1
|
Guo X, Luo W, Wu L, Zhang L, Chen Y, Li T, Li H, Zhang W, Liu Y, Zheng J, Wang Y. Natural Products from Herbal Medicine Self-Assemble into Advanced Bioactive Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403388. [PMID: 39033533 PMCID: PMC11425287 DOI: 10.1002/advs.202403388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/09/2024] [Indexed: 07/23/2024]
Abstract
Novel biomaterials are becoming more crucial in treating human diseases. However, many materials require complex artificial modifications and synthesis, leading to potential difficulties in preparation, side effects, and clinical translation. Recently, significant progress has been achieved in terms of direct self-assembly of natural products from herbal medicine (NPHM), an important source for novel medications, resulting in a wide range of bioactive supramolecular materials including gels, and nanoparticles. The NPHM-based supramolecular bioactive materials are produced from renewable resources, are simple to prepare, and have demonstrated multi-functionality including slow-release, smart-responsive release, and especially possess powerful biological effects to treat various diseases. In this review, NPHM-based supramolecular bioactive materials have been revealed as an emerging, revolutionary, and promising strategy. The development, advantages, and limitations of NPHM, as well as the advantageous position of NPHM-based materials, are first reviewed. Subsequently, a systematic and comprehensive analysis of the self-assembly strategies specific to seven major classes of NPHM is highlighted. Insights into the influence of NPHM structural features on the formation of supramolecular materials are also provided. Finally, the drivers and preparations are summarized, emphasizing the biomedical applications, future scientific challenges, and opportunities, with the hope of igniting inspiration for future research and applications.
Collapse
Affiliation(s)
- Xiaohang Guo
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Weikang Luo
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Lingyu Wu
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Lianglin Zhang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yuxuan Chen
- Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, 519087, China
| | - Teng Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Haigang Li
- Hunan key laboratory of the research and development of novel pharmaceutical preparations, Changsha Medical University, Changsha, 410219, China
| | - Wei Zhang
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yawei Liu
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jun Zheng
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| |
Collapse
|
2
|
Gonçalves AC, Rodrigues S, Fonseca R, Silva LR. Potential Role of Dietary Phenolic Compounds in the Prevention and Treatment of Rheumatoid Arthritis: Current Reports. Pharmaceuticals (Basel) 2024; 17:590. [PMID: 38794160 PMCID: PMC11124183 DOI: 10.3390/ph17050590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Rheumatoid arthritis (RA) is a complex illness with both hereditary and environmental components. Globally, in 2019, 18 million people had RA. RA is characterized by persistent inflammation of the synovial membrane that lines the joints, cartilage loss, and bone erosion. Phenolic molecules are the most prevalent secondary metabolites in plants, with a diverse spectrum of biological actions that benefit functional meals and nutraceuticals. These compounds have received a lot of attention recently because they have antioxidant, anti-inflammatory, immunomodulatory, and anti-rheumatoid activity by modulating tumor necrosis factor, mitogen-activated protein kinase, nuclear factor kappa-light-chain-enhancer of activated B cells, and c-Jun N-terminal kinases, as well as other preventative properties. This article discusses dietary polyphenols, their pharmacological properties, and innovative delivery technologies for the treatment of RA, with a focus on their possible biological activities. Nonetheless, commercialization of polyphenols may be achievable only after confirming their safety profile and completing successful clinical trials.
Collapse
Affiliation(s)
- Ana C. Gonçalves
- CICS-UBI—Health Sciences Research Center, University of Beira Interior, 6201-001 Covilhã, Portugal;
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
- SPRINT Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal
| | - Sofia Rodrigues
- Health Superior School, Polytechnic Institute of Viseu, 3500-843 Viseu, Portugal;
| | - Rafael Fonseca
- Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal;
| | - Luís R. Silva
- CICS-UBI—Health Sciences Research Center, University of Beira Interior, 6201-001 Covilhã, Portugal;
- SPRINT Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal
- CERES, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| |
Collapse
|
3
|
Teimouri Okhchlar R, Javadi A, Azadmard‐Damirchi S, Torbati M. Quality improvement of oil extracted from flaxseeds ( Linum usitatissimum L.) incorporated with olive leaves by cold press. Food Sci Nutr 2024; 12:3735-3744. [PMID: 38726418 PMCID: PMC11077233 DOI: 10.1002/fsn3.4044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 05/12/2024] Open
Abstract
Flaxseed oil has a high amount of α-linolenic acid (an ω3 essential fatty acid), but it is very prone to oxidation. Therefore, olive leaves were used as a rich source of phenolic compounds with flaxseeds upon oil extraction by cold press to enhance the oxidative stability of extracted oils. Oil from flaxseeds with unblanched leaves and blanched leaves at level of (0 [control sample], 2.5, 5, 7.5, and 10% w/w) was extracted by cold press. Quality of extracted oils was evaluated for 90 days of storage at room condition. Incorporation of unblanched olive leaves could increase the acid value of the extracted oils up to 2.0 (mg KOH/g oil) compared to the other samples. Oxidation of the flaxseed oil could be delayed by the addition of blanched olive leaves up to 5%. Oil extracted from flaxseeds incorporated with blanched olive leaves had higher content of carotenoids (up to 33.7 mg/kg oil), chlorophylls (up to 35.7 mg/kg oil), and phenolic compounds (up to 200 mg/kg oil). Also, oxidative stability of extracted oils was higher up to 7.5% of blanched olive leaves (11.4 h) compared to control sample (7.2 h) and other oil samples. Polyunsaturated fatty acids of the oil samples were well preserved by the incorporation of blanched olive leaves. Based on the obtained results, incorporation of suitable amount of blanched olive leaves (up to 7.5%) with flaxseeds before oil extraction by press can be an appropriate procedure to produce oils with high content of bioactive components and suitable oxidative stability.
Collapse
Affiliation(s)
- Ramin Teimouri Okhchlar
- Department of Food Science and Technology, Mamaghan BranchIslamic Azad UniversityMamaghanIran
| | - Afshin Javadi
- Department of Food Science and Technology, Mamaghan BranchIslamic Azad UniversityMamaghanIran
- Department of Food Hygiene, Faculty of Veterinary, Tabriz Medical ScienceIslamic Azad UniversityTabrizIran
| | | | - Mohammadali Torbati
- Department of Food Science and Technology, Faculty of Nutrition and Food ScienceTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
4
|
Gowda A, T. C. S, Anil VS, Raghavan S. Phytosynthesis of silver nanoparticles using aqueous sandalwood (Santalum album L.) leaf extract: Divergent effects of SW-AgNPs on proliferating plant and cancer cells. PLoS One 2024; 19:e0300115. [PMID: 38662724 PMCID: PMC11045141 DOI: 10.1371/journal.pone.0300115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 01/22/2024] [Indexed: 04/28/2024] Open
Abstract
The biogenic approach for the synthesis of metal nanoparticles provides an efficient eco-friendly alternative to chemical synthesis. This study presents a novel route for the biosynthesis of silver nanoparticles using aqueous sandalwood (SW) leaf extract as a source of reducing and capping agents under mild, room temperature synthesis conditions. The bioreduction of Ag+ to Ago nanoparticles (SW-AgNPs) was accompanied by the appearance of brown color, with surface plasmon resonance peak at 340-360 nm. SEM, TEM and AFM imaging confirm SW-AgNP's spherical shape with size range of 10-32 nm. DLS indicates a hydrodynamic size of 49.53 nm with predominant negative Zeta potential, which can contribute to the stability of the nanoparticles. FTIR analysis indicates involvement of sandalwood leaf derived polyphenols, proteins and lipids in the reduction and capping of SW-AgNPs. XRD determines the face-centered-cubic crystalline structure of SW-AgNPs, which is a key factor affecting biological functions of nanoparticles. This study is novel in using cell culture methodologies to evaluate effects of SW-AgNPs on proliferating cells originating from plants and human cancer. Exposure of groundnut calli cells to SW-AgNPs, resulted in enhanced proliferation leading to over 70% higher calli biomass over control, enhanced defense enzyme activities, and secretion of metabolites implicated in biotic stress resistance (Crotonyl isothiocyanate, Butyrolactone, 2-Hydroxy-gamma-butyrolactone, Maltol) and plant cell proliferation (dl-Threitol). MTT and NRU were performed to determine the cytotoxicity of nanoparticles on human cervical cancer cells. SW-AgNPs specifically inhibited cervical cell lines SiHa (IC50-2.65 ppm) and CaSki (IC50-9.49 ppm), indicating potential use in cancer treatment. The opposing effect of SW-AgNPs on cell proliferation of plant calli (enhanced cell proliferation) and human cancer cell lines (inhibition) are both beneficial and point to potential safe application of SW-AgNPs in plant cell culture, agriculture and in cancer treatment.
Collapse
Affiliation(s)
- Archana Gowda
- Department of Plant Biotechnology, University of Agricultural Sciences, GKVK, Bangalore, India
| | - Suman T. C.
- Department of Plant Biotechnology, University of Agricultural Sciences, GKVK, Bangalore, India
| | - Veena S. Anil
- Department of Plant Biotechnology, University of Agricultural Sciences, GKVK, Bangalore, India
| | | |
Collapse
|
5
|
Antony FM, Wasewar KL. The Sustainable Approach of Process Intensification in Biorefinery Through Reactive Extraction Coupled with Regeneration for Recovery of Protocatechuic Acid. Appl Biochem Biotechnol 2024; 196:1570-1591. [PMID: 37436543 DOI: 10.1007/s12010-023-04659-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2023] [Indexed: 07/13/2023]
Abstract
In the current scenario, where environmental degradation, global climate change, and the depletion of petroleum feedstock pose significant challenges, the chemical industry seeks sustainable alternatives for manufacturing chemicals, fuels, and bioplastics. Biorefining processes that integrate biomass conversion and microbial fermentation have emerged as preferred approaches to create value-added compounds. However, commercializing biorefinery products is hindered by dilute concentrations of final products and the demand for high purity goods. To address these challenges, effective separation and recovery procedures are essential to minimize costs and equipment size. This article proposes a biorefinery route for the production of protocatechuic acid (PCA) by focusing on in situ PCA separation and purification from fermentation broth. PCA is a significant phenolic molecule with numerous applications in the pharmaceutical sector for its anti-inflammatory, antiapoptotic, and antioxidant properties, as well as in the food, polymer, and other chemical industries. The chemical approach is predominantly used to produce PCA due to the cost-prohibitive nature of natural extraction techniques. Reactive extraction, a promising technique known for its enhanced extraction efficiency, is identified as a viable strategy for recovering carboxylic acids compared to conventional methods. The extraction of PCA has been explored using various solvents, including natural and conventional solvents, such as aminic and organophosphorous extractants, as well as the potential utilization of ionic liquids as green solvents. Additionally, back extraction techniques like temperature swing and diluent composition swing can be employed for reactive extraction product recovery, facilitating the regeneration of the extractant from the organic phase. By addressing the challenges associated with PCA production and usage, particularly through reactive extraction, this proposed biorefinery route aims to contribute to a more sustainable and environmentally friendly chemical industry. The incorporation of PCA in the biorefinery process allows for the utilization of this valuable compound with diverse industrial applications, thus providing an additional incentive for the development and optimization of efficient separation techniques.
Collapse
Affiliation(s)
- Fiona Mary Antony
- Chemical Engineering Department, Visvesvaraya National Institute of Technology (VNIT), Nagpur, 440010, India
| | - Kailas L Wasewar
- Chemical Engineering Department, Visvesvaraya National Institute of Technology (VNIT), Nagpur, 440010, India.
| |
Collapse
|
6
|
Marchi RC, Kock FVC, Soares Dos Campos IA, Jesus HCR, Venâncio T, da Silva MFGF, Fernandes JB, Rollini M, Limbo S, Carlos RM. Antioxidant activity of an Mg(II) compound containing ferulic acid as a chelator: potential application for active packaging and riboflavin stabilisation. Food Funct 2024; 15:1527-1538. [PMID: 38231081 DOI: 10.1039/d3fo05039d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Foods rich in riboflavin (Rf) are susceptible to degradation due to oxidative processes with the formation of radicals. Herein, we describe the features and stability of an Mg(II) complex containing ferulic acid (fer) and 1,10-phenanthroline (phen) as chelators: henceforth called Mg(phen)(fer). The electrochemical behavior of Mg(phen)(fer) is pH dependent and results from the stabilisation of the corresponding phenoxyl radical via complexation with Mg(II). This stabilisation enhances the antioxidant activity of Mg(phen)(fer) with respect to free fer and commercial antioxidants. Mg(phen)(fer) scavenges and neutralizes DPPH˙ (IC50 = 15.6 μmol L-1), ABTS˙+ (IC50 = 5.65 μmol L-1), peroxyl radical (IC50 = 5.64 μg L-1) and 1O2 (IC50 = 0.7 μg m-1). Mg(phen)(fer) effectively protects riboflavin (Rf) against photodegradation by quenching the singlet excited states of Rf regardless of the conditions. Also, the complex Mg(phen)(fer) was effectively incorporated into starch films, broadening its applications, as shown by microbiological studies. Thus, Mg(phen)(fer) has high potential for use in Rf-rich foods and to become a new alternative to the synthetic antioxidants currently used.
Collapse
Affiliation(s)
- Rafael C Marchi
- Chemistry Department, Federal University of São Carlos, Rod. Washington Luís-km 235, CEP 13565-905, São Carlos, São Paulo, Brazil.
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | - Flavio V C Kock
- Chemistry Department, Federal University of São Carlos, Rod. Washington Luís-km 235, CEP 13565-905, São Carlos, São Paulo, Brazil.
| | - Isabele A Soares Dos Campos
- Chemistry Department, Federal University of São Carlos, Rod. Washington Luís-km 235, CEP 13565-905, São Carlos, São Paulo, Brazil.
| | - Hugo Cesar R Jesus
- Chemistry Department, Federal University of São Carlos, Rod. Washington Luís-km 235, CEP 13565-905, São Carlos, São Paulo, Brazil.
| | - Tiago Venâncio
- Chemistry Department, Federal University of São Carlos, Rod. Washington Luís-km 235, CEP 13565-905, São Carlos, São Paulo, Brazil.
| | - Maria Fátima G F da Silva
- Chemistry Department, Federal University of São Carlos, Rod. Washington Luís-km 235, CEP 13565-905, São Carlos, São Paulo, Brazil.
| | - João B Fernandes
- Chemistry Department, Federal University of São Carlos, Rod. Washington Luís-km 235, CEP 13565-905, São Carlos, São Paulo, Brazil.
| | - Manuela Rollini
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
| | - Sara Limbo
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
| | - Rose M Carlos
- Chemistry Department, Federal University of São Carlos, Rod. Washington Luís-km 235, CEP 13565-905, São Carlos, São Paulo, Brazil.
| |
Collapse
|
7
|
Oggero J, Gasser FB, Zacarías SM, Burns P, Baravalle ME, Renna MS, Ortega HH, Vaillard SE, Vaillard VA. PEGylation of Chrysin Improves Its Water Solubility while Preserving the In Vitro Biological Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19817-19831. [PMID: 38048427 DOI: 10.1021/acs.jafc.3c06357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Chrysin is a natural flavonoid that despite having numerous biological properties, its therapeutic value is limited due to its very low solubility in aqueous media. In this work, chrysin was conjugated with methoxypolyethylene glycols (mPEGs) of different molecular weights (350, 500, 750, and 2000 g/mol), affording PEGylated chrysins with high yields and excellent purities. In all cases, an increase in the water solubility of the conjugates was observed, which was highest when 500 g/mol of mPEG was used in the PEGylation reaction. Furthermore, in aqueous solution, PEGylated chrysins formed aggregates of ellipsoid shape. Electrochemical studies showed that the redox properties were conserved after PEGylation. While in vitro antibacterial and antifungal studies probed that the intrinsic activity was conserved, in vitro antitumor activities against HepG2 (liver carcinoma cells) and PC3 (prostate cancer cell) showed that PEGylated chrysins retained the cytotoxic activity and the ability of induction of apoptosis for the evaluated human cancer cells.
Collapse
Affiliation(s)
- Julia Oggero
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Universidad Nacional del Litoral and Consejo Nacional de Investigaciones Científicas y Técnicas, Ruta Nacional 168, km 0, Paraje "El Pozo", Santa Fe 3000, Argentina
| | - Fátima B Gasser
- Instituto de Ciencias Veterinarias del Litoral (ICIVET), Universidad Nacional del Litoral and Consejo Nacional de Investigaciones Científicas y Técnicas, R. P. Kreder 2805, Esperanza 3080, Argentina
| | - Silvia M Zacarías
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Universidad Nacional del Litoral and Consejo Nacional de Investigaciones Científicas y Técnicas, Ruta Nacional 168, km 0, Paraje "El Pozo", Santa Fe 3000, Argentina
| | - Patricia Burns
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ruta Nacional No. 168, km 472, Ciudad Universitaria UNL, Santa Fe 3000, Argentina
| | - María E Baravalle
- Instituto de Ciencias Veterinarias del Litoral (ICIVET), Universidad Nacional del Litoral and Consejo Nacional de Investigaciones Científicas y Técnicas, R. P. Kreder 2805, Esperanza 3080, Argentina
- Centro Universitario Gálvez, Universidad Nacional del Litoral, Florentino Ameghino 50 bis, Gálvez, Santa Fe S2252, Argentina
| | - Maria Sol Renna
- Instituto de Ciencias Veterinarias del Litoral (ICIVET), Universidad Nacional del Litoral and Consejo Nacional de Investigaciones Científicas y Técnicas, R. P. Kreder 2805, Esperanza 3080, Argentina
| | - Hugo H Ortega
- Instituto de Ciencias Veterinarias del Litoral (ICIVET), Universidad Nacional del Litoral and Consejo Nacional de Investigaciones Científicas y Técnicas, R. P. Kreder 2805, Esperanza 3080, Argentina
| | - Santiago E Vaillard
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Universidad Nacional del Litoral and Consejo Nacional de Investigaciones Científicas y Técnicas, Ruta Nacional 168, km 0, Paraje "El Pozo", Santa Fe 3000, Argentina
| | - Victoria A Vaillard
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Universidad Nacional del Litoral and Consejo Nacional de Investigaciones Científicas y Técnicas, Ruta Nacional 168, km 0, Paraje "El Pozo", Santa Fe 3000, Argentina
| |
Collapse
|
8
|
Naróg D, Sobkowiak A. Electrochemistry of Flavonoids. Molecules 2023; 28:7618. [PMID: 38005343 PMCID: PMC10674230 DOI: 10.3390/molecules28227618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
This review presents a description of the available data from the literature on the electrochemical properties of flavonoids. The emphasis has been placed on the mechanism of oxidation processes and an attempt was made to find a general relation between the observed reaction paths and the structure of flavonoids. Regardless of the solvent used, three potential regions related to flavonoid structures are characteristic of the occurrence of their electrochemical oxidation. The potential values depend on the solvent used. In the less positive potential region, flavonoids, which have an ortho dihydroxy moiety, are reversibly oxidized to corresponding o-quinones. The o-quinones, if they possess a C3 hydroxyl group, react with water to form a benzofuranone derivative (II). In the second potential region, (II) is irreversibly oxidized. In this potential region, some flavonoids without an ortho dihydroxy moiety can also be oxidized to the corresponding p-quinone methides. The oxidation of the hydroxyl groups located in ring A, which are not in the ortho position, occurs in the third potential region at the most positive values. Some discrepancies in the reported reaction mechanisms have been indicated, and this is a good starting point for further investigations.
Collapse
Affiliation(s)
- Dorota Naróg
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszów University of Technology, 35-959 Rzeszów, Poland
| | - Andrzej Sobkowiak
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszów University of Technology, 35-959 Rzeszów, Poland
| |
Collapse
|
9
|
Pereira JKA, Costa AGC, Rodrigues ESB, Macêdo IYL, Pereira MOA, Menegatti R, de Oliveira SCB, Guimarães F, Lião LM, Sabino JR, de S Gil E. LQFM289: Electrochemical and Computational Studies of a New Trimetozine Analogue for Anxiety Treatment. Int J Mol Sci 2023; 24:14575. [PMID: 37834027 PMCID: PMC10572256 DOI: 10.3390/ijms241914575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 10/15/2023] Open
Abstract
This study employs electrochemical and Density Functional Theory (DFT) calculation approaches to investigate the potential of a novel analogue of trimetozine (TMZ) antioxidant profile. The correlation between oxidative stress and psychological disorders indicates that antioxidants may be an effective alternative treatment option. Butylatedhydroxytoluene (BHT) is a synthetic antioxidant widely used in industry. The BHT-TMZ compound derived from molecular hybridization, known as LQFM289, has shown promising results in early trials, and this study aims to elucidate its electrochemical properties to further support its potential as a therapeutic agent. The electrochemical behavior of LQFM289 was investigated using voltammetry and a mechanism for the redox process was proposed based on the compound's behavior. LQFM289 exhibits two distinct oxidation peaks: the first peak, Ep1a ≈ 0.49, corresponds to the oxidation of the phenolic fraction (BHT), and the second peak, Ep2a ≈ 1.2 V (vs. Ag/AgCl/KClsat), denotes the oxidation of the amino group from morpholine. Electroanalysis was used to identify the redox potentials of the compound, providing insight into its reactivity and stability in different environments. A redox mechanism was proposed based on the resulting peak potentials. The DFT calculation elucidates the electronic structure of LQFM289, resembling the precursors of molecular hybridization (BHT and TMZ), which may also dictate the pharmacophoric performance.
Collapse
Affiliation(s)
- Jhon K A Pereira
- Faculty of Pharmacy, Federal University of Goias, Goiânia 74690-970, Brazil
| | - André G C Costa
- Faculty of Pharmacy, Federal University of Goias, Goiânia 74690-970, Brazil
| | | | - Isaac Y L Macêdo
- Faculty of Pharmacy, Federal University of Goias, Goiânia 74690-970, Brazil
| | - Marx O A Pereira
- Faculty of Pharmacy, Federal University of Goias, Goiânia 74690-970, Brazil
| | - Ricardo Menegatti
- Faculty of Pharmacy, Federal University of Goias, Goiânia 74690-970, Brazil
| | | | - Freddy Guimarães
- Institute of Chemistry, Federal University of Goias, Goiânia 74690-970, Brazil
| | - Luciano M Lião
- Institute of Chemistry, Federal University of Goias, Goiânia 74690-970, Brazil
| | - José R Sabino
- Institute of Physics, Federal University of Goias, Goiânia 74690-970, Brazil
| | - Eric de S Gil
- Faculty of Pharmacy, Federal University of Goias, Goiânia 74690-970, Brazil
| |
Collapse
|
10
|
Gibadullina E, Neganova M, Aleksandrova Y, Nguyen HBT, Voloshina A, Khrizanforov M, Nguyen TT, Vinyukova E, Volcho K, Tsypyshev D, Lyubina A, Amerhanova S, Strelnik A, Voronina J, Islamov D, Zhapparbergenov R, Appazov N, Chabuka B, Christopher K, Burilov A, Salakhutdinov N, Sinyashin O, Alabugin I. Hybrids of Sterically Hindered Phenols and Diaryl Ureas: Synthesis, Switch from Antioxidant Activity to ROS Generation and Induction of Apoptosis. Int J Mol Sci 2023; 24:12637. [PMID: 37628818 PMCID: PMC10454409 DOI: 10.3390/ijms241612637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
The utility of sterically hindered phenols (SHPs) in drug design is based on their chameleonic ability to switch from an antioxidant that can protect healthy tissues to highly cytotoxic species that can target tumor cells. This work explores the biological activity of a family of 45 new hybrid molecules that combine SHPs equipped with an activating phosphonate moiety at the benzylic position with additional urea/thiourea fragments. The target compounds were synthesized by reaction of iso(thio)cyanates with C-arylphosphorylated phenols containing pendant 2,6-diaminopyridine and 1,3-diaminobenzene moieties. The SHP/urea hybrids display cytotoxic activity against a number of tumor lines. Mechanistic studies confirm the paradoxical nature of these substances which combine pronounced antioxidant properties in radical trapping assays with increased reactive oxygen species generation in tumor cells. Moreover, the most cytotoxic compounds inhibited the process of glycolysis in SH-SY5Y cells and caused pronounced dissipation of the mitochondrial membrane of isolated rat liver mitochondria. Molecular docking of the most active compounds identified the activator allosteric center of pyruvate kinase M2 as one of the possible targets. For the most promising compounds, 11b and 17b, this combination of properties results in the ability to induce apoptosis in HuTu 80 cells along the intrinsic mitochondrial pathway. Cyclic voltammetry studies reveal complex redox behavior which can be simplified by addition of a large excess of acid that can protect some of the oxidizable groups by protonations. Interestingly, the re-reduction behavior of the oxidized species shows considerable variations, indicating different degrees of reversibility. Such reversibility (or quasi-reversibility) suggests that the shift of the phenol-quinone equilibrium toward the original phenol at the lower pH may be associated with lower cytotoxicity.
Collapse
Affiliation(s)
- Elmira Gibadullina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (M.N.); (Y.A.); (A.V.); (M.K.); (A.L.); (S.A.); (A.S.); (A.B.); (O.S.); (I.A.)
| | - Margarita Neganova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (M.N.); (Y.A.); (A.V.); (M.K.); (A.L.); (S.A.); (A.S.); (A.B.); (O.S.); (I.A.)
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severnij Pr. 1, Chernogolovka 142432, Russia;
| | - Yulia Aleksandrova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (M.N.); (Y.A.); (A.V.); (M.K.); (A.L.); (S.A.); (A.S.); (A.B.); (O.S.); (I.A.)
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severnij Pr. 1, Chernogolovka 142432, Russia;
| | - Hoang Bao Tran Nguyen
- The Department of General Organic and Petrochemical Synthesis Technology, The Kazan National Research Technological University, Karl Marx St. 68, Kazan 420015, Russia; (H.B.T.N.); (T.T.N.)
| | - Alexandra Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (M.N.); (Y.A.); (A.V.); (M.K.); (A.L.); (S.A.); (A.S.); (A.B.); (O.S.); (I.A.)
| | - Mikhail Khrizanforov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (M.N.); (Y.A.); (A.V.); (M.K.); (A.L.); (S.A.); (A.S.); (A.B.); (O.S.); (I.A.)
| | - Thi Thu Nguyen
- The Department of General Organic and Petrochemical Synthesis Technology, The Kazan National Research Technological University, Karl Marx St. 68, Kazan 420015, Russia; (H.B.T.N.); (T.T.N.)
| | - Ekaterina Vinyukova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severnij Pr. 1, Chernogolovka 142432, Russia;
| | - Konstantin Volcho
- Department of Medicinal Chemistry, Novosibirsk Institute of Organic Chemistry, Lavrentiev Av. 9, Novosibirsk 630090, Russia (D.T.); (N.S.)
| | - Dmitry Tsypyshev
- Department of Medicinal Chemistry, Novosibirsk Institute of Organic Chemistry, Lavrentiev Av. 9, Novosibirsk 630090, Russia (D.T.); (N.S.)
| | - Anna Lyubina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (M.N.); (Y.A.); (A.V.); (M.K.); (A.L.); (S.A.); (A.S.); (A.B.); (O.S.); (I.A.)
| | - Syumbelya Amerhanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (M.N.); (Y.A.); (A.V.); (M.K.); (A.L.); (S.A.); (A.S.); (A.B.); (O.S.); (I.A.)
| | - Anna Strelnik
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (M.N.); (Y.A.); (A.V.); (M.K.); (A.L.); (S.A.); (A.S.); (A.B.); (O.S.); (I.A.)
| | - Julia Voronina
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninskii Prospekt, 31, Moscow 119071, Russia;
| | - Daut Islamov
- Laboratory for Structural Analysis of Biomacromolecules, Kazan Scientific Center of Russian Academy of Science, 31, Kremlevskaya, Kazan 420008, Russia;
| | - Rakhmetulla Zhapparbergenov
- Laboratory of Engineering Profile, Department of Engineering Technology, Korkyt Ata Kyzylorda University, 29A, Aiteke Bi Street, Kyzylorda 120014, Kazakhstan;
| | - Nurbol Appazov
- Laboratory of Engineering Profile, Department of Engineering Technology, Korkyt Ata Kyzylorda University, 29A, Aiteke Bi Street, Kyzylorda 120014, Kazakhstan;
| | - Beauty Chabuka
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-3290, USA; (B.C.)
| | - Kimberley Christopher
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-3290, USA; (B.C.)
| | - Alexander Burilov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (M.N.); (Y.A.); (A.V.); (M.K.); (A.L.); (S.A.); (A.S.); (A.B.); (O.S.); (I.A.)
| | - Nariman Salakhutdinov
- Department of Medicinal Chemistry, Novosibirsk Institute of Organic Chemistry, Lavrentiev Av. 9, Novosibirsk 630090, Russia (D.T.); (N.S.)
| | - Oleg Sinyashin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (M.N.); (Y.A.); (A.V.); (M.K.); (A.L.); (S.A.); (A.S.); (A.B.); (O.S.); (I.A.)
| | - Igor Alabugin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (M.N.); (Y.A.); (A.V.); (M.K.); (A.L.); (S.A.); (A.S.); (A.B.); (O.S.); (I.A.)
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-3290, USA; (B.C.)
| |
Collapse
|
11
|
Judžentienė A, Garjonytė R, Būdienė J. Phytochemical Composition and Antioxidant Activity of Various Extracts of Fibre Hemp ( Cannabis sativa L.) Cultivated in Lithuania. Molecules 2023; 28:4928. [PMID: 37446590 DOI: 10.3390/molecules28134928] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The phytochemistry of fibre hemp (Cannabis sativa L., cv. Futura 75 and Felina 32) cultivated in Lithuania was investigated. The soil characteristics (conductivity, pH and major elements) of the cultivation field were determined. The chemical composition of hemp extracts and essential oils (EOs) from different plant parts was determined by the HPLC/DAD/TOF and GC/MS techniques. Among the major constituents, β-caryophyllene (≤46.64%) and its oxide (≤14.53%), α-pinene (≤20.25%) or α-humulene (≤11.48) were determined in EOs. Cannabidiol (CBD) was a predominant compound (≤64.56%) among the volatile constituents of the methanolic extracts of hemp leaves and inflorescences. Appreciable quantities of 2-monolinolein (11.31%), methyl eicosatetraenoate (9.70%) and γ-sitosterol (8.99%) were detected in hemp seed extracts. The octadecenyl ester of hexadecenoic acid (≤31.27%), friedelan-3-one (≤21.49%), dihydrobenzofuran (≤17.07%) and γ-sitosterol (14.03%) were major constituents of the methanolic extracts of hemp roots, collected during various growth stages. The CBD quantity was the highest in hemp flower extracts in pentane (32.73%). The amounts of cannabidiolic acid (CBDA) were up to 24.21% in hemp leaf extracts. The total content of tetrahydrocannabinol (THC) isomers was the highest in hemp flower pentane extracts (≤22.43%). The total phenolic content (TPC) varied from 187.9 to 924.7 (average means, mg/L of gallic acid equivalent (GAE)) in aqueous unshelled hemp seed and flower extracts, respectively. The TPC was determined to be up to 321.0 (mg/L GAE) in root extracts. The antioxidant activity (AA) of hemp extracts and Eos was tested by the spectrophotometric DPPH● scavenging activity method. The highest AA was recorded for hemp leaf EOs (from 15.034 to 35.036 mmol/L, TROLOX equivalent). In the case of roots, the highest AA (1.556 mmol/L, TROLOX) was found in the extracts of roots collected at the seed maturation stage. The electrochemical (cyclic and square wave voltammetry) assays correlated with the TPC. The hydrogen-peroxide-scavenging activity of extracts was independent of the TPC.
Collapse
Affiliation(s)
- Asta Judžentienė
- Center for Physical Sciences and Technology, Department of Organic Chemistry, Sauletekio Avenue 3, LT-10257 Vilnius, Lithuania
| | - Rasa Garjonytė
- Center for Physical Sciences and Technology, Department of Organic Chemistry, Sauletekio Avenue 3, LT-10257 Vilnius, Lithuania
| | - Jurga Būdienė
- Center for Physical Sciences and Technology, Department of Organic Chemistry, Sauletekio Avenue 3, LT-10257 Vilnius, Lithuania
| |
Collapse
|
12
|
Liaqat F, Vosqa UT, Khan F, Haleem A, Shaik MR, Siddiqui MR, Khan M. Light-Driven Catalytic Activity of Green-Synthesized SnO 2/WO 3-x Hetero-nanostructures. ACS OMEGA 2023; 8:20042-20055. [PMID: 37305313 PMCID: PMC10249087 DOI: 10.1021/acsomega.3c02330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/12/2023] [Indexed: 06/13/2023]
Abstract
This work reports an environmentally friendly and economically feasible green synthesis of monometallic oxides (SnO2 and WO3) and their corresponding mixed metal oxide (SnO2/WO3-x) nanostructures from the aqueous Psidium guajava leaf extract for light-driven catalytic degradation of a major industrial contaminant, methylene blue (MB). P. guajava is a rich source of polyphenols that acts as a bio-reductant as well as a capping agent in the synthesis of nanostructures. The chemical composition and redox behavior of the green extract were investigated by liquid chromatography-mass spectrometry and cyclic voltammetry, respectively. Results acquired by X-ray diffraction and Fourier transform infrared spectroscopy confirm the successful formation of crystalline monometallic oxides (SnO2 and WO3) and bimetallic SnO2/WO3-x hetero-nanostructures capped with polyphenols. The structural and morphological aspects of the synthesized nanostructures were analyzed by transmission electron microscopy and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy. Photocatalytic activity of the synthesized monometallic and hetero-nanostructures was investigated for the degradation of MB dye under UV light irradiation. Results indicate a higher photocatalytic degradation efficiency for mixed metal oxide nanostructures (93.5%) as compared to pristine monometallic oxides SnO2 (35.7%) and WO3 (74.5%). The hetero-metal oxide nanostructures prove to be better photocatalysts with reusability up to 3 cycles without any loss in degradation efficiency or stability. The enhanced photocatalytic efficiency is attributed to a synergistic effect in the hetero-nanostructures, efficient charge transportation, extended light absorption, and increased adsorption of dye due to the enlarged specific surface area.
Collapse
Affiliation(s)
- Faroha Liaqat
- Department
of Chemistry, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Urwa tul Vosqa
- Department
of Chemistry, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Fatima Khan
- Department
of Chemistry, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Abdul Haleem
- CAS
Key Laboratory of Soft Matter Chemistry, Department of Polymer Science
and Engineering, University of Science and
Technology of China, Hefei, Anhui 230026, China
| | - Mohammed Rafi Shaik
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | | | - Mujeeb Khan
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
13
|
Farhan M, El Oirdi M, Aatif M, Nahvi I, Muteeb G, Alam MW. Soy Isoflavones Induce Cell Death by Copper-Mediated Mechanism: Understanding Its Anticancer Properties. Molecules 2023; 28:molecules28072925. [PMID: 37049690 PMCID: PMC10095714 DOI: 10.3390/molecules28072925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/11/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Cancer incidence varies around the globe, implying a relationship between food and cancer risk. Plant polyphenols are a class of secondary metabolites that have recently attracted attention as possible anticancer agents. The subclass of polyphenols, known as isoflavones, includes genistein and daidzein, which are present in soybeans and are regarded as potent chemopreventive agents. According to epidemiological studies, those who eat soy have a lower risk of developing certain cancers. Several mechanisms for the anticancer effects of isoflavones have been proposed, but none are conclusive. We show that isoflavones suppress prostate cancer cell growth by mobilizing endogenous copper. The copper-specific chelator neocuproine decreases the apoptotic potential of isoflavones, whereas the iron and zinc chelators desferroxamine mesylate and histidine do not, confirming the role of copper. Reactive oxygen species (ROS) scavengers reduce isoflavone-induced apoptosis in these cells, implying that ROS are cell death effectors. Our research also clearly shows that isoflavones interfere with the expression of the two copper transporter genes, CTR1 and ATP7A, in cancerous cells. Copper levels are widely known to be significantly raised in all malignancies, and we confirm that isoflavones can target endogenous copper, causing prooxidant signaling and, eventually, cell death. These results highlight the importance of copper dynamics within cancer cells and provide new insight into the potential of isoflavones as cancer-fighting nutraceuticals.
Collapse
Affiliation(s)
- Mohd Farhan
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al Ahsa 31982, Saudi Arabia
- Correspondence: (M.F.); (M.E.O.)
| | - Mohamed El Oirdi
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al Ahsa 31982, Saudi Arabia
- Correspondence: (M.F.); (M.E.O.)
| | - Mohammad Aatif
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Insha Nahvi
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Ghazala Muteeb
- Department of Nursing, College of Applied Medical Sciences, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Mir Waqas Alam
- Department of Physics, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia
| |
Collapse
|
14
|
Duda-Chodak A, Tarko T. Possible Side Effects of Polyphenols and Their Interactions with Medicines. Molecules 2023; 28:molecules28062536. [PMID: 36985507 PMCID: PMC10058246 DOI: 10.3390/molecules28062536] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Polyphenols are an important component of plant-derived food with a wide spectrum of beneficial effects on human health. For many years, they have aroused great interest, especially due to their antioxidant properties, which are used in the prevention and treatment of many diseases. Unfortunately, as with any chemical substance, depending on the conditions, dose, and interactions with the environment, it is possible for polyphenols to also exert harmful effects. This review presents a comprehensive current state of the knowledge on the negative impact of polyphenols on human health, describing the possible side effects of polyphenol intake, especially in the form of supplements. The review begins with a brief overview of the physiological role of polyphenols and their potential use in disease prevention, followed by the harmful effects of polyphenols which are exerted in particular situations. The individual chapters discuss the consequences of polyphenols’ ability to block iron uptake, which in some subpopulations can be harmful, as well as the possible inhibition of digestive enzymes, inhibition of intestinal microbiota, interactions of polyphenolic compounds with drugs, and impact on hormonal balance. Finally, the prooxidative activity of polyphenols as well as their mutagenic, carcinogenic, and genotoxic effects are presented. According to the authors, there is a need to raise public awareness about the possible side effects of polyphenols supplementation, especially in the case of vulnerable subpopulations.
Collapse
|
15
|
Mousavi M, Fadaei V, Akbari‐adergani B. Stimulation of ACE inhibitory and improving α-amylase and α-glucosidase and antioxidant activities of semi-prepared and dry soup by incorporating with date kernel powder. Food Sci Nutr 2023; 11:1342-1353. [PMID: 36911836 PMCID: PMC10003009 DOI: 10.1002/fsn3.3170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/29/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Date kernel as a functional food component has a special importance due to its rich nutritional profile, low price, and ease of access. For this, in this research, the sub-product was used for formulation of semi-prepared dry soup (SPDS); the effect of adding 0 (S1 = control), 2 (S2), and 4 (S3) %w/w date kernel powder (DKP) on physicochemical, nutritional, and organoleptic properties and beneficial effects of SPDS samples were evaluated. The results revealed that S2 and S3 samples were different from the control sample in some physicochemical properties so that viscosity increased 1.27 and 1.52 times and a* raised 5.6 and 8.5 times, respectively, while L* decreased 0.94 and 0.88 times and b* reduced 0.92 and 0.8 times, respectively. The nutritional properties of S2 and S3 samples compared with the control sample improved. Also, differences were observed in the beneficial effects of S2 and S3 compared with the control sample as total polyphenol content (TPC) increased 1.06 and 1.11 times, respectively (p < .05); antioxidant activities (AA) of S2 and S3 samples were 8.04 and 6.01 mg/ml and angiotensin-converting enzyme (ACE) inhibitory activities were measured to be 8.2 and 7.86 mg/ml, respectively; also, α-amylase and α-glucosidase inhibitory activities of S2 and S3 samples were observed 4.48% and 5.70%, and 4.59% and 6.36%, respectively. From the organoleptic aspect, S3 had the highest acceptability. Generally, it is concluded that with the addition of DKP (maximally 4%w/w) to SPDS formulation, a functional soup could be produced considering the rich nutritional profile of DKP.
Collapse
Affiliation(s)
- Maryam Mousavi
- Department of Food Science and Technology, Shahr‐e‐Qods BranchIslamic Azad UniversityTehranIran
| | - Vajiheh Fadaei
- Department of Food Science and Technology, Shahr‐e‐Qods BranchIslamic Azad UniversityTehranIran
| | - Behrouz Akbari‐adergani
- Food and Drug Laboratory Research Center, Food and Drug AdministrationMinistry of Health and Medical EducationTehranIran
| |
Collapse
|
16
|
Fiori S, Della Pelle F, Silveri F, Scroccarello A, Cozzoni E, Del Carlo M, Compagnone D. Nanofibrillar biochar from industrial waste as hosting network for transition metal dichalcogenides. Novel sustainable 1D/2D nanocomposites for electrochemical sensing. CHEMOSPHERE 2023; 317:137884. [PMID: 36657583 DOI: 10.1016/j.chemosphere.2023.137884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Industrial wastes have become elective sustainable sources to obtain materials for electronic/electroanalytical purposes; on the other hand, easy and green strategies to include semiconductor 2D graphene-like materials in conductive networks are highly required. In this work, 1D/2D nanocomposites (NCs) based on nanofibrillar biochar (BH) from paper industry waste and transition metal dichalcogenides (TMDs: MoS2, WS2, MoSe2, and WSe2), were prepared in water via liquid phase exfoliation (LPE) using sodium cholate as bioderived surfactant. The TMD amount in the NCs has been carefully optimized, searching for the best compromise between electron transfer ability and electroanalytical performances. Four different water-dispersed BH-TMD NCs have been selected and comprehensively studied from the electrochemical point of view and morphologically characterized. The BH-TMDs potentiality have been demonstrated in model solutions and real samples towards different analytes of biological and agri-food interest. The most performing NCs have been selected and used for the simultaneous determination of the neurotransmitters dopamine (DP) and serotonin (SR), and the flavonoids quercetin (QR) and rutin (RT), obtaining good linearity (R2 ≥ 0.9956) with limits of detection ranging from 10 to 200 nM. Reproducible quantitative recovery values (90-112%, RSD ≤6%, n = 3) were obtained analyzing simultaneously DP and SR in synthetic biological fluid and drugs, and QR and RT in food supplements, proving the usability of the proposed materials for real analyses. This work proves that BH-nanofibers act as a sustainable conductive hosting network for 2D-TMDs, allowing full exploit their electroanalytical potential. The proposed BH-TMD NCs represent a sustainable, affordable, and captivating opportunity for the electrochemical and (bio)sensoristic field.
Collapse
Affiliation(s)
- Selene Fiori
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, 64100, Teramo, Italy
| | - Flavio Della Pelle
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, 64100, Teramo, Italy.
| | - Filippo Silveri
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, 64100, Teramo, Italy
| | - Annalisa Scroccarello
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, 64100, Teramo, Italy
| | - Enrico Cozzoni
- BEES S.r.l., Via Napoli 141, Palazzo TecnoCity, 80013, Casalnuovo, NA, Italy
| | - Michele Del Carlo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, 64100, Teramo, Italy
| | - Dario Compagnone
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, 64100, Teramo, Italy.
| |
Collapse
|
17
|
Anti- and Pro-Oxidant Activity of Polyphenols Extracts of Syrah and Chardonnay Grapevine Pomaces on Melanoma Cancer Cells. Antioxidants (Basel) 2022; 12:antiox12010080. [PMID: 36670942 PMCID: PMC9855015 DOI: 10.3390/antiox12010080] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/24/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022] Open
Abstract
The phenolic composition of Syrah and Chardonnay grape pomaces was studied to assess their antioxidant and prooxidant properties. Polyphenols were extracted by a "green" hydroalcoholic solvent (ethanol/water 1:1 v/v), and a detailed chemical and electrochemical characterization of the phenolic compounds was performed. The antioxidant and prooxidant capacity of the pomace was first studied by cyclic voltammetry (CV) and other reference analytical assays, then with biological tests on B16F10 metastatic melanoma cancer cells. Electrochemical data showed that, when a +0.5 V potential was applied, a low to moderate antioxidant capacity was observed. MTT test showed an increasing viability of melanoma cells, after treatments at low concentration (up to 100 μg/mL) and for a short time (6 h), but when cells were treated with higher doses of extract (≥250 μg/mL for 12/24 h), their viability decreased from 25 to 50% vs. control, depending on treatment time, dose, and extract origin. A stronger prooxidant activity resulted when 250 μg/mL of extract was combined with non-toxic doses of H2O2; this activity was correlated with the presence of copper in the extracts. This study shows the potential of winemaking by-products and suggests the opportunity to exploit them for the production of cosmeceuticals, or for combined therapies with approved anticancer drugs.
Collapse
|
18
|
Graminha AE, Popolin C, Honorato de Araujo-Neto J, Correa RS, de Oliveira KM, Godoy LR, Vegas LC, Ellena J, Batista AA, Cominetti MR. New ruthenium complexes containing salicylic acid and derivatives induce triple-negative tumor cell death via the intrinsic apoptotic pathway. Eur J Med Chem 2022; 243:114772. [DOI: 10.1016/j.ejmech.2022.114772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/04/2022] [Accepted: 09/10/2022] [Indexed: 11/04/2022]
|
19
|
Synthesis and investigation of the trypanocidal potential of novel 1,2,3-triazole-selenide hybrids. Eur J Med Chem 2022; 243:114687. [DOI: 10.1016/j.ejmech.2022.114687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022]
|
20
|
Nunes MS, Bandeira RM, Figueiredo FC, dos Santos Junior JR, de Matos JME. Corrosion protection of stainless steel by a new and low‐cost organic coating obtained from cashew nutshell liquid. J Appl Polym Sci 2022. [DOI: 10.1002/app.53420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Maelson Sousa Nunes
- Departamento de Química, Centro de Ciências da Natureza Universidade Federal do Piauí Teresina Brazil
| | - Rafael Marinho Bandeira
- Departamento de Química, Centro de Ciências da Natureza Universidade Federal do Piauí Teresina Brazil
| | | | | | | |
Collapse
|
21
|
Hernández-Olivas E, Asensio-Grau A, Calvo-Lerma J, García-Hernández J, Heredia A, Andrés A. Content and bioaccessibility of bioactive compounds with potential benefits for macular health in tiger nut products. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
22
|
Bocsan IC, Măgureanu DC, Pop RM, Levai AM, Macovei ȘO, Pătrașca IM, Chedea VS, Buzoianu AD. Antioxidant and Anti-Inflammatory Actions of Polyphenols from Red and White Grape Pomace in Ischemic Heart Diseases. Biomedicines 2022; 10:biomedicines10102337. [PMID: 36289599 PMCID: PMC9598344 DOI: 10.3390/biomedicines10102337] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/02/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Grape pomace (GP) represents a very reliable source of polyphenols because it could be found globally as a remnant of the wine industry. During the winemaking process, two types of GP are generated: red GP and white GP, according to the produced wine, red or white. Grape pomace represents a viable source of polyphenols, mainly flavanols, procyanidins anthocyanins, and resveratrol which possess antioxidant and anti-inflammatory activities. Multiple differences were observed between red and white GP in terms of their antioxidant and anti-inflammatory activity in both in vitro and in vivo studies. Although most studies are focused on the antioxidant and anti-inflammatory effect of red grape pomace, there are still many variables that need to be taken into consideration, as well as extensive study of the white GP. It was observed that in both in vitro and in vivo studies, the GP polyphenols have a direct antioxidant activity by acting as a free radical scavenger or donating a hydrogen atom. It also possesses an indirect antioxidant and anti-inflammatory activity by reducing mitochondrial reactive oxygen species (ROS) generation, malondialdehyde (MDA), tumor necrosis factor-alpha (TNF-α), interleukin-1-beta (IL-1β), interleukin-6 (IL-6), nuclear factor kappa-light-chain-enhancer of activated B cells (NF- κβ), and inhibitor of nuclear factor kappa-B kinase subunit beta (Iκκβ) levels or nitrate oxide-4 (NOX4) expression and by increasing the levels of antioxidants enzymes like superoxide dismutase (SOD), catalase (CAT) glutathione reductase (GRx) and glutathione peroxidase(GPx). Besides these activities, many beneficial effects in ischemic heart diseases were also observed, such as the maintenance of the ventricular function as close as possible to normal, and the prevention of infarcted area extension. In this context, this review intends to present the actual knowledge of grape pomace’s potential antioxidant and anti-inflammatory activity in ischemic heart disease, knowledge gathered from existing in vitro and in vivo studies focused on this.
Collapse
Affiliation(s)
- Ioana Corina Bocsan
- Faculty of Medicine, Department of Pharmacology, Toxicology and Clinical Pharmacology, “Iuliu Hatieganu” University of Medicine and Pharmacy, No. 23, Marinescu Street, 400012 Cluj Napoca, Romania
| | - Dan Claudiu Măgureanu
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj Napoca, Romania
| | - Raluca Maria Pop
- Faculty of Medicine, Department of Pharmacology, Toxicology and Clinical Pharmacology, “Iuliu Hatieganu” University of Medicine and Pharmacy, No. 23, Marinescu Street, 400012 Cluj Napoca, Romania
- Correspondence:
| | - Antonia Mihaela Levai
- Faculty of Medicine, Department Mother and Child, “Iuliu Hatieganu” University of Medicine and Pharmacy, No. 3-5, Clinicilor Street, 400012 Cluj Napoca, Romania
| | - Ștefan Octavian Macovei
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj Napoca, Romania
| | - Ioana Maria Pătrașca
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj Napoca, Romania
| | - Veronica Sanda Chedea
- Research Station for Viticulture and Enology Blaj (SCDVV Blaj), 515400 Blaj, Romania
| | - Anca Dana Buzoianu
- Faculty of Medicine, Department of Pharmacology, Toxicology and Clinical Pharmacology, “Iuliu Hatieganu” University of Medicine and Pharmacy, No. 23, Marinescu Street, 400012 Cluj Napoca, Romania
| |
Collapse
|
23
|
Reactivities of Hydroxycinnamic Acid Derivatives Involving Caffeic Acid toward Electrogenerated Superoxide in N,N-Dimethylformamide. ELECTROCHEM 2022. [DOI: 10.3390/electrochem3030024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Reactivity of (2E)-3-(3,4-dihydroxyphenyl)prop-2-enoic acid (caffeic acid), classified as a hydroxycinnamic acid (HCA) derivative, toward electrogenerated superoxide radical anion (O2•−) was investigated through cyclic voltammetry, in situ electrolytic electron spin resonance spectrometry, and in situ electrolytic ultraviolet–visible spectrometry in N,N-dimethylformamide (DMF), aided by density functional theory (DFT) calculations. The quasi-reversible redox of dioxygen/O2•− is modified in the presence of caffeic acid, suggesting that O2•− is scavenged by caffeic acid through proton-coupled electron transfer. The reactivities of caffeic acid toward O2•− are mediated by the ortho-diphenol (catechol) moiety rather than by the acryloyl group, as experimentally confirmed in comparative analyses with other HCAs. The electrochemical and DFT results in DMF suggested that a concerted two-proton-coupled electron transfer mechanism proceeds via the catechol moiety. This mechanism embodies the superior kinetics of O2•− scavenging by caffeic acid.
Collapse
|
24
|
Garjonyte R, Budiene J, Labanauskas L, Judzentiene A. In Vitro Antioxidant and Prooxidant Activities of Red Raspberry ( Rubus idaeus L.) Stem Extracts. Molecules 2022; 27:4073. [PMID: 35807315 PMCID: PMC9268408 DOI: 10.3390/molecules27134073] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/14/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Leaves and stems of red raspberry (Rubus idaeus) are used in Lithuanian folk medicine. Healing properties of raspberry are related to the content of bioactive compounds, mainly polyphenols. Extracts of raspberry leaves contained higher total phenolic content (TPC) (1290 mg/L, expressed in gallic acid equivalent) compared to that in extracts of stems or peeled bark (up to 420 mg/L and 598 mg/L, respectively). To find out whether the collection time of herbal material was critical for the properties of the extracts, the stems were collected at different times of the year. TPC in the extracts depended more on extraction conditions rather than on the sampling time. Antioxidant activity of raspberry stem and bark extracts tested by spectrophotometric (DPPH● scavenging) and electrochemical (cyclic and differential pulse voltammetry) assays correlated with TPC. DPPH radical scavenging activity values for stem, leaf, and bark extracts were as follows: ≤1.18 ± 0.07, 1.63 ± 0.10, and ≤1.90 ± 0.04 (mmol/L, TROLOX equivalent), respectively. Assessed electrochemically, hydrogen peroxide-scavenging activity of extracts was independent on TPC. The latter activity was related to the presence of some protein in the extract as revealed by gel electrophoresis. Prooxidant activity of raspberry stem extracts was dependent on solution pH and temperature.
Collapse
Affiliation(s)
| | | | | | - Asta Judzentiene
- Department of Organic Chemistry, Center for Physical Sciences and Technology, Sauletekio Avenue 3, LT-10257 Vilnius, Lithuania; (R.G.); (J.B.); (L.L.)
| |
Collapse
|
25
|
Farhan M, Rizvi A. Understanding the Prooxidant Action of Plant Polyphenols in the Cellular Microenvironment of Malignant Cells: Role of Copper and Therapeutic Implications. Front Pharmacol 2022; 13:929853. [PMID: 35795551 PMCID: PMC9251333 DOI: 10.3389/fphar.2022.929853] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/02/2022] [Indexed: 12/13/2022] Open
Abstract
Plant derived polyphenolic compounds are considered critical components of human nutrition and have shown chemotherapeutic effects against a number of malignancies. Several studies have confirmed the ability of polyphenols to induce apoptosis and regression of tumours in animal models. However, the mechanism through which polyphenols modulate their malignant cell selective anticancer effects has not been clearly established. While it is believed that the antioxidant properties of these molecules may contribute to lowering the risk of cancer induction by causing oxidative damage to DNA, it could not be held responsible for chemotherapeutic properties and apoptosis induction. It is a well known fact that cellular copper increases within the malignant cell and in serum of patients harboring malignancies. This phenomenon is independent of the cellular origin of malignancies. Based on our own observations and those of others; over the last 30 years our laboratory has shown that cellular copper reacts with plant derived polyphenolic compounds, by a Fenton like reaction, which generates reactive oxygen species and leads to genomic DNA damage. This damage then causes an apoptosis like cell death of malignant cells, while sparing normal cells. This communication reviews our work in this area and lays the basis for understanding how plant derived polyphenols can behave as prooxidants (and not antioxidants) within the microenvironment of a malignancy (elevated copper levels) and gives rationale for their preferential cytotoxicity towards malignant cells.
Collapse
Affiliation(s)
- Mohd Farhan
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Ahsa, Saudi Arabia
- *Correspondence: Mohd Farhan,
| | - Asim Rizvi
- Department of Kulliyat, Faculty of Unani Medicine, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
26
|
Gonçalves AC, Gaspar D, Flores-Félix JD, Falcão A, Alves G, Silva LR. Effects of Functional Phenolics Dietary Supplementation on Athletes' Performance and Recovery: A Review. Int J Mol Sci 2022; 23:4652. [PMID: 35563043 PMCID: PMC9102074 DOI: 10.3390/ijms23094652] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
In recent years, many efforts have been made to identify micronutrients or nutritional strategies capable of preventing, or at least, attenuating, exercise-induced muscle damage and oxidative stress, and improving athlete performance. The reason is that most exercises induce various changes in mitochondria and cellular cytosol that lead to the generation of reactive species and free radicals whose accumulation can be harmful to human health. Among them, supplementation with phenolic compounds seems to be a promising approach since their chemical structure, composed of catechol, pyrogallol, and methoxy groups, gives them remarkable health-promoting properties, such as the ability to suppress inflammatory processes, counteract oxidative damage, boost the immune system, and thus, reduce muscle soreness and accelerate recovery. Phenolic compounds have also already been shown to be effective in improving temporal performance and reducing psychological stress and fatigue. Therefore, the aim of this review is to summarize and discuss the current knowledge on the effects of dietary phenolics on physical performance and recovery in athletes and sports practitioners. Overall, the reports show that phenolics exert important benefits on exercise-induced muscle damage as well as play a biological/physiological role in improving physical performance.
Collapse
Affiliation(s)
- Ana C. Gonçalves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (G.A.)
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Dário Gaspar
- Department of Sport Sciences, University of Beira Interior, 6201-001 Covilhã, Portugal;
| | - José David Flores-Félix
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (G.A.)
| | - Amílcar Falcão
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal;
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (G.A.)
| | - Luís R. Silva
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (G.A.)
- CPIRN-UDI/IPG—Center of Potential and Innovation of Natural Resources, Research Unit for Inland Development (UDI), Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
| |
Collapse
|
27
|
Platzer M, Kiese S, Tybussek T, Herfellner T, Schneider F, Schweiggert-Weisz U, Eisner P. Radical Scavenging Mechanisms of Phenolic Compounds: A Quantitative Structure-Property Relationship (QSPR) Study. Front Nutr 2022; 9:882458. [PMID: 35445057 PMCID: PMC9013829 DOI: 10.3389/fnut.2022.882458] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Due to their antioxidant properties, secondary plant metabolites can scavenge free radicals such as reactive oxygen species and protect foods from oxidation processes. Our aim was to study structural influences, like basic structure, number of hydroxyl groups and number of Bors criteria on the outcome of the oxygen radical absorbance capacity (ORAC) assay. Furthermore, similarities and differences to other in vitro antioxidant assays were analyzed by principal component analysis. Our studies confirmed that the antioxidant behavior in the ORAC assay is dominated by the number and types of substituents and not by the Bors criteria, as long as no steric hindrance occurs. For example, morin (MOR) with five hydroxyl groups and two Bors criteria reached an area under the curve of (3.64 ± 0.08) × 105, which was significantly higher than quercetin-7-D-glucoside (QGU7) (P < 0.001), and thus the highest result. Principal component analysis showed different dependencies regarding structural properties of Folin-Ciocalteu (FC)- and 2,2-diphenyl-1-picrylhydrazyl (DPPH)-assays or 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)- and ORAC-assays, respectively. Therefore, we conclude that they are based on different reaction mechanisms. The number of hydroxyl groups showed a stronger influence on the antioxidant activity than the Bors criteria. Due to these differences, the correlation of these rapid tests to specific applications should be validated.
Collapse
Affiliation(s)
- Melanie Platzer
- TUM School of Life Sciences Weihenstephan, ZIEL-Institute for Food & Health, Technical University of Munich, Freising, Germany
- Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
- *Correspondence: Melanie Platzer
| | - Sandra Kiese
- Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
| | - Thorsten Tybussek
- Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
| | - Thomas Herfellner
- Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
| | - Franziska Schneider
- Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
| | - Ute Schweiggert-Weisz
- Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
- Chair of Food Science, Institute for Nutritional and Food Sciences, University of Bonn, Bonn, Germany
| | - Peter Eisner
- TUM School of Life Sciences Weihenstephan, ZIEL-Institute for Food & Health, Technical University of Munich, Freising, Germany
- Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
- Faculty of Technology and Engineering, Steinbeis-Hochschule, Dresden, Germany
| |
Collapse
|
28
|
Sruthi NU, Josna K, Pandiselvam R, Kothakota A, Gavahian M, Mousavi Khaneghah A. Impacts of cold plasma treatment on physicochemical, functional, bioactive, textural, and sensory attributes of food: A comprehensive review. Food Chem 2022; 368:130809. [PMID: 34450498 DOI: 10.1016/j.foodchem.2021.130809] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/10/2021] [Accepted: 08/05/2021] [Indexed: 12/17/2022]
Abstract
Cold plasma processing is a technique that uses electricity and reactive carrier gases, such as oxygen, nitrogen, or helium, to inactivate enzymes, destroy microorganisms, preserve food, and maintain quality without employing chemical antimicrobial agents.The review collates the latest information on the interaction mechanism and impact of non-thermal plasma, as an emerging processing technology, on selected physical properties, low-molecular-weight functional components, and bioactive properties of food. Significant changes observed in the physicochemical and functional properties. For example, changes in pH, total soluble solids, water and oil absorption capacities, sensory properties such as color, aroma, and texture, bioactive components (e.g., polyphenols, flavonoids, and antioxidants), and food enzymes, antinutrients, and allergens were elaborated in the present manuscript. It was highlighted that the plasma reactive species result in both constructive and antagonistic outcomes on specific food components, and the associated mechanism was different in each case. However, the design's versatility, characteristic non-thermal nature, better economic standards, and safer environmental factors offer matchless benefits for cold plasma over conventional processing methods. Even so, a thorough insight on the impact of cold plasma on functional and bioactive food constituents is still a subject of imminent research and is imperative for its broad recognition as a modern non-conventional processing technique.
Collapse
Affiliation(s)
- N U Sruthi
- Agricultural & Food Engineering Department, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - K Josna
- Processing and Food Engineering Department, Kelappaji College of Agricultural Engineering & Technology, Kerala Agricultural University, Malappuram 679573, Kerala, India
| | - R Pandiselvam
- Physiology, Biochemistry and Post Harvest Technology Division, ICAR -Central Plantation Crops Research Institute, Kasaragod 671 124, India.
| | - Anjineyulu Kothakota
- Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695 019, Kerala, India
| | - Mohsen Gavahian
- Department of Food Science, National Pingtung University of Science and Technology, 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan.
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil.
| |
Collapse
|
29
|
GAO Q, LI Y, LI Y, ZHANG Z, LIANG Y. Antioxidant and prooxidant activities of phenolic acids commonly existed in vegetables and their relationship with structures. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.07622] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Qingchao GAO
- Jiangsu Key Laboratory for Food Quality and Safety, China
| | - Yi LI
- Jiangsu Key Laboratory for Food Quality and Safety, China
| | - Yahui LI
- Jiangsu Academy of Agricultural Science, China
| | | | - Ying LIANG
- Jiangsu Key Laboratory for Food Quality and Safety, China; Jiangsu University, China
| |
Collapse
|
30
|
López de Felipe F, de las Rivas B, Muñoz R. Molecular Responses of Lactobacilli to Plant Phenolic Compounds: A Comparative Review of the Mechanisms Involved. Antioxidants (Basel) 2021; 11:antiox11010018. [PMID: 35052520 PMCID: PMC8772861 DOI: 10.3390/antiox11010018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 01/23/2023] Open
Abstract
Lactobacilli are well-studied bacteria that can undergo oxidative selective pressures by plant phenolic compounds (PPCs) in plants, during some food fermentations or in the gastrointestinal tract of animals via dietary inputs. Lactobacilli are known to be more tolerant to PPCs than other bacterial groups and, therefore, must have mechanisms to cope with the effects of these metabolites. In this review, we intend to present what is currently known about the basics beyond the responses of Lactobacillus spp. to individual PPCs. We review the molecular mechanisms that are engaged in the PPC-modulated responses studied to date in these bacteria that have been mainly characterized by system-based strategies, and we discuss their differences and similarities. A wide variety of mechanisms are induced to increase the oxidative stress response highlighting the antimicrobial nature of PPCs. However other uncovered mechanisms that are involved in the response to these compounds are reviewed, including the capacity of PPCs to modulate the expression of molecular functions used by lactobacilli to adapt to host environments. This shows that these phytochemicals can act as more than just antimicrobial agents in the dual interaction with lactobacilli.
Collapse
|
31
|
Polyphenols as Antioxidants for Extending Food Shelf-Life and in the Prevention of Health Diseases: Encapsulation and Interfacial Phenomena. Biomedicines 2021; 9:biomedicines9121909. [PMID: 34944722 PMCID: PMC8698762 DOI: 10.3390/biomedicines9121909] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 01/23/2023] Open
Abstract
Toxicity caused by the exposure to human-made chemicals and environmental conditions has become a major health concern because they may significantly increase the formation of reactive oxygen species (ROS), negatively affecting the endogenous antioxidant defense. Living systems have evolved complex antioxidant mechanisms to protect cells from oxidative conditions. Although oxidative stress contributes to various pathologies, the intake of molecules such as polyphenols, obtained from natural sources, may limit their effects because of their antioxidant and antimicrobial properties against lipid peroxidation and against a broad range of foodborne pathogens. Ingestion of polyphenol-rich foods, such as fruits and vegetables, help to reduce the harmful effects of ROS, but the use of supramolecular and nanomaterials as delivery systems has emerged as an efficient method to improve their pharmacological and therapeutic effects. Suitable exogenous polyphenolic antioxidants should be readily absorbed and delivered to sites where pathological oxidative damage may take place, for instance, intracellular locations. Many potential antioxidants have a poor bioavailability, but they can be encapsulated to improve their ideal solubility and permeability profile. Development of effective antioxidant strategies requires the creation of new nanoscale drug delivery systems to significantly reduce oxidative stress. In this review we provide an overview of the oxidative stress process, highlight some properties of ROS, and discuss the role of natural polyphenols as bioactives in controlling the overproduction of ROS and bacterial and fungal growth, paying special attention to their encapsulation in suitable delivery systems and to their location in colloidal systems where interfaces play a crucial role.
Collapse
|
32
|
Akyüz E. One‒pot green synthesized protein‒based silver nanocluster as prooxidant biosensor. Turk J Chem 2021; 45:1422-1431. [PMID: 34849056 PMCID: PMC8596532 DOI: 10.3906/kim-2104-27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/12/2021] [Indexed: 11/15/2022] Open
Abstract
In this study, silver nanoclusters as prooxidant biosensor were eco‒friendly synthesized using chicken egg white protein without any chemical reducing agents for measuring copper(II)-induced prooxidant activities of catechin, epicatechin, epigallocatechin gallate, resveratrol, gallic acid, chlorogenic acid, and rutin. The prooxidant activities were evaluated via measuring the absorption at 450 nm wavelength of the Cu(I)‒neocuproine chelate formed by extraction of protein-bound Cu(I) with neocuproine reagent. Accuracy was determined by evaluating recovery values of wine, grape and apple samples and the obtained values were between 97.2%‒98.9%. Intra-day precision and inter-day reproducibility experiments were studied with three different experiments in a day and three different days respectively. The obtained relative standard deviation values were 0.96% and 1.91%. The detection limit of the biosensor was found as 0.2 µM. The total prooxidant activities of fresh apple and grape fruits, apple and grape juices, and red wine were determined and the results obtained were compared with the findings of the carbonyl assay. In this study, a cheap, easily applicable, sensitive, and reproducible biosensor was developed. It was seen that it could be used in the measurement of the prooxidant activity of different food samples and give an idea about diet, healthy life, and nutrition.
Collapse
Affiliation(s)
- Esin Akyüz
- Department of Chemistry, Faculty of Engineering, İstanbul University-Cerrahpaşa, İstanbul Turkey
| |
Collapse
|
33
|
Cold Plasma Processing on Fruits and Fruit Juices: A Review on the Effects of Plasma on Nutritional Quality. Processes (Basel) 2021. [DOI: 10.3390/pr9122098] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This review aims to present the effects of cold plasma technology on the nutritional quality of fruits and fruit juices. This review focuses on the chemical changes induced by plasma on several bioactive compounds, such as sugars, starch, lipids, vitamins, phenolic compounds, carotenoids, and anthocyanins. The main plasma-reacting species that reacts with fruit compounds are presented and discussed. The review presents the mechanisms that lead to the improvement and degradation of the main compounds, showing both the advantages and disadvantages of cold plasma technology.
Collapse
|
34
|
Avcu Altiparmak E, Yazar S, Özdemir N, Bal-Demirci T, Ülküseven B. Supramolecular Ni(II) complex aggregates with a circular linkage of intermolecular multi-hydrogen bonding frameworks based on thiosemicarbazone, and a Cu(II) complex: Synthesis, structural, DFT, electrochemical and antioxidant studies. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
35
|
Mubeen I, Farrukh MA. Mechanisms of green synthesis of iron nanoparticles using Trifolium alexandrinum extract and degradation of methylene blue. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1978491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Iqra Mubeen
- Nano-Chemistry Laboratory, Government College University Lahore, Lahore, Pakistan
| | - Muhammad Akhyar Farrukh
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore, Pakistan
| |
Collapse
|
36
|
Lewis T, Wallace W, Peterson FD, Rafferty S, Martic S. Reactivities of quercetin and metallo‐quercetin with superoxide anion radical and molecular oxygen. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Tyra Lewis
- Department of Forensic Science Environmental and Life Sciences Program Trent University Peterborough Ontario Canada
| | - William Wallace
- Department of Forensic Science Environmental and Life Sciences Program Trent University Peterborough Ontario Canada
| | - Finlay Dingman Peterson
- Department of Forensic Science Environmental and Life Sciences Program Trent University Peterborough Ontario Canada
| | - Steven Rafferty
- Department of Chemistry Environmental and Life Sciences Program Trent University Peterborough Ontario Canada
| | - Sanela Martic
- Department of Forensic Science Environmental and Life Sciences Program Trent University Peterborough Ontario Canada
| |
Collapse
|
37
|
Rivera EC, Taylor JW, Summerscales RL, Kwon HJ. Quenching Behavior of the Electrochemiluminescence of Ru(bpy) 32+ /TPrA System by Phenols on a Smartphone-Based Sensor. ChemistryOpen 2021; 10:842-847. [PMID: 34409773 PMCID: PMC8374221 DOI: 10.1002/open.202100151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/04/2021] [Indexed: 12/16/2022] Open
Abstract
Phenolic compounds such as vanillic and p-coumaric acids are pollutants of major concern in the agro-industrial processing, thereby their effective detection in the industrial environment is essential to reduce exposure. Herein, we present the quenching effect of these compounds on the electrochemiluminescence (ECL) of the Ru(bpy)32+ /TPrA (TPrA=tri-n-propylamine) system at a disposable screen-printed carbon electrode. Transient ECL profiles are obtained from multiple video frames following 1.2 V application by a smartphone-based ECL sensor. A wide range of detection was achieved using the sensor with limit of detection of 0.26 μM and 0.68 μM for vanillic and p-coumaric acids, respectively. The estimated quenching constants determined that the quenching efficiency of vanillic acid is at least two-fold that of p-coumaric acid under the current detection conditions. The present ECL quenching approach provided an effective method to detect phenolic compounds using a low-cost, portable smartphone-based ECL sensor.
Collapse
Affiliation(s)
- Elmer C. Rivera
- School of EngineeringAndrews University8450 E Campus Circle DriveBerrien SpringsMI 49104USA
| | - Joseph W. Taylor
- School of EngineeringAndrews University8450 E Campus Circle DriveBerrien SpringsMI 49104USA
| | - Rodney L. Summerscales
- Department of ComputingAndrews University4185 E. Campus Circle DriveBerrien SpringsMI 49104USA
| | - Hyun J. Kwon
- School of EngineeringAndrews University8450 E Campus Circle DriveBerrien SpringsMI 49104USA
| |
Collapse
|
38
|
Ed Nignpense B, Francis N, Blanchard C, Santhakumar AB. Bioaccessibility and Bioactivity of Cereal Polyphenols: A Review. Foods 2021; 10:foods10071595. [PMID: 34359469 PMCID: PMC8307242 DOI: 10.3390/foods10071595] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022] Open
Abstract
Cereal bioactive compounds, especially polyphenols, are known to possess a wide range of disease preventive properties that are attributed to their antioxidant and anti-inflammatory activity. However, due to their low plasma concentrations after oral intake, there is controversy regarding their therapeutic benefits in vivo. Within the gastrointestinal tract, some cereal polyphenols are absorbed in the small intestine, with the majority accumulating and metabolised by the colonic microbiota. Chemical and enzymatic processes occurring during gastrointestinal digestion modulate the bioactivity and bioaccessibility of phenolic compounds. The interactions between the cereal polyphenols and the intestinal epithelium allow the modulation of intestinal barrier function through antioxidant, anti-inflammatory activity and mucin production thereby improving intestinal health. The intestinal microbiota is believed to have a reciprocal interaction with polyphenols, wherein the microbiome produces bioactive and bioaccessible phenolic metabolites and the phenolic compound, in turn, modifies the microbiome composition favourably. Thus, the microbiome presents a key link between polyphenol consumption and the health benefits observed in metabolic conditions in numerous studies. This review will explore the therapeutic value of cereal polyphenols in conjunction with their bioaccessibility, impact on intestinal barrier function and interaction with the microbiome coupled with plasma anti-inflammatory effects.
Collapse
Affiliation(s)
- Borkwei Ed Nignpense
- School of Biomedical Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; (B.E.N.); (N.F.); (C.B.)
| | - Nidhish Francis
- School of Biomedical Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; (B.E.N.); (N.F.); (C.B.)
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Christopher Blanchard
- School of Biomedical Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; (B.E.N.); (N.F.); (C.B.)
- Australian Research Council (ARC), Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Abishek Bommannan Santhakumar
- School of Biomedical Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; (B.E.N.); (N.F.); (C.B.)
- Australian Research Council (ARC), Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
- Correspondence: ; Tel.: +61-2-6933-2678
| |
Collapse
|
39
|
Ibrahime Sinan K, Aktumsek A, de la Luz Cádiz-Gurrea M, Leyva-Jiménez FJ, Fernández-Ochoa Á, Segura-Carretero A, Glamocilja J, Sokovic M, Nenadić M, Zengin G. A Prospective of Multiple Biopharmaceutical Activities of Procyanidins-Rich Uapaca togoensis Pax Extracts: HPLC-ESI-TOF-MS Coupled with Bioinformatics Analysis. Chem Biodivers 2021; 18:e2100299. [PMID: 34086421 DOI: 10.1002/cbdv.202100299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/04/2021] [Indexed: 01/24/2023]
Abstract
The article reports the chemical composition, antioxidant, six key enzymes inhibitory and antimicrobial activities of two solvent extracts (water and methanol) of leaves and stem bark of Uapaca togoensis. For chemical composition, methanol extract of stem bark exhibited significant higher total phenolic (129.86 mg GAE/g) and flavanol (10.44 mg CE/g) contents. Methanol extract of leaves and water extract of stem bark showed high flavonoids (20.94 mg RE/g) and phenolic acid (90.40 mg CAE/g) content, respectively. In addition, HPLC-ESI-TOF-MS analysis revealed that U. togoensis was rich in procyanidins. The methanol and water extracts of stem bark had overall superior antioxidant activity; however, only methanol extract of stem bark showed higher inhibition of cholinesterase (AChE: 2.57 mg GALAE/g; BChE: 4.69 mg GALAE/g), tyrosinase (69.53 mg KAE/g) and elastase (2.73 mmol CE/g). Potent metal chelating ability was showed by water extract of leaves (18.94 mg EDTAE/g), higher inhibition of amylase was detected for water extracts of leaves (0.94 mmol ACAE/g) and stem bark (0.92 mmol ACAE/g). The tested extracts have shown wide-spectrum antibacterial properties and these effects have shown to be more effective against Aspergillus ochraceus, Penicillium funiculosum, Trichoderma viride, Bacillus cereus, Escherichia coli and Pseudomonas aeruginosa. The results revealed that the antioxidant, enzyme inhibitory and antimicrobial activities depended on the extraction solvents and the parts of plant. Bioinformatics analysis on the 17 major compounds showed modulation of pathway associated with cancer. In brief, U. togoensis might be valuable as potential source of natural agents for therapeutic application.
Collapse
Affiliation(s)
- Kouadio Ibrahime Sinan
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Campus, Konya, Turkey
| | - Abdurrahman Aktumsek
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Campus, Konya, Turkey
| | - María de la Luz Cádiz-Gurrea
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, E-18071, Granada, Spain.,Functional Food Research and Development Center, Health Science Technological Park, Avenida del Conocimiento s/n, E-18100, Granada, Spain
| | - Francisco Javier Leyva-Jiménez
- Functional Food Research and Development Center, Health Science Technological Park, Avenida del Conocimiento s/n, E-18100, Granada, Spain
| | - Álvaro Fernández-Ochoa
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany.,Berlin Institute of Health Metabolomics Platform, 10178, Berlin, Germany
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, E-18071, Granada, Spain.,Functional Food Research and Development Center, Health Science Technological Park, Avenida del Conocimiento s/n, E-18100, Granada, Spain
| | - Jasmina Glamocilja
- Laboratory of Mycology, Department of Plant Physiology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Marina Sokovic
- Laboratory of Mycology, Department of Plant Physiology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Marija Nenadić
- Laboratory of Mycology, Department of Plant Physiology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Campus, Konya, Turkey
| |
Collapse
|
40
|
Golmakani M, Mansouri Z, Ansari S, Alavi N. Improving oxidative stability of pomegranate seed oil using
Oliveria
decumbens
essential oil. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Zohreh Mansouri
- Department of Food Science and Technology, Kazerun Branch Islamic Azad University Kazerun Iran
| | - Sara Ansari
- Department of Food Science and Technology, Kazerun Branch Islamic Azad University Kazerun Iran
| | - Nasireh Alavi
- Department of Food Science and Technology, School of Agriculture Shiraz University Shiraz Iran
| |
Collapse
|
41
|
A composite prepared from covalent organic framework and gold nanoparticles for the electrochemical determination of enrofloxacin. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.04.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
42
|
Liu R, Xu Y, Chang M, Liu R, Wang X. Interactions between α-tocopherol and γ-oryzanol in oil-in-water emulsions. Food Chem 2021; 356:129648. [PMID: 33819788 DOI: 10.1016/j.foodchem.2021.129648] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/28/2021] [Accepted: 03/11/2021] [Indexed: 12/31/2022]
Abstract
The interaction between antioxidants is affected by many factors, such as concentration, ratio and system. In this study, different concentrations of α-tocopherol and γ-oryzanol showed antagonistic effect in the oil-in-water emulsion, and the distribution of α-tocopherol increased in aqueous phase after combined with γ-oryzanol. The concentration could affect the degree of antagonism. According to fluorescence quenching, cyclic voltammetry measurements and the oxidative decomposition of antioxidants during storage, the inhibitory effect of γ-oryzanol on the regeneration of α-tocopherol was proposed to be responsible for the antagonism. This work can provide suggestions for studying the mechanism of antioxidant interaction in emulsion system.
Collapse
Affiliation(s)
- Ruru Liu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Ying Xu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Ming Chang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Ruijie Liu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, PR China.
| | - Xingguo Wang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, PR China
| |
Collapse
|
43
|
Yin C, Zhuang Q, Xiao Q, Wang Y, Xie J. Electropolymerization of poly(methylene blue) on flower-like nickel-based MOFs used for ratiometric electrochemical sensing of total polyphenolic content in chrysanthemum tea. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1154-1163. [PMID: 33595032 DOI: 10.1039/d1ay00028d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A ratiometric electrochemical sensor for caffeic acid (CAE) detection was constructed using a glassy carbon electrode modified with poly(methylene blue) and flower-like nickel-based metal organic frameworks (PMB@Ni-TPA/GCE). The electrochemical behavior of CAE was investigated at the PMB@Ni-TPA/GCE, and was found to follow a two-electron, two-proton electrooxidation process. PMB was used as the internal reference probe, and Ni-TPA can enhance the electrochemical signals of both CAE and PMB. As the CAE concentration increases, the oxidation peak current of CAE is enhanced but that of PMB keeps almost unchanged. The oxidation peak current ratio between CAE and PMB recorded by differential pulse voltammetry changes linearly with CAE concentration over the range of 0.25-15.0 μM, with a detection limit of 0.2 μM. The proposed sensor was successfully employed to evaluate the total polyphenolic content as CAE equivalent in chrysanthemum tea, and the results were comparable with those given by the reference Folin-Ciocalteu spectrophotometry.
Collapse
Affiliation(s)
- Chang Yin
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Qianfen Zhuang
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Qin Xiao
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Yong Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China. and College of Chemistry, Nanchang University, Nanchang 330031, China and Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang 330031, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
44
|
Green Synthesis of Silver Nanoparticles from the Extracts of Fruit Peel of Citrus tangerina, Citrus sinensis, and Citrus limon for Antibacterial Activities. Bioinorg Chem Appl 2021; 2021:6695734. [PMID: 33623527 PMCID: PMC7872778 DOI: 10.1155/2021/6695734] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/01/2021] [Accepted: 01/16/2021] [Indexed: 12/31/2022] Open
Abstract
Wide application of nanoparticles motivates the need for synthesising them. Here, a nontoxic, eco-friendly, and cost-effective method has been established for the synthesis of silver nanoparticles using extracts of lemon peel (Citrus limon), green orange peel (Citrus sinensis), and orange peel (Citrus tangerina). The synthesised nanoparticles have been characterised using UV-visible absorptionspectroscopy, Fourier transform infrared spectroscopy, and transmission electron microscopy (TEM). The UV-visible absorption spectrum of these synthesised silver nanoparticles shows an absorption peak at around 440 nm. TEM images show different shaped particles with various sizes. Furthermore, the antibacterial activity of silver nanoparticles was appraised by a well-diffusion method and it was observed that the green synthesised silver nanoparticles have an effective antibacterial activity against Escherichia coli and Staphylococcus aureus. The outcome of this study could be beneficial for nanotechnology-based biomedical applications.
Collapse
|
45
|
Electrochemical sensor for phenylpropanolamine based on oligomer derived from 3-hydroxybenzoic acid with dibenzo-18-crown-6. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Šamec D, Karalija E, Šola I, Vujčić Bok V, Salopek-Sondi B. The Role of Polyphenols in Abiotic Stress Response: The Influence of Molecular Structure. PLANTS (BASEL, SWITZERLAND) 2021; 10:118. [PMID: 33430128 PMCID: PMC7827553 DOI: 10.3390/plants10010118] [Citation(s) in RCA: 217] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 01/15/2023]
Abstract
Abiotic stressors such as extreme temperatures, drought, flood, light, salt, and heavy metals alter biological diversity and crop production worldwide. Therefore, it is important to know the mechanisms by which plants cope with stress conditions. Polyphenols, which are the largest group of plant-specialized metabolites, are generally recognized as molecules involved in stress protection in plants. This diverse group of metabolites contains various structures, from simple forms consisting of one aromatic ring to more complex ones consisting of large number of polymerized molecules. Consequently, all these molecules, depending on their structure, may show different roles in plant growth, development, and stress protection. In the present review, we aimed to summarize data on how different polyphenol structures influence their biological activity and their roles in abiotic stress responses. We focused our review on phenolic acids, flavonoids, stilbenoids, and lignans.
Collapse
Affiliation(s)
- Dunja Šamec
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia;
| | - Erna Karalija
- Faculty of Science, University of Sarajevo, Zmaja od Bosne 33–35, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Ivana Šola
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (I.Š.); (V.V.B.)
| | - Valerija Vujčić Bok
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (I.Š.); (V.V.B.)
| | | |
Collapse
|
47
|
Smailagić A, Stanković DM, Vranješ Đurić S, Veljović S, Dabić Zagorac D, Manojlović D, Natić M. Influence of extraction time, solvent and wood specie on experimentally aged spirits - A simple tool to differentiate wood species used in cooperage. Food Chem 2021; 346:128896. [PMID: 33421901 DOI: 10.1016/j.foodchem.2020.128896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/06/2020] [Accepted: 12/16/2020] [Indexed: 11/19/2022]
Abstract
Type of the wood used for the aging highly influences the quality of alcoholic beverages. In this research we explored the potential of cyclic voltammetry (CV) and differential pulse voltammetry (DPV) to establish fingerprints characteristic for each wood and to enable determining the type of the wood used in the aging process. Eleven different wood samples were used to prepare three different types of spirits during 15 months. The highest extraction rate was obtained during the first month, while further aging was followed with almost constant amount of extracted polyphenols. Black locust, myrobalan plum, and mulberry extracts were discriminated from the spirits aged in oak and wild cherry wood when statistical analysis was applied. Although clear classification of all samples was not achieved, this long term study demonstrated a potential of both CV and DPV for differentiating wood species used in the aging, hence in the quality control of spirits.
Collapse
Affiliation(s)
- Anita Smailagić
- Innovation Center of the Faculty of Chemistry, University of Belgrade, P.O. Box 51, 11158 Belgrade, Serbia
| | - Dalibor M Stanković
- Faculty of Chemistry, University of Belgrade, P.O. Box 51, 11158 Belgrade, Serbia; "VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11000 Belgrade, Serbia
| | - Sanja Vranješ Đurić
- "VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11000 Belgrade, Serbia
| | - Sonja Veljović
- Institute of General and Physical Chemistry, University of Belgrade, P.O. Box 551, 11001 Belgrade, Serbia
| | - Dragana Dabić Zagorac
- Innovation Center of the Faculty of Chemistry, University of Belgrade, P.O. Box 51, 11158 Belgrade, Serbia
| | - Dragan Manojlović
- Faculty of Chemistry, University of Belgrade, P.O. Box 51, 11158 Belgrade, Serbia; South Ural State University, Lenin Prospekt 76, Chelyabinsk 454080, Russia
| | - Maja Natić
- Faculty of Chemistry, University of Belgrade, P.O. Box 51, 11158 Belgrade, Serbia.
| |
Collapse
|
48
|
Reddy NV, Li H, Hou T, Bethu MS, Ren Z, Zhang Z. Phytosynthesis of Silver Nanoparticles Using Perilla frutescens Leaf Extract: Characterization and Evaluation of Antibacterial, Antioxidant, and Anticancer Activities. Int J Nanomedicine 2021; 16:15-29. [PMID: 33447027 PMCID: PMC7802595 DOI: 10.2147/ijn.s265003] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022] Open
Abstract
Purpose The present study investigates the phytosynthesis of silver nanoparticles (AgNPs) using Perilla frutescens leaf extract, which acts as a reducing agent for the conversion of silver ions (Ag+) into AgNPs. P. frutescens leaf synthesized AgNPs (PF@AgNPs) were evaluated for biomedical properties including antibacterial, antioxidant and anticancer activities. Materials and Methods PF@AgNPs were synthesized using P. frutescens leaf extract and silver nitrate solution. The morphology and physical properties of PF@AgNPs were studied by spectroscopic techniques including, UV-Vis, FTIR, TEM, XRD, DLS, and TGA. Antibacterial activity of PF@AgNPs was evaluated by disk diffusion assay. Antioxidant activity of PF@AgNPs was checked by 2.2-diphenyl-1-picrylhydrazyl (DPPH), and 2.2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radical scavenging assays. Anticancer activity of PF@AgNPs was checked by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. Cytotoxic effects of PF@AgNPs on most susceptible cancer cell lines were observed by phase contrast microscopy. Results PF@AgNPs showed surface plasmon resonance peak at 461 nm. XRD pattern showed that the PF@AgNPs were face-centered cubic crystals with a mean size of 25.71 nm. TEM analysis revealed the different shapes (spherical, rhombic, triangle, and rod) of PF@AgNPs. Zeta potential value (-25.83 mV) indicated that PF@AgNPs were long-term stable and not agglomerated. A low polydispersity index value (0.389) indicated the monodispersity of PF@AgNPs. TGA revealed the high thermal stability of PF@AgNPs. PF@AgNPs exhibited maximum inhibition against Escherichia coli, followed by Bacillus subtilis and Staphylococcus aureus. PF@AgNPs showed maximum inhibition of 68.02 and 62.93% against DPPH and ABTS-free radicals, respectively. PF@AgNPs showed significant anticancer activity against human colon cancer (COLO205) and prostate adenocarcinoma (LNCaP). PF@AgNPs exhibited apoptotic effects on LNCaP cells including cell shrinkage, membrane blebbing, chromatin condensation, fragmentation of nuclei, and formation of apoptotic bodies. Conclusion The present study reports the successful synthesis of PF@AgNPs using P. frutescens leaf extract. The synthesized PF@AgNPs are FCC crystals, monodispersed, long-term stable, and non-agglomerated. The observed antibacterial, antioxidant, and anticancer activities demonstrate the potential biomedical applications of PF@AgNPs.
Collapse
Affiliation(s)
- N V Reddy
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi Province, People's Republic of China
| | - Huizhen Li
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi Province, People's Republic of China
| | - Tianyu Hou
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi Province, People's Republic of China
| | - M S Bethu
- Pharmacology and Toxicology Division, Indian Institute of Chemical Engineering and Technology, Hyderabad, Telangana State, India
| | - Zhiqing Ren
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi Province, People's Republic of China
| | - Zhijun Zhang
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi Province, People's Republic of China
| |
Collapse
|
49
|
Xia Q, Liu J, Xu X, Gu W, Gu K, Chen X, Xie R, Zhang D, Wu H, Sun H, Wang F, Chen L, Chen T. Identification of Novel Environmental Substances Relevant to Pediatric Graves' Disease. Front Endocrinol (Lausanne) 2021; 12:691326. [PMID: 34248849 PMCID: PMC8261246 DOI: 10.3389/fendo.2021.691326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/04/2021] [Indexed: 11/13/2022] Open
Abstract
Graves' disease (GD) is the most common cause of hyperthyroidism, yet a relatively rare disease in the pediatric population. GD is a complex disorder influenced by both genetic and environmental factors. In this study, we aimed to find new environmental factors influencing the pathogenesis of GD. We investigated serum substances in 30 newly diagnosed GD children and 30 age- and gender-matched healthy controls. We measured total iodine by inductively coupled plasma-mass spectrometry (ICP-MS), analyzed perfluorinated compounds via ultra-high-performance liquid chromatography coupled with multiple reaction monitoring mass spectrometry (UHPLC-MRM-MS), and explored other environmental substances using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF/MS) analysis. Twenty-nine single-nucleotide polymorphisms (SNPs) in eight genes related to GD were analyzed by SNaPshot. The serum total iodine was significantly higher in GD group, but its association with GD onset was weak, only with Exp(B) value near 1. The perfluorinated compound levels were not different between the two groups. More importantly, we found 16 environmental substances significantly different between GD and control groups, among which ponasterone A is a risk factor (p = 0.007 and Exp(B) = 14.14), while confertifoline is a protective factor against GD onset (p = 0.002 and Exp(B) = 0.001). We also identified 10 substances correlated significantly with thyroid indices in GD patients, among which seven associated with levels of the thyroid autoantibody TPOAb. No known SNPs were found predisposing GD. In this study, we explored a broad variety of environmental substances and identified novel factors that are potentially involved in the pediatric GD pathogenesis.
Collapse
Affiliation(s)
- Qin Xia
- Department of Endocrinology, Genetics and Metabolism, Children’s Hospital of Soochow University, Suzhou, China
| | - Jingjing Liu
- Department of Biochemistry and Molecular Biology, School of Medical and Biological Sciences, Soochow University, Suzhou, China
| | - Xu Xu
- Department of Pediatric Endocrinology, The Affiliated Wuxi Children’s Hospital of Nanjing Medical University, Wuxi, China
| | - Wei Gu
- Department of Endocrinology, Children’s Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Kefeng Gu
- Department of Pediatric Endocrinology, The Affiliated Wuxi Children’s Hospital of Nanjing Medical University, Wuxi, China
| | - Xiuli Chen
- Department of Endocrinology, Genetics and Metabolism, Children’s Hospital of Soochow University, Suzhou, China
| | - Rongrong Xie
- Department of Endocrinology, Genetics and Metabolism, Children’s Hospital of Soochow University, Suzhou, China
| | - Dandan Zhang
- Department of Endocrinology, Genetics and Metabolism, Children’s Hospital of Soochow University, Suzhou, China
| | - Haiying Wu
- Department of Endocrinology, Genetics and Metabolism, Children’s Hospital of Soochow University, Suzhou, China
| | - Hui Sun
- Department of Endocrinology, Genetics and Metabolism, Children’s Hospital of Soochow University, Suzhou, China
| | - Fengyun Wang
- Department of Endocrinology, Genetics and Metabolism, Children’s Hospital of Soochow University, Suzhou, China
| | - Linqi Chen
- Department of Endocrinology, Genetics and Metabolism, Children’s Hospital of Soochow University, Suzhou, China
| | - Ting Chen
- Department of Endocrinology, Genetics and Metabolism, Children’s Hospital of Soochow University, Suzhou, China
- *Correspondence: Ting Chen,
| |
Collapse
|
50
|
Vasyliev GS, Vorobyova VI, Linyucheva OV. Evaluation of Reducing Ability and Antioxidant Activity of Fruit Pomace Extracts by Spectrophotometric and Electrochemical Methods. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2020; 2020:8869436. [PMID: 33489417 PMCID: PMC7787820 DOI: 10.1155/2020/8869436] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/28/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
The component profiles of apricot, grape, and black currant pomace extracts have been analyzed using HPLC coupled to diode-array detection and tandem mass spectrometry (HPLC-DAD-MS). The predominant components in grape, apricot, and black currant pomace extracts were phenolic acids and flavonols. The redox behavior of apricot, black currant, and grape pomace water extracts was evaluated by means of cyclic voltammetry. Also, individual substances mainly present in the extracts were analyzed. The results of electrochemical testing were compared to traditional chemical techniques of potassium ferricyanide reduction (FRAP) and phosphomolybdenum assay, and fair agreement was established. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging assays were applied in order to estimate antioxidant activity. The reducing power of the grape extract was found to be higher than that of the apricot and black currant extracts in both potassium ferricyanide reduction (FRAP) and phosphomolybdenum methods.
Collapse
Affiliation(s)
- Georgii S. Vasyliev
- Chemical Technology Department, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv 03056, Ukraine
| | - Victoria I. Vorobyova
- Chemical Technology Department, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv 03056, Ukraine
| | - Olga V. Linyucheva
- Chemical Technology Department, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv 03056, Ukraine
| |
Collapse
|