1
|
Zhang H, Liu H, Liu X, Song A, Jiang H, Wang X. Progress on Carbon Dots with Intrinsic Bioactivities for Multimodal Theranostics. Adv Healthc Mater 2025; 14:e2402285. [PMID: 39440645 DOI: 10.1002/adhm.202402285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Carbon dots (CDs) with intrinsic bioactivities are candidates for bioimaging and disease therapy due to their diverse bioactivities, high biocompatibility, and multiple functionalities in multimodal theranostics. It is a multidisciplinary research hotspot that includes biology, physics, materials science, and chemistry. This progress report discusses the CDs with intrinsic bioactivities and their applications in multimodal theranostics. The relationship between the synthesis and structure of CDs is summarized and analyzed from a material and chemical perspective. The bioactivities of CDs including anti-tumor, antibacterial, anti-inflammatory etc. are discussed from biological points of view. Subsequently, the optical and electronic properties of CDs that can be applied in the biomedical field are summarized from a physical perspective. Based on the functional review of CDs, their applications in the biomedical field are reviewed, including optical diagnosis and treatment, biological activity, etc. Unlike previous reviews, this review combines multiple disciplines to gain a more comprehensive understanding of the mechanisms, functions, and applications of CDs with intrinsic bioactivities.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Hao Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Aiguo Song
- School of Instrument Science and Engineering, Southeast University, Nanjing, 210023, China
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| |
Collapse
|
2
|
Thota SP, Kurdekar A, Vadlani PV, Kumar BS. Green Synthesis of Highly Fluorescent Carbon Dots from Groundnut Shell Biomass for Bioimaging Applications. J Fluoresc 2024:10.1007/s10895-024-04065-1. [PMID: 39680341 DOI: 10.1007/s10895-024-04065-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024]
Abstract
Carbon dots from alternative renewable carbon sources are emerging as alternatives to metal-based quantum dots. These nature-derived carbon dots exhibit excellent optical and fluorescent properties, which enable their use in several applications, including bioimaging. This work presents a facile and green approach to synthesizing highly fluorescent carbon dots from groundnut shells (GNS), an abundantly available agricultural residue. HRTEM analysis confirmed the synthesis of Groundnut shell Carbon Dots (GCDs) with a lattice spacing of around 0.22 nm, corresponding to low dimensional graphitic structures. The observed intense absorption at around 278 nm can be ascribed to the л - л* transitions resulting from the hybridization of sp2/sp3 orbitals in carbon dots. The fluorescence spectroscopy of GCDs displayed pronounced emission characteristics that varied depending on the excitation wavelength, which ranges from 280 to 480 nm. The quantum yield of these GCDs was estimated to be 17.1%. The biocompatibility of GCDs is confirmed by the cell viability test, which indicates their suitability for yeast cell imaging.
Collapse
Affiliation(s)
- Sai Praneeth Thota
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, Andhra Pradesh, India.
- Department of Chemistry, SRM University, Sikkim, India.
| | - Aditya Kurdekar
- Optics and Microfluidics Instrumentation, Department of Instrumentation and Applied Physics, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Praveen V Vadlani
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, Andhra Pradesh, India
- Bioprocessing and Renewable Energy Laboratory, Departments of Grain Science and Industry, Kansas State University, Manhattan, KS, 66506, USA
| | - Belliraj Siva Kumar
- Department of Physical Sciences, Amrita Vishwa Vidyapeetham, Bengaluru, Karnataka, India.
| |
Collapse
|
3
|
Yuncu H, Nadaroglu H, Bozkurt E. Eco-friendly synthesis of Carbon Quantum Dots (CQDs) from hazelnut husk for sensitive Aflatoxin B1 (AFB1) detection. Toxicol Rep 2024; 13:101824. [PMID: 39649378 PMCID: PMC11625368 DOI: 10.1016/j.toxrep.2024.101824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 12/10/2024] Open
Abstract
In this study, green fluorescent carbon quantum dots (CQDs) with remarkable stability, water solubility, and biocompatibility were synthesized from hazelnut husk (HH) waste material using a novel approach by the pyrolysis method. The optical properties of the synthesized HH-CQDs were characterized by UV-Vis and fluorescence spectroscopy (PL), while their structural properties were characterized using various techniques, including transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). TEM images revealed that HH-CQDs had a spherical shape with diameters ranging from 2 to 10 nm. The fluorescence quantum yield of these CQDs was measured as 0.04. Furthermore, CQDs were very effective at finding aflatoxin B1 (AFB1) using a fluorescence resonance energy transfer (FRET) mechanism, with a clear fluorescence emission peak seen at 451 nm. The photoluminescent properties of CQDs were evaluated under various pH conditions, showing a blue shift and increased fluorescence intensity at pH 9-10, suggesting their potential use in pH-sensitive sensor applications. This study demonstrates the selective and sensitive detection of AFB1 using HH-CQDs, with a strong linear relationship (R² = 0.9936) between fluorescence intensity and AFB1 concentration in the range of 25-250 ppm, and high accuracy in real food samples, including 81.56 % in corn, 98.64 % in milk, and 95.73 % in peanuts. This eco-friendly and cost-effective synthesis method offers a promising alternative for AFB1 detection in food samples by utilizing waste material to create valuable analytical tools.
Collapse
Affiliation(s)
- Hatice Yuncu
- Department of Nano‑Science and Nano‑Engineering, Institute of Science, Ataturk University, Erzurum 25240, Turkey
| | - Hayrunnisa Nadaroglu
- Department of Nano‑Science and Nano‑Engineering, Institute of Science, Ataturk University, Erzurum 25240, Turkey
- Department of Food Technology, Vocational College of Technical Sciences, Ataturk University, Erzurum 25240, Turkey
| | - Ebru Bozkurt
- Department of Nano‑Science and Nano‑Engineering, Institute of Science, Ataturk University, Erzurum 25240, Turkey
- Department of Occupational Health and Safety, Vocational College of Technical Sciences, Ataturk University, Erzurum 25240, Turkey
| |
Collapse
|
4
|
Li C, Ren Y, Busscher HJ, Zhang Z, van der Mei HC. Chemical and functional inheritance of carbon quantum dots hydrothermally-derived from chitosan. J Colloid Interface Sci 2024; 682:680-689. [PMID: 39642553 DOI: 10.1016/j.jcis.2024.11.234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/12/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
Owing to their extremely small size, carbon-quantum-dots (CQDs) can cross biological barriers, which makes them attractive for many biomedical and other applications. CQDs can retain key-chemical features and associated functionalities of the molecular sources they are derived from, provided a suitable synthesis method is used at relative mild carbonization temperatures. Here we demonstrate that CQDs hydrothermally-derived from chitosan or 2-hydroxypropyltrimethyl ammonium-chloride (HAC)-chitosan under pressurized conditions at 180 °C have a comparable elemental and molecular composition, as determined using X-ray photoelectron spectroscopy and Fourier-transform-infrared spectroscopy. In addition, both types of CQDs generated reactive-oxygen-species as an added functionality alien to their molecular carbon sources. As a result, CQDs exhibited stronger antibacterial properties against a Gram-positive Staphylococcus aureus and a Gram-negative Escherichia coli strain, while both molecular HAC-chitosan as well as CQDs derived from it had stronger antibacterial properties than molecular chitosan and chitosan CQDs due to the possession of quaternary ammonium groups in HAC-chitosan. Therewith, carbonization of chitosan and HAC-chitosan yields enhanced properties that can be beneficial in a high variety of different applications, including promotion of healing and bacterial infection control, preservation of food and beverages, pesticide control in agriculture and horticulture, water treatment and in many cosmetics and personal care products.
Collapse
Affiliation(s)
- Cong Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Rd, Suzhou 215123, Jiangsu, PR China; University of Groningen and University Medical Center Groningen, Department of Biomaterials & Biomedical Technology, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Yijin Ren
- University of Groningen and University Medical Center of Groningen, Department of Orthodontics, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - Henk J Busscher
- University of Groningen and University Medical Center Groningen, Department of Biomaterials & Biomedical Technology, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Zexin Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Rd, Suzhou 215123, Jiangsu, PR China.
| | - Henny C van der Mei
- University of Groningen and University Medical Center Groningen, Department of Biomaterials & Biomedical Technology, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| |
Collapse
|
5
|
Mohammed SJ, Sidiq MK, Najmuldeen HH, Kayani KF, Kader DA, Aziz SB. A comprehensive review on nitrogen-doped carbon dots for antibacterial applications. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2024; 12:114444. [DOI: 10.1016/j.jece.2024.114444] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
6
|
Wang W, Shang S, Wang Y, Xu B. Utilization of nanomaterials in MRI contrast agents and their role in therapy guided by imaging. Front Bioeng Biotechnol 2024; 12:1484577. [PMID: 39628648 PMCID: PMC11611570 DOI: 10.3389/fbioe.2024.1484577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/05/2024] [Indexed: 12/06/2024] Open
Abstract
Magnetic Resonance Imaging (MRI) is a globally acknowledged diagnostic procedure particularly recognized for its superior soft tissue contrast, high-resolution imaging, and non-ionizing radiation properties, making it an indispensable tool in the medical field. However, to optimize MRI's sensitivity and specificity towards certain diseases, use of contrast agents becomes necessary. Recent developments focus on nanomaterial-based MRI contrast agents to improve diagnostic accuracy and image quality. This review highlights advancements in such agents, including metal oxide nanoparticles, carbon-based materials, gold nanoparticles, and quantum dots. It discusses their roles in MRI-guided therapies like targeted drug delivery, hyperthermia, radiation therapy, photodynamic therapy, immunity-boosting therapy, and gene therapy. Insights into the future potential of MRI contrast agents in imaging medicine are also provided.
Collapse
Affiliation(s)
| | | | | | - Bing Xu
- Department of Radiology, Beijing Shunyi District Hospital, Shunyi Teaching Hospital of Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Ruan Z, Xu Z, Liu T, Chen L, Liu X, Chen K, Zhao C. Multifunctional nitrogen-sulfur codoped carbon quantum dots: Determining reduced glutathione, broad-spectrum antibacterial activity, and cell imaging. Heliyon 2024; 10:e38177. [PMID: 39386857 PMCID: PMC11462334 DOI: 10.1016/j.heliyon.2024.e38177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/08/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
In this study, nitrogen-sulfur codoped carbon quantum dots (N-S/CQDs) with various functions and properties were synthesized through a one-step method utilizing citric acid and cysteine as reaction substrates. The fluorescence of N-S/CQDs can be specifically quenched by permanganate ion (MnO4 -), and the quenched fluorescence can be recovered by the presence of reduced glutathione (GSH). A fluorescence sensing system based on N-S/CQDs@MnO4 - was developed and successfully applied for the determination of GSH in pharmaceutical preparations. Additionally, N-S/CQDs demonstrated broad-spectrum antibacterial activity, with minimum inhibitory concentrations of 32 μg/ml against Staphylococcus aureus (gram-positive bacterium) and 64 μg/ml against Escherichia coli (gram-negative bacterium). N-S/CQDs also proved effective for cell imaging, exhibiting excellent biocompatibility. These findings underscore the multifunctional characteristics and promising application potential of N-S/CQDs. Furthermore, this study provides a solid foundation for the development of multifunctional carbon quantum dots and the expansion of their applications in various fields.
Collapse
Affiliation(s)
- Zhipeng Ruan
- Department of Pharmacy, School of Pharmacy and Medical Technology, Putian University, Putian, 351100, China
- Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine (Putian University), Fujian Province University, Putian, 351100, China
| | - Zhifeng Xu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Putian University, Putian University, Putian, 351100, China
| | - Tianhui Liu
- Department of Pharmacy, School of Pharmacy and Medical Technology, Putian University, Putian, 351100, China
- Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine (Putian University), Fujian Province University, Putian, 351100, China
| | - Liwen Chen
- Department of Pharmacy, School of Pharmacy and Medical Technology, Putian University, Putian, 351100, China
| | - Xiaoling Liu
- Department of Pharmacy, School of Pharmacy and Medical Technology, Putian University, Putian, 351100, China
| | - Kaiying Chen
- Pathology Department, The First Hospital of Putian City, Putian, 351100, China
| | - Chengfei Zhao
- Department of Pharmacy, School of Pharmacy and Medical Technology, Putian University, Putian, 351100, China
- Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine (Putian University), Fujian Province University, Putian, 351100, China
| |
Collapse
|
8
|
Hassan OH, Saad AS, Ghali M. Highly sensitive detection of kojic acid in food samples using fluorescent carbon dots derived from pomegranate peel. Sci Rep 2024; 14:21144. [PMID: 39256396 PMCID: PMC11387480 DOI: 10.1038/s41598-024-70844-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/21/2024] [Indexed: 09/12/2024] Open
Abstract
Kojic acid (KA) has gained significant attention due to its widespread use in the food and cosmetics industries. However, concerns about its potential carcinogenic effects have heightened the need for sensitive detection methods. This study introduces a fluorescence-based optical sensor for the quantification of KA in food samples, utilizing fluorescent carbon dots (CDs) synthesized from pomegranate peel via a hydrothermal method. The Stern-Volmer plot demonstrated a linear response for KA in the range of 120 to 1200 µM, with a Pearson correlation coefficient (r) of 0.9999 and. The sensor exhibited a detection limit of 30 ± 0.04 µM and a limit of quantification (LOQ) of 90 ± 0.14 µM. Application of the developed method to soy sauce and vinegar samples yielded accurate KA determinations, with recoveries of 103.11 ± 0.96% and 104.45 ± 2.15%, respectively. These findings highlight the potential of the proposed sensor for practical applications in food quality and safety assessment, offering valuable insights into the presence of KA in food products.
Collapse
Affiliation(s)
- Omnia H Hassan
- Energy Materials Program, Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Ahmed S Saad
- PharmD Program, Egypt-Japan University of Science and Technology, New Borg El-Arab 21934, Alexandria, Egypt
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr Alaini St. 11562, Cairo, Egypt
| | - Mohsen Ghali
- Energy Materials Program, Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, New Borg El-Arab City, Alexandria, 21934, Egypt.
- Physics Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, Egypt.
| |
Collapse
|
9
|
Yin K, Bao Q, Li J, Wang M, Wang F, Sun B, Gong Y, Lian F. Molecular mechanisms of growth promotion and selenium enrichment in tomato plants by novel selenium-doped carbon quantum dots. CHEMOSPHERE 2024; 364:143175. [PMID: 39181469 DOI: 10.1016/j.chemosphere.2024.143175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Selenium (Se)-doped nanoparticles as novel Se fertilizers have a promising potential in the agricultural application. Here, the effects of two novel Se-doped carbon quantum dots (Se-CQDs1 and Se-CQDs2, prepared using co-cracking and adsorption-reduction methods, respectively) on the growth and Se enrichment of tomato plants were studied, where the promoting molecular mechanisms were explored in terms of the related genes expression and soil microbial composition. The results indicated that the soil application of 2.5 mg kg-1 Se-CQDs1 more significantly increased the root growth, plant biomass, and fruit yield than that of Se-CQDs2 and Na2SeO3 treatments (control). Specifically, Se-CQDs1 treatment was more effective to up-regulate the expressions of aquaporin gene (i.e., PIP) and growth hormone synthesis gene (i.e., NIT) than Se-CQDs1 and Na2SeO3 treatments. The expressions of Se methyltransferase gene (smt) and methionine methyltransferase gene (mmt) induced by Se-CQDs1 were 1.45 and 1.18 times higher than that by Se-CQDs2 as well as 1.82 and 2.17 times higher than that by Na2SeO3. Also, Se-CQDs1 more greatly increased the diversity and relative abundance of soil bacterial communities, especially the Actinobacteria phylum, which was beneficial to increase plant growth-promoting substances. These outstanding promoting effects of Se-CQDs1 were mainly ascribed to its higher hydrophilicity and content of the stable doped-Se. The overall results demonstrated that Se-CQDs would be a promising candidate for nano-fertilizer to increase crop growth and development (e.g., tomato plants), where the synthesis modes of Se-CQDs play a critical role in regulating the utilization efficiency of Se.
Collapse
Affiliation(s)
- Kaiyue Yin
- Institute of Pollution Control and Environmental Health, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Qiongli Bao
- Key Laboratory of Original Environmental Pollution Control, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Jiaqi Li
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Meiyan Wang
- Institute of Pollution Control and Environmental Health, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Fei Wang
- Institute of Pollution Control and Environmental Health, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Binbin Sun
- Institute of Pollution Control and Environmental Health, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Yan Gong
- Institute of Pollution Control and Environmental Health, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Fei Lian
- Institute of Pollution Control and Environmental Health, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| |
Collapse
|
10
|
Zhang L, Wang Q, Huo Z, Qiu Z, Wang Y, Wang Q, Bao J, Zheng Y, Du F, Cai Y. Silver peroxide-incorporated carbon dots with high photothermal performance for combating bacteria. NANOTECHNOLOGY 2024; 35:405101. [PMID: 38991514 DOI: 10.1088/1361-6528/ad61ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/11/2024] [Indexed: 07/13/2024]
Abstract
The widespread use of antibiotics often increases bacterial resistance. Herein, we reported a silver peroxide-incorporated carbon dots (defined as Ag2O2-CDs) with high photothermal conversion efficiency viain situoxidation process. The prepared Ag2O2-CDs exhibited ultra-small size of 2.0 nm and hybrid phase structure. Meanwhile, the Ag2O2-CDs were of a similar optical performance comparing with traditional carbon dots (CDs). Importantly, the incorporation of Ag2O2into CDs significantly enhanced photothermal conversion efficiency from 3.8% to 28.5%. By combining silver ion toxicity and photothermal ablation, the Ag2O2-CDs were capable of destroying gram-positive and gram-negative bacterium effectively. These findings demonstrated that the Ag2O2-CDs could be served as a potential antibacterial agent for clinical applications.
Collapse
Affiliation(s)
- Li Zhang
- Department of Critical Care Medicine Unit, Shanghai Baoshan District Wusong Central Hospital(Zhongshan Hospital Wusong Branch, Fudan University), Shanghai 201900, People's Republic of China
| | - Qinxin Wang
- Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Zhi Huo
- Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Zengke Qiu
- Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Yanlin Wang
- Department of Critical Care Medicine Unit, Shanghai Baoshan District Wusong Central Hospital(Zhongshan Hospital Wusong Branch, Fudan University), Shanghai 201900, People's Republic of China
| | - Qing Wang
- Department of Critical Care Medicine Unit, Shanghai Baoshan District Wusong Central Hospital(Zhongshan Hospital Wusong Branch, Fudan University), Shanghai 201900, People's Republic of China
| | - Jie Bao
- Department of Critical Care Medicine Unit, Shanghai Baoshan District Wusong Central Hospital(Zhongshan Hospital Wusong Branch, Fudan University), Shanghai 201900, People's Republic of China
| | - Yanhua Zheng
- Department of Critical Care Medicine Unit, Shanghai Baoshan District Wusong Central Hospital(Zhongshan Hospital Wusong Branch, Fudan University), Shanghai 201900, People's Republic of China
| | - Fengyi Du
- Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Yan Cai
- Department of Critical Care Medicine Unit, The Affiliated People's Hospital of Jiangsu University, Zhenjiang 212013, People's Republic of China
| |
Collapse
|
11
|
Wang D, Li Q, Xiao C, Wang H, Dong S. Nanoparticles in Periodontitis Therapy: A Review of the Current Situation. Int J Nanomedicine 2024; 19:6857-6893. [PMID: 39005956 PMCID: PMC11246087 DOI: 10.2147/ijn.s465089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024] Open
Abstract
Periodontitis is a disease of inflammation that affects the tissues supporting the periodontium. It is triggered by an immunological reaction of the gums to plaque, which leads to the destruction of periodontal attachment structures. Periodontitis is one of the most commonly recognized dental disorders in the world and a major factor in the loss of adult teeth. Scaling and root planing remain crucial for managing patients with persistent periodontitis. Nevertheless, exclusive reliance on mechanical interventions like periodontal surgery, extractions, and root planning is insufficient to halt the progression of periodontitis. In response to the problem of bacterial resistance, some researchers are committed to finding alternative therapies to antibiotics. In addition, some scholars focus on finding new materials to provide a powerful microenvironment for periodontal tissue regeneration and promote osteogenic repair. Nanoparticles possess distinct therapeutic qualities, including exceptional antibacterial, anti-inflammatory, and antioxidant properties, immunomodulatory capacities, and the promotion of bone regeneration ability, which made them can be used for the treatment of periodontitis. However, there are many problems that limit the clinical translation of nanoparticles, such as toxic accumulation in cells, poor correlation between in vitro and in vivo, and poor animal-to-human transmissibility. In this paper, we review the present researches on nanoparticles in periodontitis treatment from the perspective of three main categories: inorganic nanoparticles, organic nanoparticles, and nanocomposites (including nanofibers, hydrogels, and membranes). The aim of this review is to provide a comprehensive and recent update on nanoparticles-based therapies for periodontitis. The conclusion section summarizes the opportunities and challenges in the design and clinical translation of nanoparticles for the treatment of periodontitis.
Collapse
Affiliation(s)
- Di Wang
- The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People’s Republic of China
| | - Qiqi Li
- The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People’s Republic of China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People’s Republic of China
| | - Hao Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People’s Republic of China
| | - Shujun Dong
- The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| |
Collapse
|
12
|
Kaur A, Kaur M, Vyas P. Abatement of microbes and organic pollutants using heterostructural nanocomposites of rice straw CQDs with substituted strontium ferrite. CHEMOSPHERE 2024; 359:142310. [PMID: 38761820 DOI: 10.1016/j.chemosphere.2024.142310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 03/16/2024] [Accepted: 05/09/2024] [Indexed: 05/20/2024]
Abstract
Sustainable use of agricultural waste still remains a challenging task. Herein, we used rice straw as a carbon precursor to prepare carbon quantum dots (CQDs) for photocatalytic applications. Nanocomposites of CQDs with Ti4+ and Mg2+ substituted strontium ferrite (Sr0·4Ti0·4Mg0·2Fe2O4.4) nanoparticles (NPs) in varying w:w ratio was synthesized by ultrasonication method. The successful formation of nanocomposites was confirmed by various microscopic and spectroscopic techniques. The photocatalytic and antibacterial activity of NPs, CQDs and nanocomposites was comparatively evaluated using tetracycline hydrochloride, azure B, Staphylococcus aureus and Escherichia coli as model pollutants. The CQDs-Sr0.4Ti0·4Mg0·2Fe2O4.4 nanocomposite with a w:w ratio of 2:1 showed excellent photocatalytic and antibacterial activity, with the degradation and inactivation efficiency ranging from 97.1% to 99.0% in presence of visible light. The increased specific surface area (117.2 m2/g), and reduction in band gap (2.48 eV-2.09 eV) and decreased photoluminescence intensity of nanocomposites all corroborated these results. The impacting experimental parameters such as catalyst dose, pH and contact time were also examined. Quenching experiments confirmed that hydroxyl radicals (HO∙) radicals and holes (h+) played a vital role in the degradation of pollutants. The kinetics of photodegradation was explained by using the Langmuir-Hinshelwood model. Box-Behnken statistical modelling was used to optimize photocatalytic parameters. Results indicated that the nanocomposite of CQDs with Sr0·4Ti0·4Mg0·2Fe2O4.4 can serve as a promising photocatalyst for the removal of pollutants and microbes.
Collapse
Affiliation(s)
- Ajaypal Kaur
- Department of Chemistry, Punjab Agricultural University, Ludhiana, 141004, India
| | - Manpreet Kaur
- Department of Chemistry, Punjab Agricultural University, Ludhiana, 141004, India.
| | - Pratibha Vyas
- Department of Microbiology, Punjab Agricultural University, Ludhiana-141004, India
| |
Collapse
|
13
|
Mirseyed PS, Arjmand S, Rahmandoust M, Kheirabadi S, Anbarteh R. Green synthesis of yeast cell wall-derived carbon quantum dots with multiple biological activities. Heliyon 2024; 10:e29440. [PMID: 38699041 PMCID: PMC11064072 DOI: 10.1016/j.heliyon.2024.e29440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
Hypothesis Yeast cell walls are a sustainable biomass source containing carbon and other elements like phosphorus. Converting cell walls into valuable nanomaterials like carbon quantum dots (CQDs) is of interest. Experiments Cell walls from Saccharomyces cerevisiae were hydrothermally treated in 0.5 M H2SO4 to produce CQDs. Multiple analytical techniques were utilized to confirm phosphorus-doping (P-CQDs), characterize the fluorescence properties, determine quantum yield, and evaluate the sensing, antimicrobial, photocatalytic, and antioxidant capacities. Findings A successful synthesis of P-CQDs was achieved with strong blue fluorescence under UV excitation, 19 % quantum yield, and excellent stability. The P-CQDs showed sensitive fluorescence quenching in response to ferric ions with a 201 nM detection limit. Antibacterial effects against Escherichia coli and Staphylococcus aureus were demonstrated. P-CQDs also exhibited dye degradation under sunlight and antioxidant activity. So, the prepared P-CQDs displayed promising multifunctional capabilities for metal ion detection, disinfection, and environmental remediation. Further research is required to fully realize and implement the multifunctional potential of P-CQDs in real-world applications.
Collapse
Affiliation(s)
| | - Sareh Arjmand
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | | | - Shahpour Kheirabadi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Alborz, Iran
| | - Rojin Anbarteh
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Rosales S, Zapata K, Cortes FB, Rojano B, Diaz C, Cortes C, Jaramillo D, Vasquez A, Ramirez D, Franco CA. Simultaneous Detection of Carbon Quantum Dots as Tracers for Interwell Connectivity Evaluation in a Pattern with Two Injection Wells. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:789. [PMID: 38727383 PMCID: PMC11085186 DOI: 10.3390/nano14090789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/20/2024] [Accepted: 04/28/2024] [Indexed: 05/12/2024]
Abstract
This study aimed to develop and implement a nanotechnology-based alternative to traditional tracers used in the oil and gas industry for assessing interwell connectivity. A simple and rapid hydrothermal protocol for synthesizing carbon quantum dots (CQDs) using agroindustry waste was implemented. Three commercial CQDs were employed (CQDblue, CQDgreen, and CQDred); the fourth was synthesized from orange peel (CQDop). The CQDs from waste and other commercials with spherical morphology, nanometric sizes less than 11 nm in diameter, and surface roughness less than 3.1 nm were used. These tracers demonstrated high colloidal stability with a negative zeta potential, containing carbonyl-type chemical groups and unsaturations in aromatic structures that influenced their optical behavior. All materials presented high colloidal stability with negative values of charge z potential between -17.8 and -49.1. Additionally, individual quantification of these tracers is feasible even in scenarios where multiple CQDs are present in the effluent with a maximum percentage of interference of 15.5% for CQDop in the presence of the other three nanotracers. The CQDs were injected into the field once the technology was insured under laboratory conditions. Monitoring the effluents allowed the determination of connectivity for five first-line producer wells. This study enables the application of CQDs in the industry, particularly in fields where the arrangement of injector and producer wells is intricate, requiring the use of multiple tracers for a comprehensive description of the system.
Collapse
Affiliation(s)
- Stephania Rosales
- Grupo de Investigación en Fenómenos de Superficie–Michael Polanyi, Facultad de Minas, Universidad Nacional de Colombia, Sede-Medellín, Medellín 050034, Colombia; (S.R.); (K.Z.)
| | - Karol Zapata
- Grupo de Investigación en Fenómenos de Superficie–Michael Polanyi, Facultad de Minas, Universidad Nacional de Colombia, Sede-Medellín, Medellín 050034, Colombia; (S.R.); (K.Z.)
| | - Farid B. Cortes
- Grupo de Investigación en Fenómenos de Superficie–Michael Polanyi, Facultad de Minas, Universidad Nacional de Colombia, Sede-Medellín, Medellín 050034, Colombia; (S.R.); (K.Z.)
| | - Benjamín Rojano
- Grupo de Investigación Química de los Productos Naturales y los Alimentos, Facultad de Ciencias, Universidad Nacional de Colombia, Sede-Medellín, Medellín 050035, Colombia;
| | - Carlos Diaz
- GeoPark Colombia SAS, Bogotá 111211, Colombia; (C.D.); (C.C.)
| | - Carlos Cortes
- GeoPark Colombia SAS, Bogotá 111211, Colombia; (C.D.); (C.C.)
| | - David Jaramillo
- Verano Energy Limited Sucursal, Bogotá 110211, Colombia (A.V.)
| | - Adriana Vasquez
- Verano Energy Limited Sucursal, Bogotá 110211, Colombia (A.V.)
| | - Diego Ramirez
- Verano Energy Limited Sucursal, Bogotá 110211, Colombia (A.V.)
| | - Camilo A. Franco
- Grupo de Investigación en Fenómenos de Superficie–Michael Polanyi, Facultad de Minas, Universidad Nacional de Colombia, Sede-Medellín, Medellín 050034, Colombia; (S.R.); (K.Z.)
| |
Collapse
|
15
|
Sheng L, Wang Z, Song L, Yang X, Ye Y, Sun J, Ji J, Geng S, Ning D, Zhang Y, Sun X. Antimicrobial carbon dots/pectin-based hydrogel for promoting healing processes in multidrug-resistant bacteria-infected wounds. Int J Biol Macromol 2024; 264:130477. [PMID: 38428784 DOI: 10.1016/j.ijbiomac.2024.130477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
Multidrug-resistant (MDR) bacterial infections have become a significant threat to global healthcare systems. Here, we developed a highly efficient antimicrobial hydrogel using environmentally friendly garlic carbon dots, pectin, and acrylic acid. The hydrogel had a porous three-dimensional network structure, which endowed it with good mechanical properties and compression recovery performance. The hydrogel could adhere closely to skin tissues and had an equilibrium swelling ratio of 6.21, indicating its potential as a wound dressing. In particular, the bactericidal efficacy following 24-h contact against two MDR bacteria could exceed 99.99 %. When the hydrogel was applied to epidermal wounds infected with methicillin-resistant Staphylococcus aureus (MRSA) on mice, a remarkable healing rate of 93.29 % was observed after 10 days. This was better than the effectiveness of the traditionally used antibiotic kanamycin, which resulted in a healing rate of 70.36 %. In vitro cytotoxicity testing and hemolysis assay demonstrated a high biocompatibility. This was further proved by the in vivo assay where no toxic side effects were observed on the heart, liver, spleen, lung, or kidney of mice. This eco-friendly and easy-to-prepare food-inspired hydrogel provides an idea for the rational use of food and food by-products as a wound dressing to control MDR bacterial infections.
Collapse
Affiliation(s)
- Lina Sheng
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, Jiangsu 214200, PR China
| | - Ziyue Wang
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, Jiangsu 214200, PR China
| | - Liyao Song
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, Jiangsu 214200, PR China
| | - Xingxing Yang
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, Jiangsu 214200, PR China
| | - Yongli Ye
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, Jiangsu 214200, PR China
| | - Jiadi Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, Jiangsu 214200, PR China
| | - Jian Ji
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, Jiangsu 214200, PR China
| | - Shuxiang Geng
- Yunnan Academy of Forestry and Grassland, Kunming, Yunnan 650201, PR China
| | - Delu Ning
- Yunnan Academy of Forestry and Grassland, Kunming, Yunnan 650201, PR China
| | - Yinzhi Zhang
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, PR China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Xiulan Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, Jiangsu 214200, PR China.
| |
Collapse
|
16
|
Koul K, Jawanda IK, Soni T, Singh P, Sharma D, Kumari S. Quantum dots: a next generation approach for pathogenic microbial biofilm inhibition; mechanistic insights, existing challenges, and future potential. Arch Microbiol 2024; 206:158. [PMID: 38480540 DOI: 10.1007/s00203-024-03919-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 04/16/2024]
Abstract
Quantum Dots (QDs) have emerged as versatile nanomaterials with origins spanning organic, inorganic, and natural sources, revolutionizing various biomedical applications, particularly in combating pathogenic biofilm formation. Biofilms, complex structures formed by microbial communities enveloped in exopolysaccharide matrices, pose formidable challenges to traditional antibiotics due to their high tolerance and resistance, exacerbating inefficacy issues in antibiotic treatments. QDs offer a promising solution, employing physical mechanisms like photothermal or photodynamic therapy to disrupt biofilms. Their efficacy is noteworthy, with lower susceptibility to resistance development and broad-spectrum action as compared to conventional antibiotic methods. The stability and durability of QDs ensure sustained biofilm activity, even in challenging environmental conditions. This comprehensive review delves into the synthesis, properties, and applications of Carbon Quantum Dots (CQDs), most widely used QDs, showcasing groundbreaking developments that position these nanomaterials at the forefront of cutting-edge research and innovation. These nanomaterials exhibit multifaceted mechanisms, disrupting cell walls and membranes, generating reactive oxygen species (ROS), and binding to nucleic materials, effectively inhibiting microbial proliferation. This opens transformative possibilities for healthcare interventions by providing insights into biofilm dynamics. However, challenges in size control necessitate ongoing research to refine fabrication techniques, ensure defect-free surfaces, and optimize biological activity. QDs emerge as microscopic yet potent tools, promising to contribute to a brighter future where quantum wonders shape innovative solutions to persistently challenging issues posed by pathogenic biofilms. Henceforth, this review aims to explore QDs as potential agents for inhibiting pathogenic microbial biofilms, elucidating the underlying mechanisms, addressing the current challenges, and highlighting their promising future potential.
Collapse
Affiliation(s)
- Khyati Koul
- Department of Microbiology, Panjab University, Chandigarh, 160014, India
| | | | - Thomson Soni
- Department of Microbiology, Panjab University, Chandigarh, 160014, India
| | - Pranjali Singh
- Department of Microbiology, Panjab University, Chandigarh, 160014, India
| | - Divyani Sharma
- Department of Microbiology, Panjab University, Chandigarh, 160014, India
| | - Seema Kumari
- Department of Microbiology, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
17
|
Wang Y, Huang Z, Gao Y, Yu J, Zhang J, Li X, Yang Y, Zhao Q, Li S. Bacterially synthesized superfine tellurium nanoneedles as an antibacterial and solar-thermal still for efficient purification of polluted water. NANOSCALE 2024; 16:3422-3429. [PMID: 38284457 DOI: 10.1039/d3nr06597a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Bacterial biosynthesis of nanomaterials has several advantages (e.g., reduced energy inputs, lower cost, negligible environmental pollution) compared with traditional approaches. Various nanomaterials have been produced by bacteria. However, reports on using the bacterial biosynthesis of nanomaterials for applications with solar-thermal agents are scarce due to their narrow optical absorption. Herein, for the first time, we proposed a bacterial biosynthesis of broad-absorbing tellurium nanoneedles and demonstrated their effectiveness for solar-thermal evaporation and antibacterial applications. By simple biosynthesis within bacteria (Shewanella oneidensis MR-1), tellurium nanoneedles achieved a superfine configuration with a length-to-diameter ratio of nearly 20 and broad-spectrum absorbance. After integrating tellurium nanoneedles into a porous polyvinyl-alcohol scaffold, a solar-thermal still named TSAS-3 realized a high evaporation rate of 2.25 kg m-2 h-1 and solar-thermal conversion efficiency of 81% upon 1-Sun illumination. Based on these unique properties, the scaffold displayed good performances in seawater desalination, multiple wastewater treatment, and antibacterial applications. This work provides a simple and feasible strategy for the use of microbial-synthesized nanomaterials in solar-driven water purification and antibacterial applications.
Collapse
Affiliation(s)
- Yu Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China.
| | - Zhongming Huang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China.
| | - Yijian Gao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China.
| | - Jie Yu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China.
| | - Jie Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China.
| | - Xiliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China.
| | - Yuliang Yang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China.
| | - Qi Zhao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China.
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China.
| |
Collapse
|
18
|
Najmalden Ghaibullah Ghaibullah Y, Foto E, Ozdemir N, Zilifdar Foto F, Arslan G, Sargin I. Antibacterial potentials of carbon dots immobilized on chitosan and glass surfaces. Int J Biol Macromol 2024; 257:128586. [PMID: 38056753 DOI: 10.1016/j.ijbiomac.2023.128586] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/23/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Due to their antibacterial activity, chitosan‑carbon dot composites possess great potential for pharmaceuticals, medicine, and food preservation. Conducting a comprehensive study of the interactions between chitosan, carbon dots, and bacteria is crucial to understanding the processes behind applying these composites. This study aimed to immobilize carbon dots (C-dots) synthesized from Elaeagnus angustifolia fruits on chitosan and glass microbeads' surfaces, to characterize the test materials obtained after synthesis and immobilization, and to investigate their antibacterial potentials. C-dot synthesis was carried out from water extract in an acidic medium with the help of microwave irradiation, and their structural and optical properties were characterized by TEM, XRD, FT-IR, UV-vis, Zeta potential, and fluorescence methods. The surface of the glass microbeads was first activated and functionalized with surface amine groups with a silaning agent. C-dots were immobilized on both glass and chitosan microbeads using a crosslinking agent. Antibacterial potentials of nine different test materials, obtained before or after immobilization, were evaluated both qualitatively (MIC and MBC) and quantitatively (GI50) on E. coli, S. typhimurium, B. subtilis, and S. aureus, with the standard broth microdilution method. FT-IR and SEM-EDX analyses showed that C-dots were immobilized on chitosan (˂1 mm) and glass (˂100 μm) microbead surfaces. C-dots reduced the cell viability by ~25 % on S. typhimurium and B. subtilis (MIC = 25 mg/mL). It was also found that the highest antibacterial effect was recorded for C-dots-glass microbeads, which had a toxic effect of 43 % on S. aureus. In addition, binding C-dots to glass microbeads increased the antibacterial effect selectively in Gram-positive bacteria, while binding to chitosan microbeads was effective in all bacteria. The study showed that the antibacterial potential of C-dots-chitosan microbeads is more effective than C-dots-glass microbeads. C-dots could be used as carbon-based nanomaterials in antibacterial surface preparation once immobilized.
Collapse
Affiliation(s)
| | - Egemen Foto
- Department of Biotechnology, Faculty of Science, Necmettin Erbakan University, Konya, Turkey.
| | - Naciye Ozdemir
- Department of Biochemistry, Faculty of Science, Selcuk University, Konya, Turkey
| | - Fatma Zilifdar Foto
- Department of Biochemistry, Faculty of Science, Selcuk University, Konya, Turkey
| | - Gulsin Arslan
- Department of Biochemistry, Faculty of Science, Selcuk University, Konya, Turkey
| | - Idris Sargin
- Department of Biochemistry, Faculty of Science, Selcuk University, Konya, Turkey.
| |
Collapse
|
19
|
Zhong D, Cheng H, Liu H, Feng S, Liu Y, Xiang H, Chen J. Bibliometric analysis of Traditional Chinese Medicine nanoparticles research from 2005 to 2023. Electrophoresis 2024; 45:288-299. [PMID: 37909469 DOI: 10.1002/elps.202300207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023]
Abstract
To gain a deeper understanding of the current status of research on Traditional Chinese Medicine (TCM) and nanoparticles, we conducted a bibliometric study. We conducted a literature search in the Web of Science (WOS) for publications related to TCM and nanoparticles from 1992 to 2023. The data, including countries of publication, research institutions, journals, citations, and keywords, were analyzed using the Bibliometrix R-4.0 software package. We performed an analysis to identify the co-occurrence of keywords in the documents including their titles and abstracts. From 2005 to 2023, a total of 309 publications were included, with an average annual growth rate of 4.25%. The majority of these publications were published in Q1 journals (72, 47.06%) and Q2 journals (45, 29.41%). Among the 309 publications, 22 articles (7.12%) had an impact factor greater than 10, while 78 articles (25.24%) had an impact factor greater than 5. The analysis of international collaboration networks revealed limited international cooperation, with most collaborations occurring between institutions in China, the United States, and Australia. These 309 publications involved a total of 438 research institutions, with Chinese research institutions being the most prolific contributors. In this study, a total of 309 publications were included, comprising 1142 author keywords and 1175 keywords plus. Factor analysis of the 1175 keywords plus revealed that they could be grouped into five categories: one category included terms such as "oxide" and "zinc," another category included terms like "lipid" and "acid," a third category included terms such as "improve" and "enhance," a fourth category included terms like "silica" and "mesoporous," and the fifth category included terms like "PLGA" and "immune." Research on nanoparticles in TCM has been gradually gaining popularity. Currently, most of the research in this field is conducted in China, with limited international collaboration. The majority of TCM nanoparticle research focuses on individual herbal compounds, while research on nanoparticle formulations of traditional herbal prescriptions is relatively scarce.
Collapse
Affiliation(s)
- Dayuan Zhong
- Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong, P. R. China
| | - Hui Cheng
- Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong, P. R. China
- Institute of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, P. R. China
| | - Huixian Liu
- Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong, P. R. China
- Post-graduate Institute, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P. R. China
| | - Shihui Feng
- Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong, P. R. China
- Institute of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, P. R. China
| | - Yumei Liu
- Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong, P. R. China
- Institute of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, P. R. China
| | - Huier Xiang
- Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong, P. R. China
- Institute of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, P. R. China
| | - Jiaqi Chen
- Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong, P. R. China
| |
Collapse
|
20
|
Nair A, Kuppusamy K, Nangan S, Natesan T, Haponiuk JT, Thomas S, Ramasubburayan R, Gnanasekaran L, Selvaraj M, Gopi S. Multifunctional natural derived carbon quantum dots from Withania somnifera (L.) - Antiviral activities against SARS-CoV-2 pseudoviron. ENVIRONMENTAL RESEARCH 2023; 239:117366. [PMID: 37827368 DOI: 10.1016/j.envres.2023.117366] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Natural carbon dots (NCQDs) are expediently significant in the photo-, nano- and biomedical spheres owing to their facile synthesis, optical and physicochemical attributes. In the present study, three NCQDs are prepared and optimized from Withania somnifera (ASH) by one-step hydrothermal (bottom-up) method: HASHP (without dopant), nitrogen doped HASHNH3 (surface passivation using ammonia) and HASHEDA (surface passivation with ethylenediamine). The HR-TEM images reveal that HASHP, HASNH3, HASHEDA are spherically shaped with 2.5 ± 0.5 nm, 4 ± 1 nm and 5 ± 2 nm particle size, respectively, whereas FTIR confirms the aqueous solubility and nitrogen doping. The XRD patterns ensure that the NCQDs are amorphous and graphitic in nature. Comparatively, HASHNH3 (32.5%) and HASHEDA (27.6%) portray better fluorescence quantum yield than HASHP (5.6%). The increase in quantum yield for the doped NCQDs can be attributed to the surface passivation using ammonia and ethylenediamine. Surface passivation plays a crucial role in enhancing the fluorescence properties of quantum dots. The introduction of nitrogen through ammonia and ethylenediamine provides additional electronic states, possibly reducing non-radiative recombination sites and hence boosting the QY. In addition, an antiviral study unveils the striking potential of surface passivated NCQDs to curb Covid-19 crises with around 85% inhibition of SARS-CoV pseudoviron cells, which is better in comparison to the non-doped NCQDs. Hence, to understand the paramount efficacy of these NCQDs, a hypothesis on their possible mechanism of action against Covid-19 is discussed.
Collapse
Affiliation(s)
- Akhila Nair
- Gdansk University of Technology, Faculty of Chemistry, Polymer Technology Department, Gdansk, Poland
| | - Kanagaraj Kuppusamy
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, 99 Shang-Da Road, Shanghai, 200444, China
| | - Senthilkumar Nangan
- Department of Chemistry, Graphic Era Deemed to be University, Dehradun, Uttarakhand, 248002, India
| | - Thirumalaivasan Natesan
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Jozef T Haponiuk
- Gdansk University of Technology, Faculty of Chemistry, Polymer Technology Department, Gdansk, Poland
| | - Sabu Thomas
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, India
| | - Ramasamy Ramasubburayan
- Marine Biomedical Research Laboratory & Environmental Toxicology Unit, Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Lalitha Gnanasekaran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile
| | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Sreeraj Gopi
- Gdansk University of Technology, Faculty of Chemistry, Polymer Technology Department, Gdansk, Poland; Molecules Food Solutions Private Limited, Kinfra, Koratty, 680309, Kerala, India.
| |
Collapse
|
21
|
Li M, Liu Y, Gong Y, Yan X, Wang L, Zheng W, Ai H, Zhao Y. Recent advances in nanoantibiotics against multidrug-resistant bacteria. NANOSCALE ADVANCES 2023; 5:6278-6317. [PMID: 38024316 PMCID: PMC10662204 DOI: 10.1039/d3na00530e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023]
Abstract
Multidrug-resistant (MDR) bacteria-caused infections have been a major threat to human health. The abuse of conventional antibiotics accelerates the generation of MDR bacteria and makes the situation worse. The emergence of nanomaterials holds great promise for solving this tricky problem due to their multiple antibacterial mechanisms, tunable antibacterial spectra, and low probabilities of inducing drug resistance. In this review, we summarize the mechanism of the generation of drug resistance, and introduce the recently developed nanomaterials for dealing with MDR bacteria via various antibacterial mechanisms. Considering that biosafety and mass production are the major bottlenecks hurdling the commercialization of nanoantibiotics, we introduce the related development in these two aspects. We discuss urgent challenges in this field and future perspectives to promote the development and translation of nanoantibiotics as alternatives against MDR pathogens to traditional antibiotics-based approaches.
Collapse
Affiliation(s)
- Mulan Li
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Ying Liu
- Key Laboratory of Follicular Development and Reproductive Health in Liaoning Province, Third Affiliated Hospital of Jinzhou Medical University No. 2, Section 5, Heping Road Jin Zhou Liaoning 121000 P. R. China
| | - Youhuan Gong
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Xiaojie Yan
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Le Wang
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Wenfu Zheng
- CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology No. 11 Zhongguancun Beiyitiao, Haidian District Beijing 100190 P. R. China
- The University of Chinese Academy of Sciences 19A Yuquan Road, Shijingshan District Beijing 100049 P. R. China
- Cannano Tefei Technology, Co. LTD Room 1013, Building D, No. 136 Kaiyuan Avenue, Huangpu District Guangzhou Guangdong Province 510535 P. R. China
| | - Hao Ai
- Key Laboratory of Follicular Development and Reproductive Health in Liaoning Province, Third Affiliated Hospital of Jinzhou Medical University No. 2, Section 5, Heping Road Jin Zhou Liaoning 121000 P. R. China
| | - Yuliang Zhao
- CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology No. 11 Zhongguancun Beiyitiao, Haidian District Beijing 100190 P. R. China
- The University of Chinese Academy of Sciences 19A Yuquan Road, Shijingshan District Beijing 100049 P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences 19B Yuquan Road, Shijingshan District Beijing 100049 P. R. China
| |
Collapse
|
22
|
Muteeb G, Rehman MT, Shahwan M, Aatif M. Origin of Antibiotics and Antibiotic Resistance, and Their Impacts on Drug Development: A Narrative Review. Pharmaceuticals (Basel) 2023; 16:1615. [PMID: 38004480 PMCID: PMC10675245 DOI: 10.3390/ph16111615] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Antibiotics have revolutionized medicine, saving countless lives since their discovery in the early 20th century. However, the origin of antibiotics is now overshadowed by the alarming rise in antibiotic resistance. This global crisis stems from the relentless adaptability of microorganisms, driven by misuse and overuse of antibiotics. This article explores the origin of antibiotics and the subsequent emergence of antibiotic resistance. It delves into the mechanisms employed by bacteria to develop resistance, highlighting the dire consequences of drug resistance, including compromised patient care, increased mortality rates, and escalating healthcare costs. The article elucidates the latest strategies against drug-resistant microorganisms, encompassing innovative approaches such as phage therapy, CRISPR-Cas9 technology, and the exploration of natural compounds. Moreover, it examines the profound impact of antibiotic resistance on drug development, rendering the pursuit of new antibiotics economically challenging. The limitations and challenges in developing novel antibiotics are discussed, along with hurdles in the regulatory process that hinder progress in this critical field. Proposals for modifying the regulatory process to facilitate antibiotic development are presented. The withdrawal of major pharmaceutical firms from antibiotic research is examined, along with potential strategies to re-engage their interest. The article also outlines initiatives to overcome economic challenges and incentivize antibiotic development, emphasizing international collaborations and partnerships. Finally, the article sheds light on government-led initiatives against antibiotic resistance, with a specific focus on the Middle East. It discusses the proactive measures taken by governments in the region, such as Saudi Arabia and the United Arab Emirates, to combat this global threat. In the face of antibiotic resistance, a multifaceted approach is imperative. This article provides valuable insights into the complex landscape of antibiotic development, regulatory challenges, and collaborative efforts required to ensure a future where antibiotics remain effective tools in safeguarding public health.
Collapse
Affiliation(s)
- Ghazala Muteeb
- Department of Nursing, College of Applied Medical Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11437, Saudi Arabia;
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates;
| | - Moayad Shahwan
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates;
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates
| | - Mohammad Aatif
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
23
|
Zeng M, Wang Y, Liu M, Wei Y, Wen J, Zhang Y, Chen T, He N, Fan P, Dai X. Potential Efficacy of Herbal Medicine-Derived Carbon Dots in the Treatment of Diseases: From Mechanism to Clinic. Int J Nanomedicine 2023; 18:6503-6525. [PMID: 37965279 PMCID: PMC10642355 DOI: 10.2147/ijn.s431061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023] Open
Abstract
Carbon dots (CDs), a crucial component of nanomaterials, are zero-dimensional nanomaterials with carbon as the backbone structure and smaller than 10 nm. Due to their beneficial characteristics, they are widely used in biomedical fields such as biosensors, drug delivery, bio-imaging, and interactions with DNA. Interestingly, a novel type of carbon dot, generated by using herbal medicines as synthetic raw materials, has emerged as the most recent incomer in the family of CDs with the extensive growth in the number of materials selected for carbon dots synthesis. Herbal medicine-derived carbon dots (HM-CDs) have been employed in the biomedical industry, and are rapidly emerging as "modern nanomaterials" due to their unique structures and exceptional capabilities. Emerging trends suggest that their specific properties can be used in bleeding disorders, gastrointestinal disorders, inflammation-related diseases, and other common intractable diseases including cancer, menopausal syndrome, central nervous system disorders, and pain of various forms and causes. In addition, HM-CDs have been found to have organ-protective and antioxidant properties, as evidenced by extensive studies. This research provides a more comprehensive understanding of the biomedical applications of HM-CDs for the aforementioned disorders and investigates the intrinsic pharmacological activities and mechanisms of these HM-CDs to further advance their clinical applications.
Collapse
Affiliation(s)
- Mingtang Zeng
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Yao Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Maozhu Liu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Yuxun Wei
- Department of Pharmacy, Zhongjiang County People’s Hospital, Deyang, 618000, People’s Republic of China
| | - Jie Wen
- Department of Pharmacy, Shehong Municipal Hospital of Traditional Chinese Medicine, Shehong, 629600, People’s Republic of China
| | - Yuchen Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Tao Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Nianyu He
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Ping Fan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Xinhua Dai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| |
Collapse
|
24
|
Zhao WB, Liu KK, Wang Y, Li FK, Guo R, Song SY, Shan CX. Antibacterial Carbon Dots: Mechanisms, Design, and Applications. Adv Healthc Mater 2023; 12:e2300324. [PMID: 37178318 DOI: 10.1002/adhm.202300324] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/15/2023] [Indexed: 05/15/2023]
Abstract
The increase in antibiotic resistance promotes the situation of developing new antibiotics at the forefront, while the development of non-antibiotic pharmaceuticals is equally significant. In the post-antibiotic era, nanomaterials with high antibacterial efficiency and no drug resistance make them attractive candidates for antibacterial materials. Carbon dots (CDs), as a kind of carbon-based zero-dimensional nanomaterial, are attracting much attention for their multifunctional properties. The abundant surface states, tunable photoexcited states, and excellent photo-electron transfer properties make sterilization of CDs feasible and are gradually emerging in the antibacterial field. This review provides comprehensive insights into the recent development of CDs in the antibacterial field. The topics include mechanisms, design, and optimization processes, and their potential practical applications are also highlighted, such as treatment of bacterial infections, against bacterial biofilms, antibacterial surfaces, food preservation, and bacteria imaging and detection. Meanwhile, the challenges and outlook of CDs in the antibacterial field are discussed and proposed.
Collapse
Affiliation(s)
- Wen-Bo Zhao
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Kai-Kai Liu
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Yong Wang
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Fu-Kui Li
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Rui Guo
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Shi-Yu Song
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Chong-Xin Shan
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
25
|
Fu X, Ni Y, Wang G, Nie R, Wang Y, Yao R, Yan D, Guo M, Li N. Synergistic and Long-Lasting Wound Dressings Promote Multidrug-Resistant Staphylococcus Aureus-Infected Wound Healing. Int J Nanomedicine 2023; 18:4663-4679. [PMID: 37605733 PMCID: PMC10440117 DOI: 10.2147/ijn.s418671] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/09/2023] [Indexed: 08/23/2023] Open
Abstract
Background Multidrug-resistant staphylococcus aureus infected wounds can lead to nonhealing, systemic infections, and even death. Although advanced dressings are effective in protecting, disinfecting, and maintaining moist microenvironments, they often have limitations such as single functionality, inadequate drug release, poor biosafety, or high rates of drug resistance. Methods Here, a novel wound dressing comprising glycyrrhizic acid (GA) and tryptophan-sorbitol carbon quantum dots (WS-CQDs) was developed, which exhibit synergistic and long-lasting antibacterial and anti-inflammatory effects. We investigated the characterization, mechanical properties, synergistic antibacterial effects, sustained-release properties, and cytotoxicity of GA/WS-CQDs hydrogels in vitro. Additionally, we performed transcriptome sequence analysis to elucidate the antibacterial mechanism. Furthermore, we evaluated the biosafety, anti-inflammatory effects, and wound healing ability of GA/WS-CQDs dressings using an in vivo mouse model of methicillin-resistant staphylococcus aureus (MRSA)-infected wounds. Results The prepared GA/WS-CQDs hydrogels demonstrated superior anti-MRSA effects compared to common antibiotics in vitro. Furthermore, the sustained release of WS-CQDs from GA/WS-CQDs hydrogels lasted for up to 60 h, with a cumulative release of exceeding 90%. The sustained-released WS-CQDs exhibited excellent anti-MRSA effects, with low drug resistance attributed to DNA damage and inhibition of bacterial biofilm formation. Notably, in vivo experiments showed that GA/WS-CQDs dressings reduced the expression of inflammatory factors (TNF-α, IL-1β, and IL-6) and significantly promoted the healing of MRSA-infected wounds with almost no systemic toxicity. Importantly, the dressings did not require replacement during the treatment process. Conclusion These findings emphasize the high suitability of GA/WS-CQDs dressings for MRSA-infected wound healing and their potential for clinical translation.
Collapse
Affiliation(s)
- Xiangjie Fu
- Department of Blood Transfusion, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Yaqiong Ni
- Hunan Provincial Key Laboratory of Micro&Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People’s Republic of China
| | - Guanchen Wang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People’s Republic of China
| | - Runda Nie
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People’s Republic of China
| | - Yang Wang
- Institute of Integrative Medicine, Key Laboratory of Hunan Province for Liver Manifestation of Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Run Yao
- Department of Blood Transfusion, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Danyang Yan
- Department of Blood Transfusion, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Mingming Guo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People’s Republic of China
| | - Ning Li
- Department of Blood Transfusion, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| |
Collapse
|
26
|
Akram Z, Raza A, Mehdi M, Arshad A, Deng X, Sun S. Recent Advancements in Metal and Non-Metal Mixed-Doped Carbon Quantum Dots: Synthesis and Emerging Potential Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2336. [PMID: 37630922 PMCID: PMC10459133 DOI: 10.3390/nano13162336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
In nanotechnology, the synthesis of carbon quantum dots (CQDs) by mixed doping with metals and non-metals has emerged as an appealing path of investigation. This review offers comprehensive insights into the synthesis, properties, and emerging applications of mixed-doped CQDs, underlining their potential for revolutionary advancements in chemical sensing, biosensing, bioimaging, and, thereby, contributing to advancements in diagnostics, therapeutics, and the under standing of complex biological processes. This synergistic combination enhances their sensitivity and selectivity towards specific chemical analytes. The resulting CQDs exhibit remarkable fluorescence properties that can be involved in precise chemical sensing applications. These metal-modified CQDs show their ability in the selective and sensitive detection from Hg to Fe and Mn ions. By influencing their exceptional fluorescence properties, they enable precise detection and monitoring of biomolecules, such as uric acid, cholesterol, and many antibiotics. Moreover, when it comes to bioimaging, these doped CQDs show unique behavior towards detecting cell lines. Their ability to emit light across a wide spectrum enables high-resolution imaging with minimal background noise. We uncover their potential in visualizing different cancer cell lines, offering valuable insights into cancer research and diagnostics. In conclusion, the synthesis of mixed-doped CQDs opens the way for revolutionary advancements in chemical sensing, biosensing, and bioimaging. As we investigate deeper into this field, we unlock new possibilities for diagnostics, therapeutics, and understanding complex biological processes.
Collapse
Affiliation(s)
- Zubair Akram
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China; (Z.A.); (A.R.); (A.A.); (X.D.)
| | - Ali Raza
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China; (Z.A.); (A.R.); (A.A.); (X.D.)
| | - Muhammad Mehdi
- College of Chemistry & Pharmacy, Northwest A&F University, Xianyang 712100, China;
| | - Anam Arshad
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China; (Z.A.); (A.R.); (A.A.); (X.D.)
| | - Xiling Deng
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China; (Z.A.); (A.R.); (A.A.); (X.D.)
| | - Shiguo Sun
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China; (Z.A.); (A.R.); (A.A.); (X.D.)
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| |
Collapse
|
27
|
Manikandan V, Min SC. Biofabrication of carbon quantum dots and their food packaging applications: a review. Food Sci Biotechnol 2023; 32:1159-1171. [PMID: 37362813 PMCID: PMC10290018 DOI: 10.1007/s10068-023-01309-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 06/28/2023] Open
Abstract
Carbon quantum dots (CQDs) are an emerging class of novel carbon nanomaterials (< 10 nm). These zero-dimensional CQDs have recently invoked significant interest due to their high fluorescence ability, strong electronic conductivity, biocompatibility, excellent chemical stability, non-toxicity, and environmental safety. Bio-fabrication of CQDs from organic resources remains attractive owing to their excellent functional properties. An emerging class of CQDs is fabricated by various conventional methods. However, these methods need many chemical agents and instrument facilities. Bio-fabrication of CQDs has a lot of benefits because of its simple fabrication and eco-friendly. Therefore, the green synthesized CQDs are considered optimistic candidates for developing novel functional materials for food packaging applications. Thus, it is important to investigate the latest update on green-based CQDs for food packaging applications. This current review paper discusses the physicochemical properties of CQDs, the bio-fabrication of CQDs, and the fluorescent properties of CQDs along with their food packaging applications.
Collapse
Affiliation(s)
- Velu Manikandan
- Department of Food Science and Technology, Seoul Women’s University, 621 Hwarangro, Nowon-Gu, Seoul, 01797 Republic of Korea
| | - Sea Cheol Min
- Department of Food Science and Technology, Seoul Women’s University, 621 Hwarangro, Nowon-Gu, Seoul, 01797 Republic of Korea
| |
Collapse
|
28
|
Antibacterial gas therapy: Strategies, advances, and prospects. Bioact Mater 2023; 23:129-155. [DOI: 10.1016/j.bioactmat.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/20/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
|
29
|
Majood M, Selvam A, Agrawal O, Chaurasia R, Rawat S, Mohanty S, Mukherjee M. Biogenic Carbon Quantum Dots as a Neoteric Inducer in the Game of Directing Chondrogenesis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19997-20011. [PMID: 37042793 DOI: 10.1021/acsami.3c02007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The journey into the field of stem cell biology has been an endeavor of paramount advancement in biomedicine, establishing new horizons in the avenue of materiobiology. The creative drive of the scientific community focuses on ameliorating the utilization of stem cells, which is currently untapped on a large scale. With similar motivation, we present a nascent strategy of maneuvering biogenic carbon quantum dots (CQDs) to eclipse the toxic hurdles of chemical synthesis of carbon allotropes to serve as a biocompatible trident in stem cell biology employing a three-prong action of stem cell differentiation, imaging, and migration. The derivation of CQDs from garlic peels as a biogenic precursor abets in realizing the optophysical features of CQDs to image mesenchymal stem cells without hampering the biological systems with cytotoxicity. We report the versatility of biogenic CQDs to generate reactive oxygen species (ROS) to robustly influence stem cell migration and concomitantly chondrocyte differentiation from human Wharton's jelly mesenchymal stem cells (hWJ-MSCs). This was orchestrated without the use of chondrogenic induction factors, which was confirmed from the expression of chondrogenic markers (Col II, Col X, ACAN). Even the collagen content of cells incubated with CQDs was quite comparable with that of chondrocyte-induced cells. Thus, we empirically propose garlic peel-derived CQDs as a tangible advancement in stem cell biology from a materiobiological frame of reference to hone significant development in this arena.
Collapse
Affiliation(s)
- Misba Majood
- Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh 201303, India
| | - Abhyavartin Selvam
- Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh 201303, India
- Amity Institute of Nanotechnology, Amity University, Noida, Uttar Pradesh 201303, India
| | - Omnarayan Agrawal
- Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh 201303, India
| | - Radhika Chaurasia
- Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh 201303, India
| | - Sonali Rawat
- Stem Cells Facility, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sujata Mohanty
- Stem Cells Facility, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Monalisa Mukherjee
- Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh 201303, India
| |
Collapse
|
30
|
Dong Z, Yin J, Zhou X, Li S, Fu Z, Liu P, Shen L, Shi W. Natural and biocompatible dressing unit based on tea carbon dots modified core-shell electrospun fiber for diabetic wound disinfection and healing. Colloids Surf B Biointerfaces 2023; 226:113325. [PMID: 37148664 DOI: 10.1016/j.colsurfb.2023.113325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/01/2023] [Accepted: 04/22/2023] [Indexed: 05/08/2023]
Abstract
Wound infection and healing in patients with diabetes is one of the complex problems in trauma treatment. Therefore, designing and preparing an advanced dressing membrane for treating the wounds of such patients is essential. In this study, a zein film with biological tea carbon dots (TCDs) and calcium peroxide (CaO2) as the main components for promoting diabetic wound healing was prepared by an electrospinning technique, which combines the advantages of natural degradability and biosafety. CaO2 is a biocompatible material with a microsphere structure that reacts with water to release hydrogen peroxide and calcium ions. TCDs with a small diameter were doped in the membrane to mitigate its properties while improving the antibacterial and healing effects of the membrane. TCDs/CaO2 was mixed with ethyl cellulose-modified zein (ZE) to prepare the dressing membrane. The antibacterial properties, biocompatibility and wound-healing properties of the composite membrane were investigated by antibacterial experiment, cell experiment and a full-thickness skin defect. TCDs/CaO2 @ZE exhibited significant anti-inflammatory and wound healing-promoting properties in diabetic rats, without any cytotoxicity. This study is meaningful in developing a natural and biocompatible dressing membrane for diabetic wound healing, which shows a promising application in wound disinfection and recovery in patients with chronic diseases.
Collapse
Affiliation(s)
- Zhenyou Dong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Junhui Yin
- Institute of Microsurgery On Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Xueqing Zhou
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Suyun Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Zhenyu Fu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Pei Liu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Longxiang Shen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China.
| | - Wenyan Shi
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China; Key Laboratory of Organic Compound Pollution Engineering (MOE), Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
31
|
Miao H, Wang P, Cong Y, Dong W, Li L. Preparation of Ciprofloxacin-Based Carbon Dots with High Antibacterial Activity. Int J Mol Sci 2023; 24:ijms24076814. [PMID: 37047789 PMCID: PMC10095197 DOI: 10.3390/ijms24076814] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
Nowadays, bacterial infections are attracting great attention for the research and development of new antimicrobial agents. As one of the quinolones, ciprofloxacin (CI) has a broad-spectrum, strong antibacterial effect. However, the clinical use of ciprofloxacin is limited by drug resistance. Ciprofloxacin carbon dots (CCDs) with enhanced antibacterial activity and copper-doped ciprofloxacin carbon dots (Cu-CCDs) were synthesized by a simple hydrothermal method. The results of structural analysis and antibacterial experiments show that CCDs and Cu-CCDs have effective antibacterial properties by retaining the active groups of ciprofloxacin (-COOH, C-N, and C-F), and Cu-CCDs doped with copper have a better antibacterial effect. In addition, experiments have shown that Cu-CCDs show excellent antibacterial activity against E. coli and S. aureus and have good biocompatibility, which indicates that they have great prospects in clinical applications. Therefore, novel modified copper CCDs with broad-spectrum antibacterial activity, which can be used as antibacterial nanomaterials for potential applications in the field of antibacterial drugs, were synthesized in this study.
Collapse
Affiliation(s)
- Huimin Miao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences (CAS), Suzhou 215163, China
| | - Panyong Wang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences (CAS), Suzhou 215163, China
| | - Yingge Cong
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences (CAS), Suzhou 215163, China
| | - Wenfei Dong
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences (CAS), Suzhou 215163, China
| | - Li Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
32
|
Zhang M, Han S, Niu X, Li H, Zhang D, Fan H, Liu X, Wang K. PPy and CQDs‐doped novel CuO nanocomposites for enhanced antibacterial activity against drug‐resistant bacteria.**. ChemistrySelect 2022. [DOI: 10.1002/slct.202203636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Mengmeng Zhang
- School of Petrochemical Technology Lanzhou University of Technology Lanzhou 730050 China
| | - Sha Han
- School of Petrochemical Technology Lanzhou University of Technology Lanzhou 730050 China
| | - Xiaohui Niu
- School of Petrochemical Technology Lanzhou University of Technology Lanzhou 730050 China
| | - Hongxia Li
- School of Petrochemical Technology Lanzhou University of Technology Lanzhou 730050 China
| | - Deyi Zhang
- School of Petrochemical Technology Lanzhou University of Technology Lanzhou 730050 China
| | - Haiyan Fan
- Chemistry Department Nazarbayev University Astana 010000 Kazakhstan
| | - Xiaoyu Liu
- School of Petrochemical Technology Lanzhou University of Technology Lanzhou 730050 China
| | - Kunjie Wang
- School of Petrochemical Technology Lanzhou University of Technology Lanzhou 730050 China
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province Lanzhou 730050 China
| |
Collapse
|
33
|
Pikula K, Johari SA, Golokhvast K. Colloidal Behavior and Biodegradation of Engineered Carbon-Based Nanomaterials in Aquatic Environment. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4149. [PMID: 36500771 PMCID: PMC9737966 DOI: 10.3390/nano12234149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Carbon-based nanomaterials (CNMs) have attracted a growing interest over the last decades. They have become a material commonly used in industry, consumer products, water purification, and medicine. Despite this, the safety and toxic properties of different types of CNMs are still debatable. Multiple studies in recent years highlight the toxicity of CNMs in relation to aquatic organisms, including bacteria, microalgae, bivalves, sea urchins, and other species. However, the aspects that have significant influence on the toxic properties of CNMs in the aquatic environment are often not considered in research works and require further study. In this work, we summarized the current knowledge of colloidal behavior, transformation, and biodegradation of different types of CNMs, including graphene and graphene-related materials, carbon nanotubes, fullerenes, and carbon quantum dots. The other part of this work represents an overview of the known mechanisms of CNMs' biodegradation and discusses current research works relating to the biodegradation of CNMs in aquatic species. The knowledge about the biodegradation of nanomaterials will facilitate the development of the principals of "biodegradable-by-design" nanoparticles which have promising application in medicine as nano-carriers and represent lower toxicity and risks for living species and the environment.
Collapse
Affiliation(s)
- Konstantin Pikula
- Polytechnical Institute, Far Eastern Federal University, 10 Ajax Bay, Russky Island, Vladivostok 690922, Russia
| | - Seyed Ali Johari
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Pasdaran St., Sanandaj 66177-15175, Iran
| | - Kirill Golokhvast
- Polytechnical Institute, Far Eastern Federal University, 10 Ajax Bay, Russky Island, Vladivostok 690922, Russia
- Siberian Federal Scientific Centre of Agrobiotechnology, Centralnaya, Presidium, Krasnoobsk 633501, Russia
| |
Collapse
|
34
|
Zhang L, Zhang M, Mujumdar AS, Yu D, Wang H. Potential nano bacteriostatic agents to be used in meat-based foods processing and storage: A critical review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Le N, Zhang M, Kim K. Quantum Dots and Their Interaction with Biological Systems. Int J Mol Sci 2022; 23:ijms231810763. [PMID: 36142693 PMCID: PMC9501347 DOI: 10.3390/ijms231810763] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Quantum dots are nanocrystals with bright and tunable fluorescence. Due to their unique property, quantum dots are sought after for their potential in several applications in biomedical sciences as well as industrial use. However, concerns regarding QDs’ toxicity toward the environment and other biological systems have been rising rapidly in the past decade. In this mini-review, we summarize the most up-to-date details regarding quantum dots’ impacts, as well as QDs’ interaction with mammalian organisms, fungal organisms, and plants at the cellular, tissue, and organismal level. We also provide details about QDs’ cellular uptake and trafficking, and QDs’ general interactions with biological structures. In this mini-review, we aim to provide a better understanding of our current standing in the research of quantum dots, point out some knowledge gaps in the field, and provide hints for potential future research.
Collapse
Affiliation(s)
- Nhi Le
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA
| | - Min Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Kyoungtae Kim
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA
- Correspondence: ; Tel.: +1-417-836-5440; Fax: +1-417-836-5126
| |
Collapse
|
36
|
Wei D, Lv S, Zuo J, Zhang S, Liang S. Recent advances research and application of lignin-based fluorescent probes. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
37
|
Gonzalez‐Reyna MA, España‐Sanchez BL, Molina GA, Lopez‐Miranda JL, Mendoza‐Cruz R, Esparza R, Estevez M. Carbon Dots Synthesized from Cinchona Pubescens Vahl. An Efficient Antibacterial Nanomaterial and Bacterial Detector. ChemistrySelect 2022. [DOI: 10.1002/slct.202104530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Marlen Alexis Gonzalez‐Reyna
- Centro de Física Aplicada y Tecnología Avanzada. Universidad Nacional Autónoma de México. Boulevard Juriquilla 3001 Querétaro 76230 Mexico
| | - Beatriz Liliana España‐Sanchez
- CONACYT. Centro de Investigación y Desarrollo Tecnológico en Electroquímica SC. Parque Tecnológico Querétaro s/n Sanfandila Pedro Escobedo Qro. 76703 Mexico
| | - Gustavo Andrés Molina
- Centro de Física Aplicada y Tecnología Avanzada. Universidad Nacional Autónoma de México. Boulevard Juriquilla 3001 Querétaro 76230 Mexico
| | - Jose Luis Lopez‐Miranda
- Centro de Física Aplicada y Tecnología Avanzada. Universidad Nacional Autónoma de México. Boulevard Juriquilla 3001 Querétaro 76230 Mexico
| | - Ruben Mendoza‐Cruz
- Instituto de Investigaciones en Materiales Universidad Nacional Autónoma de México Circuito Exterior S/N Circuito de la Investigación Científica, C.U. 04510 Ciudad de México CDMX
| | - Rodrigo Esparza
- Centro de Física Aplicada y Tecnología Avanzada. Universidad Nacional Autónoma de México. Boulevard Juriquilla 3001 Querétaro 76230 Mexico
| | - Miriam Estevez
- Centro de Física Aplicada y Tecnología Avanzada. Universidad Nacional Autónoma de México. Boulevard Juriquilla 3001 Querétaro 76230 Mexico
| |
Collapse
|
38
|
Chen Y, Huang X, Li L, Wu J, Guo Y, Yao Y, Zhou L. Paper mill sludge-based carbon quantum dots as a specifically ratiometric fluorescent probe for the sensitive and selective detection of coptisine. LUMINESCENCE 2022; 37:1078-1086. [PMID: 35441456 DOI: 10.1002/bio.4260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/04/2022] [Accepted: 04/16/2022] [Indexed: 11/09/2022]
Abstract
Coptisine (COP), one of the bioactive components in Rhizoma Coptidis, has many pharmacological effects. Meanwhile, the determination of COP is essential in pharmacological and clinical applications. Herein, we prepared carbon quantum dots (CQDs) by one-step oil-thermal method using paper mill sludge (PMS) as precursor, and developed a ratiometric fluorescence method for the determination of COP. The structural and optical properties of PMS-CQDs were evaluated through HRTEM, FT-IR, XPS, XRD, UV-vis, fluorescence, zeta potential and fluorescence lifetime experiments. Fluorescence intensity ratio at 550 nm and 425 nm (I550 /I425 ) was recorded as an index for quantitative detection of COP. The detection concentration of COP ranges from 0.1 to 50 μM in good linear correlation (R2 = 0.9974) with a limit of detection of 0.028 μM (3σ/k). The quenching mechanism was deduced to be inner filter effect and static quenching. The ratiometric fluorescent probe showed impressive selectivity and sensitivity towards COP, and was successfully applied to the detection of COP in human urine with expected recoveries (95.22-111.00%) and relative standard deviation (0.46-2.95%), indicating that our developed method has a great application prospect in actual sample detection.
Collapse
Affiliation(s)
- Yingxin Chen
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, P.R. China
| | - Xiaotong Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, P.R. China
| | - Lu Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, P.R. China
| | - Junxian Wu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, P.R. China
| | - Yongqi Guo
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, P.R. China
| | - Yachao Yao
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou, P.R. China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, P.R. China
| | - Lihua Zhou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, P.R. China
| |
Collapse
|
39
|
Wu X, Abbas K, Yang Y, Li Z, Tedesco AC, Bi H. Photodynamic Anti-Bacteria by Carbon Dots and Their Nano-Composites. Pharmaceuticals (Basel) 2022; 15:487. [PMID: 35455484 PMCID: PMC9032997 DOI: 10.3390/ph15040487] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022] Open
Abstract
The misuse of many types of broad-spectrum antibiotics leads to increased antimicrobial resistance. As a result, the development of a novel antibacterial agent is essential. Photodynamic antimicrobial chemotherapy (PACT) is becoming more popular due to its advantages in eliminating drug-resistant strains and providing broad-spectrum antibacterial resistance. Carbon dots (CDs), zero-dimensional nanomaterials with diameters smaller than 10 nm, offer a green and cost-effective alternative to PACT photosensitizers. This article reviewed the synthesis methods of antibacterial CDs as well as the recent progress of CDs and their nanocomposites in photodynamic sterilization, focusing on maximizing the bactericidal impact of CDs photosensitizers. This review establishes the base for future CDs development in the PACT field.
Collapse
Affiliation(s)
- Xiaoyan Wu
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China; (X.W.); (K.A.); (Y.Y.); (A.C.T.)
| | - Khurram Abbas
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China; (X.W.); (K.A.); (Y.Y.); (A.C.T.)
| | - Yuxiang Yang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China; (X.W.); (K.A.); (Y.Y.); (A.C.T.)
| | - Zijian Li
- School of Materials Science and Engineering, Anhui University, Hefei 230601, China;
| | - Antonio Claudio Tedesco
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China; (X.W.); (K.A.); (Y.Y.); (A.C.T.)
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering-Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Hong Bi
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China; (X.W.); (K.A.); (Y.Y.); (A.C.T.)
- School of Materials Science and Engineering, Anhui University, Hefei 230601, China;
| |
Collapse
|
40
|
Carbon nanogels exert multipronged attack on resistant bacteria and strongly constrain resistance evolution. J Colloid Interface Sci 2022; 608:1813-1826. [PMID: 34742090 DOI: 10.1016/j.jcis.2021.10.107] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/19/2022]
Abstract
Developing antimicrobial agents that can eradicate drug-resistant (DR) bacteria and provide sustained protection from DR bacteria is a major challenge. Herein, we report a mild pyrolysis approach to prepare carbon nanogels (CNGs) through polymerization and the partial carbonization of l-lysine hydrochloride at 270 °C as a potential broad-spectrum antimicrobial agent that can inhibit biopolymer-producing bacteria and clinical drug-resistant isolates and tackle drug resistance issues. We thoroughly studied the structures of the CNGs, their antibacterial mechanism, and biocompatibility. CNGs possess superior bacteriostatic effects against drug-resistant bacteria compared to some commonly explored antibacterial nanomaterials (silver, copper oxide, and zinc oxide nanoparticles, and graphene oxide) through multiple antimicrobial mechanisms, including reactive oxygen species generation, membrane potential dissipation, and membrane function disruption, due to the positive charge and flexible colloidal structures resulting strong interaction with bacterial membrane. The minimum inhibitory concentration (MIC) values of the CNGs (0.6 µg mL-1 against E. coli and S. aureus) remained almost the same against the bacteria after 20 passages; however, the MIC values increased significantly after treatment with silver nanoparticles, antibiotics, the bacteriostatic chlorhexidine, and especially gentamicin (approximately 140-fold). Additionally, the CNGs showed a negligible MIC value difference against the obtained resistant bacteria after acclimation to the abovementioned antimicrobial agents. The findings of this study unveil the development of antimicrobial CNGs as a sustainable solution to combat multidrug-resistant bacteria.
Collapse
|
41
|
Chen Z, Peng S, Liu S, Li C, Cai X, Ma D, Zhang W. Fluorescent carbon dots loading nitric oxide for bacterial labeling and killing. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1960337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ziheng Chen
- Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Song Peng
- School of Stomatology of Jinan University, Jinan University, Guangzhou, China
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Shixin Liu
- Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Chengpeng Li
- School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, China
| | - Xiang Cai
- Department of Light Chemical Engineering, Guangdong Polytechnic, Foshan, China
| | - Dong Ma
- Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China
| | - Wu Zhang
- School of Stomatology of Jinan University, Jinan University, Guangzhou, China
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| |
Collapse
|