1
|
Habibullah MM, Hurubi A, Hakamy AO, Alwadani AAJ, Atti IM, Alothaid H, Shamlan G, Aldughaim M, Kaabi YA, Alhazmi A, Hamali H. The Association Between Antioxidant Enzyme Polymorphisms with Type 2 Diabetes Mellitus in Jazan Province. Diabetes Metab Syndr Obes 2024; 17:4593-4598. [PMID: 39635503 PMCID: PMC11616411 DOI: 10.2147/dmso.s493459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by persistent hyperglycemia, which results in initiates oxidative stress and disrupts various cellular pathways. In this study, we examined the relationship between polymorphisms in antioxidant enzymes, specifically glutathione peroxidase 1 (GPx1) and catalase (CAT), and the susceptibility to T2DM in a Saudi population from the Jazan Province. Methods A total of 419 participants were evaluated, including 247 T2DM patients and 172 controls. They were genotyped for the GPx1 Pro198Leu and CAT-262C/T polymorphisms by a PCR-based method. Results The results indicated that individuals with the CAT T/T genotype had a 60% lower likelihood of developing T2DM compared with those harboring the C/C genotype (uOD 0.4; 95% CI 0.2-0.8, p = 0.04); however, no significant association was observed between the GPx1 polymorphism and T2DM. Discussion The results suggest that CAT polymorphism may confer a protective effect against T2DM, whereas the GPx1 polymorphism appears not to be a determinant of T2DM susceptibility in this population. Further studies including larger and more diverse cohorts are necessary to validate these results and elucidate the underlying mechanisms. Understanding the genetic factors that contribute to T2DM is essential for developing targeted preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Mahmoud M Habibullah
- Department of Medical Laboratory Technology, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Ali Hurubi
- Department of Medical Laboratory Technology, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Ali O Hakamy
- Nursing Department, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Abbas Ali Jaber Alwadani
- Department of Laboratory and Blood Bank, Prince Mohammed Bin Nasser Hospital, Ministry of Health, Jazan, Saudi Arabia
| | - Ibrahim Mohammed Atti
- Department of Laboratory and Blood Bank, Prince Mohammed Bin Nasser Hospital, Ministry of Health, Jazan, Saudi Arabia
| | - Hani Alothaid
- Department of Basic Medical Science, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Ghalia Shamlan
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | | | - Yahia A Kaabi
- Department of Medical Laboratory Technology, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Alaa Alhazmi
- Department of Medical Laboratory Technology, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Hassan Hamali
- Department of Medical Laboratory Technology, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
2
|
Woeckel M, Rospleszcz S, Wolf K, Breitner-Busch S, Ingrisch M, Bamberg F, Ricke J, Schlett CL, Storz C, Schneider A, Stoecklein S, Peters A. Association between Long-Term Exposure to Traffic-Related Air Pollution and Cardio-Metabolic Phenotypes: An MRI Data-Based Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18064-18075. [PMID: 39365792 PMCID: PMC11483729 DOI: 10.1021/acs.est.4c03163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/13/2024] [Accepted: 09/15/2024] [Indexed: 10/06/2024]
Abstract
Long-term exposure to traffic-related air pollution (TRAP) is associated with cardiometabolic disease; however, its role in subclinical stages of disease development is unclear. Thus, we aimed to explore this association in a cross-sectional analysis, with cardiometabolic phenotypes derived from magnetic resonance imaging (MRI). Phenotypes of the left (LV) and right cardiac ventricle, whole-body adipose tissue (AT), and organ-specific AT were obtained by MRI in 400 participants of the KORA cohort. Land-use regression models were used to estimate residential long-term exposures to TRAP, e.g., nitrogen dioxides (NO2) or particle number concentration (PNC). Associations between TRAP and MRI phenotypes were modeled using linear regression. Participants' mean age was 56 ± 9 years, and 42% were female. Long-term exposure to TRAP was associated with decreased LV wall thickness; a 6.0 μg/m3 increase in NO2 was associated with a -1.9% [95% confidence interval: -3.7%; -0.1%] decrease in mean global LV wall thickness. Furthermore, we found associations between TRAP and increased cardiac AT. A 2,242 n/cm3 increase in PNC was associated with a 4.3% [-1.7%; 10.4%] increase in mean total cardiac AT. Associations were more pronounced in women and in participants with diabetes. Our exploratory study indicates that long-term exposure to TRAP is associated with subclinical cardiometabolic disease states, particularly in metabolically vulnerable subgroups.
Collapse
Affiliation(s)
- Margarethe Woeckel
- Institute
of Epidemiology, German Research Center for Environmental Health,
Helmholtz Zentrum München, Neuherberg 85764, Germany
- Chair
of Epidemiology, Institute for Medical Information Processing, Biometry
and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität
München (LMU Munich), Munich 81377, Germany
| | - Susanne Rospleszcz
- Institute
of Epidemiology, German Research Center for Environmental Health,
Helmholtz Zentrum München, Neuherberg 85764, Germany
- Chair
of Epidemiology, Institute for Medical Information Processing, Biometry
and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität
München (LMU Munich), Munich 81377, Germany
- Department
of Diagnostic and Interventional Radiology, Medical Center, Faculty
of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Kathrin Wolf
- Institute
of Epidemiology, German Research Center for Environmental Health,
Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Susanne Breitner-Busch
- Institute
of Epidemiology, German Research Center for Environmental Health,
Helmholtz Zentrum München, Neuherberg 85764, Germany
- Chair
of Epidemiology, Institute for Medical Information Processing, Biometry
and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität
München (LMU Munich), Munich 81377, Germany
| | - Michael Ingrisch
- Department
of Radiology, Ludwig-Maximilians-Universität
Hospital Munich, Munich 81377, Germany
| | - Fabian Bamberg
- Department
of Diagnostic and Interventional Radiology, Medical Center, Faculty
of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Jens Ricke
- Department
of Radiology, Ludwig-Maximilians-Universität
Hospital Munich, Munich 81377, Germany
| | - Christopher L Schlett
- Department
of Diagnostic and Interventional Radiology, Medical Center, Faculty
of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Corinna Storz
- Department
of Neuroradiology, Medical Center, University
of Freiburg, Freiburg 79106, Germany
| | - Alexandra Schneider
- Institute
of Epidemiology, German Research Center for Environmental Health,
Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Sophia Stoecklein
- Department
of Radiology, Ludwig-Maximilians-Universität
Hospital Munich, Munich 81377, Germany
| | - Annette Peters
- Institute
of Epidemiology, German Research Center for Environmental Health,
Helmholtz Zentrum München, Neuherberg 85764, Germany
- Chair
of Epidemiology, Institute for Medical Information Processing, Biometry
and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität
München (LMU Munich), Munich 81377, Germany
- German Center
for Cardiovascular Disease Research (DZHK), Munich Heart Alliance, Munich 80336, Germany
| |
Collapse
|
3
|
Liu X, Liu X, Jin M, Huang N, Song Z, Li N, Huang T. Association between birth weight/joint exposure to ambient air pollutants and type 2 diabetes: a cohort study in the UK Biobank. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2888-2898. [PMID: 37936397 DOI: 10.1080/09603123.2023.2278634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/30/2023] [Indexed: 11/09/2023]
Abstract
Early life events and environmental factors are associated with type 2 diabetes (T2D) development. We assessed the combined effect of birth weight andambient air pollutants, and effect of their interaction on T2D risk. Totally, 6,474 T2D incidents were recorded over an 8.7-year follow-up period. The adjusted hazard ratios (aHRs) with 95% confidence intervals (CIs) were 1.31 (1.26, 1.36) for each kilogram decrease in birth weight, and 1.08 (1.05, 1.11) for each standard deviation increase in air pollution score (APS). Birth weight<3000 g amplified the T2D risk associated with high APS. A combination of the lowest birth weight (<2500 g) and the highest quintile of APS led to over two-fold increase in T2D risk (aHR: 2.17; 95% CI: 1.79-2.64). There was a significant additive interaction between them. In conclusion, ambient air pollutants increase the risk for T2D, particularly in populations with low birth weight.
Collapse
Affiliation(s)
- Xiaojing Liu
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, China
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, Beijing, China
| | - Xiaowen Liu
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, China
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, Beijing, China
| | - Ming Jin
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, China
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, Beijing, China
| | - Ninghao Huang
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Zimin Song
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Nan Li
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, China
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, Beijing, China
| | - Tao Huang
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, China
- Ministry of Education, Key Laboratory of Molecular Cardiovascular Sciences (Peking University), Beijing, China
- Center for Intelligent Public Health, Institute for Artificial Intelligence, Peking University, Beijing, China
| |
Collapse
|
4
|
Guo T, Cheng X, Wei J, Chen S, Zhang Y, Lin S, Deng X, Qu Y, Lin Z, Chen S, Li Z, Sun J, Chen X, Chen Z, Sun X, Chen D, Ruan X, Tuohetasen S, Li X, Zhang M, Sun Y, Zhu S, Deng X, Hao Y, Jing Q, Zhang W. Unveiling causal connections: Long-term particulate matter exposure and type 2 diabetes mellitus mortality in Southern China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116212. [PMID: 38489900 DOI: 10.1016/j.ecoenv.2024.116212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Evidence of the potential causal links between long-term exposure to particulate matters (PM, i.e., PM1, PM2.5, and PM1-2.5) and T2DM mortality based on large cohorts is limited. In contrast, the existing evidence usually suffers from inherent bias with the traditional association assessment. A prospective cohort of 580,757 participants in the southern region of China were recruited during 2009 and 2015 and followed up through December 2020. PM exposure at each residential address was estimated by linking to the well-established high-resolution simulation dataset. Hazard ratios (HRs) were calculated using time-varying marginal structural Cox models, an established causal inference approach, after adjusting for potential confounders. During follow-up, a total of 717 subjects died from T2DM. For every 1 μg/m3 increase in PM2.5, the adjusted HRs and 95% confidence interval (CI) for T2DM mortality was 1.036 (1.019-1.053). Similarly, for every 1 μg/m3 increase in PM1 and PM1-2.5, the adjusted HRs and 95% CIs were 1.032 (1.003-1.062) and 1.085 (1.054-1.116), respectively. Additionally, we observed a generally more pronounced impact among individuals with lower levels of education or lower residential greenness which as measured by the Normalized Difference Vegetation Index (NDVI). We identified substantial interactions between NDVI and PM1 (P-interaction = 0.003), NDVI and PM2.5 (P-interaction = 0.019), as well as education levels and PM1 (P-interaction = 0.049). The study emphasizes the need to consider environmental and socio-economic factors in strategies to reduce T2DM mortality. We found that PM1, PM2.5, and PM1-2.5 heighten the peril of T2DM mortality, with education and green space exposure roles in modifying it.
Collapse
Affiliation(s)
- Tong Guo
- Department of Medical Statistics, School of Public Health & Research Center for Health Information & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xi Cheng
- Department of Medical Statistics, School of Public Health & Research Center for Health Information & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20740, USA
| | - Shirui Chen
- Department of Medical Statistics, School of Public Health & Research Center for Health Information & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yuqin Zhang
- Department of Medical Statistics, School of Public Health & Research Center for Health Information & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Shao Lin
- Department of Environmental Health Sciences, University at Albany, State University of New York, Rensselaer, NY, USA
| | - Xinlei Deng
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Yanji Qu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong, China
| | - Ziqiang Lin
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Shimin Chen
- Department of Medical Statistics, School of Public Health & Research Center for Health Information & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Zhiqiang Li
- Department of Medical Statistics, School of Public Health & Research Center for Health Information & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jie Sun
- Department of Medical Statistics, School of Public Health & Research Center for Health Information & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xudan Chen
- Department of Medical Statistics, School of Public Health & Research Center for Health Information & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Zhibing Chen
- Department of Medical Statistics, School of Public Health & Research Center for Health Information & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xurui Sun
- Department of Medical Statistics, School of Public Health & Research Center for Health Information & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Dan Chen
- Department of Medical Statistics, School of Public Health & Research Center for Health Information & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xingling Ruan
- Department of Medical Statistics, School of Public Health & Research Center for Health Information & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Shaniduhaxi Tuohetasen
- Department of Medical Statistics, School of Public Health & Research Center for Health Information & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xinyue Li
- Department of Medical Statistics, School of Public Health & Research Center for Health Information & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Man Zhang
- Department of nosocomial infection management, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Yongqing Sun
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Shuming Zhu
- Department of Medical Statistics, School of Public Health & Research Center for Health Information & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xueqing Deng
- Department of Medical Statistics, School of Public Health & Research Center for Health Information & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yuantao Hao
- Peking University Center for Public Health and Epidemic Preparedness & Response, Peking, China.
| | - Qinlong Jing
- Guangzhou Municipal Health Commission, Guangzhou, China.
| | - Wangjian Zhang
- Department of Medical Statistics, School of Public Health & Research Center for Health Information & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
5
|
Scheer C, Plans-Beriso E, Pastor-Barriuso R, Ortolá R, Sotos-Prieto M, Cabañas-Sánchez V, Gullón P, Ojeda Sánchez C, Ramis R, Fernández-Navarro P, Rodríguez-Artalejo F, García-Esquinas E. Exposure to green spaces, cardiovascular risk biomarkers and incident cardiovascular disease in older adults: The Seniors-Enrica II cohort. ENVIRONMENT INTERNATIONAL 2024; 185:108570. [PMID: 38484611 DOI: 10.1016/j.envint.2024.108570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/07/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024]
Abstract
INTRODUCTION The impact of residential green spaces on cardiovascular health in older adults remains uncertain. METHODS Cohort study involving 2114 adults aged ≥ 65 years without cardiovascular disease (CVD), residing in five dense municipalities (Prince et al., 2015) of the Madrid region and with detailed characterization of their socioeconomic background, health behaviors, CVD biological risk factors, and mental, physical, and cognitive health. Greenness exposure was measured using the Normalized Difference Vegetation Index (NDVI) at varying distances from participants' homes. Traffic exposure, neighborhood environment, neighborhood walkability, and socioeconomic deprivation at the census level were also assessed. Serum N-terminal pro-B-type natriuretic peptide (NT-ProBNP), high-sensitivity troponin T (hs-TnT), interleukin 6 (IL-6), and Growth Differentiation Factor 15 (GDF-15) were measured at baseline, and incident CVD events identified through electronic medical records (International Classification of Primary Care-2 codes K74, K75, K77, K90, and K92). RESULTS After adjusting for sex, age, educational attainment, financial hardship and socioeconomic deprivation at the census level, an interquartile range (IQR) increase in NDVI at 250, 500, 750, and 1000 m around participants' homes was associated with mean differences in ProBNP of -5.56 % (95 %CI: -9.77; -1.35), -5.05 % (-9.58; -0.53), -4.24 % (-8.19, -0.19), and -4.16 % (-7.59; -0.74), respectively; and mean differences in hs-TnT among diabetic participants of -8.03 % (95 %CI: -13.30; -2.77), -9.52 % (-16.08; -2.96), -8.05 % (-13.94, -2.16) and -5.56 % (-10.75; -0.54), respectively. Of similar magnitude, although only statistically significant at 250 and 500 m, were the observed lower IL-6 levels with increasing greenness. GDF-15 levels were independent of NDVI. In prospective analyses (median follow-up 6.29 years), an IQR increase in residential greenness at 500, 750, and 1000 m was associated with a lower risk of incident CVD. The variables that contributed most to the apparent beneficial effects of greenness on CVD were lower exposure to traffic, improved cardiovascular risk factors, and enhanced physical performance. Additionally, neighborhood walkability and increased physical activity were notable contributors among individuals with diabetes. CONCLUSION Increased exposure to residential green space was associated with a moderate reduction in CVD risk in older adults residing in densely populated areas.
Collapse
Affiliation(s)
- Cara Scheer
- Fulda University of Applied Sciences. Fulda, Germany
| | - Elena Plans-Beriso
- Public Health and Epidemiology Research Group, School of Medicine, Universidad de Alcala, 28871 Madrid, Spain; Department of Chronic Diseases, National Center of Epidemiology, Carlos III Health Institute, Madrid, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Roberto Pastor-Barriuso
- Department of Chronic Diseases, National Center of Epidemiology, Carlos III Health Institute, Madrid, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Rosario Ortolá
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain; Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid. Madrid, Spain/ CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Mercedes Sotos-Prieto
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain; Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid. Madrid, Spain/ CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; IMDEA Food Institute. CEI UAM+CSIC, Madrid, Spain
| | - Verónica Cabañas-Sánchez
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain; Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid. Madrid, Spain/ CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Pedro Gullón
- Department of Surgery, Social and Medical Sciences. School of Medicine and Health Sciences, Universidad de Alcala. Alcala de Henares, Madrid, Spain; Centre for Urban Research, RMIT University, Melbourne, Australia
| | | | - Rebeca Ramis
- Department of Chronic Diseases, National Center of Epidemiology, Carlos III Health Institute, Madrid, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Pablo Fernández-Navarro
- Department of Chronic Diseases, National Center of Epidemiology, Carlos III Health Institute, Madrid, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Fernando Rodríguez-Artalejo
- Department of Chronic Diseases, National Center of Epidemiology, Carlos III Health Institute, Madrid, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain; IMDEA Food Institute. CEI UAM+CSIC, Madrid, Spain
| | - Esther García-Esquinas
- Department of Chronic Diseases, National Center of Epidemiology, Carlos III Health Institute, Madrid, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain.
| |
Collapse
|
6
|
Zhang A, Zhang H, Mi L, Ding L, Jiang Z, Yu F, Tang M. Diabetes: a potential mediator of associations between polycyclic aromatic hydrocarbon exposure and stroke. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-32324-y. [PMID: 38332417 DOI: 10.1007/s11356-024-32324-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
Epidemiological evidence suggests associations between exposure to polycyclic aromatic hydrocarbons (PAHs) and cardiovascular diseases (CVD), while diabetes is a common risk factor for CVD. The present study aims to clarify the effect of high PAH exposure on diabetes and stroke in general population. A total of 7849 individuals aged 20 years or older from the National Health and Nutrition Examination Survey 2007-2016 were included in the study. The logistic regression analysis modeled the association between PAH exposure and diabetes as well as stroke. The analysis yielded odds ratios (ORs) and 95% confidence intervals (CIs). The study also evaluated the potential mediating role of diabetes in the relation between PAH exposure and stroke via mediating effect analyses. Of the 7849 eligible participants, 1424 cases of diabetes and 243 cases of stroke were recorded. After adjusting for covariates including age, gender, smoking status, drinking status, education level, marital status, physical activity, hypertension, low-density lipoprotein cholesterol, and BMI, the ORs for stroke in the highest quartile (Q4) of total urinary PAHs were 1.97 (95% CI 1.11-3.52, P = 0.022) as compared to the lowest quartile (Q1) of total urinary PAHs. The ORs for diabetes in the Q4 of total urinary PAHs were 1.56 (95% CI 1.15-2.12, P = 0.005), while the ORs between Q4 and Q1 for stroke and diabetes concerning exposure to 2-hydroxynaphthalene were 2.23 (95% CI 1.17-4.25, P = 0.016) and 1.40 (95% CI 1.07-1.82, P = 0.015), respectively. The mediation analysis found that diabetes accounted for 5.00% of the associations between urinary PAHs and the prevalence of stroke. Urinary metabolites of PAH have been linked to stroke and diabetes. Increasing the risk of diabetes may play a significant role in mediating the association between exposure to PAHs and increased risk of stroke. Monitoring and improving glucose metabolism in individuals with high exposure to PAHs may aid in reducing the prevalence of stroke.
Collapse
Affiliation(s)
- Aikai Zhang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Cardiovascular Institute, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100037, China
| | - Hongda Zhang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Cardiovascular Institute, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100037, China
| | - Lijie Mi
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Cardiovascular Institute, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100037, China
| | - Lei Ding
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Cardiovascular Institute, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100037, China
| | - Zihan Jiang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Cardiovascular Institute, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100037, China
| | - Fengyuan Yu
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Cardiovascular Institute, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100037, China
| | - Min Tang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Cardiovascular Institute, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
7
|
Zhang H, Zhao Z, Wu Z, Xia Y, Zhao Y. Identifying interactions among air pollutant emissions on diabetes prevalence in Northeast China using a complex network. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:393-400. [PMID: 38110789 DOI: 10.1007/s00484-023-02597-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND Low air quality related to ambient air pollution is the largest environmental risk to health worldwide. Interactions between air pollution emissions may affect associations between air pollution exposure and chronic diseases. Therefore, this study aimed to quantify interactions among air pollution emissions and assess their effects on the association between air pollution and diabetes. METHODS After constructing long-term emission networks for six air pollutants based on data collected from routine monitoring stations in Northeast China, a mutual information network was used to quantify interactions among air pollution emissions. Multiple linear regression analysis was then used to explore the influence of emission interactions on the association between air pollution exposure and the prevalence of diabetes based on data reported from the Northeast Natural Cohort Study in China. RESULTS Complex network analysis detected three major emission sources in Northeast China located in Shenyang and Changchun. The effects of particulate matter (PM2.5 and PM10) and ground-level ozone (O3) emissions were limited to certain communities but could spread to other communities through emissions in Inner Mongolia. Emissions of sulfur dioxide (SO2), nitrogen dioxide (NO2), and carbon monoxide (CO) significantly influenced other communities. These results indicated that air pollutants in different geographic areas can interact directly or indirectly. Adjusting for interactions between emissions changed associations between air pollution emissions and diabetes prevalence, especially for PM2.5, NO2, and CO. CONCLUSIONS Complex network analysis is suitable for quantifying interactions among air pollution emissions and suggests that the effects of PM2.5 and NO2 emissions on health outcomes may have been overestimated in previous population studies while those of CO may have been underestimated. Further studies examining associations between air pollution and chronic diseases should consider controlling for the effects of interactions among pollution emissions.
Collapse
Affiliation(s)
- Hehua Zhang
- Clinical Research Center, Shengjing Hospital of China Medical University, Sanhao Street, No. 36, Heping District, Shenyang, 110002, China
- Key Laboratory of Precision Medical Research on Major Chronic Disease, Shenyang, 110002, Liaoning Province, China
| | - Zhiying Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Sanhao Street, No. 36, Heping District, Shenyang, 110002, China
| | - Zhuo Wu
- Tianjin Third Central Hospital, No. 83, Jintang Road, Hedong District, Tianjin, China
| | - Yang Xia
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Sanhao Street, No. 36, Heping District, Shenyang, 110002, China
| | - Yuhong Zhao
- Clinical Research Center, Shengjing Hospital of China Medical University, Sanhao Street, No. 36, Heping District, Shenyang, 110002, China.
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Sanhao Street, No. 36, Heping District, Shenyang, 110002, China.
- Key Laboratory of Precision Medical Research on Major Chronic Disease, Shenyang, 110002, Liaoning Province, China.
| |
Collapse
|
8
|
Das D, M K, Mitra A, Zaky MY, Pathak S, Banerjee A. A Review on the Efficacy of Plant-derived Bio-active Compounds Curcumin and Aged Garlic Extract in Modulating Cancer and Age-related Diseases. Curr Rev Clin Exp Pharmacol 2024; 19:146-162. [PMID: 37150987 DOI: 10.2174/2772432819666230504093227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/24/2023] [Accepted: 02/13/2023] [Indexed: 05/09/2023]
Abstract
Aging is a process characterized by accumulating degenerative changes resulting in the death of an organism. Aging is mediated by various pathways that are directly linked to the individual's lifespan and are shunted for many age-related diseases. Many strategies for alleviating age-related diseases have been studied, which can target cells and molecules. Modern drugs such as Metformin, Rapamycin, and other drugs are used to reduce the effects of age-related diseases. Despite their beneficial activity, they possess some side effects which can limit their applications, mainly in older adults. Natural phytochemicals which have anti-aging activities have been studied by many researchers from a broader aspect and suggested that plant-based compounds can be a possible, direct, and practical way to treat age-related diseases which has enormous anti-aging activity. Also, studies indicated that the synergistic action of phytochemicals might enhance the biological effect rather than the individual or summative effects of natural compounds. Curcumin has an antioxidant property and is an effective scavenger of reactive oxygen species. Curcumin also has a beneficial role in many age-related diseases like diabetes, cardiovascular disease, neurological disorder, and cancer. Aged garlic extracts are also another bioactive component that has high antioxidant properties. Many studies demonstrated aged garlic extract, which has high antioxidant properties, could play a significant role in anti-aging and age-related diseases. The synergistic effect of these compounds can decrease the requirement of doses of a single drug, thus reducing its side effects caused by increased concentration of the single drug.
Collapse
Affiliation(s)
- Diptimayee Das
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Kanchan M
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Abhijit Mitra
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Mohamed Y Zaky
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Antara Banerjee
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| |
Collapse
|
9
|
Kutlar Joss M, Boogaard H, Samoli E, Patton AP, Atkinson R, Brook J, Chang H, Haddad P, Hoek G, Kappeler R, Sagiv S, Smargiassi A, Szpiro A, Vienneau D, Weuve J, Lurmann F, Forastiere F, Hoffmann BH. Long-Term Exposure to Traffic-Related Air Pollution and Diabetes: A Systematic Review and Meta-Analysis. Int J Public Health 2023; 68:1605718. [PMID: 37325174 PMCID: PMC10266340 DOI: 10.3389/ijph.2023.1605718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Objectives: We report results of a systematic review on the health effects of long-term traffic-related air pollution (TRAP) and diabetes in the adult population. Methods: An expert Panel appointed by the Health Effects Institute conducted this systematic review. We searched the PubMed and LUDOK databases for epidemiological studies from 1980 to July 2019. TRAP was defined based on a comprehensive protocol. Random-effects meta-analyses were performed. Confidence assessments were based on a modified Office for Health Assessment and Translation (OHAT) approach, complemented with a broader narrative synthesis. We extended our interpretation to include evidence published up to May 2022. Results: We considered 21 studies on diabetes. All meta-analytic estimates indicated higher diabetes risks with higher exposure. Exposure to NO2 was associated with higher diabetes prevalence (RR 1.09; 95% CI: 1.02; 1.17 per 10 μg/m3), but less pronounced for diabetes incidence (RR 1.04; 95% CI: 0.96; 1.13 per 10 μg/m3). The overall confidence in the evidence was rated moderate, strengthened by the addition of 5 recently published studies. Conclusion: There was moderate evidence for an association of long-term TRAP exposure with diabetes.
Collapse
Affiliation(s)
- Meltem Kutlar Joss
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | | | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Richard Atkinson
- Population Health Research Institute, St. George’s University of London, London, United Kingdom
| | - Jeff Brook
- Occupational and Environmental Health Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Howard Chang
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Pascale Haddad
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Ron Kappeler
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Sharon Sagiv
- Center for Environmental Research and Children’s Health, Division of Epidemiology, School of Public Health, University of California, Berkeley, Berkeley, CA, United States
| | - Audrey Smargiassi
- Department of Environmental and Occupational Health, School of Public Health, University of Montreal, Montreal, QC, Canada
| | - Adam Szpiro
- Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - Danielle Vienneau
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Jennifer Weuve
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, United States
| | - Fred Lurmann
- Sonoma Technology, Inc., Petaluma, CA, United States
| | - Francesco Forastiere
- Faculty of Medicine, School of Public Health, Imperial College, London, United Kingdom
| | - Barbara H. Hoffmann
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
10
|
Li H, Cai M, Li H, Qian ZM, Stamatakis K, McMillin SE, Zhang Z, Hu Q, Lin H. Is dietary intake of antioxidant vitamins associated with reduced adverse effects of air pollution on diabetes? Findings from a large cohort study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114182. [PMID: 36270037 PMCID: PMC9626446 DOI: 10.1016/j.ecoenv.2022.114182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 05/12/2023]
Abstract
INTRODUCTION It remains unknown whether higher dietary intake of antioxidant vitamins could reduce the harmful effects of air pollution on incident diabetes mellitus. METHODS A total of 156,490 participants free of diabetes mellitus in the UK Biobank data were included in this analysis. Antioxidant vitamin intake was measured using a 24-h food intake questionnaire, and results were categorized as sufficient or insufficient according to the British Recommended Nutrient Intake. Exposure to fine particles (PM2.5), thoracic particles (PM10), nitrogen dioxide (NO2), and nitrogen oxide (NOx) was estimated using land use regression models at participants' residences. Incident diabetes mellitus was identified using health administrative datasets. Cox regression models were used to assess the associations. RESULTS A total of 4271 incident diabetes mellitus cases were identified during a median follow-up of 11.7 years. Compared with participants with insufficient intake of antioxidant vitamins, those with sufficient consumption had a weaker association between air pollution (PM2.5, PM10 and NO2) and diabetes mellitus [sufficient vs. insufficient: HR = 1.12 (95 % CI: 0.87, 1.45) vs. 1.69 (95 % CI: 1.42, 2.02) for PM2.5, 1.00 (95 % CI: 0.88, 1.14) vs. 1.21 (95 % CI: 1.10, 1.34) for PM10, and 1.01 (95 % CI: 0.98, 1.04) vs. 1.05 (95 % CI: 1.03, 1.07) for NO2 (all p for comparison < 0.05)]. Among different antioxidant vitamins, we observed stronger effects for vitamin C and E. CONCLUSION Our study suggests that ambient air pollution is one important risk factor of diabetes mellitus, and sufficient intake of antioxidant vitamins may reduce such adverse effects of air pollution on diabetes mellitus.
Collapse
Affiliation(s)
- Haopeng Li
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Miao Cai
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Haitao Li
- Department of Social Medicine and Health Service Management, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Zhengmin Min Qian
- Department of Epidemiology and Biostatistics, College for Public Health and Social Justice, Saint Louis University, St. Louis, MO 63104, USA
| | - Katie Stamatakis
- Department of Epidemiology and Biostatistics, College for Public Health and Social Justice, Saint Louis University, St. Louis, MO 63104, USA
| | - Stephen Edward McMillin
- School of Social Work, College for Public Health and Social Justice, Saint Louis University, St. Louis, MO 63103, USA
| | - Zilong Zhang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Qiansheng Hu
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, China.
| | - Hualiang Lin
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, China.
| |
Collapse
|
11
|
Wu Y, Zhang S, Qian SE, Cai M, Li H, Wang C, Zou H, Chen L, Vaughn MG, McMillin SE, Lin H. Ambient air pollution associated with incidence and dynamic progression of type 2 diabetes: a trajectory analysis of a population-based cohort. BMC Med 2022; 20:375. [PMID: 36310158 PMCID: PMC9620670 DOI: 10.1186/s12916-022-02573-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Though the association between air pollution and incident type 2 diabetes (T2D) has been well documented, evidence on the association with development of subsequent diabetes complications and post-diabetes mortality is scarce. We investigate whether air pollution is associated with different progressions and outcomes of T2D. METHODS Based on the UK Biobank, 398,993 participants free of diabetes and diabetes-related events at recruitment were included in this analysis. Exposures to particulate matter with a diameter ≤ 10 μm (PM10), PM2.5, nitrogen oxides (NOx), and NO2 for each transition stage were estimated at each participant's residential addresses using data from the UK's Department for Environment, Food and Rural Affairs. The outcomes were incident T2D, diabetes complications (diabetic kidney disease, diabetic eye disease, diabetic neuropathy disease, peripheral vascular disease, cardiovascular events, and metabolic events), all-cause mortality, and cause-specific mortality. Multi-state model was used to analyze the impact of air pollution on different progressions of T2D. Cumulative transition probabilities of different stages of T2D under different air pollution levels were estimated. RESULTS During the 12-year follow-up, 13,393 incident T2D patients were identified, of whom, 3791 developed diabetes complications and 1335 died. We observed that air pollution was associated with different progression stages of T2D with different magnitudes. In a multivariate model, the hazard ratios [95% confidence interval (CI)] per interquartile range elevation in PM2.5 were 1.63 (1.59, 1.67) and 1.08 (1.03, 1.13) for transitions from healthy to T2D and from T2D to complications, and 1.50 (1.47, 1.53), 1.49 (1.36, 1.64), and 1.54 (1.35, 1.76) for mortality risk from baseline, T2D, and diabetes complications, respectively. Generally, we observed stronger estimates of four air pollutants on transition from baseline to incident T2D than those on other transitions. Moreover, we found significant associations between four air pollutants and mortality risk due to cancer and cardiovascular diseases from T2D or diabetes complications. The cumulative transition probability was generally higher among those with higher levels of air pollution exposure. CONCLUSIONS This study indicates that ambient air pollution exposure may contribute to increased risk of incidence and progressions of T2D, but to diverse extents for different progressions.
Collapse
Affiliation(s)
- Yinglin Wu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shiyu Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Samantha E Qian
- College for Public Health & Social Justice, Saint Louis University, Saint Louis, MO, 63104, USA
| | - Miao Cai
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Haitao Li
- Department of Social Medicine and Health Service Management, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Hongtao Zou
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Lan Chen
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Michael G Vaughn
- School of Social Work, College for Public Health & Social Justice, Saint Louis University, Saint Louis, MO, 63103, USA
| | - Stephen Edward McMillin
- School of Social Work, College for Public Health & Social Justice, Saint Louis University, Saint Louis, MO, 63103, USA
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
12
|
Yao M, Xu F, Yao Y, Wang H, Ju X, Wang L. Assessment of Novel Oligopeptides from Rapeseed Napin ( Brassica napus) in Protecting HepG2 Cells from Insulin Resistance and Oxidative Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12418-12429. [PMID: 36129441 DOI: 10.1021/acs.jafc.2c03718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Oligopeptides (Thr-His-Leu-Pro-Lys (THLPK), His-Pro-Leu-Lys (HPLK), Leu-Pro-Lys (LPK), His-Leu-Lys (HLK), and Leu-His-Lys (LHK)) are newly identified from rapeseed napin (Brassica napus) protein-derived hydrolysates with the capability of upregulating glucose transporter-4 (GLUT4) expression and translocation. However, whether each of them enhances GLUT4 expression and translocation and their specific mechanisms remain unclear. Here, we assess the effects of the oligopeptides against insulin resistance (IR) and oxidative stress in hepatocytes and screen out the most antidiabetic one. Specifically, compared with other oligopeptides, LPK not only remarkably elevated glucose consumption to 8.45 mmol/L protein; superoxide dismutase (SOD) activity to 319 U/mg protein; GLUT4 expression and translocation; and phosphorylated level of insulin receptor substrate-1 (IRS-1), phosphatidylinositol 3-kinase (PI3K), and protein kinase B (Akt) (P < 0.05) but also remarkably attenuated the reactive oxygen species (ROS) level to 2255, lactate dehydrogenase (LDH) activity to 20.5 U/mg protein, malondialdehyde (MDA) content to 241 nmol/mg protein, and NO content to 1302 μmol/mL protein (P < 0.05). These findings demonstrated that antidiabetic oligopeptide LPK possessed the most potential to protect HepG2 cells from IR and oxidative stress via activating IRS-1/PI3K/Akt/GLUT4 and regulating common oxidative markers in vitro.
Collapse
Affiliation(s)
- Meng Yao
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing210023, Jiangsu, China
| | - Feiran Xu
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei230009, Anhui, China
| | - Yijun Yao
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing210023, Jiangsu, China
| | - Haiou Wang
- School of Food Science, Nanjing Xiaozhuang University, Nanjing210017, Jiangsu, China
| | - Xingrong Ju
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing210023, Jiangsu, China
| | - Lifeng Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing210023, Jiangsu, China
| |
Collapse
|
13
|
Vassalle C, Gaggini M. Type 2 Diabetes and Oxidative Stress and Inflammation: Pathophysiological Mechanisms and Possible Therapeutic Options. Antioxidants (Basel) 2022; 11:antiox11050953. [PMID: 35624817 PMCID: PMC9137541 DOI: 10.3390/antiox11050953] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/07/2022] [Indexed: 02/01/2023] Open
Affiliation(s)
- Cristina Vassalle
- Fondazione CNR-Regione Toscana G Monasterio, 56124 Pisa, Italy
- Correspondence:
| | - Melania Gaggini
- Istituto di Fisiologia Clinica, Consiglio Nazionale delle Ricerche-CNR, 56124 Pisa, Italy;
| |
Collapse
|
14
|
Valderrama A, Zapata MI, Hernandez JC, Cardona-Arias JA. Systematic review of preclinical studies on the neutrophil-mediated immune response to air pollutants, 1980-2020. Heliyon 2022; 8:e08778. [PMID: 35128092 PMCID: PMC8810373 DOI: 10.1016/j.heliyon.2022.e08778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/24/2021] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
Preclinical evidence about the neutrophil-mediated response in exposure to air pollutants is scattered and heterogeneous. This has prevented the consolidation of this research field around relevant models that could advance towards clinical research. The purpose of this study was to systematic review the studies of the neutrophils response to air pollutants, following the recommendations of the Cochrane Collaboration and the PRISMA guide, through 54 search strategies in nine databases. We include 234 studies (in vitro, and in vivo), being more frequent using primary neutrophils, Balb/C and C57BL6/J mice, and Sprague-Dawley and Wistar rats. The most frequent readouts were cell counts, cytokines and histopathology. The temporal analysis showed that in the last decade, the use of mice with histopathological and cytokine measurement have predominated. This systematic review has shown that study of the neutrophils response to air pollutants started 40 years ago, and composed of 100 different preclinical models, 10 pollutants, and 11 immunological outcomes. Mechanisms of neutrophils-mediated immunopathology include cellular activation, ROS production, and proinflammatory effects, leading to cell-death, oxidative stress, and inflammatory infiltrates in lungs. This research will allow consolidating the research efforts in this field, optimizing the study of causal processes, and facilitating the advance to clinical studies.
Collapse
Affiliation(s)
- Andrés Valderrama
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Colombia
| | - Maria Isabel Zapata
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Colombia
| | - Juan C. Hernandez
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Colombia
| | | |
Collapse
|
15
|
Chen X, Zhao X, Jones MB, Harper A, de Seymour JV, Yang Y, Xia Y, Zhang T, Qi H, Gulliver J, Cannon RD, Saffery R, Zhang H, Han TL, Baker PN. The relationship between hair metabolites, air pollution exposure and gestational diabetes mellitus: A longitudinal study from pre-conception to third trimester. Front Endocrinol (Lausanne) 2022; 13:1060309. [PMID: 36531491 PMCID: PMC9755849 DOI: 10.3389/fendo.2022.1060309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is a metabolic condition defined as glucose intolerance with first presentation during pregnancy. Many studies suggest that environmental exposures, including air pollution, contribute to the pathogenesis of GDM. Although hair metabolite profiles have been shown to reflect pollution exposure, few studies have examined the link between environmental exposures, the maternal hair metabolome and GDM. The aim of this study was to investigate the longitudinal relationship (from pre-conception through to the third trimester) between air pollution exposure, the hair metabolome and GDM in a Chinese cohort. METHODS A total of 1020 women enrolled in the Complex Lipids in Mothers and Babies (CLIMB) birth cohort were included in our study. Metabolites from maternal hair segments collected pre-conception, and in the first, second, and third trimesters were analysed using gas chromatography-mass spectrometry (GC-MS). Maternal exposure to air pollution was estimated by two methods, namely proximal and land use regression (LUR) models, using air quality data from the air quality monitoring station nearest to the participant's home. Logistic regression and mixed models were applied to investigate associations between the air pollution exposure data and the GDM associated metabolites. RESULTS Of the 276 hair metabolites identified, the concentrations of fourteen were significantly different between GDM cases and non-GDM controls, including some amino acids and their derivatives, fatty acids, organic acids, and exogenous compounds. Three of the metabolites found in significantly lower concentrations in the hair of women with GDM (2-hydroxybutyric acid, citramalic acid, and myristic acid) were also negatively associated with daily average concentrations of PM2.5, PM10, SO2, NO2, CO and the exposure estimates of PM2.5 and NO2, and positively associated with O3. CONCLUSIONS This study demonstrated that the maternal hair metabolome reflects the longitudinal metabolic changes that occur in response to environmental exposures and the development of GDM.
Collapse
Affiliation(s)
- Xuyang Chen
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Xue Zhao
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Mary Beatrix Jones
- Department of Statistics, The University of Auckland, Auckland, New Zealand
| | - Alexander Harper
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
| | | | - Yang Yang
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Yinyin Xia
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Ting Zhang
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Hongbo Qi
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
- Department of Obstetrics and Gynecology, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - John Gulliver
- Centre for Environmental Health and Sustainability & School of Geography, Geology and the Environment, University of Leicester, Leicester, United Kingdom
| | - Richard D. Cannon
- Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Richard Saffery
- Molecular Immunity, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC, Australia
| | - Hua Zhang
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
- *Correspondence: Hua Zhang, ; Ting-Li Han,
| | - Ting-Li Han
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
- Liggins Institute, The University of Auckland, Auckland, New Zealand
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Hua Zhang, ; Ting-Li Han,
| | - Philip N. Baker
- College of Life Sciences, University of Leicester, Leicester, United Kingdom
| |
Collapse
|