, University of Bari “Aldo Moro”, Str. Prov. per Casamassima Km 3, 70010 Valenzano, Italy; (A.C.); (M.C.); (A.P.); (C.B.); (M.C.)
| | - Marialaura Corrente
- Department of Veterinary Medicine, University of Bari “Aldo Moro”, Str. Prov. per Casamassima Km 3, 70010 Valenzano, Italy; (A.C.); (M.C.); (A.P.); (C.B.); (M.C.)
| |
Collapse
|
18
|
Costard S, Perez AM, Zagmutt FJ, Pouzou JG, Groenendaal H. Partitioning, a Novel Approach to Mitigate the Risk and Impact of African Swine Fever in Affected Areas. Front Vet Sci 2022; 8:812876. [PMID: 35274016 PMCID: PMC8902292 DOI: 10.3389/fvets.2021.812876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/31/2021] [Indexed: 11/13/2022] Open
Abstract
As African swine fever (ASF) continues to expand geographically, supplementary control strategies are needed to reduce disease risk and impact in affected areas. Full depopulation is central to current ASF control efforts, and its efficacy depends on surveillance and timely disease reporting, while resulting in large losses regardless of the producers' efforts to promptly detect, report, and contain the disease. This disconnect between prompt detection and reporting, and subsequent farm losses, can deter producers to invest in ASF detection and control. Alternative approaches are needed to incentivize individual producers to invest in early detection and reporting. We postulate that commercial swine farms may be effectively partitioned in separate units, or subpopulations, to which biosecurity, surveillance and control can be applied. The suggested Partitioning framework relies on three main components: 1. external and internal biosecurity to reduce the risk of ASF introduction and maintain separate subpopulations; 2. cost-effective on-farm ASF surveillance to enhance early detection; 3. response plans at the unit level, including culling of affected subpopulations, and demonstration of freedom from disease on the remaining ones. With such Partitioning approach, individual producers may reduce ASF risk on a farm and in the region, while also reducing ASF outbreak losses via targeted depopulation of affected units. It requires relevant legislation to incorporate the notion of within-farm subpopulations and provide a regulatory framework for targeted depopulation and substantiation of disease freedom. Its design should be tailored to fit individual farms. Partitioning can be an effective public-private partnership approach for ASF risk reduction. It should be driven by industry, as its benefits are accrued mainly by individual producers, but regulatory oversight is key to ensure proper implementation and avoid further disease spread. Partitioning's value is greatest for producers in ASF-affected regions, but ASF-free areas could also benefit from it for preparedness and early detection. It could also be adapted to other transboundary animal diseases and can be implemented as a stand-alone program or in conjunction with other efforts such as zoning and compartmentalization. Partitioning would contribute to the improved resilience and sustainability of the global pork industry and will benefit consumers and society through improved food security and animal welfare.
Collapse
Affiliation(s)
- Solenne Costard
- EpiX Analytics, Fort Collins, CO, United States
- *Correspondence: Solenne Costard
| | - Andres M. Perez
- Center for Animal Health and Food Safety, College of Veterinary Medicine, University of Minnesota, Minneapolis, MN, United States
| | | | | | | |
Collapse
|
19
|
Penrith ML, Kivaria FM. One hundred years of African swine fever in Africa: where have we been, where are we now, where are we going? Transbound Emerg Dis 2022; 69:e1179-e1200. [PMID: 35104041 DOI: 10.1111/tbed.14466] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 11/26/2022]
Abstract
One hundred years have passed since the first paper on African swine fever (ASF) was published by Montgomery in 1921. With no vaccine, ineffectiveness of prevention and control measures, and lack of common interest in eradicating the disease, ASF has proven to be one of the most devastating diseases because of its significant sanitary and socioeconomic consequences. The rapid spread of the disease on the European and Asian continents and its recent appearance in the Caribbean puts all countries at great risk because of global trade. The incidence of ASF has also increased on the African continent over the last few decades, extending its distribution far beyond the area in which the ancient sylvatic cycle is present with its complex epidemiological transmission pathways involving virus reservoirs in ticks and wild African Suidae. Both in that area and elsewhere, efficient transmission by infected domestic pigs and virus resistance in infected animal products and fomites mean that human driven factors along the pig value chain are the dominant impediments for its prevention, control, and eradication. Control efforts in Africa are furthermore hampered by the lack of information about the size and location of the fast-growing pig population, particularly in the dynamic smallholder sector that constitutes up to 90% of pig production in the region. A vaccine that will be both affordable and effective against multiple genotypes of the virus is not a short-term reality. Therefore, a strategy for management of ASF in sub-Saharan Africa is needed to provide a roadmap for the way forward for the continent. This review explores the progression of ASF and our knowledge of it through research over a century in Africa, our current understanding of ASF, and what must be done going forwards to improve the African situation and contribute to global prevention and control. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mary Louise Penrith
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Fredrick Mathias Kivaria
- Food and Agriculture Organization of the UN, Block P, Level 3, United Nations Complex, UN Avenue, Gigiri, Nairobi, PO Box: 30470, GPO, Nairobi, 00100, Kenya
| |
Collapse
|
20
|
Malakauskas A, Schulz K, Kukanauskaitė I, Masiulis M, Conraths FJ, Sauter-Louis C. African Swine Fever Outbreaks in Lithuanian Domestic Pigs in 2019. Animals (Basel) 2022; 12:115. [PMID: 35011221 PMCID: PMC8749716 DOI: 10.3390/ani12010115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/24/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022] Open
Abstract
While numerous risk factors of African swine fever (ASF) transmission to domestic pigs have been described, ASF virus introduction has often not been traced back to one single defined cause. The large number of ASF outbreaks that occurred in domestic pigs in Lithuania from 2014 through to 2018 raised the question regarding whether outbreak-specific risk factors and transmission routes could be identified. Therefore, a prospective matched case-control study was designed. Data from 18 outbreaks that occurred in Lithuanian in 2019 and 36 control farms were analyzed. Conditional multivariable logistic regression showed that two or more visits by veterinary inspection of a farm had a significant preventive effect on the occurrence of ASF on a farm (Odds ratio (OR) 14.21, confidence interval (CI) 1.09-185.60 for farms not inspected vs. farms inspected twice or more a year), while certain practices (e.g., mushroom picking, sharing equipment, etc.), which might facilitate the indirect introduction of ASF from fields and forests into piggeries, significantly increased the odds of an outbreak (OR 5.18, CI 1.10-24.44). The results of the study highlight the importance of veterinary inspections for increasing the biosecurity level on pig farms and the awareness of ASF. The knowledge on potential protective and risk factors may help to improve the prevention and control of ASF outbreaks in domestic pig farms in Lithuania and other affected countries.
Collapse
Affiliation(s)
- Alvydas Malakauskas
- Department of Veterinary Pathobiology, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės 18, LT44307 Kaunas, Lithuania;
- State Food and Veterinary Service, Siesiku 19, LT07170 Vilnius, Lithuania;
| | - Katja Schulz
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (K.S.); (F.J.C.); (C.S.-L.)
| | - Indrė Kukanauskaitė
- Department of Veterinary Pathobiology, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės 18, LT44307 Kaunas, Lithuania;
- State Food and Veterinary Service, Siesiku 19, LT07170 Vilnius, Lithuania;
| | - Marius Masiulis
- State Food and Veterinary Service, Siesiku 19, LT07170 Vilnius, Lithuania;
- National Food and Veterinary Risk Assessment Institute, J. Kairiūkščio 10, LT08409 Vilnius, Lithuania
| | - Franz Josef Conraths
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (K.S.); (F.J.C.); (C.S.-L.)
| | - Carola Sauter-Louis
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (K.S.); (F.J.C.); (C.S.-L.)
| |
Collapse
|
21
|
Key risk factors and impact of African swine fever spreading on pig production in Serbia. ACTA VET-BEOGRAD 2021. [DOI: 10.2478/acve-2021-0032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
African swine fever (ASF) is a viral disease of domestic pigs and wild boars and currently represents a major threat to the swine industry worldwide. Disease control is impaired by a lack of an effective vaccine and currently, it is dependent on biosecurity measures in pig production, rapid diagnosis, and stamping out of infected herds. Consequently, this swine disease has considerable social-economic significance on national or even regional level. In 2019 for the first time ASF was detected in the domestic swine population (backyards) in the central region of Serbia. From then on, there have been continuous outbreaks of new cases in the population of domestic and wild boars. Considering domestic pig population, in the majority of cases, ASF was detected in small holdings and backyards. The biosecurity measures are not officially required by veterinary regulation and are only given in a form of recommendations. On the other hand, it is not always possible to implement biosecurity measures that are recognized today as essential for sustainable pig production in the old type of industrial pig facilities. Nowadays, in 2021, it became obvious that the domestic pig cycle, human activities involving pigs, or pig-derived meat products are the dominant driver of virus transmission. Additionally, human activities are frequently a risky connection between domestic pigs and wild boars both directly or indirectly. Traditional, culture-related aspects and facts that politicians failed to recognise ASF as a serious issue that causes great economical losses were found to be very important obstacles in disease control.
Collapse
|
22
|
Fiori MS, Sanna D, Scarpa F, Floris M, Di Nardo A, Ferretti L, Loi F, Cappai S, Sechi AM, Angioi PP, Zinellu S, Sirica R, Evangelista E, Casu M, Franzoni G, Oggiano A, Dei Giudici S. A Deeper Insight into Evolutionary Patterns and Phylogenetic History of ASFV Epidemics in Sardinia (Italy) through Extensive Genomic Sequencing. Viruses 2021; 13:1994. [PMID: 34696424 PMCID: PMC8539718 DOI: 10.3390/v13101994] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/25/2021] [Accepted: 10/01/2021] [Indexed: 12/31/2022] Open
Abstract
African swine fever virus (ASFV) is the etiological agent of the devastating disease African swine fever (ASF), for which there is currently no licensed vaccine or treatment available. ASF is defined as one of the most serious animal diseases identified to date, due to its global spread in regions of Africa, Europe and Asia, causing massive economic losses. On the Italian island of Sardinia, the disease has been endemic since 1978, although the last control measures put in place achieved a significant reduction in ASF, and the virus has been absent from circulation since April 2019. Like many large DNA viruses, ASFV mutates at a relatively slow rate. However, the limited availability of whole-genome sequences from spatial-localized outbreaks makes it difficult to explore the small-scale genetic structure of these ASFV outbreaks. It is also unclear if the genetic variability within outbreaks can be captured in a handful of sequences, or if larger sequencing efforts can improve phylogenetic reconstruction and evolutionary or epidemiological inference. The aim of this study was to investigate the phylogenetic patterns of ASFV outbreaks between 1978 and 2018 in Sardinia, in order to characterize the epidemiological dynamics of the viral strains circulating in this Mediterranean island. To reach this goal, 58 new whole genomes of ASFV isolates were obtained, which represents the largest ASFV whole-genome sequencing effort to date. We provided a complete description of the genomic diversity of ASFV in terms of nucleotide mutations and small and large indels among the isolates collected during the outbreaks. The new sequences capture more than twice the genomic and phylogenetic diversity of all the previously published Sardinian sequences. The extra genomic diversity increases the resolution of the phylogenetic reconstruction, enabling us to dissect, for the first time, the genetic substructure of the outbreak. We found multiple ASFV subclusters within the phylogeny of the Sardinian epidemic, some of which coexisted in space and time.
Collapse
Affiliation(s)
- Mariangela Stefania Fiori
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (M.S.F.); (A.M.S.); (P.P.A.); (S.Z.); (G.F.); (A.O.); (S.D.G.)
| | - Daria Sanna
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (D.S.); (M.F.)
| | - Fabio Scarpa
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (F.S.); (M.C.)
| | - Matteo Floris
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (D.S.); (M.F.)
| | | | - Luca Ferretti
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX1 4BH, UK;
| | - Federica Loi
- Osservatorio Epidemiologico Veterinario Regionale, Istituto Zooprofilattico Sperimentale della Sardegna, 09125 Cagliari, Italy;
| | - Stefano Cappai
- Osservatorio Epidemiologico Veterinario Regionale, Istituto Zooprofilattico Sperimentale della Sardegna, 09125 Cagliari, Italy;
| | - Anna Maria Sechi
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (M.S.F.); (A.M.S.); (P.P.A.); (S.Z.); (G.F.); (A.O.); (S.D.G.)
| | - Pier Paolo Angioi
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (M.S.F.); (A.M.S.); (P.P.A.); (S.Z.); (G.F.); (A.O.); (S.D.G.)
| | - Susanna Zinellu
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (M.S.F.); (A.M.S.); (P.P.A.); (S.Z.); (G.F.); (A.O.); (S.D.G.)
| | - Roberto Sirica
- Ames Polydiagnostic Group Center SRL, 80013 Napoli, Italy; (R.S.); (E.E.)
| | - Eloisa Evangelista
- Ames Polydiagnostic Group Center SRL, 80013 Napoli, Italy; (R.S.); (E.E.)
| | - Marco Casu
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (F.S.); (M.C.)
| | - Giulia Franzoni
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (M.S.F.); (A.M.S.); (P.P.A.); (S.Z.); (G.F.); (A.O.); (S.D.G.)
| | - Annalisa Oggiano
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (M.S.F.); (A.M.S.); (P.P.A.); (S.Z.); (G.F.); (A.O.); (S.D.G.)
| | - Silvia Dei Giudici
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (M.S.F.); (A.M.S.); (P.P.A.); (S.Z.); (G.F.); (A.O.); (S.D.G.)
| |
Collapse
|