1
|
Lockwood TE, Banati RB, Nikagolla C, Violi JP, Bishop DP. Concentration and Distribution of Toxic and Essential Elements in Traditional Rice Varieties of Sri Lanka Grown on an Anuradhapura District Farm. Biol Trace Elem Res 2024; 202:2891-2899. [PMID: 37725314 PMCID: PMC11052878 DOI: 10.1007/s12011-023-03847-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/05/2023] [Indexed: 09/21/2023]
Abstract
Toxic heavy metals have been the focus of many investigations into chronic kidney disease of unknown aetiology (CKDu) within Sri Lanka. It has been hypothesised that exposure to nephrotoxic arsenic, cadmium and lead could play a role in the development of CKDu, and these metals have previously been found in unsafe concentrations in Sri Lankan rice. Traditional varieties of Sri Lankan rice remain popular due to their perceived health benefits, but their uptake of trace and toxic heavy metals remained unexplored. Here, we report a one-time, cross-sectional dataset on the concentrations of essential and toxic elements present in eleven samples of polished and unpolished traditional rice varieties, all regularly grown and sold in the Anuradhapura district, a CKDu hotspot. All rice was sourced from the same farm, with the exception of one store bought sample grown on another, unidentified farm. Cadmium concentrations varied significantly between varieties, and potentially unsafe concentrations of cadmium were detected in the store-bought sample (Suwadel, 113±13 μg kg-1). Elemental imaging of the grains revealed lead to be stored mainly in the rice bran, which is removed during polishing, while cadmium was distributed in the edible portion of the grain. Essential elements were generally higher in the traditional rice varieties than those reported for non-traditional varieties and are a potential source of trace elements for nutrient-deficient communities. The concentration of selenium, an element that plays a protective role in the kidneys, was too low to provide the minimum recommended intake. The methods developed in this study could be applied to a more comprehensive study of elemental uptake of rice under controlled growing conditions.
Collapse
Affiliation(s)
- Thomas E Lockwood
- Hyphenated Mass Spectrometry Laboratory (HyMaS), Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Richard B Banati
- Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW, 2234, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Chandima Nikagolla
- Faculty of Engineering, School of Civil and Environmental Engineering, Queensland University of Technology, QLD, Brisbane, 4000, Australia
| | - Jake P Violi
- School of Chemistry, University of New South Wales, Kensington, NSW, 2052, Australia
| | - David P Bishop
- Hyphenated Mass Spectrometry Laboratory (HyMaS), Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
2
|
Mridha D, Sarkar J, Majumdar A, Sarkar K, Maiti A, Acharya K, Das M, Chen H, Niazi NK, Roychowdhury T. Evaluation of iron-modified biochar on arsenic accumulation by rice: a pathway to assess human health risk from cooked rice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23549-23567. [PMID: 38421541 DOI: 10.1007/s11356-024-32644-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Arsenic (As) contamination of rice grain poses a serious threat to human health. Therefore, it is crucial to reduce the bioavailability of As in the soil and its accumulation in rice grains to ensure the safety of food and human health. In this study, mango (Mangifera indica) leaf-derived biochars (MBC) were synthesized and modified with iron (Fe) to produce FeMBC. In this study, 0.5 and 1% (w/w) doses of MBC and FeMBC were used. The results showed that 1% FeMBC enhanced the percentage of filled grains/panicle and biomass yield by 17 and 27%, respectively, compared to the control. The application of 0.5 and 1% FeMBC significantly (p < 0.05) reduced bioavailable soil As concentration by 33 and 48%, respectively, in comparison to the control. The even higher As flux in the control group as compared to the biochar-treated groups indicates the lower As availability to biochar-treated rice plant. The concentration of As in rice grains was reduced by 6 and 31% in 1% MBC and 1% FeMBC, respectively, compared to the control. The reduction in As concentration in rice grain under 1% FeMBC was more pronounced due to reduced bioavailability of As and enhanced formation of Fe-plaque. This may restrict the entry of As through the rice plant. The concentrations of micronutrients (such as Fe, Zn, Se, and Mn) in brown rice were also improved after the application of both MBC and FeMBC in comparison to the control. This study indicates that the consumption of parboiled rice reduces the health risk associated with As compared to cooked sunned rice. It emphasizes that 1% MBC and 1% FeMBC have great potential to decrease the uptake of As in rice grains.
Collapse
Affiliation(s)
- Deepanjan Mridha
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Jit Sarkar
- Molecular and Applied Mycology and Plant Pathology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, Kolkata, 700019, India
| | - Arnab Majumdar
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Kunal Sarkar
- Department of Zoology, University of Calcutta, Kolkata, 700019, India
| | - Anupam Maiti
- Department of Chemistry, Jadavpur University, Kolkata, 700032, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, Kolkata, 700019, India
| | - Madhusudan Das
- Department of Zoology, University of Calcutta, Kolkata, 700019, India
| | - Hao Chen
- School of Agriculture, Fisheries and Human Sciences, The University of Arkansas at Pine Bluff, Pine Bluff, AR, USA
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Tarit Roychowdhury
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
3
|
Bibi I, Niazi NK, Shahid M, Ali F, Masood Ul Hasan I, Rahman MM, Younas F, Hussain MM, Mehmood T, Shaheen SM, Naidu R, Rinklebe J. Distribution and ecological risk assessment of trace elements in the paddy soil-rice ecosystem of Punjab, Pakistan. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119492. [PMID: 35597483 DOI: 10.1016/j.envpol.2022.119492] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/20/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Trace elements (TEs) contamination of agricultural soils requires suitable criteria for regulating their toxicity limits in soil and food crops, which depends on their potential ecological risk spanning regional to global scales. However, no comprehensive study is available that links TE concentrations in paddy soil with ecological and human health risks in less developed regions like Pakistan. Here we evaluated the data set to establish standard guidelines for defining the hazard levels of various potentially toxic TEs (such as As, Cd, Co, Cu, Cr, Fe, Mn, Ni, Pb, Se, Zn) in agricultural paddy soils of Punjab, Pakistan. In total, 100 topsoils (at 0-15 cm depth) and 204 rice plant (shoot and grain) samples were collected from five ecological zones of Punjab (Gujranwala, Hafizabad, Vehari, Mailsi, and Burewala), representing the major rice growing regions in Pakistan. The degree of contamination (Cd) and potential ecological risk index (PERI) established from ecological risk models were substantially higher in 100% and 97% of samples, respectively. The positive matrix factorization (PMF) model revealed that the elevated TEs concentration, notably Cd, As, Cr, Ni, and Pb, in the agricultural paddy soil was attributed to the anthropogenic activities and groundwater irrigation. Moreover, the concentration of these TEs in rice grains was higher than the FAO/WHO's safe limits. This study provided a baseline, albeit critical knowledge, on the impact of TE-allied ecological and human health risks in the paddy soil-rice system in Pakistan; and it opens new avenues for setting TEs guidelines in agro-ecological zones globally, especially in underdeveloped regions.
Collapse
Affiliation(s)
- Irshad Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan.
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Fawad Ali
- Centre for Planetary Health and Food Security, Griffith University, Nathan Campus, Brisbane, 4111, QLD, Australia; Department of Agriculture and Fisheries, Mareeba, 4880, QLD, Australia.
| | - Israr Masood Ul Hasan
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, Shanghai, China
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Fazila Younas
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Muhammad Mahroz Hussain
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Tariq Mehmood
- College of Ecology and Environment, Hainan University, Haikou, Hainan Province, 570228, PR China
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589, Jeddah, Saudi Arabia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India
| |
Collapse
|
4
|
New insight into the pigmented rice of northeast India revealed high antioxidant and mineral compositions for better human health. Heliyon 2022; 8:e10464. [PMID: 36090216 PMCID: PMC9449748 DOI: 10.1016/j.heliyon.2022.e10464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/09/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
Northeast (NE) India possesses a rich diversity of rice cultivars including pigmented and non pigmented varieties. The pigmented rice is reported to possess a considerable amount of antioxidant compounds, free radical scavengers etc. In this study, eleven (black, red and white) rice cultivars of NE India were analyzed for antioxidant potentials, mineral and protein contents. Total phenolic content ranged from 94.8 (Idaw) to 900.90 mg GAE/100 g (Lumre). Total flavonoid content varied from 3.46 (Idaw) to 286.76 mg QE/100 g (Menil mibabaret). Total anthocyanin content varied from 0.23 (Farel) to 93.52 mg/100 g (Chakhao poireiton). The pigmented rice is also good sources of Catalase (CAT), Ascorbate peroxidase (APX) and Superoxide Dismutase (SOD) that can significantly reduce stress oxidative reactions. Chakhao poireiton possessed the highest Ni and Mn content, Tsulu tsuk had the highest Zn content, while Fazu and Tasung contained the highest Fe and Ca. The highest total protein was found in Chakhao poireiton (11.06%). And all the cultivars were found to be aromatic. Fourier Transformed Infra-Red spectroscopy (FTIR) identified various signature peaks and could discriminate the cultivars into pigmented and non pigmented. Principle Component Analysis (PCA) revealed the grouping of the cultivars based on the functional groups present. The present study could provide a better understanding of choosable rice lines for human consumption and also as germplasm resources for future rice improvement programs.
Collapse
|
5
|
Mao P, Wu J, Li F, Sun S, Huang R, Zhang L, Mo J, Li Z, Zhuang P. Joint approaches to reduce cadmium exposure risk from rice consumption. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128263. [PMID: 35074746 DOI: 10.1016/j.jhazmat.2022.128263] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/22/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
In-situ soil cadmium (Cd) immobilization helps to reduce Cd accumulation in rice grain, while its effects on bioaccessibility of Cd in rice during digestion and the associated health risk from rice consumption remain unclear. Here, we combined in-situ soil Cd immobilization and bioaccessibility-corrected health risk assessment (HRA) to minimize both the risk and uncertainty of Cd exposure from rice consumption. Wollastonite with or without four different phosphates (P) were applied to immobilize soil Cd at paddy fields, and their influences on Cd, essential elements, and amino acids in rice grain were analyzed. Moreover, a bioaccessibility-corrected HRA was conducted to accurately reflect the Cd exposure risk from ingesting these rices. The results showed the co-application of wollastonite and four different P reduced Cd concentrations in rice grain equally, while their impacts on bioaccessibility of Cd in rice during simulated human digestion were inconsistent (53-71%). The HRA based on bioaccessibility of Cd in rice revealed that Cd exposure risk from rice consumption was lowest with the application of wollastonite, followed by the co-application of wollastonite and sodium hexametaphosphate. This work highlights the value of bioaccessibility-corrected HRA for screening the optimal Cd immobilization strategy to achieve safer rice consumption.
Collapse
Affiliation(s)
- Peng Mao
- Guangdong Provincial Key Laboratory of Applied Botany, and Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingtao Wu
- Guangdong Provincial Key Laboratory of Applied Botany, and Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Li
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds Research and Application, and School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, China
| | - Shuo Sun
- Guangdong Provincial Key Laboratory of Applied Botany, and Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Huang
- Guangdong Provincial Key Laboratory of Applied Botany, and Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lulu Zhang
- Guangdong Provincial Key Laboratory of Applied Botany, and Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Jiangming Mo
- Guangdong Provincial Key Laboratory of Applied Botany, and Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Zhian Li
- Guangdong Provincial Key Laboratory of Applied Botany, and Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| | - Ping Zhuang
- Guangdong Provincial Key Laboratory of Applied Botany, and Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| |
Collapse
|
6
|
Irshad MK, Noman A, Wang Y, Yin Y, Chen C, Shang J. Goethite modified biochar simultaneously mitigates the arsenic and cadmium accumulation in paddy rice (Oryza sativa) L. ENVIRONMENTAL RESEARCH 2022; 206:112238. [PMID: 34688646 DOI: 10.1016/j.envres.2021.112238] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/24/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) and arsenic (As) contamination of paddy soils is a serious global issue because of the opposite geochemical behavior of Cd and As in paddy soils. Rice plant (Oryza sativa L.) cultivation in Cd- and As- contaminated paddy soil is regarded as one of the main dietary cause of Cd and As entry in human beings. This study aimed to determine the impact of goethite-modified biochar (GB) on bioavailability of both Cd and As in Cd- and As- polluted paddy soil. Contrary to control and biochar (BC) amendments, the application of GB amendments significantly impeded the accumulation of both Cd and As in rice plants. The results confirmed an obvious reduction in Cd and As content of rice grains by 85% and 77%, respectively after soil supplementation with GB 2% amendment. BC 3% application minimized the Cd uptake by 59% in the rice grains as compared to the control but exhibited a little impact on As accumulation in rice grains. Sequential extraction results displayed an increase in immobile Cd and As fractions of the soil by decreasing the bioavailable fractions of both elements after GB treatments. Fe-plaque formation on the root surfaces was significantly variable (P ˂ 0.05) among all the amendments. GB 2% treatment significantly increased the Fe content (10 g kg-1) of root Fe-plaque by 48%, which ultimately enhanced the sequestration of Cd and As by Fe-plaque and minimized the transport of Cd and As in rice plants. Moreover, GB treatments significantly changed the relative abundance of the microbial community in the rice rhizosphere and minimized the metal(loid)s mobility in the soil. The relative abundance of Acidobacteria, Firmicutes and Verrucomicrobia increased with GB 2% treatment while those of Bacteroidetes and Choloroflexi decreased. Our findings confirmed improvement in the rice grains quality regarding enhanced amino acid contents with GB application. Overall, the results of this study demonstrated that GB amendment simultaneously alleviated the Cd and As concentrations in edible parts of rice plant and provided a new valuable method to protect the public health by effectively remediating the co-occurrence of Cd and As in paddy soils.
Collapse
Affiliation(s)
- Muhammad Kashif Irshad
- College of Land Science and Technology, China Agricultural University, Beijing, China; Department of Environmental Sciences and Engineering, Government College University Faisalabad, Pakistan
| | - Ali Noman
- Department of Botany, Government College University Faisalabad, Pakistan
| | - Yang Wang
- College of Land Science and Technology, China Agricultural University, Beijing, China
| | - Yingjie Yin
- College of Land Science and Technology, China Agricultural University, Beijing, China
| | - Chong Chen
- College of Land Science and Technology, China Agricultural University, Beijing, China
| | - Jianying Shang
- College of Land Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
7
|
Kumar A, Choudhary A, Kaur H, Mehta S, Husen A. Smart nanomaterial and nanocomposite with advanced agrochemical activities. NANOSCALE RESEARCH LETTERS 2021; 16:156. [PMID: 34664133 PMCID: PMC8523620 DOI: 10.1186/s11671-021-03612-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/06/2021] [Indexed: 05/10/2023]
Abstract
Conventional agriculture solely depends upon highly chemical compounds that have negatively ill-affected the health of every living being and the entire ecosystem. Thus, the smart delivery of desired components in a sustainable manner to crop plants is the primary need to maintain soil health in the upcoming years. The premature loss of growth-promoting ingredients and their extended degradation in the soil increases the demand for reliable novel techniques. In this regard, nanotechnology has offered to revolutionize the agrotechnological area that has the imminent potential over conventional agriculture and helps to reform resilient cropping systems withholding prominent food security for the ever-growing world population. Further, in-depth investigation on plant-nanoparticles interactions creates new avenues toward crop improvement via enhanced crop yield, disease resistance, and efficient nutrient utilization. The incorporation of nanomaterial with smart agrochemical activities and establishing a new framework relevant to enhance efficacy ultimately help to address the social acceptance, potential hazards, and management issues in the future. Here, we highlight the role of nanomaterial or nanocomposite as a sustainable as well stable alternative in crop protection and production. Additionally, the information on the controlled released system, role in interaction with soil and microbiome, the promising role of nanocomposite as nanopesticide, nanoherbicide, nanofertilizer, and their limitations in agrochemical activities are discussed in the present review.
Collapse
Affiliation(s)
- Antul Kumar
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004 India
| | - Anuj Choudhary
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004 India
| | - Harmanjot Kaur
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004 India
| | - Sahil Mehta
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | | |
Collapse
|
8
|
Rajatheja MKJC, Chandrajith R, Bentota A, Jayasinghe GY. A Comparative Assessment of Trace Element Accumulation in Native and Improved Rice (Oryza sativa L.) Varieties Grown Under Different Conditions of Fertilizer Application. Biol Trace Elem Res 2021; 199:1153-1160. [PMID: 32472354 DOI: 10.1007/s12011-020-02213-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 05/20/2020] [Indexed: 01/08/2023]
Abstract
Rice (Oryza sativa L.) is the main food crop cultivated in Sri Lanka, and different varieties of rice are grown under different conditions of fertilizer application throughout the country. Since the consumption of rice is extremely high, it is considered as the major dietary source for macro- and micro-nutrients and also for toxic trace elements. The main objective of this study was to investigate and compare trace element levels in native and improved rice varieties that were grown under both organic and inorganic chemical fertilizers and also under unfertilized conditions. Rice grains were collected from a plot experiment with seven native and seven improved rice varieties that were treated with organic and inorganic fertilizers. Contents of macro-nutrients (Na, K, Ca and Mg) and trace elements (Cd, As, Pb, Cr, Mn, Co, Ni, Cu, Zn and Ba) in rice grains were measured by inductively coupled plasma mass spectrometry. The results indicated that rice cultivated using inorganic fertilizers showed the highest mean trace element contents while organic fertilizer-treated improved rice varieties showed the lowest Cd (0.10 mg/kg) which is lower than the maximum permissible level (0.2 μg g-1). The highest mean value of Cd (0.32 mg/kg) was recorded in native rice varieties grown in plots with chemical fertilizer applications. However, the As content in rice samples collected from all treatment conditions indicated contents lower than the maximum permissible level. Rice cultivated in plots that were treated with chemical fertilizer showed the highest mean macro-nutrient contents.
Collapse
Affiliation(s)
| | - Rohana Chandrajith
- Department of Geology, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - Amita Bentota
- Rice Research and Development Institute (RRDI), Batalagoda, Sri Lanka
| | | |
Collapse
|
9
|
Zhang Q, Yan Z, Li X. Ferrous iron facilitates the formation of iron plaque and enhances the tolerance of Spartina alterniflora to artificial sewage stress. MARINE POLLUTION BULLETIN 2020; 157:111379. [PMID: 32658718 DOI: 10.1016/j.marpolbul.2020.111379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/07/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
The ferrous iron (Fe2+) facilitates the formation of root Fe plaque of wetland plants, but its effect on the tolerance of wetland plants to artificial sewage stress has been seldom reported. In this study, the influences of Fe2+ on the formation of Fe plaque and its effects on the tolerance of Spartina alterniflora to artificial sewage stress were investigated. The artificial sewage stress decreased the plant height and chlorophyll content and significantly increased the MDA content in leaves. The symptoms of these stresses were alleviated with increasing Fe2+ concentration accompanied by significant increase in leaf alcohol dehydrogenase activity. The increase of Fe2+ concentration significantly increased the root Fe plaque content and reduced the accumulation of toxic metals in leaves of S. alterniflora. These results support our hypothesis that the exogenous Fe2+ supply may enhance the stress resistance of S. alterniflora to artificial sewage containing heavy metals.
Collapse
Affiliation(s)
- Qiqiong Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai Science and Technology Committee, China
| | - Zhongzheng Yan
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai Science and Technology Committee, China.
| | - Xiuzhen Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai Science and Technology Committee, China
| |
Collapse
|
10
|
Alves LR, Prado ER, de Oliveira R, Santos EF, Lemos de Souza I, Dos Reis AR, Azevedo RA, Gratão PL. Mechanisms of cadmium-stress avoidance by selenium in tomato plants. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:594-606. [PMID: 32333252 DOI: 10.1007/s10646-020-02208-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/31/2020] [Indexed: 05/12/2023]
Abstract
Cadmium (Cd) is probably the most damaging metal to plant species; with a long biological half-life, it can be taken up by plants, disrupting the cell homeostasis and triggering several metabolic pathways. Selenium (Se) improves plant defence systems against stressful conditions, but the biochemical antioxidant responses to Cd stress in tomato plants is poorly understood. To further address the relationship of Cd-stress responses with Se mineral uptake, Cd and Se concentration, proline content, MDA and H2O2 production, and the activity of SOD, APX, CAT and GR enzymes were analyzed in Micro-Tom (MT) plants submitted to 0.5 mM Cd. The results revealed different responses according to Se combination and Cd application. For instance, roots and leaves of MT plants treated with Se exhibited an increase in dry mass and nutritional status, exhibited lower proline content and higher APX and GR activities when compared with plants with no Se application. Plants submitted to 0.5 mM Cd, irrespective of Se exposure, exhibited lower proline, MDA and H2O2 content and higher SOD, CAT and GR activities. Selenium may improve tolerance against Cd, which allowed MT plants exhibited less oxidative damage to the cell, even under elevated Cd accumulation in their tissues. The results suggest that Se application is an efficient management technique to alleviate the deleterious effects of Cd-stress, enhancing the nutritional value and activity of ROS-scavenging enzymes in tomato plants.
Collapse
Affiliation(s)
- Leticia Rodrigues Alves
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias (FCAV), Departamento de Biologia Aplicada à Agropecuária, Jaboticabal, SP, CEP 14884-900, Brazil
| | - Emilaine Rocha Prado
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias (FCAV), Departamento de Biologia Aplicada à Agropecuária, Jaboticabal, SP, CEP 14884-900, Brazil
| | - Reginaldo de Oliveira
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias (FCAV), Departamento de Biologia Aplicada à Agropecuária, Jaboticabal, SP, CEP 14884-900, Brazil
| | - Elcio Ferreira Santos
- Universidade de São Paulo (USP), Centro de Energia Nuclear na Agricultura (CENA), Laboratório de Nutrição Mineral de Plantas, Piracicaba, SP, CEP 13418-900, Brazil
| | - Ivana Lemos de Souza
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias (FCAV), Departamento de Fitossanidade, Jaboticabal, SP, CEP 14884-900, Brazil
| | - André Rodrigues Dos Reis
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências e Engenharia, Laboratório de Biologia, Tupã, SP, CEP 17602-496, Brazil
| | - Ricardo Antunes Azevedo
- Universidade de São Paulo (USP), Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Depto. de Genética, Piracicaba, SP, 13418-900, Brazil
| | - Priscila Lupino Gratão
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias (FCAV), Departamento de Biologia Aplicada à Agropecuária, Jaboticabal, SP, CEP 14884-900, Brazil.
| |
Collapse
|
11
|
Irshad MK, Noman A, Alhaithloul HAS, Adeel M, Rui Y, Shah T, Zhu S, Shang J. Goethite-modified biochar ameliorates the growth of rice (Oryza sativa L.) plants by suppressing Cd and As-induced oxidative stress in Cd and As co-contaminated paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137086. [PMID: 32062258 DOI: 10.1016/j.scitotenv.2020.137086] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/31/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
Co-contamination of soils with cadmium (Cd) and arsenic (As) in rice growing areas is a serious threat to environment and human health. Increase in soil Cd and As levels curtail the growth and development of rice plants by causing oxidative stress and reduction in photosynthetic activity. Therefore, it is necessary to formulate and evaluate different strategies for minimizing the Cd and As uptake in rice plant. We modified biochar (BC) with goethite and assessed the effects of goethite-modified biochar (GB) application on mitigating Cd and As stress in rice plant. Although BC supply to rice plants enhanced their performance in contaminated soil but application of different GB levels i.e.1.5% GB to the soil resulted in prominent improvements in physiological and biochemical attributes of rice plants grown in Cd and As co-contaminated paddy soil. It was observed that soil amendment with GB increased the plant growth, biomass, photosynthetic pigments, gas exchange attribute of rice plant and suppressed the oxidative stress in rice leaves and roots by increased antioxidant enzymes activities. Supplementing the soil with 1.5% GB incremented the iron plaque (Fe-plaque) formation and enhanced the Cd and As sequestration by Fe-plaque. Application of GB (1.5%) significantly improved the Fe content of Fe-plaque by 68.7%. Maximum Cd (1.57 mg kg-1) and As (0.85 mg kg-1) sequestration by Fe-plaque was observed with 1.5% GB treatment. Compared to the control, 1.5% GB treatment application prominently reduced the Cd content in the rice roots and shoots by 42.9%, and 56.7%, respectively and As content in the rice roots and shoots declined by 32.2%, 46.6%, respectively, compared to the control. These findings demonstrate that amending the soil with 1.5% GB can be a potential remediation strategy for checking Cd and As accumulation, reducing oxidative stress and increasing the growth of rice plant.
Collapse
Affiliation(s)
- Muhammad Kashif Irshad
- College of Land Science and Technology, China Agricultural University, Beijing. China; Department of Environmental Sciences and Engineering, Government College University Faisalabad, Pakistan
| | - Ali Noman
- Department of Botany, Government College University Faisalabad, Pakistan
| | | | - Muhammad Adeel
- College of Resource and Environmental Science, China Agricultural University, Beijing. China
| | - Yukui Rui
- College of Resource and Environmental Science, China Agricultural University, Beijing. China
| | - Tufail Shah
- College of Land Science and Technology, China Agricultural University, Beijing. China
| | - Sihang Zhu
- College of Land Science and Technology, China Agricultural University, Beijing. China
| | - Jianying Shang
- College of Land Science and Technology, China Agricultural University, Beijing. China.
| |
Collapse
|
12
|
Kashif Irshad M, Chen C, Noman A, Ibrahim M, Adeel M, Shang J. Goethite-modified biochar restricts the mobility and transfer of cadmium in soil-rice system. CHEMOSPHERE 2020; 242:125152. [PMID: 31669984 DOI: 10.1016/j.chemosphere.2019.125152] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/10/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) contamination of paddy soils has raised serious concerns for food safety and security. Remediation and management of Cd contaminated soil with biochar (BC) and modified biochar is a cost-effective method and has gained due attention in recent years. Goethite-modified biochar (GB) can combine the beneficial effects of BC and iron (Fe) for remediation of Cd contaminated soil. We probed the impact of different BC and GB amendments on Cd mobility and transfer in the soil-rice system. Both BC and GB effectively reduced Cd mobility and availability in the rhizosphere and improved the key growth attributes of rice. Although BC supply to rice plants enhanced their performance in contaminated soil but application of 1.5% GB to the soil resulted in prominent improvements in physiological and biochemical attributes of rice plants grown in Cd contaminated soil. Sequential extraction results depicted that BC and GB differentially enhanced the conversion of exchangeable Cd fractions to non-exchangeable Cd fractions thus restricted the Cd mobility and transfer in soil. Furthermore, supplementing the soil with 1.5% GB incremented the formation of iron plaque (Fe plaque) and boosted the Cd sequestration by Fe plaque. Increase in shoot and root biomass of rice plants after GB treatments positively correlates with incremented chlorophyll contents and gas exchange attributes. Additionally, the oxidative stress damage in rice plants was comparatively reduced under GB application. These findings demonstrate that amending the soil with 1.5% GB can be a potential remediation method to minimize Cd accumulation in paddy rice and thereby can protect human beings from Cd exposure.
Collapse
Affiliation(s)
- Muhammad Kashif Irshad
- College of Resource and Environmental Science, China Agricultural University Beijing, PR China; Department of Environmental Sciences and Engineering, Government College University Faisalabad, Pakistan
| | - Chong Chen
- College of Resource and Environmental Science, China Agricultural University Beijing, PR China
| | - Ali Noman
- Department of Botany, Government College University Faisalabad, Pakistan
| | - Muhammad Ibrahim
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Pakistan
| | - Muhammad Adeel
- College of Resource and Environmental Science, China Agricultural University Beijing, PR China
| | - Jianying Shang
- College of Resource and Environmental Science, China Agricultural University Beijing, PR China.
| |
Collapse
|
13
|
Naik K, Mishra S, Srichandan H, Singh PK, Sarangi PK. Plant growth promoting microbes: Potential link to sustainable agriculture and environment. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101326] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Singha KT, Sebastian A, Prasad MNV. Iron plaque formation in the roots of Pistia stratiotes L.: importance in phytoremediation of cadmium. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:120-128. [PMID: 30729796 DOI: 10.1080/15226514.2018.1474442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Aquatic macrophytes play an important role in the removal of toxic metals from wastewater. Therefore, the induction of Fe plaque on the roots, and its consequences on Cd tolerance investigated in an aquatic macrophyte Pistia stratiotes L. The presence of Fe2+ ion but not Fe3+ resulted in Fe plaque formation. Induction of Fe plaque decreased Ca and increased K and Fe accumulations in the root. Plaque formed plants had accumulated less Cd until 50.0 µM CdCl2 treatments because plaque acted as a barrier to Cd exposure. However, at higher concentrations (500.0 µM CdCl2), plaque formed plants contained more Cd in the roots. Cadmium inducible ion leakage in the root and lowering of the photosynthetic pigment content were less in plants with a plaque. Stretching of aromatic carbonyl groups and alkyl groups among plaque formed plants upon Cd treatments indicated the putative role of phenolics in Cd detoxification.
Collapse
Affiliation(s)
- Kambam Tamna Singha
- a Department of Plant Sciences , University of Hyderabad, School of Life Sciences , Hyderabad , Telangana , India
| | - Abin Sebastian
- a Department of Plant Sciences , University of Hyderabad, School of Life Sciences , Hyderabad , Telangana , India
| | - Majeti Narasimha Vara Prasad
- a Department of Plant Sciences , University of Hyderabad, School of Life Sciences , Hyderabad , Telangana , India
| |
Collapse
|
15
|
Sebastian A, Prasad MNV. Iron plaque decreases cadmium accumulation in Oryza sativa L. and serves as a source of iron. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:1008-1015. [PMID: 27439383 DOI: 10.1111/plb.12484] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 07/15/2016] [Indexed: 06/06/2023]
Abstract
Cadmium (Cd) contamination occurs in paddy soils; hence it is necessary to reduce Cd content of rice. Application and mode of action of ferrous sulphate in minimizing Cd in rice was monitored in the present study. Pot culture with Indian rice variety Swarna (MTU 7029) was maintained in Cd-spiked soil containing ferrous sulphates, which is expected to reduce Cd accumulation in rice. Responses in rhizosphere pH, root surface, metal accumulation in plant and molecular physiological processes were monitored. Iron plaque was induced on root surfaces after FeSO4 application and the amount of Fe in plaque reduced with increases in Cd in the soil. Rhizosphere pH decreased during plaque formation and became more acidic due to secretion of organic acids from the roots under Cd treatment. Moreover, iron chelate reductase activity increased with Cd treatment, but in the absence of Cd, activity of this enzyme increased in plaque-induced plants. Cd treatment caused expression of OsYSL18, whereas OsYSL15 was expressed only in roots without iron plaque. Fe content of plants increased during plaque formation, which protected plants from Cd-induced Fe deficiency and metal toxicity. This was corroborated with increased biomass, chlorophyll content and quantum efficiency of photo-synthesis among plaque-induced plants. We conclude that ferrous sulphate-induced iron plaque prevents Cd accumulation and Fe deficiency in rice. Iron released from plaque via organic acid mediated dissolution during Cd stress.
Collapse
Affiliation(s)
- A Sebastian
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - M N V Prasad
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India.
| |
Collapse
|