1
|
Luca DS, Mariagiovanna D, Paola DS, Daniele C, Giulia B, Giovanni M, Roberta O, Luigi S, Maria VB, Barbara F, Andrea C, Antonio B, Fabio O, Ilaria DB. Longitudinal serological and virological survey of hepatitis E virus in wild boar ( Sus scrofa majori, Maremman wild boar) and fallow deer ( Dama dama) populations in a protected area of Central Italy. Front Vet Sci 2024; 11:1511823. [PMID: 39664896 PMCID: PMC11632112 DOI: 10.3389/fvets.2024.1511823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 11/15/2024] [Indexed: 12/13/2024] Open
Abstract
Hepatitis E virus (HEV) is recognized as an emerging zoonosis. Pigs and wild boars are considered the main reservoirs of zoonotic HEV-3 and HEV-4 genotypes. In Europe, autochthonous human cases of hepatitis E, mainly associated with HEV-3 and consumption of raw or undercooked pig and wild boar liver/meat, have increased over the last decades. From 2016 to 2024, during several hunting seasons, we conducted a molecular and serological longitudinal survey on the circulation of HEV in Maremman wild boar (Italian subspecies/ecotype, Sus scrofa majori) and fallow deer (Dama dama) populations in a protected area in Central Italy. During the study period, 346 livers (256 from wild boar, 90 from fallow deer), 161 serum (127 from wild boar, 34 from fallow deer), and 23 meat juice (11 from wild boar, 12 from fallow deer) samples were collected. Serum and meat juice samples were tested using a commercial ELISA test for the detection of total anti-HEV antibodies. An estimated serological prevalence of 28.3% (39/138) in wild boar and 21.7% (10/46) in fallow deer was found. The 346 liver samples were tested using a HEV Real-Time RT-PCR for the detection of HEV-RNA. Thirty-one wild boar (12%) and four fallow deer (4.4%) livers were found positive. Phylogenetic analysis of 11 partial ORF2 sequences from wild boar confirmed the HEV3 heterogeneity in this species, revealing different strains (3f, 3c) circulating over the years. The detected subtypes are among the most commonly detected in Italy and our strains showed a high correlation with human and wild boar Italian strains. Although the studied area is a fenced natural reserve, the presence of different strains over time suggests the probable virus introduction from the external. Our results confirm fallow deer susceptibility to the infection, and that wild boar could be considered the main wild HEV reservoir. This is also the first study demonstrating the infection in the so-called Italian subspecies/ecotype Maremman wild boar. Moreover, our results corroborate that the consumption of undercooked or raw liver from both wild boar and fallow deer, or the direct contact with these animals, could represent a zoonotic risk.
Collapse
Affiliation(s)
- De Sabato Luca
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Domanico Mariagiovanna
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - De Santis Paola
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Cecca Daniele
- Segretariato generale della Presidenza della Repubblica – Servizio Tenuta di Castelporziano, Rome, Italy
| | - Bonella Giulia
- Segretariato generale della Presidenza della Repubblica – Servizio Tenuta di Castelporziano, Rome, Italy
| | - Mastrandrea Giovanni
- Segretariato generale della Presidenza della Repubblica – Servizio Tenuta di Castelporziano, Rome, Italy
| | - Onorati Roberta
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Sorbara Luigi
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Varcasia Bianca Maria
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Franzetti Barbara
- Italian Institute for Environmental Protection and Research ISPRA, Rome, Italy
| | - Caprioli Andrea
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Battisti Antonio
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Ostanello Fabio
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Di Bartolo Ilaria
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
2
|
Blanda V, Giacchino I, Vaglica V, Milioto V, Migliore S, Di Bella S, Gucciardi F, Bongiorno C, Chiarenza G, Cardamone C, Mancuso I, Scatassa ML, Cannella V, Guercio A, Purpari G, Grippi F. Foodborne Pathogens Across Different Food Matrices in Sicily (Southern Italy). Pathogens 2024; 13:998. [PMID: 39599551 PMCID: PMC11597087 DOI: 10.3390/pathogens13110998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Foodborne diseases result from the consumption of foods contaminated with pathogens or their toxins and represent a serious public health problem worldwide. This study aimed to assess the presence of Rotavirus (RoV), Adenovirus (AdV), Norovirus (NoV), Hepatitis A and Hepatitis E viruses (HAV and HEV, respectively), Toxoplasma gondii, Coxiella burnetii and Leptospira spp. across various food matrices in Sicily. The analysis concerned 504 samples, including mussels, farmed meat, game meat, vegetables and bulk milk. Following appropriate pre-treatment, acid nucleic extraction was carried out and amplification of pathogen nucleic acids was carried out by molecular methods. The mussels tested positive for NoVs (3/51, 5.9%) and farm meat resulted positive for T. gondii (1/34, 2.9%). The game offal samples tested positive for HEV, which was detected in 17 out of 222 samples (7.7%), and T. gondii (18/318, 5.7%) and Leptospira spp. (2/318, 0.6%). The milk samples tested positive for C. burnetii (15/85, 17.6%), T. gondii (2/85, 2.4%) and Leptospira spp. (1/85, 1.2%). This study highlights the variability in the risk of contamination of different food matrices, confirming the importance of vigilance in the consumption of potentially contaminated food products.
Collapse
Affiliation(s)
| | | | | | | | | | - Santina Di Bella
- Istituto Zooprofilattico Sperimentale della Sicilia A. Mirri, Via G. Marinuzzi 3, 90129 Palermo, Italy; (V.B.); (I.G.); (V.V.); (V.M.); (S.M.); (C.B.); (G.C.); (C.C.); (I.M.); (M.L.S.); (V.C.); (A.G.); (G.P.); (F.G.)
| | - Francesca Gucciardi
- Istituto Zooprofilattico Sperimentale della Sicilia A. Mirri, Via G. Marinuzzi 3, 90129 Palermo, Italy; (V.B.); (I.G.); (V.V.); (V.M.); (S.M.); (C.B.); (G.C.); (C.C.); (I.M.); (M.L.S.); (V.C.); (A.G.); (G.P.); (F.G.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Borghi M, Pierboni E, Primavilla S, Scoccia E, Costantini C, Suffredini E, Graziani A, Macellari P, Macrì S, Farneti S, Valiani A. Detection of Hepatitis E Virus in Game Meat (Wild Boar) Supply Chain in Umbria Region, Central Italy. Foods 2024; 13:2504. [PMID: 39200431 PMCID: PMC11353911 DOI: 10.3390/foods13162504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Consumption of raw or undercooked wild boar (WB) meat is considered an important risk factor for hepatitis E virus (HEV) infection in humans. The possibility of HEV contamination during the slaughtering practices may pose an additional risk. Based on these assumptions, we evaluated HEV contamination of WB meat hunted in Umbria (central Italy) during the 2022-2023 hunting season by real-time RT-PCR. Herein, we show that 10.8% of livers from slaughtered WB were positive for HEV RNA, thus providing an estimate of HEV infection in WB in the Umbria region. Then, by evaluating paired liver-muscle samples from both HEV-positive and HEV-negative animals, we found evidence of muscle HEV contamination in 33% and 14% of cases, respectively. This is the first report on the detection of HEV in WB meat in Umbria, an Italian region with diffuse WB hunting and consumption. The evidence of contamination provided by our study underscores the importance of adopting good hygienic practices in the processing stages of hunted WB carcasses to significantly reduce meat contamination and the risk posed for the final consumer.
Collapse
Affiliation(s)
- Monica Borghi
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “T. Rosati”, 06126 Perugia, Italy; (E.P.); (S.P.); (E.S.); (S.F.); (A.V.)
| | - Elisa Pierboni
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “T. Rosati”, 06126 Perugia, Italy; (E.P.); (S.P.); (E.S.); (S.F.); (A.V.)
| | - Sara Primavilla
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “T. Rosati”, 06126 Perugia, Italy; (E.P.); (S.P.); (E.S.); (S.F.); (A.V.)
| | - Eleonora Scoccia
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “T. Rosati”, 06126 Perugia, Italy; (E.P.); (S.P.); (E.S.); (S.F.); (A.V.)
| | - Claudio Costantini
- Department of Medicine and Surgery, Pathology Division, University of Perugia, L. Severi Square, 06129 Perugia, Italy;
| | - Elisabetta Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Alessandro Graziani
- Department of Medicine and Surgery, Microbiology and Clinical Microbiology Division, University of Perugia, L. Severi Square, 06129 Perugia, Italy;
| | - Piero Macellari
- Regione Umbria, Direzione Salute e Welfare—Servizio Prevenzione, Sanità Veterinaria e Sicurezza Alimentare, 06124 Perugia, Italy; (P.M.); (S.M.)
| | - Salvatore Macrì
- Regione Umbria, Direzione Salute e Welfare—Servizio Prevenzione, Sanità Veterinaria e Sicurezza Alimentare, 06124 Perugia, Italy; (P.M.); (S.M.)
| | - Silvana Farneti
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “T. Rosati”, 06126 Perugia, Italy; (E.P.); (S.P.); (E.S.); (S.F.); (A.V.)
| | - Andrea Valiani
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “T. Rosati”, 06126 Perugia, Italy; (E.P.); (S.P.); (E.S.); (S.F.); (A.V.)
| |
Collapse
|
4
|
Jhelum H, Kaufer B, Denner J. Application of Methods Detecting Xenotransplantation-Relevant Viruses for Screening German Slaughterhouse Pigs. Viruses 2024; 16:1119. [PMID: 39066281 PMCID: PMC11281539 DOI: 10.3390/v16071119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Detection methods have been developed to prevent transmission of zoonotic or xenozoonotic porcine viruses after transplantation of pig organs or cells to the recipient (xenotransplantation). Eleven xenotransplantation-relevant viruses, including porcine cytomegalovirus, porcine roseolovirus (PCMV/PRV), porcine lymphotropic herpesviruses -1, -2, -3 (PLHV-1, 2, 3), porcine parvovirus (PPV), porcine circovirus 2, 3, 4 (PCV2, 3, 4), hepatitis E virus genotype 3 (HEV3), porcine endogenous retrovirus-C (PERV-C), and recombinant PERV-A/C have been selected. In the past, several pig breeds, minipigs, and genetically modified pigs generated for xenotransplantation had been analyzed using these methods. Here, spleen, liver, and blood samples from 10 German slaughterhouse pigs were screened using both PCR-based and immunological assays. Five viruses: PCMV/PRV, PLHV-1, PLHV-3, and PERV-C, were found in all animals, and PCV3 in one animal. Some animals were latently infected with PCMV/PRV, as only virus-specific antibodies were detected. Others were also PCR positive in the spleen and/or liver, indicative of an ongoing infection. These results provide important information on the viruses that infect German slaughterhouse pigs, and together with the results of previous studies, they reveal that the methods and test strategies efficiently work under field conditions.
Collapse
Affiliation(s)
| | | | - Joachim Denner
- Institute of Virology, Free University Berlin, 14163 Berlin, Germany; (H.J.); (B.K.)
| |
Collapse
|
5
|
Yadav KK, Boley PA, Lee CM, Khatiwada S, Jung K, Laocharoensuk T, Hofstetter J, Wood R, Hanson J, Kenney SP. Rat hepatitis E virus cross-species infection and transmission in pigs. PNAS NEXUS 2024; 3:pgae259. [PMID: 39035038 PMCID: PMC11259135 DOI: 10.1093/pnasnexus/pgae259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 06/14/2024] [Indexed: 07/23/2024]
Abstract
Strains of Rocahepevirus ratti, an emerging hepatitis E virus (HEV), have recently been found to be infectious to humans. Rats are a primary reservoir of the virus; thus, it is referred to as "rat HEV". Rats are often found on swine farms in close contact with pigs. Our goal was to determine whether swine may serve as a transmission host for zoonotic rat HEV by characterizing an infectious cDNA clone of a zoonotic rat HEV, strain LCK-3110, in vitro and in vivo. RNA transcripts of LCK-3110 were constructed and assessed for their replicative capacity in cell culture and in gnotobiotic pigs. Fecal suspension from rat HEV-positive gnotobiotic pigs was inoculated into conventional pigs co-housed with naïve pigs. Our results demonstrated that capped RNA transcripts of LCK-3110 rat HEV replicated in vitro and successfully infected conventional pigs that transmit the virus to co-housed animals. The infectious clone of rat HEV may afford an opportunity to study the genetic mechanisms of rat HEV cross-species infection and tissue tropism.
Collapse
Affiliation(s)
- Kush Kumar Yadav
- Department of Animal Sciences, Center for Food Animal Health, The Ohio State University, 1680 Madison Ave, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, 1900 Coffey Road, Columbus, OH 43210, USA
| | - Patricia A Boley
- Department of Animal Sciences, Center for Food Animal Health, The Ohio State University, 1680 Madison Ave, Wooster, OH 44691, USA
| | - Carolyn M Lee
- Department of Animal Sciences, Center for Food Animal Health, The Ohio State University, 1680 Madison Ave, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, 1900 Coffey Road, Columbus, OH 43210, USA
| | - Saroj Khatiwada
- Department of Animal Sciences, Center for Food Animal Health, The Ohio State University, 1680 Madison Ave, Wooster, OH 44691, USA
| | - Kwonil Jung
- Department of Animal Sciences, Center for Food Animal Health, The Ohio State University, 1680 Madison Ave, Wooster, OH 44691, USA
| | - Thamonpan Laocharoensuk
- Department of Animal Sciences, Center for Food Animal Health, The Ohio State University, 1680 Madison Ave, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, 1900 Coffey Road, Columbus, OH 43210, USA
| | - Jake Hofstetter
- Department of Animal Sciences, Center for Food Animal Health, The Ohio State University, 1680 Madison Ave, Wooster, OH 44691, USA
| | - Ronna Wood
- Department of Animal Sciences, Center for Food Animal Health, The Ohio State University, 1680 Madison Ave, Wooster, OH 44691, USA
| | - Juliette Hanson
- Department of Animal Sciences, Center for Food Animal Health, The Ohio State University, 1680 Madison Ave, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, 1900 Coffey Road, Columbus, OH 43210, USA
| | - Scott P Kenney
- Department of Animal Sciences, Center for Food Animal Health, The Ohio State University, 1680 Madison Ave, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, 1900 Coffey Road, Columbus, OH 43210, USA
| |
Collapse
|
6
|
Ianiro G, Pavoni E, De Sabato L, Monini M, Delibato E, Perrone V, Ostanello F, Niine T, Di Bartolo I. Investigation of Salmonella, hepatitis E virus (HEV) and viral indicators of fecal contamination in four Italian pig slaughterhouses, 2021-2022. Res Vet Sci 2024; 171:105209. [PMID: 38460205 DOI: 10.1016/j.rvsc.2024.105209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/26/2024] [Accepted: 03/03/2024] [Indexed: 03/11/2024]
Abstract
In the pork production chain, the control at slaughterhouse aims to ensure safe food thanks to proper hygienic conditions during all steps of the slaughtering. Salmonella is one of the main foodborne pathogens in the EU causing a great number of human cases, and pigs also contribute to its spreading. Pig is the main reservoir of the zoonotic hepatitis E virus (HEV) that can be present in liver, bile, feces and even rarely in blood and muscle. The aim of this study was to assess the presence of both Salmonella and HEV in several points of the slaughtering chain, including pig trucks. Other viruses hosted in the gut flora of pigs and shed in feces were also assayed (porcine adenovirus PAdV, rotavirus, norovirus, and mammalian orthoreovirus MRV). Torque teno sus virus (TTSuV) present in both feces, liver and blood was also considered. Four Italian pig abattoirs were sampled in 12 critical points, 5 of which were the outer surface of carcasses before processing. HEV and rotavirus (RVA) were not detected. Norovirus was detected once. Salmonella was detected in two of the 4 abattoirs: in the two lairage pens, in the site of evisceration and on one carcass, indicating the presence of Salmonella if carcass is improper handled. The sampling sites positive for Salmonella were also positive for PAdV. MRV was detected in 10 swabs, from only two abattoirs, mainly in outer surface of carcasses. TTSuV was also detected in all abattoirs. Our study has revealed a diverse group of viruses, each serving as indicator of either fecal (NoV, RVA, PAdV, MRV) or blood contamination (TTSuV). TTSuV could be relevant as blood contamination indicators, crucial for viruses with a viremic stage, such as HEV. The simultaneous presence of PAdV with Salmonella is relevant, suggesting PAdV as a promising indicator for fecal contamination for both bacterial and viruses. In conclusion, even in the absence of HEV, the widespread presence of Salmonella at various points in the chain, underscores the need for vigilant monitoring and mitigation strategies which could be achieved by testing not only bacteria indicators as expected by current regulation, but also some viruses (PAdV, TTSuV, MRV) which could represent other sources of fecal contamination.
Collapse
Affiliation(s)
- Giovanni Ianiro
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Enrico Pavoni
- Department of Food Safety, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna "Bruno Ubertini" (IZSLER), Brescia, Italy
| | - Luca De Sabato
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Marina Monini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Elisabetta Delibato
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - Fabio Ostanello
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy.
| | - Tarmo Niine
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences (EMU), Tartu, Estonia
| | - Ilaria Di Bartolo
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
7
|
Dubbert T, Meester M, Smith RP, Tobias TJ, Di Bartolo I, Johne R, Pavoni E, Krumova-Valcheva G, Sassu EL, Prigge C, Aprea G, May H, Althof N, Ianiro G, Żmudzki J, Dimitrova A, Alborali GL, D'Angelantonio D, Scattolini S, Battistelli N, Burow E. Biosecurity measures to control hepatitis E virus on European pig farms. Front Vet Sci 2024; 11:1328284. [PMID: 38983773 PMCID: PMC11231669 DOI: 10.3389/fvets.2024.1328284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/29/2024] [Indexed: 07/11/2024] Open
Abstract
Hepatitis E virus (HEV) genotype 3 is a prevalent zoonotic pathogen in European pig farms, posing a significant public health risk primarily through the foodborne route. The study aimed to identify effective biosecurity measures for controlling HEV transmission on pig farms, addressing a critical gap in current knowledge. Utilizing a cross-sectional design, fecal samples from gilts, dry sows, and fatteners were collected on 231 pig farms of all farm types across nine European countries. Real-time RT-PCR was employed to test these samples for HEV. Simultaneously, a comprehensive biosecurity questionnaire captured data on various potential measures to control HEV. The dependent variable was HEV risk, categorized as lower or higher based on the percentage of positive pooled fecal samples on each farm (25% cut-off). The data were analyzed using generalized linear models (one for finisher samples and one for all samples) with a logit link function with country and farm type as a priori fixed factors. The results of the final multivariable models identified key biosecurity measures associated with lower HEV risk, which were the use of a hygienogram in the breeding (OR: 0.06, p = 0.001) and/or fattening area after cleaning (OR: 0.21, p = 0.019), the presence of a quarantine area (OR: 0.29, p = 0.025), testing and/or treating purchased feed against Salmonella (OR: 0.35, p = 0.021), the presence of other livestock species on the farm, and having five or fewer persons in charge of the pigs. Contrary to expectations, some biosecurity measures were associated with higher HEV risk, e.g., downtime of 3 days or longer after cleaning in the fattening area (OR: 3.49, p = 0.005) or mandatory handwashing for farm personnel when changing barn sections (OR: 3.4, p = 0.026). This novel study unveils critical insights into biosecurity measures effective in controlling HEV on European pig farms. The identification of both protective and risk-associated measures contributes to improving strategies for managing HEV and underscores the complexity of biosecurity in pig farming.
Collapse
Affiliation(s)
- Tamino Dubbert
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Marina Meester
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University (UU), Utrecht, Netherlands
| | - Richard Piers Smith
- Department of Epidemiological Sciences, Animal and Plant Health Agency (APHA) - Weybridge, Surrey, United Kingdom
| | - Tijs J Tobias
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University (UU), Utrecht, Netherlands
| | - Ilaria Di Bartolo
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Reimar Johne
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Enrico Pavoni
- Food Safety Department, Experimental Zooprophylactic Institute of Lombardy and Emilia Romagna (IZSLER), Brescia, Italy
| | - Gergana Krumova-Valcheva
- National Food Safety Center, National Diagnostic and Research Veterinary Medical Institute (NDRVMI), Sofia, Bulgaria
| | - Elena Lucia Sassu
- Institute for Veterinary Disease Control, Austrian Agency for Health and Food Safety (AGES), Mödling, Austria
| | - Christopher Prigge
- Institute for Veterinary Disease Control, Austrian Agency for Health and Food Safety (AGES), Mödling, Austria
| | - Giuseppe Aprea
- Department of Food Safety, Experimental Zooprophylactic Institute of Abruzzo and Molise 'G. Caporale' (IZS), Teramo, Italy
| | - Hannah May
- Department of Epidemiological Sciences, Animal and Plant Health Agency (APHA) - Weybridge, Surrey, United Kingdom
| | - Nadine Althof
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Giovanni Ianiro
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Jacek Żmudzki
- Department of Swine Diseases, National Veterinary Research Institute (PIWet), Puławy, Poland
| | - Albena Dimitrova
- National Food Safety Center, National Diagnostic and Research Veterinary Medical Institute (NDRVMI), Sofia, Bulgaria
| | - Giovanni Loris Alborali
- Food Safety Department, Experimental Zooprophylactic Institute of Lombardy and Emilia Romagna (IZSLER), Brescia, Italy
| | - Daniela D'Angelantonio
- Department of Food Safety, Experimental Zooprophylactic Institute of Abruzzo and Molise 'G. Caporale' (IZS), Teramo, Italy
| | - Silvia Scattolini
- Department of Food Safety, Experimental Zooprophylactic Institute of Abruzzo and Molise 'G. Caporale' (IZS), Teramo, Italy
| | - Noemi Battistelli
- Department of Food Safety, Experimental Zooprophylactic Institute of Abruzzo and Molise 'G. Caporale' (IZS), Teramo, Italy
| | - Elke Burow
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
- Department for Rural Development and Agriculture, Ministry of Agriculture, Environment and Climate Protection of the State of Brandenburg (MLUK), Potsdam, Germany
| |
Collapse
|
8
|
Turlewicz-Podbielska H, Augustyniak A, Wojciechowski J, Pomorska-Mól M. Hepatitis E Virus in Livestock-Update on Its Epidemiology and Risk of Infection to Humans. Animals (Basel) 2023; 13:3239. [PMID: 37893962 PMCID: PMC10603682 DOI: 10.3390/ani13203239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Hepatitis E virus (HEV) is a public health problem worldwide and an important food pathogen known for its zoonotic potential. Increasing numbers of infection cases with human HEV are caused by the zoonotic transmission of genotypes 3 and 4, mainly by consuming contaminated, undercooked or raw porcine meat. Pigs are the main reservoir of HEV. However, it should be noted that other animal species, such as cattle, sheep, goats, and rabbits, may also be a source of infection for humans. Due to the detection of HEV RNA in the milk and tissues of cattle, the consumption of infected uncooked milk and meat or offal from these species also poses a potential risk of zoonotic HEV infections. Poultry infected by avian HEV may also develop symptomatic disease, although avian HEV is not considered a zoonotic pathogen. HEV infection has a worldwide distribution with different prevalence rates depending on the affected animal species, sampling region, or breeding system.
Collapse
Affiliation(s)
- Hanna Turlewicz-Podbielska
- Department of Preclinical Sciences and Infectious Diseases, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland; (H.T.-P.); (A.A.)
| | - Agata Augustyniak
- Department of Preclinical Sciences and Infectious Diseases, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland; (H.T.-P.); (A.A.)
| | | | - Małgorzata Pomorska-Mól
- Department of Preclinical Sciences and Infectious Diseases, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland; (H.T.-P.); (A.A.)
| |
Collapse
|
9
|
La Bella G, Basanisi MG, Nobili G, Coppola R, Damato AM, Donatiello A, Occhiochiuso G, Romano AC, Toce M, Palazzo L, Pellegrini F, Fanelli A, Di Martino B, Suffredini E, Lanave G, Martella V, La Salandra G. Evidence of Circulation and Phylogenetic Analysis of Hepatitis E Virus (HEV) in Wild Boar in South-East Italy. Viruses 2023; 15:2021. [PMID: 37896798 PMCID: PMC10611066 DOI: 10.3390/v15102021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Hepatitis E virus (HEV) is an important cause of acute viral hepatitis in humans worldwide. The food-borne transmission of HEV appears to be a major route in Europe through the consumption of pork and wild boar meat. HEV epidemiology in wild boars has been investigated mainly in Northern and Central Italian regions, whilst information from Southern Italy is limited. We investigated the occurrence of HEV in wild boar in the Apulia and Basilicata regions (Southern Italy). Thirteen (10.4%) out of one hundred and twenty-five wild boar samples tested positive for HEV using a quantitative reverse transcription PCR. HEV prevalence was 12% in Apulia and 9.3% in Basilicata. Seven samples were genotyped, and different subtypes (c, f, m) of genotype 3 were identified. The complete genome of a 3m strain was determined, and the virus showed the highest nucleotide identity to a human HEV strain identified in France in 2017. These findings demonstrate the substantial circulation of HEV in the wild boar population in Italian Southern regions. Gathering information on the HEV strains circulating in different geographical areas is useful for tracking the origin of HEV outbreaks and assessing the epidemiological role of wild boar as a potential virus reservoir for domestic pigs.
Collapse
Affiliation(s)
- Gianfranco La Bella
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy
| | - Maria Grazia Basanisi
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy
| | - Gaia Nobili
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy
| | - Rosa Coppola
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy
| | - Annita Maria Damato
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy
| | - Adelia Donatiello
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy
| | - Gilda Occhiochiuso
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy
| | | | - Mariateresa Toce
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy
| | - Lucia Palazzo
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy
| | - Francesco Pellegrini
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Bari, Italy
| | - Angela Fanelli
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Bari, Italy
| | - Barbara Di Martino
- Department of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy
| | - Elisabetta Suffredini
- Department of Food Safety Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Gianvito Lanave
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Bari, Italy
| | - Vito Martella
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Bari, Italy
| | - Giovanna La Salandra
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy
| |
Collapse
|
10
|
Monini M, Di Bartolo I, De Sabato L, Ianiro G, Agostinelli F, Ostanello F. Hepatitis E Virus (HEV) in Heavy Pigs in Slaughterhouses of Northern Italy: Investigation of Seroprevalence, Viraemia, and Faecal Shedding. Animals (Basel) 2023; 13:2942. [PMID: 37760342 PMCID: PMC10525452 DOI: 10.3390/ani13182942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Hepatitis E virus (HEV) is considered an emerging threat in Europe, owing to the increased number of human cases and the widespread presence of the virus in pigs at farms. Most cases in industrialized countries are caused by the zoonotic HEV-3 genotype. The main transmission route of HEV-3 in Europe is foodborne, through consumption of raw or undercooked liver pork and wild boar meat. Pigs become susceptible to HEV infection after the loss of maternal immunity, and the majority of adult pigs test positive for IgG anti-HEV antibodies. Nonetheless, HEV-infected pigs in terms of liver, faeces, and rarely blood are identified at slaughterhouses. The present study aimed to investigate the prevalence of HEV-positive batches of Italian heavy pigs at slaughterhouses, assessing the presence of animals still shedding HEV upon their arrival at the slaughterhouse by sampling faeces collected from the floor of the trucks used for their transport. The occurrence of viraemic animals and the seroprevalence of anti-HEV antibodies were also assessed. The results obtained indicated the presence of anti-HEV IgM (1.9%), and a high seroprevalence of anti-HEV total antibodies (IgG, IgM, IgA; 89.2%, n = 260). HEV RNA was not detected in either plasma or faecal samples. Nevertheless, seropositive animals were identified in all eight batches investigated, confirming the widespread exposure of pigs to HEV at both individual and farm levels. Future studies are needed to assess the factors associated with the risk of HEV presence on farms, with the aim to prevent virus introduction and spread within farms, thereby eliminating the risk at slaughterhouse.
Collapse
Affiliation(s)
- Marina Monini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy; (M.M.); (L.D.S.); (G.I.); (F.A.)
| | - Ilaria Di Bartolo
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy; (M.M.); (L.D.S.); (G.I.); (F.A.)
| | - Luca De Sabato
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy; (M.M.); (L.D.S.); (G.I.); (F.A.)
| | - Giovanni Ianiro
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy; (M.M.); (L.D.S.); (G.I.); (F.A.)
| | - Francesca Agostinelli
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy; (M.M.); (L.D.S.); (G.I.); (F.A.)
| | - Fabio Ostanello
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, Ozzano dell’Emilia, 40064 Bologna, Italy;
| |
Collapse
|
11
|
Nemes K, Persson S, Simonsson M. Hepatitis A Virus and Hepatitis E Virus as Food- and Waterborne Pathogens-Transmission Routes and Methods for Detection in Food. Viruses 2023; 15:1725. [PMID: 37632066 PMCID: PMC10457876 DOI: 10.3390/v15081725] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Foodborne viruses are an important threat to food safety and public health. Globally, there are approximately 5 million cases of acute viral hepatitis due to hepatitis A virus (HAV) and hepatitis E virus (HEV) every year. HAV is responsible for numerous food-related viral outbreaks worldwide, while HEV is an emerging pathogen with a global health burden. The reported HEV cases in Europe have increased tenfold in the last 20 years due to its zoonotic transmission through the consumption of infected meat or meat products. HEV is considered the most common cause of acute viral hepatitis worldwide currently. This review focuses on the latest findings on the foodborne transmission routes of HAV and HEV and the methods for their detection in different food matrices.
Collapse
Affiliation(s)
- Katalin Nemes
- European Union Reference Laboratory for Foodborne Viruses, Swedish Food Agency, Dag Hammarskjölds väg 56 A, 75237 Uppsala, Sweden; (S.P.); (M.S.)
| | | | | |
Collapse
|
12
|
Koutsoumanis K, Allende A, Alvarez Ordoñez A, Bolton D, Bover‐Cid S, Chemaly M, Herman L, Hilbert F, Lindqvist R, Nauta M, Nonno R, Peixe L, Skandamis P, Suffredini E, Fernandez Escamez P, Gonzales‐Barron U, Roberts H, Ru G, Simmons M, Cruz RB, Lourenço Martins J, Messens W, Ortiz‐Pelaez A, Simon AC, De Cesare A. Assessment on the efficacy of methods 2 to 5 and method 7 set out in Commission Regulation (EU) No 142/2011 to inactivate relevant pathogens when producing processed animal protein of porcine origin intended to feed poultry and aquaculture animals. EFSA J 2023; 21:e08093. [PMID: 37416785 PMCID: PMC10320699 DOI: 10.2903/j.efsa.2023.8093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023] Open
Abstract
An assessment was conducted on the level of inactivation of relevant pathogens that could be present in processed animal protein of porcine origin intended to feed poultry and aquaculture animals when methods 2 to 5 and method 7, as detailed in Regulation (EU) No 142/2011, are applied. Five approved scenarios were selected for method 7. Salmonella Senftenberg, Enterococcus faecalis, spores of Clostridium perfringens and parvoviruses were shortlisted as target indicators. Inactivation parameters for these indicators were extracted from extensive literature search and a recent EFSA scientific opinion. An adapted Bigelow model was fitted to retrieved data to estimate the probability that methods 2 to 5, in coincidental and consecutive modes, and the five scenarios of method 7 are able to achieve a 5 log10 and a 3 log10 reduction of bacterial indicators and parvoviruses, respectively. Spores of C. perfringens were the indicator with the lowest probability of achieving the target reduction by methods 2 to 5, in coincidental and consecutive mode, and by the five considered scenarios of method 7. An expert knowledge elicitation was conducted to estimate the certainty of achieving a 5 log10 reduction of spores of C. perfringens considering the results of the model and additional evidence. A 5 log10 reduction of C. perfringens spores was judged: 99-100% certain for methods 2 and 3 in coincidental mode; 98-100% certain for method 7 scenario 3; 80-99% certain for method 5 in coincidental mode; 66-100% certain for method 4 in coincidental mode and for method 7 scenarios 4 and 5; 25-75% certain for method 7 scenario 2; and 0-5% certain for method 7 scenario 1. Higher certainty is expected for methods 2 to 5 in consecutive mode compared to coincidental mode.
Collapse
|
13
|
Krumova-Valcheva GL, Di Bartolo I, Smith RP, Gyurova E, Mateva G, Milanov M, Dimitrova A, Burow E, Daskalov H. Detection of HEV RNA Using One-Step Real-Time RT-PCR in Farrow-to-Finish Pig Farms in Bulgaria. Pathogens 2023; 12:pathogens12050673. [PMID: 37242343 DOI: 10.3390/pathogens12050673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
(1) Background: HEV is a zoonotic, foodborne pathogen. It is spread worldwide and represents a public health risk. The aim of this study was to evaluate the presence of HEV RNA in farrow-to-finish pig farms in different regions of Bulgaria; (2) Methods: Isolation of HEV RNA from pooled samples of feces was performed using a QIAamp® Viral RNA Mini Kit followed by HEV RNA detection using a single-step real-time RT-PCR with primers and probes targeting the ORF 3 HEV genome; (3) Results: HEV RNA was detected in 12 out of 32 tested farms in Bulgaria (37.5%). The overall percentage of HEV-positive pooled fecal samples was 10.8% (68 of 630 samples). HEV was detected mostly in pooled fecal samples from finisher pigs (66/320, 20.6%) and sporadically from dry sows (1/62, 1.6%) and gilts (1/248, 0.4%); (4) Conclusions: Our results confirm that HEV circulates in farrow-to-finish pig farms in Bulgaria. In our study, we found HEV RNA in pooled fecal samples from fattening pigs (4-6-months age), shortly before their transport to the slaughterhouse indicating a potential risk to public health. The possible circulation of HEV throughout pork production requires monitoring and containment measures.
Collapse
Affiliation(s)
| | - Ilaria Di Bartolo
- Departement of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Roma, Italy
| | | | - Eva Gyurova
- National Centre for Food Safety, National Diagnostic and Research Veterinary Medical Institute, 1606 Sofia, Bulgaria
| | - Gergana Mateva
- National Centre for Food Safety, National Diagnostic and Research Veterinary Medical Institute, 1606 Sofia, Bulgaria
| | - Mihail Milanov
- National Centre for Food Safety, National Diagnostic and Research Veterinary Medical Institute, 1606 Sofia, Bulgaria
| | - Albena Dimitrova
- National Centre for Food Safety, National Diagnostic and Research Veterinary Medical Institute, 1606 Sofia, Bulgaria
| | - Elke Burow
- Department Biological Safety, Federal Institute for Risk Assessment, 12277 Berlin, Germany
| | - Hristo Daskalov
- National Centre for Food Safety, National Diagnostic and Research Veterinary Medical Institute, 1606 Sofia, Bulgaria
| |
Collapse
|
14
|
Patrizio L, Elisabetta B, Annamaria P, Giancarlo B, Roberta P, Alessio M, Valentina T. Epidemiological and genetic evaluation of HEV in swine slaughtered in Sicily region (Italy). Int J Food Microbiol 2023; 388:110068. [PMID: 36623337 DOI: 10.1016/j.ijfoodmicro.2022.110068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023]
Abstract
Hepatitis E virus (HEV) is the etiological agent of acute viral hepatitis, a disease transmitted by the oral-faecal route. In Europe, zoonotic transmission of HEV-3 genotype is associated with the consumption of raw or slightly cooked meat of pigs and wild boars that are considered the main reservoirs. This work aims to assess the occurrence of swines' HEV RNA liver samples and rectal swabs slaughtered in Sicily using biomolecular methods. HEV-RNA was detected in 17.5 % (21/120) liver samples analyzed and in 3.7 % (3/81) rectal swabs examined. All positive samples were predicted as genotype 3 and subtype 3c (75 %). These data suggest a potential HEV transmission to humans through close contact with pig breeders, veterinarians, slaughterhouse personnel, and pork meat product consumption. Moreover, there are few scientific data evaluating the HEV spread around pigs and humans in Sicily. Therefore, further studies are necessary to correlate humans with swine serotypes and to assess the HEV presence and persistence in food and the risk during the slaughtering process. These surveys allow to clarify the role of the swine species as a potential source of infection for other domestic or wild animals and humans and to establish possible control measures throughout the food chain.
Collapse
Affiliation(s)
- Lorusso Patrizio
- Department of Veterinary Medicine- University of Bari, Provincial Road to Casamassima Km 3, 70010 Valenzano, Bari, Italy
| | - Bonerba Elisabetta
- Department of Veterinary Medicine- University of Bari, Provincial Road to Casamassima Km 3, 70010 Valenzano, Bari, Italy
| | - Pandiscia Annamaria
- Department of Veterinary Medicine- University of Bari, Provincial Road to Casamassima Km 3, 70010 Valenzano, Bari, Italy.
| | - Bozzo Giancarlo
- Department of Veterinary Medicine- University of Bari, Provincial Road to Casamassima Km 3, 70010 Valenzano, Bari, Italy
| | - Piredda Roberta
- Department of Veterinary Medicine- University of Bari, Provincial Road to Casamassima Km 3, 70010 Valenzano, Bari, Italy
| | - Manfredi Alessio
- Department of Veterinary Medicine- University of Bari, Provincial Road to Casamassima Km 3, 70010 Valenzano, Bari, Italy
| | - Terio Valentina
- Department of Veterinary Medicine- University of Bari, Provincial Road to Casamassima Km 3, 70010 Valenzano, Bari, Italy
| |
Collapse
|
15
|
Hansen S, Fischer K, Krabben L, Rinke Carrapeiro A, Klinger B, Schnieke A, Kaufer B, Denner J. Detection of porcine cytomegalovirus, a roseolovirus, in pig ovaries and follicular fluid: implications for somatic cells nuclear transfer, cloning and xenotransplantation. Virol J 2023; 20:15. [PMID: 36707837 PMCID: PMC9881377 DOI: 10.1186/s12985-023-01975-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Porcine cytomegalovirus (PCMV) is a porcine roseolovirus (PCMV/PRV) which is widely distributed in pigs. Transmission of PCMV/PRV in preclinical xenotransplantations was shown to significantly reduce the survival time of the pig transplants in non-human primates. PCMV/PRV was also transmitted in the first transplantation of a pig heart into a human patient. To analyze how PCMV/PRV could be introduced into pig breeds, especially considering cloned transgenic pigs, and subsequently spread in breeding facilities, we screened ovaries and derived materials which are used to perform somatic cell nuclear transfer (SCNT). METHODS DNA was isolated from ovarian tissues, follicular fluids, oocytes with cumulus cells, denuded oocytes and parthenotes. A real-time PCR with PCMV/PRV-specific primers and a probe was performed to detect PCMV/PRV. Furthermore, a Western blot assay using a recombinant fragment of the gB protein of PCMV/PRV was performed to screen for virus-specific antibodies in the follicular fluids. RESULTS PCMV/PRV was found by real-time PCR in ovarian tissues, in the follicular fluid and in oocytes. In parthenotes the virus could not be detected, most-likely due to the low amount of DNA used. By Western blot assay specific antibodies against PCMV/PRV were found in 19 of 20 analyzed follicular fluids. CONCLUSION PCMV/PRV was found in ovarian tissues, in the follicular fluids and also in denuded oocytes, indicating that the virus is present in the animals of which the oocytes were taken from. Despite several washing steps of the denuded oocytes, which are subsequently used for microinjection or SCNT, the virus could still be detected. Therefore, the virus could infect oocytes during genetic modifications or stay attached to the surface of the oocytes, potentially infecting SCNT recipient animals.
Collapse
Affiliation(s)
- Sabrina Hansen
- grid.14095.390000 0000 9116 4836Institute of Virology, Free University Berlin, Berlin, Germany
| | - Konrad Fischer
- grid.6936.a0000000123222966Chair of Animal Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University Munich, Freising, Germany
| | - Ludwig Krabben
- grid.14095.390000 0000 9116 4836Institute of Virology, Free University Berlin, Berlin, Germany
| | - Alexander Rinke Carrapeiro
- grid.6936.a0000000123222966Chair of Animal Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University Munich, Freising, Germany
| | - Bernhard Klinger
- grid.6936.a0000000123222966Chair of Animal Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University Munich, Freising, Germany
| | - Angelika Schnieke
- grid.6936.a0000000123222966Chair of Animal Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University Munich, Freising, Germany
| | - Benedikt Kaufer
- grid.14095.390000 0000 9116 4836Institute of Virology, Free University Berlin, Berlin, Germany
| | - Joachim Denner
- Institute of Virology, Free University Berlin, Berlin, Germany.
| |
Collapse
|
16
|
Carella E, Oberto F, Romano A, Peletto S, Vitale N, Costa A, Caruso C, Chiavacci L, Acutis PL, Pite L, Masoero L. Molecular and serological investigation of Hepatitis E virus in pigs slaughtered in Northwestern Italy. BMC Vet Res 2023; 19:21. [PMID: 36698186 PMCID: PMC9875460 DOI: 10.1186/s12917-023-03578-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Hepatitis E Virus (HEV) is recently considered an emerging public health concern. HEV genotypes 1 and 2 are widely distributed and pathogenic only for humans. In contrast, HEV, genotypes 3 and 4 are observed in swine, deer, wild boars and rabbits and can also be transmitted to humans. The presence of HEV in the liver, muscle, faeces, blood, and bile was detected by real-time RT-PCR in 156 pigs belonging to twenty different farms, ranging from 1 to 8 months of age. The phylogenetic analysis was performed on the viral strain present in the positive biological matrix, with the lowest Ct. HEV-IgG and HEV-IgM in the sera were analysed by two different ELISA kits. RESULTS Twenty-one pigs, i.e., 13.46% of them (21/156, 95% CI: 8.53%-19.84%), tested positive for HEV in at least one biological matrix by real-time RT-PCR, while phylogenetic analysis revealed the presence of HEV subtypes 3f and 3c. Pig serums analysed by ELISA showed an overall prevalence of 26.92% (42/156, 95% CI: 20.14%-34.60%) for HEV-IgG, whereas the 28.95% (33/114, 95% CI: 20.84%-38.19%) of them tested negative resulted positive for the HEV-IgM. CONCLUSIONS The faeces are the biological matrix with the highest probability of detecting HEV. The best concordance value (Kappa Kohen index) and the highest positive correlation (Phi index) were observed for the correlation between bile and liver, even when the number of positive liver samples was lower than the positive bile samples. This finding may suggest that a higher probability of HEV occurs in the bile, when the virus is present in the liver, during the stages of infection. Finally, the presence of HEV in muscle was observed in 11 pigs, usually used for the preparation of some dishes, typical of the Italian tradition, based on raw or undercooked meat. Therefore, their consumption is a possible source of infection for final consumer.
Collapse
Affiliation(s)
- Emanuele Carella
- grid.425427.20000 0004 1759 3180Istituto Zooprofilattico Sperimentale del Piemonte, Liguria E Valle d’ Aosta, Via Bologna 148, 10154 Turin, Italy
| | - Francesca Oberto
- grid.425427.20000 0004 1759 3180Istituto Zooprofilattico Sperimentale del Piemonte, Liguria E Valle d’ Aosta, Via Bologna 148, 10154 Turin, Italy
| | - Angelo Romano
- grid.425427.20000 0004 1759 3180Istituto Zooprofilattico Sperimentale del Piemonte, Liguria E Valle d’ Aosta, Via Bologna 148, 10154 Turin, Italy
| | - Simone Peletto
- grid.425427.20000 0004 1759 3180Istituto Zooprofilattico Sperimentale del Piemonte, Liguria E Valle d’ Aosta, Via Bologna 148, 10154 Turin, Italy
| | - Nicoletta Vitale
- grid.425427.20000 0004 1759 3180Istituto Zooprofilattico Sperimentale del Piemonte, Liguria E Valle d’ Aosta, Via Bologna 148, 10154 Turin, Italy
| | - Annalisa Costa
- grid.476863.80000 0004 1755 6398Azienda Sanitaria Locale CN2, Via Gerolamo Vida 10, 12051 Alba (CN), Italy
| | - Claudio Caruso
- Azienda Sanitaria Locale CN1, Via Pier Carlo Boggio 12, 12100 Cuneo, Italy
| | - Laura Chiavacci
- grid.425427.20000 0004 1759 3180Istituto Zooprofilattico Sperimentale del Piemonte, Liguria E Valle d’ Aosta, Via Bologna 148, 10154 Turin, Italy
| | - Pier Luigi Acutis
- grid.425427.20000 0004 1759 3180Istituto Zooprofilattico Sperimentale del Piemonte, Liguria E Valle d’ Aosta, Via Bologna 148, 10154 Turin, Italy
| | - Ledi Pite
- grid.425427.20000 0004 1759 3180Istituto Zooprofilattico Sperimentale del Piemonte, Liguria E Valle d’ Aosta, Via Bologna 148, 10154 Turin, Italy
| | - Loretta Masoero
- grid.425427.20000 0004 1759 3180Istituto Zooprofilattico Sperimentale del Piemonte, Liguria E Valle d’ Aosta, Via Bologna 148, 10154 Turin, Italy
| |
Collapse
|
17
|
Ianiro G, Pavoni E, Aprea G, Romantini R, Alborali GL, D'Angelantonio D, Garofolo G, Scattolini S, De Sabato L, Magistrali CF, Burow E, Ostanello F, Smith RP, Di Bartolo I. Cross-sectional study of hepatitis E virus (HEV) circulation in Italian pig farms. Front Vet Sci 2023; 10:1136225. [PMID: 37143498 PMCID: PMC10151646 DOI: 10.3389/fvets.2023.1136225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/29/2023] [Indexed: 05/06/2023] Open
Abstract
Foodborne transmission is considered the main way of spreading zoonotic hepatitis E virus (HEV) infection in Europe. In recent years, the human cases of hepatitis E in subjects without history of travel in endemic areas have raised, suggesting that domestic HEV transmission is increasing. Pork products with or without liver, are often indicated as the source of many human foodborne HEV cases as well as small outbreaks. Pigs are recognized as the main reservoir of the zoonotic HEV-3 genotype, the most frequently detected in human cases in the EU. In the absence of a harmonized surveillance of HEV circulation, data on prevalence are heterogeneous but confirm a widespread circulation of HEV-3 in pig herds across EU. HEV-3 can pass through the food chain from farm to fork when infected animals are slaughtered. In Italy, several studies reported the circulation of HEV-3 in pig farms, but results are heterogeneous due to different methodologies applied. In the present study, we performed a survey over 51 pig herds belonging to three main types of farms: breeding, fattening and farrow-to-finish. HEV-RNA was analyzed by broad range Real-time RT-PCR on 20 samples for each farm, obtained by pooling together feces from 10 individuals. Overall, HEV RNA was confirmed on 150 fecal pooled samples out of 1,032 (14.5%). At least one positive pooled sample was detected from 18 farms out of 51 tested (35.3%). By lowering the number of infected pigs at primary production, the risk of HEV-3 entering into the food chain can be reduced. Hence, information on HEV circulation in herds is highly relevant for choosing preventive measures and deserves development of a monitoring program and further investigations.
Collapse
Affiliation(s)
- Giovanni Ianiro
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Enrico Pavoni
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna “Bruno Ubertini”, Brescia, Italy
- *Correspondence: Enrico Pavoni
| | - Giuseppe Aprea
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “Giuseppe Caporale”, Teramo, Italy
| | - Romina Romantini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “Giuseppe Caporale”, Teramo, Italy
| | - Giovanni Loris Alborali
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna “Bruno Ubertini”, Brescia, Italy
| | - Daniela D'Angelantonio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “Giuseppe Caporale”, Teramo, Italy
| | - Giuliano Garofolo
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “Giuseppe Caporale”, Teramo, Italy
| | - Silvia Scattolini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “Giuseppe Caporale”, Teramo, Italy
| | - Luca De Sabato
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - Elke Burow
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Fabio Ostanello
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - Richard Piers Smith
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Ilaria Di Bartolo
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
18
|
Characterization of a Near Full-Length Hepatitis E Virus Genome of Subtype 3c Generated from Naturally Infected South African Backyard Pigs. Pathogens 2022; 11:pathogens11091030. [PMID: 36145462 PMCID: PMC9506134 DOI: 10.3390/pathogens11091030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/25/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Eight genotypes of the hepatitis E virus (Orthohepevirus A; HEV) designated HEV-1 to HEV-8 have been reported from various mammalian hosts. Notably, domestic pigs and wild boars are the natural reservoirs of HEV-3 and HEV-4 genotypes with zoonotic propensity. Since HEV infection in domestic pigs is usually subclinical, it may remain undetected, facilitating zoonotic spillover of HEV to the exposed human populations. A previous study from our group in 2021, using deep sequencing of a pooled saliva sample, generated various swine enteric virus genomes, including a near full-length swine HEV genome (7040 nt; 97.7% genome coverage) from five-month-old grower pigs at a backyard pig farm in the uMgungundlovu District, KwaZulu-Natal, South Africa. In the present study, we describe the further characterization, including genotyping and subtyping of the swine HEV isolate using phylogenetics and ‘HEVnet Typing Tool’. Our analyses confirmed that the South African swine HEV genome characterized in this study belonged to HEV genotype 3 subtype 3c (HEV-3c). While HEV-3c infections in domestic pigs have been previously reported from Brazil, Germany, Italy, and the Netherlands, they only generated partial genome sequences of open reading frame 1 (ORF1) and/or ORF2. To our knowledge, this is the first near full-length swine HEV-3c genome generated from naturally infected domestic pigs (Sus scrofa domesticus) in South Africa. However, due to the gap in the information on the HEV-3c genome sequences in various geographical locations worldwide, including South Africa, the epidemiology of the South African swine HEV genome characterized in this study remains inconclusive. Molecular and genomic surveillance of HEV in domestic pig populations in South Africa would be useful to determine their prevalence, circulating subtypes, and zoonosis risk.
Collapse
|
19
|
Pellerin M, Trabucco B, Capai L, Laval M, Maestrini O, Jori F, Falchi A, Doceul V, Charrier F, Casabianca F, Pavio N. Low prevalence of hepatitis E virus in the liver of Corsican pigs slaughtered after 12 months despite high antibody seroprevalence. Transbound Emerg Dis 2022; 69:e2706-e2718. [PMID: 35689821 PMCID: PMC9796636 DOI: 10.1111/tbed.14621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/20/2022] [Accepted: 06/03/2022] [Indexed: 01/01/2023]
Abstract
Hepatitis E virus (HEV) infection can be acute and benign or evolve to chronic hepatitis with rapid progression toward cirrhosis or liver failure in humans. Hence, hepatitis E (HE) disease is a major public health concern. In countries where pig populations are highly contaminated with HEV, human cases of HE are mainly foodborne, occurring frequently after consumption of raw or undercooked pork products or liver. Among factors associated to the presence of HEV in pork livers from intensive rearing systems, early slaughter (≤6 months) seems to be major. In Corsica, local pigs are raised in extensive farming systems and slaughtered after 12 months. To evaluate if slaughter of pigs over 12 months reduces the risk of HEV presence in livers, 1197 liver samples were randomly collected in 2 Corsican slaughterhouses. Presence of HEV RNA was detected in liver and HEV seroprevalence was determined in paired serum. The sampling included 1083 livers from animals between 12 and 48 months and 114 livers from animals <12 months. The samples were predominantly from semi-extensive and extensive farms (n = 1154). Estimated HEV seroprevalence was high, that is, >88%, and HEV RNA prevalence in adult pig livers (>12 months old) was low, that is, 0.18%. However, in livers from younger animals (<12 months), including piglets below 6 months old, 5.3% (6/114) of the samples were positive for HEV RNA. Sequences recovered from positive livers belonged to HEV genotype 3c and 3f. The presence of infectious HEV was confirmed in two livers by the detection of HEV replication in HepaRG cell cultures. Thus, this study demonstrates the low prevalence of HEV in livers of pigs over 12 months, even in farms with high HEV circulation. This observation may open new perspectives on the preferential use of livers from animals older than 12 months in raw pork liver products.
Collapse
Affiliation(s)
- Marie Pellerin
- UMR VirologieANSES, INRAE, ENVALaboratoire de Santé AnimaleMaisons‐AlfortFrance
| | | | - Lisandru Capai
- Laboratoire de VirologieUniversité de Corse Pasquale PaoliUR BIOSCOPE 7310CorteFrance,Institute of Virology, University of Charité BerlinAG Junglen10117BerlinGermany
| | | | | | - Ferran Jori
- UMR ASTRE (Animaux, Santé, Territoire, Risques et Ecosystèmes), CIRADINRAEUniversité de MontpellierCampus International de BaillarguetMontpellierFrance
| | - Alessandra Falchi
- Laboratoire de VirologieUniversité de Corse Pasquale PaoliUR BIOSCOPE 7310CorteFrance
| | - Virginie Doceul
- UMR VirologieANSES, INRAE, ENVALaboratoire de Santé AnimaleMaisons‐AlfortFrance
| | - François Charrier
- UR SELMET‐LRDEINRAECorteFrance,UMR LISIS, Université Gustave EiffelINRAECNRSMarne‐la‐ValléeFrance
| | | | - Nicole Pavio
- UMR VirologieANSES, INRAE, ENVALaboratoire de Santé AnimaleMaisons‐AlfortFrance
| |
Collapse
|
20
|
Ahmad T, Jin H, Dhama K, Yatoo MI, Tiwari R, Bilal M, Dhawan M, Emran TB, Alestad JH, Alhani HM, BinKhalaf HK, Rabaan AA. Hepatitis E virus in pigs and the environment: An updated review of public health concerns. NARRA J 2022; 2:e78. [PMID: 38449702 PMCID: PMC10914032 DOI: 10.52225/narra.v2i2.78] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/22/2022] [Indexed: 09/01/2023]
Abstract
Hepatitis E virus (HEV) is an important public health problem and is responsible for both acute and chronic viral hepatitis. Public health implications of HEV are derived from its transmission route, either water-borne or food-borne, and its zoonotic potential. Not only in developing countries, but HEV cases are also found in a high number in developed countries. The spread of HEV to the environment might pollute surface waters, which could act as the source of infection for both humans and animals. Identification of the virus in animal products suggests the circulation of HEV within water and food chains. High seroprevalence and circulation of HEV in livestock, in particular pigs, as well as in environmental samples warrants further investigation into pig markets. HEV virulence in different environments and meat supply chains could shed light on the possible sources of infection in humans and the degree of occupational risk. The purpose of this review is to discuss HEV infections with an emphasis on livestock- and environment-related risk factors, and food-borne, water-borne, and zoonotic transmissions.
Collapse
Affiliation(s)
- Tauseef Ahmad
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing,Chinas
| | - Hui Jin
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing,Chinas
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Mohd. Iqbal Yatoo
- Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir, Indias
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana, India
- The Trafford Group of Colleges, Manchester, United Kingdom
| | - Talha B. Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Jeehan H. Alestad
- Immunology and Infectious Microbiology, Glasgow, United Kingdom
- Collage of medicine, Microbiology, Jabriya, Kuwait
- Kuwait Chair Madam in Antimicrobial Resistance Committee, Alternative Permanent Representative of Kuwait to the United Nation Agencies, Rome, Italys
| | - Hatem M. Alhani
- Department of Pediatric Infectious Disease, Maternity and Children Hospital, Dammam, Saudi Arabia
- Department of Infection Control, Maternity and Children Hospital, Dammam, Saudi Arabia
- Department of Preventive Medicine and Infection Prevention and Control, Directorate of Ministry of Health, Eastern Region, Dammam, Saudi Arabia
| | - Habib K. BinKhalaf
- Department of Molecular Laboratory, King Fahad Hospital, Hofuf, Saudi Arabia
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur, Pakistan
| |
Collapse
|
21
|
Boxman ILA, Verhoef L, Dop PY, Vennema H, Dirks RAM, Opsteegh M. High prevalence of acute hepatitis E virus infection in pigs in Dutch slaughterhouses. Int J Food Microbiol 2022; 379:109830. [PMID: 35908493 DOI: 10.1016/j.ijfoodmicro.2022.109830] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/19/2022] [Accepted: 07/03/2022] [Indexed: 11/28/2022]
Abstract
Hepatitis E is caused by hepatitis E virus (HEV), one of the causes of acute viral hepatitis. Domestic pigs are considered as the main reservoir of HEV-3. The recently reported high prevalence of HEV in liver- and meat products on the Dutch market warranted a cross-sectional prevalence study on HEV infection among 5-6 months old pigs slaughtered in the Netherlands (n = 250). For this, liver, caecum content and blood samples were analyzed for the presence of genomic HEV RNA by RT-PCR. In addition, a serological test was performed to detect HEV IgG. Background information was retrieved on the corresponding farms to evaluate potential risk factors for HEV at pig slaughter age. HEV IgG was detected in sera from 167 pigs (67.6 %). HEV RNA was detected in 64 (25.6 %) caecum content samples, in 40 (16.1 %) serum samples and in 25 (11.0 %) liver samples. The average level of viral contamination in positive samples was log10 4.6 genome copies (gc)/g (range 3.0-8.2) in caecum content, log10 3.3 gc/ml (range 2.4-5.9) in serum and log10 3.2 gc/0.1 g (range 1.7-6.2) in liver samples. Sequence analyses revealed HEV-3c only. Ten times an identical strain was detected in two or three samples obtained from the same pig. Each animal in this study however appeared to be infected with a unique strain. The presence of sows and gilts and welfare rating at the farm of origin had a significant effect (p < 0.05) on the distribution over the four groups representing different stages of HEV infection based on IgG or RNA in caecum and/or serum. The observed proportion of tested pigs with viremia (16 %) was higher than in other reported studies and was interestingly often observed in combination with a high number of HEV genome copies in liver and caecum content as detected by RT-qPCR. Data provided will be useful for risk assessment for food safety of pork products, will provide baseline data for future monitoring of HEV infections in pigs and new thoughts for mitigation strategies.
Collapse
Affiliation(s)
- Ingeborg L A Boxman
- WFSR, Wageningen Food Safety Research, Wageningen University and Research, Mailbox 230, 6700 AE Wageningen, the Netherlands.
| | - Linda Verhoef
- NVWA, Netherlands Food and Consumer Product Safety Authority, Utrecht, the Netherlands
| | - Petra Y Dop
- NVWA, Netherlands Food and Consumer Product Safety Authority, Utrecht, the Netherlands
| | - Harry Vennema
- RIVM, National Institute of Public Health and the Environment, Bilthoven, the Netherlands
| | - René A M Dirks
- WFSR, Wageningen Food Safety Research, Wageningen University and Research, Mailbox 230, 6700 AE Wageningen, the Netherlands
| | - Marieke Opsteegh
- RIVM, National Institute of Public Health and the Environment, Bilthoven, the Netherlands
| |
Collapse
|
22
|
Priemer G, Cierniak F, Wolf C, Ulrich RG, Groschup MH, Eiden M. Co-Circulation of Different Hepatitis E Virus Genotype 3 Subtypes in Pigs and Wild Boar in North-East Germany, 2019. Pathogens 2022; 11:pathogens11070773. [PMID: 35890018 PMCID: PMC9317891 DOI: 10.3390/pathogens11070773] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 12/25/2022] Open
Abstract
Hepatitis E is a major cause of acute liver disease in humans worldwide. The infection is caused by hepatitis E virus (HEV) which is transmitted in Europe to humans primarily through zoonotic foodborne transmission from domestic pigs, wild boar, rabbits, and deer. HEV belongs to the family Hepeviridae, and possesses a positive-sense, single stranded RNA genome. This agent usually causes an acute self-limited infection in humans, but in people with low immunity, e.g., immunosuppressive therapy or underlying liver diseases, the infection can evolve to chronicity and is able to induce a variety of extrahepatic manifestations. Pig and wild boar have been identified as the primary animal reservoir in Europe, and consumption of raw and undercooked pork is known to pose a potential risk of foodborne HEV infection. In this study, we analysed pig and wild boar liver, faeces, and muscle samples collected in 2019 in Mecklenburg-Western Pomerania, north-east Germany. A total of 393 animals of both species were investigated using quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR), conventional nested RT-PCR and sequence analysis of amplification products. In 33 animals, HEV RNA was detected in liver and/or faeces. In one individual, viral RNA was detected in muscle tissue. Sequence analysis of a partial open reading frame 1 region demonstrated a broad variety of genotype 3 (HEV-3) subtypes. In conclusion, the study demonstrates a high, but varying prevalence of HEV RNA in swine populations in Mecklenburg-Western Pomerania. The associated risk of foodborne HEV infection needs the establishment of sustainable surveillance and treatment strategies at the interface between humans, animals, and the environment within a One Health framework.
Collapse
Affiliation(s)
- Grit Priemer
- Department 2—Animal Disease Diagnostics, State Office for Agriculture, Food Safety and Fisheries Mecklenburg—Western Pomerania, 18059 Rostock, Germany; (G.P.); (C.W.)
| | - Filip Cierniak
- Institute of Novel and Emerging Infectious Diseases at the Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (F.C.); (R.G.U.); (M.H.G.)
| | - Carola Wolf
- Department 2—Animal Disease Diagnostics, State Office for Agriculture, Food Safety and Fisheries Mecklenburg—Western Pomerania, 18059 Rostock, Germany; (G.P.); (C.W.)
| | - Rainer G. Ulrich
- Institute of Novel and Emerging Infectious Diseases at the Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (F.C.); (R.G.U.); (M.H.G.)
- Partner Site Hamburg-Lübeck-Borstel-Riems, German Centre for Infection Research (DZIF), 17493 Greifswald-Insel Riems, Germany
| | - Martin H. Groschup
- Institute of Novel and Emerging Infectious Diseases at the Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (F.C.); (R.G.U.); (M.H.G.)
- Partner Site Hamburg-Lübeck-Borstel-Riems, German Centre for Infection Research (DZIF), 17493 Greifswald-Insel Riems, Germany
| | - Martin Eiden
- Institute of Novel and Emerging Infectious Diseases at the Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (F.C.); (R.G.U.); (M.H.G.)
- Correspondence:
| |
Collapse
|
23
|
Dynamic of Hepatitis E Virus (HEV) Shedding in Pigs. Animals (Basel) 2022; 12:ani12091063. [PMID: 35565491 PMCID: PMC9101398 DOI: 10.3390/ani12091063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Hepatitis E virus (HEV) is an emerging pathogen, causing an increasing number of autochthonous cases in industrialized countries. In Europe, infections are associated with the zoonotic HEV-3 and HEV-4 genotypes and pigs and wild boars are the main reservoirs. A major concern of infections is linked to its foodborne transmission, due to consumption of raw or undercooked pork products infected by HEV-3 or HEV-4. HEV-3 is widespread in farmed pigs, mainly aged 3–4 months. Besides a decline with age, infected pigs have been observed at slaughterhouses, representing a risk for both the consumers and the workers of the pig industry. HEV is transmitted by the fecal–oral route and shed in feces in large amounts. The risk of viral spreading in farm and presence of infected pigs at slaughtering was evaluated by assessing the quantity and the duration of HEV-3 shedding in feces of infected pigs. Feces of 23 HEV-3 positive pigs were assayed during their fattening, shortly before their slaughtering. Results confirmed a long period of viral shedding in feces with a large amount of the virus released in the environment (mean 105 GC/g). Prevalence and quantity of the virus declines with the age of animals. The study provides information on the dynamic of the infection in pigs, important to prevent HEV occurrence and circulation in farms. Abstract Genotype 3 of hepatitis E virus (HEV-3) is the most common in Europe in both humans and pigs. HEV-3 strains are zoonotic, and foodborne cases associated with consumption of raw and undercooked pork products, mainly liver sausages, have been described. HEV-3 circulates largely in European pig farms, maybe due to its long persistence in the environment. Animals get infected around 3–4 months of age; shortly after, the infection starts to decline up to the age of slaughtering (8–9 months of age in Italy). With the purpose to understand the duration in farmed pigs of the shedding of the virus and its quantity, HEV-RNA detection was performed by Real-time RT-PCR from feces collected individually from two groups of 23 pigs. Sampling was conducted for 4 months shortly before slaughtering age. At 4-months-old, all animals were shedding HEV-3 to high load around 105 genome copies per gram (GC/g). Prevalence was higher in growers than in fatteners, with most of the pigs still positive around 166 days of age. Beyond some difference among individual pigs, the amount of HEV in feces decreased with the age of animals. The longest fattening period should ensure a lower risk of HEV shedder animals at slaughter, reducing the risk of food contamination.
Collapse
|
24
|
Moro O, Suffredini E, Isopi M, Tosti ME, Schembri P, Scavia G. Quantitative Methods for the Prioritization of Foods Implicated in the Transmission of Hepatititis E to Humans in Italy. Foods 2021; 11:foods11010087. [PMID: 35010213 PMCID: PMC8750432 DOI: 10.3390/foods11010087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/09/2021] [Accepted: 12/23/2021] [Indexed: 01/02/2023] Open
Abstract
Hepatitis E is considered an emerging foodborne disease in Europe. Several types of foods are implicated in the transmission of the hepatitis E virus (HEV) to humans, in particular, pork and wild boar products. We developed a parametric stochastic model to estimate the risk of foodborne exposure to HEV in the Italian population and to rank the relevance of pork products with and without liver (PL and PNL, respectively), leafy vegetables, shellfish and raw milk in HEV transmission. Original data on HEV prevalence in different foods were obtained from a recent sampling study conducted in Italy at the retail level. Other data were obtained by publicly available sources and published literature. The model output indicated that the consumption of PNL was associated with the highest number of HEV infections in the population. However, the sensitivity analysis showed that slight variations in the consumption of PL led to an increase in the number of HEV infections much higher than PNL, suggesting that PL at an individual level are the top risky food. Uncertainty analysis underlined that further characterization of the pork products preparation and better assessment of consumption data at a regional level is critical information for fine-tuning the most risky implicated food items in Italy.
Collapse
Affiliation(s)
- Ornella Moro
- Department of Food Safety, Nutrition and Veterinary Public Health, National Institute of Health, 00161 Rome, Italy; (E.S.); (G.S.)
- Department of Mathematics, University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
- Correspondence:
| | - Elisabetta Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, National Institute of Health, 00161 Rome, Italy; (E.S.); (G.S.)
| | - Marco Isopi
- Department of Mathematics, University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Maria Elena Tosti
- National Center for Global Health, National Institute of Health, 00161 Rome, Italy;
| | - Pietro Schembri
- Regional Department for Health Activities and Epidemiological Observatory of the Sicilian Region, 90145 Palermo, Italy;
| | - Gaia Scavia
- Department of Food Safety, Nutrition and Veterinary Public Health, National Institute of Health, 00161 Rome, Italy; (E.S.); (G.S.)
| |
Collapse
|
25
|
Bigoraj E, Paszkiewicz W, Rzeżutka A. Porcine Blood and Liver as Sporadic Sources of Hepatitis E Virus (HEV) in the Production Chain of Offal-Derived Foodstuffs in Poland. FOOD AND ENVIRONMENTAL VIROLOGY 2021; 13:347-356. [PMID: 33891305 PMCID: PMC8379118 DOI: 10.1007/s12560-021-09475-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 04/09/2021] [Indexed: 05/11/2023]
Abstract
Pig's blood and liver are valuable edible slaughter by-products which are also the major ingredients of offal-derived foodstuffs. The aim of the study was an evaluation of the occurrence of hepatitis E virus (HEV) and porcine adenovirus (pAdV) as an index virus of faecal contamination in pig's blood and liver for human consumption. In total, 246 samples of retail liver (n = 100) and pooled pig's blood (n = 146) were analysed for the presence of HEV and pAdV. Blood samples were individually collected from 1432 pigs at slaughter age. Viral genomic material, including RNA of a sample process control virus was isolated from food samples using a QIAamp® Viral RNA Mini Kit. Virus-specific IAC-controlled real-time PCR methods were used for detection of target viruses. HEV RNA was found in 6 (2.4%; 95% CI: 0.9-5.2) out of 246 samples of tested foodstuffs. The virus was detected in pig's blood (3.4%; 95% CI: 1.1-7.8) and liver (1.0%; 95% CI: 0.0-5.0) with no significant differences observed in the frequency of its occurrence between the two by-products (t = 1.33; p = 0.182 > 0.05); however PAdV was detected more frequently in pig's blood than in liver (t = 4.65; p = 0.000 < 0.05). The HEV strains belonged to the 3f and 3e subtype groups and the pAdV strains were assigned to serotype 5. PAdV was detected in pigs regardless of the farm size from which they originated. The number of animals raised on the farm (the farm size) had no influence on the occurrence of HEV or pAdV infections in pigs (F = 0.81, p = 0.447 > 0.05 for HEV; F = 0.42, p = 0.655 > 0.05 for pAdV). Although HEV was detected in pig's offal only sporadically, consumers cannot treat its occurrence with disregard as it demonstrates that HEV-contaminated pig tissues can enter the food chain.
Collapse
Affiliation(s)
- E Bigoraj
- Department of Food and Environmental Virology, National Veterinary Research Institute, Al. Partyzantów 57, 24-100, Puławy, Poland
| | - W Paszkiewicz
- Department of Food Hygiene of Animal Origin, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, ul. Akademicka 12, 20-950, Lublin, Poland
| | - A Rzeżutka
- Department of Food and Environmental Virology, National Veterinary Research Institute, Al. Partyzantów 57, 24-100, Puławy, Poland.
| |
Collapse
|
26
|
Hepatitis E Virus RNA Presence in Wild Boar Carcasses at Slaughterhouses in Italy. Animals (Basel) 2021; 11:ani11061624. [PMID: 34072795 PMCID: PMC8230283 DOI: 10.3390/ani11061624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Hepatitis E virus (HEV) is a worldwide diffused pathogen responsible for acute hepatitis of humans. Transmission of the pathogen is mostly related to the consumption of contaminated food and water. Although initially the disease was contained in developing countries, in recent years autochthonous infections have been reported in several industrialised countries. A different epidemiological pattern of transmission has been highlighted; while in Africa and Asia transmission is mainly due to waterborne outbreaks caused by low sanitation standards, in Europe and other industrialised countries, the disease has mainly spread due to consumption of raw or undercooked meat and seafood. Although HEV has been identified in several domestic and wild animal species, pigs and wild boar, appear to play a distinct role mainly acting as a reservoir of the pathogen. In this study, we monitored the presence of HEV in carcasses and livers of wild boar sampled in Tuscany at the slaughterhouse following hunting activities. Our data indicate the presence of the pathogen in the liver and the carcasses, suggesting cross-contamination. This evidence highlights the importance of maintaining safety control measures to avoid the spreading of HEV infection. Abstract Hepatitis E virus (HEV) is a waterborne and foodborne pathogen largely spread around the world. HEV is responsible for acute hepatitis in humans and it is also diffused in domestic and wild animals. In particular, domestic pigs represent the main reservoir of the infection and particular attention should be paid to the consumption of raw and undercooked meat as a possible zoonotic vehicle of the pathogen. Several studies have reported the presence of HEV in wild boar circulating in European countries with similar prevalence rates. In this study, we evaluated the occurrence of HEV in wild boar hunted in specific areas of Tuscany. Sampling was performed by collecting liver samples and also by swabbing the carcasses at the slaughterhouses following hunting activities. Our data indicated that 8/67 (12%) of liver samples and 4/67 (6%) of swabs were positive for HEV RNA. The presence of HEV genome on swabs indicates the possible cross-contamination of carcass surfaces during slaughtering procedures. Altogether, our data indicated that it is essential to promote health education programmes for hunters and consumers to limit the diffusion of the pathogen to humans.
Collapse
|