1
|
Sonck R, Vanthornhout J, Bonin E, Francart T. Auditory Steady-State Responses: Multiplexed Amplitude Modulation Frequencies to Reduce Recording Time. Ear Hear 2025; 46:24-33. [PMID: 39085997 DOI: 10.1097/aud.0000000000001552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
OBJECTIVES This study investigated the efficiency of a multiplexed amplitude-modulated (AM) stimulus in eliciting auditory steady-state responses. The multiplexed AM stimulus was created by simultaneously modulating speech-shaped noise with three frequencies chosen to elicit different neural generators: 3.1, 40.1, and 102.1 Hz. For comparison, a single AM stimulus was created for each of these frequencies, resulting in three single AM conditions and one multiplex AM condition. DESIGN Twenty-two bilaterally normal-hearing participants (18 females) listened for 8 minutes to each type of stimuli. The analysis compared the signal to noise ratios (SNRs) and amplitudes of the evoked responses to the single and multiplexed conditions. RESULTS The results revealed that the SNRs elicited by single AM conditions were, on average, 1.61 dB higher than those evoked by the multiplexed AM condition ( p < 0.05). The single conditions consistently produced a significantly higher SNR when examining various stimulus durations ranging from 1 to 8 minutes. Despite these SNR differences, the frequency spectrum was very similar across and within subjects. In addition, the sensor space patterns across the scalp demonstrated similar trends between the single and multiplexed stimuli for both SNR and amplitudes. Both the single and multiplexed conditions evoked significant auditory steady-state responses within subjects. On average, the multiplexed AM stimulus took 31 minutes for the lower bound of the 95% prediction interval to cross the significance threshold across all three frequencies. In contrast, the single AM stimuli took 45 minutes and 42 seconds. CONCLUSIONS These findings show that the multiplexed AM stimulus is a promising method to reduce the recording time when simultaneously obtaining information from various neural generators.
Collapse
Affiliation(s)
- Rien Sonck
- Department of Neurosciences, Research Group Experimental Oto-rhino-laryngology, KU Leuven, Leuven, Belgium
- Grappe Interdisciplinaire de Génoprotéomique Appliquée-Consciousness, Coma Science Group, University of Liège, Liège, Belgium
- Brain Center (C2), University Hospital Center of Liège, Liège, Belgium
- These authors shared first-authorship
| | - Jonas Vanthornhout
- Department of Neurosciences, Research Group Experimental Oto-rhino-laryngology, KU Leuven, Leuven, Belgium
- These authors shared first-authorship
| | - Estelle Bonin
- Grappe Interdisciplinaire de Génoprotéomique Appliquée-Consciousness, Coma Science Group, University of Liège, Liège, Belgium
- Brain Center (C2), University Hospital Center of Liège, Liège, Belgium
| | - Tom Francart
- Department of Neurosciences, Research Group Experimental Oto-rhino-laryngology, KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Szaszkó B, Schmid RR, Pomper U, Maiworm M, Laiber S, Lange MJ, Tschenett H, Nater UM, Ansorge U. Testing the impact of hatha yoga on task switching: a randomized controlled trial. Front Hum Neurosci 2024; 18:1438017. [PMID: 39568547 PMCID: PMC11577087 DOI: 10.3389/fnhum.2024.1438017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/10/2024] [Indexed: 11/22/2024] Open
Abstract
Switching attention between or within tasks is part of the implementation and maintenance of executive control processes and plays an indispensable role in our daily lives: It allows us to perform on distinct tasks and with variable objects, enabling us to adapt to and respond in dynamically changing environments. Here, we tested if yoga could benefit switching of attention between distinct objects of one’s focus (e.g., through practicing switching between one’s own body, feelings, and different postures) in particular and executive control in general. We therefore conducted a randomized controlled trial with 98 participants and a waitlisted control group. In the intervention group, healthy yoga novices practiced Hatha yoga 3x a week, for 8 weeks. We conducted two experiments: A purely behavioral task investigating changes in behavioral costs during switching between attentional control sets (74 participants analyzed), and a modality-switching task focusing on electrophysiology (EEG data of 47 participants analyzed). At the electrophysiological level, frequency-tagging indicated no interventional effect on participants’ ability to switch between the auditory and visual modalities. However, increases in task-related frontocentral theta activity, resulting from the intervention, indicated an ability to increasingly deploy executive resources to the prioritized task when needed. At the behavioral level, our intervention resulted in more efficient holding of target representations in working memory, indicated by decreased mixing costs. Again, however, intervention effects on switching costs were missing. We, thus, conclude that Hatha yoga has a positive influence on executive control, potentially through improvements in working memory rather than directly on switching.Clinical trial registrationclinicaltrials.gov, identifier [NCT05232422].
Collapse
Affiliation(s)
- Bence Szaszkó
- Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Vienna, Austria
| | - Rebecca Rosa Schmid
- Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Vienna, Austria
| | - Ulrich Pomper
- Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Vienna, Austria
| | - Mira Maiworm
- Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Vienna, Austria
| | - Sophia Laiber
- Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Vienna, Austria
| | - Max Josef Lange
- Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Vienna, Austria
| | - Hannah Tschenett
- Department of Clinical and Health Psychology, University of Vienna, Vienna, Austria
- University Research Platform "The Stress of Life-Processes and Mechanisms Underlying Everyday Life Stress", University of Vienna, Vienna, Austria
| | - Urs Markus Nater
- Department of Clinical and Health Psychology, University of Vienna, Vienna, Austria
- University Research Platform "The Stress of Life-Processes and Mechanisms Underlying Everyday Life Stress", University of Vienna, Vienna, Austria
| | - Ulrich Ansorge
- Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Vienna, Austria
- Vienna Cognitive Science Hub, University of Vienna, Vienna, Austria
- Research Platform Mediatised Lifeworlds, University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Matulyte G, Parciauskaite V, Bjekic J, Pipinis E, Griskova-Bulanova I. Gamma-Band Auditory Steady-State Response and Attention: A Systemic Review. Brain Sci 2024; 14:857. [PMID: 39335353 PMCID: PMC11430480 DOI: 10.3390/brainsci14090857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Auditory steady-state response (ASSR) is the result of the brain's ability to follow and entrain its oscillatory activity to the phase and frequency of periodic auditory stimulation. Gamma-band ASSR has been increasingly investigated with intentions to apply it in neuropsychiatric disorders diagnosis as well as in brain-computer interface technologies. However, it is still debatable whether attention can influence ASSR, as the results of the attention effects of ASSR are equivocal. In our study, we aimed to systemically review all known articles related to the attentional modulation of gamma-band ASSRs. The initial literature search resulted in 1283 papers. After the removal of duplicates and ineligible articles, 49 original studies were included in the final analysis. Most analyzed studies demonstrated ASSR modulation with differing attention levels; however, studies providing mixed or non-significant results were also identified. The high versatility of methodological approaches including the utilized stimulus type and ASSR recording modality, as well as tasks employed to modulate attention, were detected and emphasized as the main causality of result inconsistencies across studies. Also, the impact of training, inter-individual variability, and time of focus was addressed.
Collapse
Affiliation(s)
- Giedre Matulyte
- Life Sciences Centre, Institute of Biosciences, Vilnius University, Sauletekio ave 7, LT-10257 Vilnius, Lithuania
| | - Vykinta Parciauskaite
- Life Sciences Centre, Institute of Biosciences, Vilnius University, Sauletekio ave 7, LT-10257 Vilnius, Lithuania
| | - Jovana Bjekic
- Human Neuroscience Group, Institute for Medical Research, University of Belgrade, Dr Subotića 4, 11000 Belgrade, Serbia
| | - Evaldas Pipinis
- Life Sciences Centre, Institute of Biosciences, Vilnius University, Sauletekio ave 7, LT-10257 Vilnius, Lithuania
| | - Inga Griskova-Bulanova
- Life Sciences Centre, Institute of Biosciences, Vilnius University, Sauletekio ave 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
4
|
Coffman BA, Ren X, Longenecker J, Torrence N, Fishel V, Seebold D, Wang Y, Curtis M, Salisbury DF. Aberrant attentional modulation of the auditory steady state response (ASSR) is related to auditory hallucination severity in the first-episode schizophrenia-spectrum. J Psychiatr Res 2022; 151:188-196. [PMID: 35490500 PMCID: PMC9703618 DOI: 10.1016/j.jpsychires.2022.03.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/18/2022] [Accepted: 03/31/2022] [Indexed: 12/22/2022]
Abstract
The 40-Hz auditory steady state response (ASSR) is reduced early in schizophrenia, with differences evident even at the first episode of schizophrenia-spectrum psychosis (FESz). Although robust, there is high variability in effect size across studies, possibly due to differences in experimental control of attention and heterogeneity of symptom profiles across studies, both of which may affect the ASSR. We investigated the relationships among ASSR deficits, attention-mediated sensory gain, and auditory hallucinations in 25 FESz (15 male; 23.3 ± 4.5 years) and 32 matched healthy comparison subjects (HC, 22 male; 24.7 ± 5.8 years). ASSR was measured to 40-Hz click trains at three intensities (75, 80, and 85 dB) while participants attended or ignored stimuli. ASSR evoked power and inter-trial phase coherence (ITPC) were measured using the Morlet wavelet transform. FESz did not show overall ASSR power reduction (p > 0.1), but power was significantly increased with attention in HC (p < 0.01), but not in FESz (p > 0.1). Likewise, FESz did not evince overall ASSR ITPC reduction (p > 0.1), and ITPC was significantly increased with attention in HC (p < 0.01), but not in FESz (p > 0.09). Attention-related change in ASSR correlated with auditory hallucination severity for power (r = -0.49, p < 0.05) and ITPC (r = -0.58, p < 0.01). FESz with auditory hallucinations may have pathologically increased basal excitability of auditory cortex and consequent reduced ability to further increase auditory cortex sensory gain with focused attention. These findings indicate hallucination-related pathophysiology early in schizophrenia and may guide novel intervention strategies aimed to modulate basal activity levels.
Collapse
Affiliation(s)
- Brian A. Coffman
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xi Ren
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Laureate Institute for Brain Research, Tulsa, OK, USA
| | - Julia Longenecker
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Natasha Torrence
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Vanessa Fishel
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dylan Seebold
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yiming Wang
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mark Curtis
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dean F. Salisbury
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Corresponding author. Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, 3501 Forbes Ave, Suite 420, Pittsburgh, PA, 15213, USA. (D.F. Salisbury)
| |
Collapse
|
5
|
A new training approach for deep learning in EEG biometrics using triplet loss and EMG-driven additive data augmentation. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.02.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Kadowaki S, Morimoto T, Okamoto H. Auditory steady state responses elicited by silent gaps embedded within a broadband noise. BMC Neurosci 2022; 23:27. [PMID: 35524192 PMCID: PMC9074354 DOI: 10.1186/s12868-022-00712-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/24/2022] [Indexed: 11/15/2022] Open
Abstract
Background Auditory temporal processing plays an important role in speech comprehension. Usually, behavioral tests that require subjects to detect silent gaps embedded within a continuous sound are used to assess the ability of auditory temporal processing in humans. To evaluate auditory temporal processing objectively, the present study aimed to measure the auditory steady state responses (ASSRs) elicited by silent gaps of different lengths embedded within a broadband noise. We presented a broadband noise with 40-Hz silent gaps of 3.125, 6.25, and 12.5 ms. Results The 40-Hz silent gaps of 3.125, 6.25, and 12.5 ms elicited clear ASSRs. Longer silent gaps elicited larger ASSR amplitudes and ASSR phases significantly differed between conditions. Conclusion The 40 Hz gap-evoked ASSR contributes to our understanding of the neural mechanisms underlying auditory temporal processing and may lead to the development of objective measures of auditory temporal acuity in humans. Supplementary Information The online version contains supplementary material available at 10.1186/s12868-022-00712-0.
Collapse
Affiliation(s)
- Seiichi Kadowaki
- Department of Physiology, International University of Health and Welfare Faculty of Medicine Graduate School of Medicine, 4-3 Kozunomori, Narita, 286-8686, Japan
| | - Takashi Morimoto
- Department of Audiological Engineering, RION Co., Ltd., Tokyo, 185-8533, Japan
| | - Hidehiko Okamoto
- Department of Physiology, International University of Health and Welfare Faculty of Medicine Graduate School of Medicine, 4-3 Kozunomori, Narita, 286-8686, Japan.
| |
Collapse
|
7
|
Kritzman L, Eidelman-Rothman M, Keil A, Freche D, Sheppes G, Levit-Binnun N. Steady-state visual evoked potentials differentiate between internally and externally directed attention. Neuroimage 2022; 254:119133. [PMID: 35339684 DOI: 10.1016/j.neuroimage.2022.119133] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 12/26/2022] Open
Abstract
While attention to external visual stimuli has been extensively studied, attention directed internally towards mental contents (e.g., thoughts, memories) or bodily signals (e.g., breathing, heartbeat) has only recently become a subject of increased interest, due to its relation to interoception, contemplative practices and mental health. The present study aimed at expanding the methodological toolbox for studying internal attention, by examining for the first time whether the steady-state visual evoked potential (ssVEP), a well-established measure of attention, can differentiate between internally and externally directed attention. To this end, we designed a task in which flickering dots were used to generate ssVEPs, and instructed participants to count visual targets (external attention condition) or their heartbeats (internal attention condition). We compared the ssVEP responses between conditions, along with alpha-band activity and the heartbeat evoked potential (HEP) - two electrophysiological measures associated with internally directed attention. Consistent with our hypotheses, we found that both the magnitude and the phase synchronization of the ssVEP decreased when attention was directed internally, suggesting that ssVEP measures are able to differentiate between internal and external attention. Additionally, and in line with previous findings, we found larger suppression of parieto-occipital alpha-band activity and an increase of the HEP amplitude in the internal attention condition. Furthermore, we found a trade-off between changes in ssVEP response and changes in HEP and alpha-band activity: when shifting from internal to external attention, increase in ssVEP response was related to a decrease in parieto-occipital alpha-band activity and HEP amplitudes. These findings suggest that shifting between external and internal directed attention prompts a re-allocation of limited processing resources that are shared between external sensory and interoceptive processing.
Collapse
Affiliation(s)
- Lior Kritzman
- School of Psychological Sciences, Tel Aviv University, Israel; Sagol Center for Brain and Mind, Reichman University, Israel.
| | | | - Andreas Keil
- Center for the Study of Emotion & Attention, University of Florida, USA
| | - Dominik Freche
- Sagol Center for Brain and Mind, Reichman University, Israel; Physics of Complex Systems, Weizmann Institute of Science, Israel
| | - Gal Sheppes
- School of Psychological Sciences, Tel Aviv University, Israel
| | | |
Collapse
|
8
|
Watson S, Laugesen S, Epp B. Potential Destructive Binaural Interaction Effects in Auditory Steady-State Response Measurements. Trends Hear 2021; 25:23312165211031130. [PMID: 34452588 PMCID: PMC8580520 DOI: 10.1177/23312165211031130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
An aided sound-field auditory steady-state response (ASSR) has the potential to
be used to objectively validate hearing-aid (HA) fittings in clinics. Each aided
ear should ideally be tested independently, but it is suspected that binaural
testing may be used by clinics to reduce test time. This study simulates
dichotic ASSR sound-field conditions to examine the risk of making false
judgments due to unchecked binaural effects. Unaided ASSRs were recorded with a
clinical two-channel electroencephalography (EEG) system for 15 normal hearing
subjects using a three-band CE-Chirp® stimulus. It was found that the noise
corrected power of a response harmonic can be suppressed by up to 10 dB by
introducing large interaural time differences equal to half the time period of
the stimulus envelope, which may occur in unilateral HA users. These large
interaural time differences also changed the expression of ASSR power across the
scalp, resulting in dramatically altered topographies. This would lead to
considerably lower measured response power and possibly nondetections,
evidencing that even well fit HAs are fit poorly (false referral), whereas
monaural ASSR tests would pass. No effect was found for simulated
lateralizations of the stimulus, which is beneficial for a proposed aided ASSR
approach. Full-scalp ASSR recordings match previously found 40 Hz topographies
but demonstrate suppression of cortical ASSR sources when using stimuli in
interaural envelope antiphase.
Collapse
Affiliation(s)
- Sam Watson
- Department of Health Technology, Hearing Systems, DTU, Kongens Lyngby, Denmark
| | | | - Bastian Epp
- Department of Health Technology, Hearing Systems, DTU, Kongens Lyngby, Denmark
| |
Collapse
|
9
|
Gouraud J, Delorme A, Berberian B. Mind Wandering Influences EEG Signal in Complex Multimodal Environments. FRONTIERS IN NEUROERGONOMICS 2021; 2:625343. [PMID: 38236482 PMCID: PMC10790857 DOI: 10.3389/fnrgo.2021.625343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/23/2021] [Indexed: 01/19/2024]
Abstract
The phenomenon of mind wandering (MW), as a family of experiences related to internally directed cognition, heavily influences vigilance evolution. In particular, humans in teleoperations monitoring partially automated fleet before assuming manual control whenever necessary may see their attention drift due to internal sources; as such, it could play an important role in the emergence of out-of-the-loop (OOTL) situations and associated performance problems. To follow, quantify, and mitigate this phenomenon, electroencephalogram (EEG) systems already demonstrated robust results. As MW creates an attentional decoupling, both ERPs and brain oscillations are impacted. However, the factors influencing these markers in complex environments are still not fully understood. In this paper, we specifically addressed the possibility of gradual emergence of attentional decoupling and the differences created by the sensory modality used to convey targets. Eighteen participants were asked to (1) supervise an automated drone performing an obstacle avoidance task (visual task) and (2) respond to infrequent beeps as fast as possible (auditory task). We measured event-related potentials and alpha waves through EEG. We also added a 40-Hz amplitude modulated brown noise to evoke steady-state auditory response (ASSR). Reported MW episodes were categorized between task-related and task-unrelated episodes. We found that N1 ERP component elicited by beeps had lower amplitude during task-unrelated MW, whereas P3 component had higher amplitude during task-related MW, compared with other attentional states. Focusing on parieto-occipital regions, alpha-wave activity was higher during task-unrelated MW compared with others. These results support the decoupling hypothesis for task-unrelated MW but not task-related MW, highlighting possible variations in the "depth" of decoupling depending on MW episodes. Finally, we found no influence of attentional states on ASSR amplitude. We discuss possible reasons explaining why. Results underline both the ability of EEG to track and study MW in laboratory tasks mimicking ecological environments, as well as the complex influence of perceptual decoupling on operators' behavior and, in particular, EEG measures.
Collapse
Affiliation(s)
- Jonas Gouraud
- Systems Control and Flight Dynamics Department, Office National d'Etudes et de Recherche Aérospatiales, Salon de Provence, France
| | - Arnaud Delorme
- Center of Research on Brain and Cognition (UMR 5549), Centre National de Recherche Scientifique, Toulouse, France
| | - Bruno Berberian
- Systems Control and Flight Dynamics Department, Office National d'Etudes et de Recherche Aérospatiales, Salon de Provence, France
| |
Collapse
|
10
|
Gilmore SA, Russo FA. Neural and Behavioral Evidence for Vibrotactile Beat Perception and Bimodal Enhancement. J Cogn Neurosci 2021; 33:635-650. [PMID: 33475449 DOI: 10.1162/jocn_a_01673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The ability to synchronize movements to a rhythmic stimulus, referred to as sensorimotor synchronization (SMS), is a behavioral measure of beat perception. Although SMS is generally superior when rhythms are presented in the auditory modality, recent research has demonstrated near-equivalent SMS for vibrotactile presentations of isochronous rhythms [Ammirante, P., Patel, A. D., & Russo, F. A. Synchronizing to auditory and tactile metronomes: A test of the auditory-motor enhancement hypothesis. Psychonomic Bulletin & Review, 23, 1882-1890, 2016]. The current study aimed to replicate and extend this study by incorporating a neural measure of beat perception. Nonmusicians were asked to tap to rhythms or to listen passively while EEG data were collected. Rhythmic complexity (isochronous, nonisochronous) and presentation modality (auditory, vibrotactile, bimodal) were fully crossed. Tapping data were consistent with those observed by Ammirante et al. (2016), revealing near-equivalent SMS for isochronous rhythms across modality conditions and a drop-off in SMS for nonisochronous rhythms, especially in the vibrotactile condition. EEG data revealed a greater degree of neural entrainment for isochronous compared to nonisochronous trials as well as for auditory and bimodal compared to vibrotactile trials. These findings led us to three main conclusions. First, isochronous rhythms lead to higher levels of beat perception than nonisochronous rhythms across modalities. Second, beat perception is generally enhanced for auditory presentations of rhythm but still possible under vibrotactile presentation conditions. Finally, exploratory analysis of neural entrainment at harmonic frequencies suggests that beat perception may be enhanced for bimodal presentations of rhythm.
Collapse
|
11
|
Manting CL, Andersen LM, Gulyas B, Ullén F, Lundqvist D. Attentional modulation of the auditory steady-state response across the cortex. Neuroimage 2020; 217:116930. [DOI: 10.1016/j.neuroimage.2020.116930] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 04/10/2020] [Accepted: 05/07/2020] [Indexed: 10/24/2022] Open
|
12
|
No intermodal interference effects of threatening information during concurrent audiovisual stimulation. Neuropsychologia 2019; 136:107283. [PMID: 31783079 DOI: 10.1016/j.neuropsychologia.2019.107283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/05/2019] [Accepted: 11/24/2019] [Indexed: 11/24/2022]
Abstract
Changes in attention can result in sensory processing trade-off effects, in which sensory cortical responses to attended stimuli are heightened and responses to competing distractors are attenuated. However, it is unclear if competition or facilitation effects will be observed at the level of sensory cortex when attending to competing stimuli in two modalities. The present study used electroencephalogram (EEG) and frequency-tagging to quantitatively assess auditory-visual interactions during sustained multimodal sensory stimulation. The emotional content of a 6.66 Hz rapid serial visual presentation (RSVP) was manipulated to elicit well-established emotional attention effects, while a constant 63 dB tone with a 40.8 Hz modulation served as a concurrent auditory stimulus in two experiments. As a directed attention manipulation, participants were instructed to detect transient sound level events in the auditory stream in Experiment 1. To manipulate attention through threat anticipation, participants were instructed to expect an aversive noise burst after a higher 40.8 Hz modulated tone in Experiment 2. Each stimulus evoked reliable steady-state sensory cortical responses in all participants (n = 30) in both experiments. The visual cortical responses were modulated by the auditory detection task, but not by threat anticipation: Visual responses were smaller during auditory streams with a transient target as compared to uninterrupted auditory streams. Conversely, visual stimulus condition had no significant effects on auditory sensory cortical responses in either experiment. These results indicate that there is neither a competition nor facilitation effect of visual content on concurrent auditory sensory cortical processing. They further indicate that competition effects of auditory stream content on sustained visuocortical responses are limited to auditory target processing.
Collapse
|
13
|
Trauer SM, Müller MM, Kotz SA. Expectation Gates Neural Facilitation of Emotional Words in Early Visual Areas. Front Hum Neurosci 2019; 13:281. [PMID: 31507390 PMCID: PMC6716056 DOI: 10.3389/fnhum.2019.00281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/30/2019] [Indexed: 11/13/2022] Open
Abstract
The current study examined whether emotional expectations gate attention to emotional words in early visual cortex. Color cues informed about word valence and onset latency. We observed a stimulus-preceding negativity prior to the onset of cued words that was larger for negative than for neutral words. This indicates that in anticipation of emotional words more attention was allocated to them than to neutral words before target onset. During stimulus presentation the steady-state visual evoked potential (SSVEP), elicited by flickering words, was attenuated for cued compared to uncued words, indicating sharpened sensory activity, i.e., expectation suppression. Most importantly, the SSVEP was more enhanced for negative than neutral words when these were cued. Uncued conditions did not differ in SSVEP amplitudes, paralleling previous studies reporting lexico-semantic but not early visual effects of emotional words. We suggest that cueing mediates re-entrant engagement of visual resources by providing an early “affective gist” of an upcoming word. Consequently, visual single-word studies may have underestimated attentional effects of emotional words and their anticipation during reading.
Collapse
Affiliation(s)
- Sophie M Trauer
- Lehrstuhl für Allgemeine Psychologie, Institut für Psychologie, Universität Leipzig, Leipzig, Germany
| | - Matthias M Müller
- Lehrstuhl für Allgemeine Psychologie, Institut für Psychologie, Universität Leipzig, Leipzig, Germany
| | - Sonja A Kotz
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.,Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
14
|
Roach BJ, D'Souza DC, Ford JM, Mathalon DH. Test-retest reliability of time-frequency measures of auditory steady-state responses in patients with schizophrenia and healthy controls. Neuroimage Clin 2019; 23:101878. [PMID: 31228795 PMCID: PMC6587022 DOI: 10.1016/j.nicl.2019.101878] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/18/2019] [Accepted: 05/25/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Auditory steady-state response (ASSR) paradigms have consistently demonstrated gamma band abnormalities in schizophrenia at a 40-Hz driving frequency with both electroencephalography (EEG) and magnetoencephalography (MEG). Various time-frequency measures have been used to assess the 40-Hz ASSR, including evoked power, single trial total power, phase-locking factor (PLF), and phase-locking angle (PLA). While both EEG and MEG studies have shown power and PLF ASSR measures to exhibit excellent test-retest reliability in healthy adults, the reliability of these measures in patients with schizophrenia has not been determined. METHODS ASSRs were obtained by recording EEG data during presentation of repeated 20-Hz, 30-Hz and 40-Hz auditory click trains from nine schizophrenia patients (SZ) and nine healthy controls (HC) tested on two occasions. Similar ASSR data were collected from a separate group of 30 HC on two to three test occasions. A subset of these HC subjects had EEG recordings during two tasks, passively listening and actively attending to click train stimuli. Evoked power, total power, PLF, and PLA were calculated following Morlet wavelet time-frequency decomposition of EEG data and test-retest generalizability (G) coefficients were calculated for each ASSR condition, time-frequency measure, and subject group. RESULTS G-coefficients ranged from good to excellent (> 0.6) for most 40-Hz time-frequency measures and participant groups, whereas 20-Hz G-coefficients were much more variable. Importantly, test-retest reliability was excellent for the various 40-Hz ASSR measures in SZ, similar to reliabilities in HC. Active attention to click train stimuli modestly reduced G-coefficients in HC relative to the passive listening condition. DISCUSSION The excellent test-retest reliability of 40-Hz ASSR measures replicates previous EEG and MEG studies. PLA, a relatively new time-frequency measure, was shown for the first time to have excellent reliability, comparable to power and PLF measures. Excellent reliability of 40 Hz ASSR measures in SZ supports their use in clinical trials and longitudinal observational studies.
Collapse
Affiliation(s)
- Brian J Roach
- Psychiatry Service, San Francisco VA, San Francisco, CA, USA
| | - Deepak Cyril D'Souza
- Psychiatry Service, VA Connecticut Healthcare System, West Haven, CT, USA; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Judith M Ford
- Psychiatry Service, San Francisco VA, San Francisco, CA, USA; Department of Psychiatry, UCSF, San Francisco, CA, USA
| | - Daniel H Mathalon
- Psychiatry Service, San Francisco VA, San Francisco, CA, USA; Department of Psychiatry, UCSF, San Francisco, CA, USA.
| |
Collapse
|
15
|
Dmochowski JP, Ki JJ, DeGuzman P, Sajda P, Parra LC. Extracting multidimensional stimulus-response correlations using hybrid encoding-decoding of neural activity. Neuroimage 2018; 180:134-146. [DOI: 10.1016/j.neuroimage.2017.05.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/03/2017] [Accepted: 05/17/2017] [Indexed: 10/19/2022] Open
|
16
|
Effect of acceleration of auditory inputs on the primary somatosensory cortex in humans. Sci Rep 2018; 8:12883. [PMID: 30150686 PMCID: PMC6110726 DOI: 10.1038/s41598-018-31319-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 08/17/2018] [Indexed: 11/09/2022] Open
Abstract
Cross-modal interaction occurs during the early stages of processing in the sensory cortex; however, its effect on neuronal activity speed remains unclear. We used magnetoencephalography to investigate whether auditory stimulation influences the initial cortical activity in the primary somatosensory cortex. A 25-ms pure tone was randomly presented to the left or right side of healthy volunteers at 1000 ms when electrical pulses were applied to the left or right median nerve at 20 Hz for 1500 ms because we did not observe any cross-modal effect elicited by a single pulse. The latency of N20 m originating from Brodmann's area 3b was measured for each pulse. The auditory stimulation significantly shortened the N20 m latency at 1050 and 1100 ms. This reduction in N20 m latency was identical for the ipsilateral and contralateral sounds for both latency points. Therefore, somatosensory-auditory interaction, such as input to the area 3b from the thalamus, occurred during the early stages of synaptic transmission. Auditory information that converged on the somatosensory system was considered to have arisen from the early stages of the feedforward pathway. Acceleration of information processing through the cross-modal interaction seemed to be partly due to faster processing in the sensory cortex.
Collapse
|
17
|
Wen W, Brann E, Di Costa S, Haggard P. Enhanced perceptual processing of self-generated motion: Evidence from steady-state visual evoked potentials. Neuroimage 2018; 175:438-448. [PMID: 29654877 PMCID: PMC5971214 DOI: 10.1016/j.neuroimage.2018.04.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 03/15/2018] [Accepted: 04/09/2018] [Indexed: 01/23/2023] Open
Abstract
The sense of agency emerges when our voluntary actions produce anticipated or predictable outcomes in the external world. It remains unclear how the sense of control also influences our perception of the external world. The present study examined perceptual processing of self-generated motion versus non-self-generated motion using steady-state visual evoked potentials (SSVEPs). Participants continuously moved their finger on a touchpad to trigger the movements of two shapes (Experiment 1) or two groups of dots (Experiment 2) on a monitor. Degree of control was manipulated by varying the spatial relation between finger movement and stimulus trajectory across conditions. However, the velocity, onset time, and offset time of visual stimuli always corresponded to participants' finger movement. Stimuli flickered at a frequency of either 7.5 Hz or 10 Hz, thus SSVEPs of these frequencies and their harmonics provided a frequency-tagged measurement of perceptual processing. Participants triggered the motion of all stimuli simultaneously, but had greater levels of control over some stimuli than over others. Their task was to detect a brief colour change on the border(s) of one shape (Experiment 1) or of one group of dots (Experiment 2). Although control over shapes/dots was irrelevant to the visual detection task, we found stronger SSVEPs for stimuli that were under a high level of control, compared with the stimuli that were under a low level of control. Our results suggest that the spatial regularity between self-generated movements and visual input boosted the neural responses underlying perceptual processing. Our results support the preactivation account of sensory attenuation, suggesting that perceptual processing of self-generated events is enhanced rather than inhibited.
Collapse
Affiliation(s)
- Wen Wen
- Institute of Cognitive Neuroscience, University College London, Alexandra House, 17 Queen Square, London, WC1N 3AR, UK; Department of Precision Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan; Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan.
| | - Elisa Brann
- Institute of Cognitive Neuroscience, University College London, Alexandra House, 17 Queen Square, London, WC1N 3AR, UK.
| | - Steven Di Costa
- Institute of Cognitive Neuroscience, University College London, Alexandra House, 17 Queen Square, London, WC1N 3AR, UK.
| | - Patrick Haggard
- Institute of Cognitive Neuroscience, University College London, Alexandra House, 17 Queen Square, London, WC1N 3AR, UK.
| |
Collapse
|
18
|
Single-Trial Phase Entrainment of Theta Oscillations in Sensory Regions Predicts Human Associative Memory Performance. J Neurosci 2018; 38:6299-6309. [PMID: 29899027 DOI: 10.1523/jneurosci.0349-18.2018] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/22/2018] [Accepted: 05/24/2018] [Indexed: 11/21/2022] Open
Abstract
Episodic memories are rich in sensory information and often contain integrated information from different sensory modalities. For instance, we can store memories of a recent concert with visual and auditory impressions being integrated in one episode. Theta oscillations have recently been implicated in playing a causal role synchronizing and effectively binding the different modalities together in memory. However, an open question is whether momentary fluctuations in theta synchronization predict the likelihood of associative memory formation for multisensory events. To address this question we entrained the visual and auditory cortex at theta frequency (4 Hz) and in a synchronous or asynchronous manner by modulating the luminance and volume of movies and sounds at 4 Hz, with a phase offset at 0° or 180°. EEG activity from human subjects (both sexes) was recorded while they memorized the association between a movie and a sound. Associative memory performance was significantly enhanced in the 0° compared with the 180° condition. Source-level analysis demonstrated that the physical stimuli effectively entrained their respective cortical areas with a corresponding phase offset. The findings suggested a successful replication of a previous study (Clouter et al., 2017). Importantly, the strength of entrainment during encoding correlated with the efficacy of associative memory such that small phase differences between visual and auditory cortex predicted a high likelihood of correct retrieval in a later recall test. These findings suggest that theta oscillations serve a specific function in the episodic memory system: binding the contents of different modalities into coherent memory episodes.SIGNIFICANCE STATEMENT How multisensory experiences are bound to form a coherent episodic memory representation is one of the fundamental questions in human episodic memory research. Evidence from animal literature suggests that the relative timing between an input and theta oscillations in the hippocampus is crucial for memory formation. We precisely controlled the timing between visual and auditory stimuli and the neural oscillations at 4 Hz using a multisensory entrainment paradigm. Human associative memory formation depends on coincident timing between sensory streams processed by the corresponding brain regions. We provide evidence for a significant role of relative timing of neural theta activity in human episodic memory on a single-trial level, which reveals a crucial mechanism underlying human episodic memory.
Collapse
|
19
|
Silva S, Folia V, Inácio F, Castro SL, Petersson KM. Modality effects in implicit artificial grammar learning: An EEG study. Brain Res 2018; 1687:50-59. [DOI: 10.1016/j.brainres.2018.02.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/26/2017] [Accepted: 02/15/2018] [Indexed: 11/25/2022]
|
20
|
Effects of spectral smearing of stimuli on the performance of auditory steady-state response-based brain-computer interface. Cogn Neurodyn 2017; 11:515-527. [PMID: 29147144 DOI: 10.1007/s11571-017-9448-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 07/07/2017] [Accepted: 07/24/2017] [Indexed: 10/19/2022] Open
Abstract
There have been few reports that investigated the effects of the degree and pattern of a spectral smearing of stimuli due to deteriorated hearing ability on the performance of auditory brain-computer interface (BCI) systems. In this study, we assumed that such spectral smearing of stimuli may affect the performance of an auditory steady-state response (ASSR)-based BCI system and performed subjective experiments using 10 normal-hearing subjects to verify this assumption. We constructed smearing-reflected stimuli using an 8-channel vocoder with moderate and severe hearing loss setups and, using these stimuli, performed subjective concentration tests with three symmetric and six asymmetric smearing patterns while recording electroencephalogram signals. Then, 56 ratio features were calculated from the recorded signals, and the accuracies of the BCI selections were calculated and compared. Experimental results demonstrated that (1) applying smearing-reflected stimuli decreases the performance of an ASSR-based auditory BCI system, and (2) such negative effects can be reduced by adjusting the feature settings of the BCI algorithm on the basis of results acquired a posteriori. These results imply that by fine-tuning the feature settings of the BCI algorithm according to the degree and pattern of hearing ability deterioration of the recipient, the clinical benefits of a BCI system can be improved.
Collapse
|
21
|
Mora-Cortes A, Ridderinkhof KR, Cohen MX. Evaluating the feasibility of the steady-state visual evoked potential (SSVEP) to study temporal attention. Psychophysiology 2017; 55:e13029. [DOI: 10.1111/psyp.13029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/03/2017] [Accepted: 10/12/2017] [Indexed: 01/23/2023]
Affiliation(s)
- Anderson Mora-Cortes
- Department of Psychology; University of Amsterdam; Amsterdam The Netherlands
- Amsterdam Brain & Cognition (ABC); University of Amsterdam; Amsterdam The Netherlands
- Laboratory for Neuro- and Psychophysiology, Department of Neuroscience; KU Leuven; Leuven Belgium
| | - K. Richard Ridderinkhof
- Department of Psychology; University of Amsterdam; Amsterdam The Netherlands
- Amsterdam Brain & Cognition (ABC); University of Amsterdam; Amsterdam The Netherlands
| | - Michael X Cohen
- Donders Center for Neuroscience, Radboud University Nijmegen Medical Centre, Radboud University; Nijmegen The Netherlands
| |
Collapse
|
22
|
Nozaradan S, Schwartze M, Obermeier C, Kotz SA. Specific contributions of basal ganglia and cerebellum to the neural tracking of rhythm. Cortex 2017; 95:156-168. [DOI: 10.1016/j.cortex.2017.08.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 07/16/2017] [Accepted: 08/07/2017] [Indexed: 11/29/2022]
|
23
|
Kuś R, Spustek T, Zieleniewska M, Duszyk A, Rogowski P, Suffczyński P. Integrated trimodal SSEP experimental setup for visual, auditory and tactile stimulation. J Neural Eng 2017; 14:066002. [PMID: 28786397 DOI: 10.1088/1741-2552/aa836f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Steady-state evoked potentials (SSEPs), the brain responses to repetitive stimulation, are commonly used in both clinical practice and scientific research. Particular brain mechanisms underlying SSEPs in different modalities (i.e. visual, auditory and tactile) are very complex and still not completely understood. Each response has distinct resonant frequencies and exhibits a particular brain topography. Moreover, the topography can be frequency-dependent, as in case of auditory potentials. However, to study each modality separately and also to investigate multisensory interactions through multimodal experiments, a proper experimental setup appears to be of critical importance. The aim of this study was to design and evaluate a novel SSEP experimental setup providing a repetitive stimulation in three different modalities (visual, tactile and auditory) with a precise control of stimuli parameters. Results from a pilot study with a stimulation in a particular modality and in two modalities simultaneously prove the feasibility of the device to study SSEP phenomenon. APPROACH We developed a setup of three separate stimulators that allows for a precise generation of repetitive stimuli. Besides sequential stimulation in a particular modality, parallel stimulation in up to three different modalities can be delivered. Stimulus in each modality is characterized by a stimulation frequency and a waveform (sine or square wave). We also present a novel methodology for the analysis of SSEPs. MAIN RESULTS Apart from constructing the experimental setup, we conducted a pilot study with both sequential and simultaneous stimulation paradigms. EEG signals recorded during this study were analyzed with advanced methodology based on spatial filtering and adaptive approximation, followed by statistical evaluation. SIGNIFICANCE We developed a novel experimental setup for performing SSEP experiments. In this sense our study continues the ongoing research in this field. On the other hand, the described setup along with the presented methodology is a considerable improvement and an extension of methods constituting the state-of-the-art in the related field. Device flexibility both with developed analysis methodology can lead to further development of diagnostic methods and provide deeper insight into information processing in the human brain.
Collapse
Affiliation(s)
- Rafał Kuś
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
24
|
Zhang D, Hong B, Gao S, Röder B. Exploring the temporal dynamics of sustained and transient spatial attention using steady-state visual evoked potentials. Exp Brain Res 2017; 235:1575-1591. [PMID: 28258437 DOI: 10.1007/s00221-017-4907-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/07/2017] [Indexed: 01/23/2023]
Abstract
While the behavioral dynamics as well as the functional network of sustained and transient attention have extensively been studied, their underlying neural mechanisms have most often been investigated in separate experiments. In the present study, participants were instructed to perform an audio-visual spatial attention task. They were asked to attend to either the left or the right hemifield and to respond to deviant transient either auditory or visual stimuli. Steady-state visual evoked potentials (SSVEPs) elicited by two task irrelevant pattern reversing checkerboards flickering at 10 and 15 Hz in the left and the right hemifields, respectively, were used to continuously monitor the locus of spatial attention. The amplitude and phase of the SSVEPs were extracted for single trials and were separately analyzed. Sustained attention to one hemifield (spatial attention) as well as to the auditory modality (intermodal attention) increased the inter-trial phase locking of the SSVEP responses, whereas briefly presented visual and auditory stimuli decreased the single-trial SSVEP amplitude between 200 and 500 ms post-stimulus. This transient change of the single-trial amplitude was restricted to the SSVEPs elicited by the reversing checkerboard in the spatially attended hemifield and thus might reflect a transient re-orienting of attention towards the brief stimuli. Thus, the present results demonstrate independent, but interacting neural mechanisms of sustained and transient attentional orienting.
Collapse
Affiliation(s)
- Dan Zhang
- Biological Psychology and Neuropsychology, University of Hamburg, Von-Melle-Park 11, 20146, Hamburg, Germany. .,Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China. .,Department of Psychology, School of Social Sciences, Tsinghua University, Beijing, 100084, China.
| | - Bo Hong
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Shangkai Gao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Brigitte Röder
- Biological Psychology and Neuropsychology, University of Hamburg, Von-Melle-Park 11, 20146, Hamburg, Germany
| |
Collapse
|
25
|
Nozaradan S, Peretz I, Keller PE. Individual Differences in Rhythmic Cortical Entrainment Correlate with Predictive Behavior in Sensorimotor Synchronization. Sci Rep 2016; 6:20612. [PMID: 26847160 PMCID: PMC4742877 DOI: 10.1038/srep20612] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 01/08/2016] [Indexed: 11/21/2022] Open
Abstract
The current study aims at characterizing the mechanisms that allow humans to entrain the mind and body to incoming rhythmic sensory inputs in real time. We addressed this unresolved issue by examining the relationship between covert neural processes and overt behavior in the context of musical rhythm. We measured temporal prediction abilities, sensorimotor synchronization accuracy and neural entrainment to auditory rhythms as captured using an EEG frequency-tagging approach. Importantly, movement synchronization accuracy with a rhythmic beat could be explained by the amplitude of neural activity selectively locked with the beat period when listening to the rhythmic inputs. Furthermore, stronger endogenous neural entrainment at the beat frequency was associated with superior temporal prediction abilities. Together, these results reveal a direct link between cortical and behavioral measures of rhythmic entrainment, thus providing evidence that frequency-tagged brain activity has functional relevance for beat perception and synchronization.
Collapse
Affiliation(s)
- Sylvie Nozaradan
- Institute of Neuroscience (Ions), Université catholique de Louvain (UCL), Belgium
- International Laboratory for Brain, Music and Sound Research (BRAMS), Université de Montréal, Canada
| | - Isabelle Peretz
- International Laboratory for Brain, Music and Sound Research (BRAMS), Université de Montréal, Canada
| | - Peter E. Keller
- The MARCS Institute, Western Sydney University, Sydney, Australia
- Music Cognition & Action Group, Max Planck Institute for Human Cognitive & Brain Sciences, Leipzig, Germany
| |
Collapse
|
26
|
Tan AYY. Spatial diversity of spontaneous activity in the cortex. Front Neural Circuits 2015; 9:48. [PMID: 26441547 PMCID: PMC4585302 DOI: 10.3389/fncir.2015.00048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 08/24/2015] [Indexed: 12/05/2022] Open
Abstract
The neocortex is a layered sheet across which a basic organization is thought to widely apply. The variety of spontaneous activity patterns is similar throughout the cortex, consistent with the notion of a basic cortical organization. However, the basic organization is only an outline which needs adjustments and additions to account for the structural and functional diversity across cortical layers and areas. Such diversity suggests that spontaneous activity is spatially diverse in any particular behavioral state. Accordingly, this review summarizes the laminar and areal diversity in cortical activity during fixation and slow oscillations, and the effects of attention, anesthesia and plasticity on the cortical distribution of spontaneous activity. Among questions that remain open, characterizing the spatial diversity in spontaneous membrane potential may help elucidate how differences in circuitry among cortical regions supports their varied functions. More work is also needed to understand whether cortical spontaneous activity not only reflects cortical circuitry, but also contributes to determining the outcome of plasticity, so that it is itself a factor shaping the functional diversity of the cortex.
Collapse
Affiliation(s)
- Andrew Y Y Tan
- Center for Perceptual Systems and Department of Neuroscience, The University of Texas at Austin Austin, TX, USA
| |
Collapse
|
27
|
Colon E, Legrain V, Huang G, Mouraux A. Frequency tagging of steady-state evoked potentials to explore the crossmodal links in spatial attention between vision and touch. Psychophysiology 2015; 52:1498-510. [PMID: 26329531 DOI: 10.1111/psyp.12511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 07/11/2015] [Indexed: 11/29/2022]
Abstract
The sustained periodic modulation of a stimulus induces an entrainment of cortical neurons responding to the stimulus, appearing as a steady-state evoked potential (SS-EP) in the EEG frequency spectrum. Here, we used frequency tagging of SS-EPs to study the crossmodal links in spatial attention between touch and vision. We hypothesized that a visual stimulus approaching the left or right hand orients spatial attention toward the approached hand, and thereby enhances the processing of vibrotactile input originating from that hand. Twenty-five subjects took part in the experiment: 16-s trains of vibrotactile stimuli (4.2 and 7.2 Hz) were applied simultaneously to the left and right hand, concomitantly with a punctate visual stimulus blinking at 9.8 Hz. The visual stimulus was approached toward the left or right hand. The hands were either uncrossed (left and right hands to the left and right of the participant) or crossed (left and right hands to the right and left of the participant). The vibrotactile stimuli elicited two distinct SS-EPs with scalp topographies compatible with activity in the contralateral primary somatosensory cortex. The visual stimulus elicited a third SS-EP with a topography compatible with activity in visual areas. When the visual stimulus was over one of the hands, the amplitude of the vibrotactile SS-EP elicited by stimulation of that hand was enhanced, regardless of whether the hands were uncrossed or crossed. This demonstrates a crossmodal effect of spatial attention between vision and touch, integrating proprioceptive and/or visual information to map the position of the limbs in external space.
Collapse
Affiliation(s)
- Elisabeth Colon
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Valéry Legrain
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Gan Huang
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - André Mouraux
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
28
|
Keitel C, Müller MM. Audio-visual synchrony and feature-selective attention co-amplify early visual processing. Exp Brain Res 2015; 234:1221-31. [PMID: 26226930 DOI: 10.1007/s00221-015-4392-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 07/20/2015] [Indexed: 10/23/2022]
Abstract
Our brain relies on neural mechanisms of selective attention and converging sensory processing to efficiently cope with rich and unceasing multisensory inputs. One prominent assumption holds that audio-visual synchrony can act as a strong attractor for spatial attention. Here, we tested for a similar effect of audio-visual synchrony on feature-selective attention. We presented two superimposed Gabor patches that differed in colour and orientation. On each trial, participants were cued to selectively attend to one of the two patches. Over time, spatial frequencies of both patches varied sinusoidally at distinct rates (3.14 and 3.63 Hz), giving rise to pulse-like percepts. A simultaneously presented pure tone carried a frequency modulation at the pulse rate of one of the two visual stimuli to introduce audio-visual synchrony. Pulsed stimulation elicited distinct time-locked oscillatory electrophysiological brain responses. These steady-state responses were quantified in the spectral domain to examine individual stimulus processing under conditions of synchronous versus asynchronous tone presentation and when respective stimuli were attended versus unattended. We found that both, attending to the colour of a stimulus and its synchrony with the tone, enhanced its processing. Moreover, both gain effects combined linearly for attended in-sync stimuli. Our results suggest that audio-visual synchrony can attract attention to specific stimulus features when stimuli overlap in space.
Collapse
Affiliation(s)
- Christian Keitel
- Institute of Neuroscience and Psychology, University of Glasgow, Hillhead Street 58, Glasgow, G12 8QB, UK.
| | - Matthias M Müller
- Institut für Psychologie, Universität Leipzig, Neumarkt 9-19, 04109, Leipzig, Germany
| |
Collapse
|
29
|
Schröger E, Marzecová A, SanMiguel I. Attention and prediction in human audition: a lesson from cognitive psychophysiology. Eur J Neurosci 2015; 41:641-64. [PMID: 25728182 PMCID: PMC4402002 DOI: 10.1111/ejn.12816] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/27/2014] [Accepted: 12/01/2014] [Indexed: 11/30/2022]
Abstract
Attention is a hypothetical mechanism in the service of perception that facilitates the processing of relevant information and inhibits the processing of irrelevant information. Prediction is a hypothetical mechanism in the service of perception that considers prior information when interpreting the sensorial input. Although both (attention and prediction) aid perception, they are rarely considered together. Auditory attention typically yields enhanced brain activity, whereas auditory prediction often results in attenuated brain responses. However, when strongly predicted sounds are omitted, brain responses to silence resemble those elicited by sounds. Studies jointly investigating attention and prediction revealed that these different mechanisms may interact, e.g. attention may magnify the processing differences between predicted and unpredicted sounds. Following the predictive coding theory, we suggest that prediction relates to predictions sent down from predictive models housed in higher levels of the processing hierarchy to lower levels and attention refers to gain modulation of the prediction error signal sent up to the higher level. As predictions encode contents and confidence in the sensory data, and as gain can be modulated by the intention of the listener and by the predictability of the input, various possibilities for interactions between attention and prediction can be unfolded. From this perspective, the traditional distinction between bottom-up/exogenous and top-down/endogenous driven attention can be revisited and the classic concepts of attentional gain and attentional trace can be integrated.
Collapse
Affiliation(s)
- Erich Schröger
- Institute for Psychology, BioCog - Cognitive and Biological Psychology, University of LeipzigNeumarkt 9-19, D-04109, Leipzig, Germany
| | - Anna Marzecová
- Institute for Psychology, BioCog - Cognitive and Biological Psychology, University of LeipzigNeumarkt 9-19, D-04109, Leipzig, Germany
| | - Iria SanMiguel
- Institute for Psychology, BioCog - Cognitive and Biological Psychology, University of LeipzigNeumarkt 9-19, D-04109, Leipzig, Germany
| |
Collapse
|
30
|
Norcia AM, Appelbaum LG, Ales JM, Cottereau BR, Rossion B. The steady-state visual evoked potential in vision research: A review. J Vis 2015; 15:4. [PMID: 26024451 PMCID: PMC4581566 DOI: 10.1167/15.6.4] [Citation(s) in RCA: 589] [Impact Index Per Article: 58.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/05/2015] [Indexed: 02/07/2023] Open
Abstract
Periodic visual stimulation and analysis of the resulting steady-state visual evoked potentials were first introduced over 80 years ago as a means to study visual sensation and perception. From the first single-channel recording of responses to modulated light to the present use of sophisticated digital displays composed of complex visual stimuli and high-density recording arrays, steady-state methods have been applied in a broad range of scientific and applied settings.The purpose of this article is to describe the fundamental stimulation paradigms for steady-state visual evoked potentials and to illustrate these principles through research findings across a range of applications in vision science.
Collapse
|
31
|
Srinivasan S, Keil A, Stratis K, Osborne AF, Cerwonka C, Wong J, Rieger BL, Polcz V, Smith DW. Interaural attention modulates outer hair cell function. Eur J Neurosci 2014; 40:3785-92. [PMID: 25302959 DOI: 10.1111/ejn.12746] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 09/03/2014] [Accepted: 09/05/2014] [Indexed: 11/27/2022]
Abstract
Mounting evidence suggests that auditory attention tasks may modulate the sensitivity of the cochlea by way of the corticofugal and the medial olivocochlear (MOC) efferent pathways. Here, we studied the extent to which a separate efferent tract, the 'uncrossed' MOC, which functionally connects the two ears, mediates inter-aural selective attention. We compared distortion product otoacoustic emissions (DPOAEs) in one ear with binaurally presented primaries, using an intermodal target detection task in which participants were instructed to report the occurrence of brief target events (visual changes, tones). Three tasks were compared under identical physical stimulation: (i) report brief tones in the ear in which DPOAE responses were recorded; (ii) report brief tones presented to the contralateral, non-recorded ear; and (iii) report brief phase shifts of a visual grating at fixation. Effects of attention were observed as parallel shifts in overall DPOAE contour level, with DPOAEs relatively higher in overall level when subjects ignored the auditory stimuli and attended to the visual stimulus, compared with both of the auditory-attending conditions. Importantly, DPOAE levels were statistically lowest when attention was directed to the ipsilateral ear in which the DPOAE recordings were made. These data corroborate notions that top-down mechanisms, via the corticofugal and medial efferent pathways, mediate cochlear responses during intermodal attention. New findings show attending to one ear can significantly alter the physiological response of the contralateral, unattended ear, probably through the uncrossed-medial olivocochlear efferent fibers connecting the two ears.
Collapse
Affiliation(s)
- Sridhar Srinivasan
- Program in Behavioral and Cognitive Neuroscience, Department of Psychology, University of Florida, Gainesville, FL, 32611, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wittekindt A, Kaiser J, Abel C. Attentional modulation of the inner ear: a combined otoacoustic emission and EEG study. J Neurosci 2014; 34:9995-10002. [PMID: 25057201 PMCID: PMC6608308 DOI: 10.1523/jneurosci.4861-13.2014] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 05/18/2014] [Accepted: 06/09/2014] [Indexed: 11/21/2022] Open
Abstract
Attending to a single stimulus in a complex multisensory environment requires the ability to select relevant information while ignoring distracting input. The underlying mechanism and involved neuronal levels of this attentional gain control are still a matter of debate. Here, we investigated the influence of intermodal attention on different levels of auditory processing in humans. It is known that the activity of the cochlear amplifier can be modulated by efferent neurons of the medial olivocochlear complex. We used distortion product otoacoustic emission (DPOAE) measurements to monitor cochlear activity during an intermodal cueing paradigm. Simultaneously, central auditory processing was assessed by electroencephalography (EEG) with a steady-state paradigm targeting early cortical responses and analysis of alpha oscillations reflecting higher cognitive control of attentional modulation. We found effects of selective attention at all measured levels of the auditory processing: DPOAE levels differed significantly between periods of visual and auditory attention, showing a reduction during visual attention, but no change during auditory attention. Primary auditory cortex activity, as measured by the auditory steady-state response (ASSR), differed between conditions, with higher ASSRs during auditory than visual attention. Furthermore, the analysis of cortical oscillatory activity revealed increased alpha power over occipitoparietal and frontal regions during auditory compared with visual attention, putatively reflecting suppression of visual processing. In conclusion, this study showed both enhanced processing of attended acoustic stimuli in early sensory cortex and reduced processing of distracting input, both at higher cortical levels and at the most peripheral level of the hearing system, the cochlea.
Collapse
Affiliation(s)
- Anna Wittekindt
- Institute of Medical Psychology, Goethe University Frankfurt, 60528 Frankfurt am Main, Germany
| | - Jochen Kaiser
- Institute of Medical Psychology, Goethe University Frankfurt, 60528 Frankfurt am Main, Germany
| | - Cornelius Abel
- Institute of Medical Psychology, Goethe University Frankfurt, 60528 Frankfurt am Main, Germany
| |
Collapse
|
33
|
Colon E, Legrain V, Mouraux A. EEG frequency tagging to dissociate the cortical responses to nociceptive and nonnociceptive stimuli. J Cogn Neurosci 2014; 26:2262-74. [PMID: 24738772 DOI: 10.1162/jocn_a_00648] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Whether the cortical processing of nociceptive input relies on the activity of nociceptive-specific neurons or whether it relies on the activity of neurons also involved in processing nonnociceptive sensory input remains a matter of debate. Here, we combined EEG "frequency tagging" of steady-state evoked potentials (SS-EPs) with an intermodal selective attention paradigm to test whether the cortical processing of nociceptive input relies on nociceptive-specific neuronal populations that can be selectively modulated by top-down attention. Trains of nociceptive and vibrotactile stimuli (Experiment 1) and trains of nociceptive and visual stimuli (Experiment 2) were applied concomitantly to the same hand, thus eliciting nociceptive, vibrotactile, and visual SS-EPs. In each experiment, a target detection task was used to focus attention toward one of the two concurrent streams of sensory input. We found that selectively attending to nociceptive or vibrotactile somatosensory input indistinctly enhances the magnitude of nociceptive and vibrotactile SS-EPs, whereas selectively attending to nociceptive or visual input independently enhances the magnitude of the SS-EP elicited by the attended sensory input. This differential effect indicates that the processing of nociceptive input involves neuronal populations also involved in the processing of touch, but distinct from the neuronal populations involved in vision.
Collapse
|
34
|
Bharadwaj HM, Lee AKC, Shinn-Cunningham BG. Measuring auditory selective attention using frequency tagging. Front Integr Neurosci 2014; 8:6. [PMID: 24550794 PMCID: PMC3913882 DOI: 10.3389/fnint.2014.00006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 01/10/2014] [Indexed: 11/14/2022] Open
Abstract
Frequency tagging of sensory inputs (presenting stimuli that fluctuate periodically at rates to which the cortex can phase lock) has been used to study attentional modulation of neural responses to inputs in different sensory modalities. For visual inputs, the visual steady-state response (VSSR) at the frequency modulating an attended object is enhanced, while the VSSR to a distracting object is suppressed. In contrast, the effect of attention on the auditory steady-state response (ASSR) is inconsistent across studies. However, most auditory studies analyzed results at the sensor level or used only a small number of equivalent current dipoles to fit cortical responses. In addition, most studies of auditory spatial attention used dichotic stimuli (independent signals at the ears) rather than more natural, binaural stimuli. Here, we asked whether these methodological choices help explain discrepant results. Listeners attended to one of two competing speech streams, one simulated from the left and one from the right, that were modulated at different frequencies. Using distributed source modeling of magnetoencephalography results, we estimate how spatially directed attention modulates the ASSR in neural regions across the whole brain. Attention enhances the ASSR power at the frequency of the attended stream in contralateral auditory cortex. The attended-stream modulation frequency also drives phase-locked responses in the left (but not right) precentral sulcus (lPCS), a region implicated in control of eye gaze and visual spatial attention. Importantly, this region shows no phase locking to the distracting stream. Results suggest that the lPCS in engaged in an attention-specific manner. Modeling results that take account of the geometry and phases of the cortical sources phase locked to the two streams (including hemispheric asymmetry of lPCS activity) help to explain why past ASSR studies of auditory spatial attention yield seemingly contradictory results.
Collapse
Affiliation(s)
- Hari M Bharadwaj
- Center for Computational Neuroscience and Neural Technology, Boston University Boston, MA, USA ; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital Charlestown, MA, USA ; Department of Biomedical Engineering, Boston University Boston, MA, USA
| | - Adrian K C Lee
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital Charlestown, MA, USA ; Department of Speech and Hearing Sciences, Institute for Learning and Brain Sciences, University of Washington Seattle, WA, USA
| | - Barbara G Shinn-Cunningham
- Center for Computational Neuroscience and Neural Technology, Boston University Boston, MA, USA ; Department of Biomedical Engineering, Boston University Boston, MA, USA
| |
Collapse
|
35
|
Goltz D, Pleger B, Thiel S, Villringer A, Müller MM. Sustained spatial attention to vibrotactile stimulation in the flutter range: relevant brain regions and their interaction. PLoS One 2013; 8:e84196. [PMID: 24367642 PMCID: PMC3868580 DOI: 10.1371/journal.pone.0084196] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 11/13/2013] [Indexed: 11/18/2022] Open
Abstract
The present functional magnetic resonance imaging (fMRI) study was designed to get a better understanding of the brain regions involved in sustained spatial attention to tactile events and to ascertain to what extent their activation was correlated. We presented continuous 20 Hz vibrotactile stimuli (range of flutter) concurrently to the left and right index fingers of healthy human volunteers. An arrow cue instructed subjects in a trial-by-trial fashion to attend to the left or right index finger and to detect rare target events that were embedded in the vibrotactile stimulation streams. We found blood oxygen level-dependent (BOLD) attentional modulation in primary somatosensory cortex (SI), mainly covering Brodmann area 1, 2, and 3b, as well as in secondary somatosensory cortex (SII), contralateral to the to-be-attended hand. Furthermore, attention to the right (dominant) hand resulted in additional BOLD modulation in left posterior insula. All of the effects were caused by an increased activation when attention was paid to the contralateral hand, except for the effects in left SI and insula. In left SI, the effect was related to a mixture of both a slight increase in activation when attention was paid to the contralateral hand as well as a slight decrease in activation when attention was paid to the ipsilateral hand (i.e., the tactile distraction condition). In contrast, the effect in left posterior insula was exclusively driven by a relative decrease in activation in the tactile distraction condition, which points to an active inhibition when tactile information is irrelevant. Finally, correlation analyses indicate a linear relationship between attention effects in intrahemispheric somatosensory cortices, since attentional modulation in SI and SII were interrelated within one hemisphere but not across hemispheres. All in all, our results provide a basis for future research on sustained attention to continuous vibrotactile stimulation in the range of flutter.
Collapse
Affiliation(s)
- Dominique Goltz
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Psychology, University of Leipzig, Leipzig, Germany
| | - Burkhard Pleger
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Sabrina Thiel
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Berlin School of Mind and Brain, Humboldt-University Berlin, Berlin, Germany
| | - Matthias M. Müller
- Institute of Psychology, University of Leipzig, Leipzig, Germany
- * E-mail:
| |
Collapse
|
36
|
Saupe K, Widmann A, Trujillo-Barreto NJ, Schröger E. Sensorial suppression of self-generated sounds and its dependence on attention. Int J Psychophysiol 2013; 90:300-10. [DOI: 10.1016/j.ijpsycho.2013.09.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/24/2013] [Accepted: 09/25/2013] [Indexed: 11/25/2022]
|
37
|
Mossbridge JA, Grabowecky M, Suzuki S. Seeing the song: left auditory structures may track auditory-visual dynamic alignment. PLoS One 2013; 8:e77201. [PMID: 24194873 PMCID: PMC3806747 DOI: 10.1371/journal.pone.0077201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 09/08/2013] [Indexed: 11/18/2022] Open
Abstract
Auditory and visual signals generated by a single source tend to be temporally correlated, such as the synchronous sounds of footsteps and the limb movements of a walker. Continuous tracking and comparison of the dynamics of auditory-visual streams is thus useful for the perceptual binding of information arising from a common source. Although language-related mechanisms have been implicated in the tracking of speech-related auditory-visual signals (e.g., speech sounds and lip movements), it is not well known what sensory mechanisms generally track ongoing auditory-visual synchrony for non-speech signals in a complex auditory-visual environment. To begin to address this question, we used music and visual displays that varied in the dynamics of multiple features (e.g., auditory loudness and pitch; visual luminance, color, size, motion, and organization) across multiple time scales. Auditory activity (monitored using auditory steady-state responses, ASSR) was selectively reduced in the left hemisphere when the music and dynamic visual displays were temporally misaligned. Importantly, ASSR was not affected when attentional engagement with the music was reduced, or when visual displays presented dynamics clearly dissimilar to the music. These results appear to suggest that left-lateralized auditory mechanisms are sensitive to auditory-visual temporal alignment, but perhaps only when the dynamics of auditory and visual streams are similar. These mechanisms may contribute to correct auditory-visual binding in a busy sensory environment.
Collapse
Affiliation(s)
- Julia A. Mossbridge
- Department of Psychology, Northwestern University, Evanston, Illinois, United States of America
- * E-mail:
| | - Marcia Grabowecky
- Department of Psychology, Northwestern University, Evanston, Illinois, United States of America
- Interdepartmental Neuroscience Program, Northwestern University, Evanston, Illinois, United States of America
| | - Satoru Suzuki
- Department of Psychology, Northwestern University, Evanston, Illinois, United States of America
- Interdepartmental Neuroscience Program, Northwestern University, Evanston, Illinois, United States of America
| |
Collapse
|
38
|
Chakalov I, Draganova R, Wollbrink A, Preissl H, Pantev C. Perceptual organization of auditory streaming-task relies on neural entrainment of the stimulus-presentation rate: MEG evidence. BMC Neurosci 2013; 14:120. [PMID: 24119225 PMCID: PMC3853018 DOI: 10.1186/1471-2202-14-120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 10/09/2013] [Indexed: 11/21/2022] Open
Abstract
Background Humans are able to extract regularities from complex auditory scenes in order to form perceptually meaningful elements. It has been shown previously that this process depends critically on both the temporal integration of the sensory input over time and the degree of frequency separation between concurrent sound sources. Our goal was to examine the relationship between these two aspects by means of magnetoencephalography (MEG). To achieve this aim, we combined time-frequency analysis on a sensor space level with source analysis. Our paradigm consisted of asymmetric ABA-tone triplets wherein the B-tones were presented temporally closer to the first A-tones, providing different tempi within the same sequence. Participants attended to the slowest B-rhythm whilst the frequency separation between tones was manipulated (0-, 2-, 4- and 10-semitones). Results The results revealed that the asymmetric ABA-triplets spontaneously elicited periodic-sustained responses corresponding to the temporal distribution of the A-B and B-A tone intervals in all conditions. Moreover, when attending to the B-tones, the neural representations of the A- and B-streams were both detectable in the scenarios which allow perceptual streaming (2-, 4- and 10-semitones). Alongside this, the steady-state responses tuned to the presentation of the B-tones enhanced significantly with increase of the frequency separation between tones. However, the strength of the B-tones related steady-state responses dominated the strength of the A-tones responses in the 10-semitones condition. Conversely, the representation of the A-tones dominated the B-tones in the cases of 2- and 4-semitones conditions, in which a greater effort was required for completing the task. Additionally, the P1 evoked fields’ component following the B-tones increased in magnitude with the increase of inter-tonal frequency difference. Conclusions The enhancement of the evoked fields in the source space, along with the B-tones related activity of the time-frequency results, likely reflect the selective enhancement of the attended B-stream. The results also suggested a dissimilar efficiency of the temporal integration of separate streams depending on the degree of frequency separation between the sounds. Overall, the present findings suggest that the neural effects of auditory streaming could be directly captured in the time-frequency spectrum at the sensor-space level.
Collapse
Affiliation(s)
- Ivan Chakalov
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Malmedyweg 15, 48149 Münster, Germany.
| | | | | | | | | |
Collapse
|
39
|
Porcu E, Keitel C, Müller MM. Concurrent visual and tactile steady-state evoked potentials index allocation of inter-modal attention: a frequency-tagging study. Neurosci Lett 2013; 556:113-7. [PMID: 24120431 DOI: 10.1016/j.neulet.2013.09.068] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/24/2013] [Accepted: 09/28/2013] [Indexed: 11/19/2022]
Abstract
We investigated effects of inter-modal attention on concurrent visual and tactile stimulus processing by means of stimulus-driven oscillatory brain responses, so-called steady-state evoked potentials (SSEPs). To this end, we frequency-tagged a visual (7.5Hz) and a tactile stimulus (20Hz) and participants were cued, on a trial-by-trial basis, to attend to either vision or touch to perform a detection task in the cued modality. SSEPs driven by the stimulation comprised stimulus frequency-following (i.e. fundamental frequency) as well as frequency-doubling (i.e. second harmonic) responses. We observed that inter-modal attention to vision increased amplitude and phase synchrony of the fundamental frequency component of the visual SSEP while the second harmonic component showed an increase in phase synchrony, only. In contrast, inter-modal attention to touch increased SSEP amplitude of the second harmonic but not of the fundamental frequency, while leaving phase synchrony unaffected in both responses. Our results show that inter-modal attention generally influences concurrent stimulus processing in vision and touch, thus, extending earlier audio-visual findings to a visuo-tactile stimulus situation. The pattern of results, however, suggests differences in the neural implementation of inter-modal attentional influences on visual vs. tactile stimulus processing.
Collapse
Affiliation(s)
- Emanuele Porcu
- Institut für Psychologie, Universität Leipzig, Seeburgstraße 14-20, 04103 Leipzig, Germany
| | | | | |
Collapse
|
40
|
Nozaradan S, Zerouali Y, Peretz I, Mouraux A. Capturing with EEG the neural entrainment and coupling underlying sensorimotor synchronization to the beat. ACTA ACUST UNITED AC 2013; 25:736-47. [PMID: 24108804 DOI: 10.1093/cercor/bht261] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Synchronizing movements with rhythmic inputs requires tight coupling of sensory and motor neural processes. Here, using a novel approach based on the recording of steady-state-evoked potentials (SS-EPs), we examine how distant brain areas supporting these processes coordinate their dynamics. The electroencephalogram was recorded while subjects listened to a 2.4-Hz auditory beat and tapped their hand on every second beat. When subjects tapped to the beat, the EEG was characterized by a 2.4-Hz SS-EP compatible with beat-related entrainment and a 1.2-Hz SS-EP compatible with movement-related entrainment, based on the results of source analysis. Most importantly, when compared with passive listening of the beat, we found evidence suggesting an interaction between sensory- and motor-related activities when subjects tapped to the beat, in the form of (1) additional SS-EP appearing at 3.6 Hz, compatible with a nonlinear product of sensorimotor integration; (2) phase coupling of beat- and movement-related activities; and (3) selective enhancement of beat-related activities over the hemisphere contralateral to the tapping, suggesting a top-down effect of movement-related activities on auditory beat processing. Taken together, our results are compatible with the view that rhythmic sensorimotor synchronization is supported by a dynamic coupling of sensory and motor related activities.
Collapse
Affiliation(s)
- Sylvie Nozaradan
- Institute of Neuroscience (IONS), Université catholique de Louvain (UCL), Belgium International Laboratory for Brain, Music and Sound Research (BRAMS), Université de Montréal, Canada
| | - Younes Zerouali
- Ecole de Technologie Supérieure, Université de Montréal, Canada
| | - Isabelle Peretz
- International Laboratory for Brain, Music and Sound Research (BRAMS), Université de Montréal, Canada
| | - André Mouraux
- Institute of Neuroscience (IONS), Université catholique de Louvain (UCL), Belgium
| |
Collapse
|
41
|
Goltz D, Gundlach C, Nierhaus T, Villringer A, Müller M. P 186. Inter-and intra-individual differences in the attentional modulation of the somatosensory steady state signal. Clin Neurophysiol 2013. [DOI: 10.1016/j.clinph.2013.04.263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Ghaziri J, Tucholka A, Larue V, Blanchette-Sylvestre M, Reyburn G, Gilbert G, Lévesque J, Beauregard M. Neurofeedback training induces changes in white and gray matter. Clin EEG Neurosci 2013; 44:265-72. [PMID: 23536382 DOI: 10.1177/1550059413476031] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The main objective of this structural magnetic resonance imaging (MRI) study was to investigate, using diffusion tensor imaging, whether a neurofeedback training (NFT) protocol designed to improve sustained attention might induce structural changes in white matter (WM) pathways, purportedly implicated in this cognitive ability. Another goal was to examine whether gray matter (GM) volume (GMV) might be altered following NFT in frontal and parietal cortical areas connected by these WM fiber pathways. Healthy university students were randomly assigned to an experimental group (EXP), a sham group, or a control group. Participants in the EXP group were trained to enhance the amplitude of their β1 waves at F4 and P4. Measures of attentional performance and MRI data were acquired one week before (Time 1) and one week after (Time 2) NFT. Higher scores on visual and auditory sustained attention were noted in the EXP group at Time 2 (relative to Time 1). As for structural MRI data, increased fractional anisotropy was measured in WM pathways implicated in sustained attention, and GMV increases were detected in cerebral structures involved in this type of attention. After 50 years of research in the field of neurofeedback, our study constitutes the first empirical demonstration that NFT can lead to microstructural changes in white and gray matter.
Collapse
Affiliation(s)
- Jimmy Ghaziri
- Centre de Recherche en Neuropsychologie et Cognition (CERNEC), Département de Psychologie, Université de Montréal, Montreal, Canada
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Roth C, Gupta CN, Plis SM, Damaraju E, Khullar S, Calhoun VD, Bridwell DA. The influence of visuospatial attention on unattended auditory 40 Hz responses. Front Hum Neurosci 2013; 7:370. [PMID: 23874286 PMCID: PMC3711011 DOI: 10.3389/fnhum.2013.00370] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/25/2013] [Indexed: 01/24/2023] Open
Abstract
Information must integrate from multiple brain areas in healthy cognition and perception. The present study examined the extent to which cortical responses within one sensory modality are modulated by a complex task conducted within another sensory modality. Electroencephalographic (EEG) responses were measured to a 40 Hz auditory stimulus while individuals attended to modulations in the amplitude of the 40 Hz stimulus, and as a function of the difficulty of the popular computer game Tetris. The steady-state response to the 40 Hz stimulus was isolated by Fourier analysis of the EEG. The response at the stimulus frequency was normalized by the response within the surrounding frequencies, generating the signal-to-noise ratio (SNR). Seven out of eight individuals demonstrate a monotonic increase in the log SNR of the 40 Hz responses going from the difficult visuospatial task to the easy visuospatial task to attending to the auditory stimuli. This pattern is represented statistically by a One-Way ANOVA, indicating significant differences in log SNR across the three tasks. The sensitivity of 40 Hz auditory responses to the visuospatial load was further demonstrated by a significant correlation between log SNR and the difficulty (i.e., speed) of the Tetris task. Thus, the results demonstrate that 40 Hz auditory cortical responses are influenced by an individual's goal-directed attention to the stimulus, and by the degree of difficulty of a complex visuospatial task.
Collapse
Affiliation(s)
- Cullen Roth
- Department of Mathematics and Statistics, University of New Mexico Albuquerque, NM, USA ; Department of Biology, Initiative for Maximizing Student Development, University of New Mexico Albuquerque, NM, USA ; The Mind Research Network, University of New Mexico Albuquerque, NM, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Vanegas MI, Blangero A, Kelly SP. Exploiting individual primary visual cortex geometry to boost steady state visual evoked potentials. J Neural Eng 2013; 10:036003. [PMID: 23548662 PMCID: PMC3660541 DOI: 10.1088/1741-2560/10/3/036003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The steady-state visual evoked potential (SSVEP) is an electroencephalographic response to flickering stimuli generated partly in primary visual area V1. The typical 'cruciform' geometry and retinotopic organization of V1 is such that certain neighboring visual regions project to neighboring cortical regions of opposite orientation. Here, we explored ways to exploit this organization in order to boost scalp SSVEP amplitude via oscillatory summation. APPROACH We manipulated flicker-phase offsets among angular segments of a large annular stimulus in three ways, and compared the resultant SSVEP power to a conventional condition with no temporal phase offsets. (1) We divided the annulus into standard octants for all subjects, and flickered upper horizontal octants with opposite temporal phase to the lower horizontal ones, and left vertical octants opposite to the right vertical ones; (2) we individually adjusted the boundaries between the eight contiguous segments of the standard octants condition to coincide with cruciform-consistent, early-latency topographical shifts in pattern-pulse multifocal visual-evoked potentials (PPMVEP) derived for each of 32 equal-sized segments; (3) we assigned phase offsets to stimulus segments following an automatic algorithm based on the relative amplitudes of vertically- and horizontally-oriented PPMVEP components. MAIN RESULTS The three flicker-phase manipulations resulted in a significant enhancement of normalized SSVEP power of (1) 202%, (2) 383%, and (3) 300%, respectively. SIGNIFICANCE We have thus demonstrated a means to obtain more reliable measures of visual evoked activity purely through consideration of cortical geometry. This principle stands to impact both basic and clinical research using SSVEPs.
Collapse
Affiliation(s)
- M Isabel Vanegas
- Department of Biomedical Engineering, The City College of New York, City University of New York, New York NY, 10031
| | - Annabelle Blangero
- Department of Biomedical Engineering, The City College of New York, City University of New York, New York NY, 10031
| | - Simon P Kelly
- Department of Biomedical Engineering, The City College of New York, City University of New York, New York NY, 10031
| |
Collapse
|
45
|
Abstract
Fundamental to the experience of music, beat and meter perception refers to the perception of periodicities while listening to music occurring within the frequency range of musical tempo. Here, we explored the spontaneous building of beat and meter hypothesized to emerge from the selective entrainment of neuronal populations at beat and meter frequencies. The electroencephalogram (EEG) was recorded while human participants listened to rhythms consisting of short sounds alternating with silences to induce a spontaneous perception of beat and meter. We found that the rhythmic stimuli elicited multiple steady state-evoked potentials (SS-EPs) observed in the EEG spectrum at frequencies corresponding to the rhythmic pattern envelope. Most importantly, the amplitude of the SS-EPs obtained at beat and meter frequencies were selectively enhanced even though the acoustic energy was not necessarily predominant at these frequencies. Furthermore, accelerating the tempo of the rhythmic stimuli so as to move away from the range of frequencies at which beats are usually perceived impaired the selective enhancement of SS-EPs at these frequencies. The observation that beat- and meter-related SS-EPs are selectively enhanced at frequencies compatible with beat and meter perception indicates that these responses do not merely reflect the physical structure of the sound envelope but, instead, reflect the spontaneous emergence of an internal representation of beat, possibly through a mechanism of selective neuronal entrainment within a resonance frequency range. Taken together, these results suggest that musical rhythms constitute a unique context to gain insight on general mechanisms of entrainment, from the neuronal level to individual level.
Collapse
|
46
|
Early visual and auditory processing rely on modality-specific attentional resources. Neuroimage 2013; 70:240-9. [DOI: 10.1016/j.neuroimage.2012.12.046] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 12/18/2012] [Accepted: 12/20/2012] [Indexed: 11/22/2022] Open
|
47
|
Roach BJ, Ford JM, Hoffman RE, Mathalon DH. Converging evidence for gamma synchrony deficits in schizophrenia. SUPPLEMENTS TO CLINICAL NEUROPHYSIOLOGY 2013; 62:163-80. [PMID: 24053039 DOI: 10.1016/b978-0-7020-5307-8.00011-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND In electroencephalogram (EEG) studies of auditory steady-state responses (ASSRs), patients with schizophrenia show a deficit in power and/or phase-locking, particularly at the 40 Hz frequency where these responses resonate. In addition, studies of the transient gamma-band response (GBR) elicited by single tones have revealed deficits in gamma power and phase-locking in schizophrenia. We examined the degree to which the 40 Hz ASSR and the transient GBR to single tones are correlated and whether they assess overlapping or distinct gamma-band abnormalities in schizophrenia. METHODS EEG was recorded during 40 Hz ASSR and auditory oddball paradigms from 28 patients with schizophrenia or schizoaffective disorder (SZ) and 25 age- and gender-matched healthy controls (HC). The ASSR was elicited by 500 ms click trains, and the transient GBR was elicited by the standard tones from the oddball paradigm. Gamma phase and magnitude values, calculated using Morlet wavelet transformations, were used to derive total power and phase-locking measures. RESULTS Relative to HC, SZ patients had significant deficits in total gamma power and phase-locking for both ASSR- and GBR-based measures. Within both groups, the 40 Hz ASSR and GBR phase-locking measures were significantly correlated, with a similar trend evident for the total power measures. Moreover, co-varying for GBR substantially reduced 40 Hz ASSR power and phase-locking differences between the groups. CONCLUSIONS 40 Hz ASSR and transient GBR measures provide very similar information about auditory gamma abnormalities in schizophrenia, despite the overall enhancement of 40 Hz ASSR total power and phase-locking values relative to the corresponding GBR values.
Collapse
Affiliation(s)
- B J Roach
- Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| | | | | | | |
Collapse
|
48
|
Abstract
Attention is thought to operate by enhancing the target of interest and suppressing the surroundings. We hypothesized that the spatial profile of attention depends on the surround's relationship to the target. Using high-density electroencephalographic measurements, we examined the spatial profile of attention to a grating target surrounded by an annular grating that was either coextensive with the target (unsegmented) or appeared segmented from it due to a gap or phase offset. We directly probed the spread of attention from the central target into the surround by flickering the surround and monitoring frequency-tagged steady-state visual-evoked potentials. Observers were required to detect a contrast increment that occurred only on the target. Successful detection of the increment required selecting the target and suppressing the surround, particularly when the target did not readily segment from the surround. The profile of attention was investigated in five visual regions of interest (ROIs) (V1, V4, V3A, lateral occipital complex, and human middle temporal area), mapped in a separate anatomical magnetic resonance imaging scan. We found that in most ROIs, attention to the target generated smaller responses from the surrounding annulus when it was contiguous compared with when it was clearly segmented. This result shows that the profile of attention depends on task demands and on surrounding context; attention is tightly focused when the target region needs to be isolated but loosely focused when the target region is clearly segmented.
Collapse
|
49
|
Srinivasan S, Keil A, Stratis K, Woodruff Carr KL, Smith DW. Effects of cross-modal selective attention on the sensory periphery: cochlear sensitivity is altered by selective attention. Neuroscience 2012; 223:325-32. [PMID: 22871520 PMCID: PMC3471141 DOI: 10.1016/j.neuroscience.2012.07.062] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/25/2012] [Accepted: 07/27/2012] [Indexed: 10/28/2022]
Abstract
There is increasing evidence that alterations in the focus of attention result in changes in neural responding at the most peripheral levels of the auditory system. To date, however, those studies have not ruled out differences in task demands or overall arousal in explaining differences in responding across intermodal attentional conditions. The present study sought to compare changes in the response of cochlear outer hair cells, employing distortion product otoacoustic emissions (DPOAEs), under different, balanced conditions of intermodal attention. DPOAEs were measured while the participants counted infrequent, brief exemplars of the DPOAE primary tones (auditory attending), and while counting visual targets, which were instances of Gabor gradient phase shifts (visual attending). Corroborating an earlier study from our laboratory, the results show that DPOAEs recorded in the auditory-ignoring condition were significantly higher in overall amplitude, compared with DPOAEs recorded while participants attended to the eliciting primaries; a finding in apparent contradiction with more central measures of intermodal attention. Also consistent with our previous findings, DPOAE rapid adaptation, believed to be mediated by the medial olivocochlear efferents (MOC), was unaffected by changes in intermodal attention. The present findings indicate that manipulations in the conditions of attention, through the corticofugal pathway, and its last relay to cochlear outer hair cells (OHCs), the MOC, alter cochlear sensitivity to sound. These data also suggest that the MOC influence on OHC sensitivity is composed of two independent processes, one of which is under attentional control.
Collapse
Affiliation(s)
- Sridhar Srinivasan
- Program in Behavioral and Cognitive Neuroscience, Department of Psychology, University of Florida, Gainesville, FL, USA
| | - Andreas Keil
- Program in Behavioral and Cognitive Neuroscience, Department of Psychology, University of Florida, Gainesville, FL, USA
- Center for the Study of Emotion & Attention, University of Florida, Gainesville, FL, USA
| | - Kyle Stratis
- Program in Behavioral and Cognitive Neuroscience, Department of Psychology, University of Florida, Gainesville, FL, USA
| | - Kali L. Woodruff Carr
- Program in Behavioral and Cognitive Neuroscience, Department of Psychology, University of Florida, Gainesville, FL, USA
- Department of Music, University of Florida, Gainesville, FL, USA
| | - David W. Smith
- Program in Behavioral and Cognitive Neuroscience, Department of Psychology, University of Florida, Gainesville, FL, USA
- Department of Otolaryngology-Head and Neck Surgery, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
| |
Collapse
|
50
|
Palomares M, Ales JM, Wade AR, Cottereau BR, Norcia AM. Distinct effects of attention on the neural responses to form and motion processing: a SSVEP source-imaging study. J Vis 2012; 12:15. [PMID: 23019120 DOI: 10.1167/12.10.15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We measured neural responses to local and global aspects of form and motion stimuli using frequency-tagged, steady-state visual evoked potentials (SSVEPs) combined with magnetic resonance imaging (MRI) data. Random dot stimuli were used to portray either dynamic Glass patterns (Glass, 1969) or coherent motion displays. SSVEPs were used to estimate neural activity in a set of fMRI-defined visual areas in each subject. To compare activity associated with local versus global processing, we analyzed two frequency components of the SSVEP in each visual area: the high temporal frequency at which the local dots were updated (30 Hz) and the much lower frequency corresponding to updates in the global structure (0.83 Hz). Local and global responses were evaluated in the context of two different behavioral tasks--subjects had to either direct their attention toward or away from the global coherence of the stimuli. The data show that the effect of attention on global and local responses is both stimulus and visual area dependent. When attention was directed away from stimulus coherence, both local and global responses were higher in the coherent motion than Glass pattern condition. Directing attention to coherence in Glass patterns enhanced global activity in areas LOC, hMT+, V4, V3a, and V1, while attention to global motion modulated responses by a smaller amount in a smaller set of areas: V4, hMT+, and LOC. In contrast, directing attention towards stimulus coherence weakly increased local responses to both coherent motion and Glass patterns. These results suggest that visual attention differentially modulates the activity of early visual areas at both local and global levels of structural encoding.
Collapse
|