1
|
Zhou J, Ni W, Zhang X, Yang M, Liu X, Guo J, Li J, Zhao Q, Deng H, Lei H, Zhang L, Liao H, Jia X. Visual analysis on ferroptosis and its cross-talk to coronavirus disease 2019 (COVID-19). Heliyon 2024; 10:e37617. [PMID: 39290278 PMCID: PMC11407094 DOI: 10.1016/j.heliyon.2024.e37617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024] Open
Abstract
Background Ferroptosis is a new type of programmed cell death. Although ferroptosis has been studied in various aspects, there has been no visual analysis of ferroptosis in coronavirus disease 2019 (COVID-19) to date. It is still a global health concern of the COVID-19 pandemic worldwide, three years after its outbreak. Yet the emergence of the mutant strain Omicron has caused a fourth wave of infections in many countries. The pathogenesis of COVID-19 is still undergoing extensive exploration, which holds paramount importance in mitigating future epidemics. Methods For this study, CiteSpace 6.2 R4 software was used for bibliometric and visual atlas analysis of ferroptosis-related research, and the Genecards database was used to mine ferroptosis and COVID-19-related genes. Results We found increasing studies about ferroptosis. China and the United States have demonstrated robust scientific innovation over recent years, with extensive collaboration between their institutions and authors. Ferroptosis and COVID-19 were seen to have 13 shared genes, which may be new targets for the treatment of COVID-19 in the future. Most of the shared genes are enriched in tumor necrosis factor (TNF) pathways. The majority of those genes are up-regulated under the cellular response to oxidative stress. Genes including Tumour necrosis factor (TNF), RELA proto-oncogene (RELA), Activating transcription factor 4 (ATF4), Cytochrome b-245 beta chain (CYBB), Jun proto-oncogene (JUN), Mitogen-activated protein kinase 1 (MAPK1) and Heme oxygenase 1 (HMOX1), maybe a breakthrough for ferroptosis and COVID-19. Whilst previous research has shown there to be a relationship between ferroptosis and COVID-19, the specific role of ferroptosis remained unclear. Our study aimed to analyze the research status of ferroptosis and its relationship with COVID-19, to provide a useful reference for further prevention and treatment of COVID-19. Overall, uncovering the role of ferroptosis in SARS-CoV-2 infection is important for the development of new treatment strategies for COVID-19.
Collapse
Affiliation(s)
- Junda Zhou
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Wenjia Ni
- Key Laboratory of Non-Coding RNA and Drug Discovery at Chengdu Medical College of Sichuan Province, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Xianqin Zhang
- Key Laboratory of Non-Coding RNA and Drug Discovery at Chengdu Medical College of Sichuan Province, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Meng Yang
- Key Laboratory of Non-Coding RNA and Drug Discovery at Chengdu Medical College of Sichuan Province, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Xin Liu
- College of Public Health, Chengdu Medical College, China
| | - Jinlin Guo
- Chengdu University of Traditional Chinese Medicine, China
| | - Jian Li
- School of Basic Medical Sciences, Chengdu University, Chengdu, 610106, China
| | - Qi Zhao
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Hang Deng
- Key Laboratory of Non-Coding RNA and Drug Discovery at Chengdu Medical College of Sichuan Province, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Hanyue Lei
- Key Laboratory of Non-Coding RNA and Drug Discovery at Chengdu Medical College of Sichuan Province, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Lin Zhang
- Department of Clinical Pharmacy, ShaoXing People's Hospital, ShaoXing Hospital of ZheJiang University, China
| | - Hai Liao
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Xu Jia
- Key Laboratory of Non-Coding RNA and Drug Discovery at Chengdu Medical College of Sichuan Province, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| |
Collapse
|
2
|
Jiang M, Wu S, Xie K, Zhou G, Zhou W, Bao P. The significance of ferroptosis in renal diseases and its therapeutic potential. Heliyon 2024; 10:e35882. [PMID: 39220983 PMCID: PMC11363859 DOI: 10.1016/j.heliyon.2024.e35882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/04/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Kidney diseases are significant global public health concern, with increasing prevalence and substantial economic impact. Developing novel therapeutic approaches are essential for delaying disease progression and improving patient quality of life. Cell death signifying the termination of cellular life, could facilitate appropriate bodily development and internal homeostasis. Recently, regulated cell death (RCD) forms such as ferroptosis, characterized by iron-dependent lipid peroxidation, has garnered attention in diverse renal diseases and other pathological conditions. This review offers a comprehensive examination of ferroptosis, encompassing an analysis of the involvement of iron and lipid metabolism, the System Xc - /glutathione/glutathione peroxidase 4 signaling, and additional associated pathways. Meanwhile, the review delves into the potential of targeting ferroptosis as a therapeutic approach in the management of acute kidney injury (AKI), chronic kidney disease (CKD), diabetic nephropathy, and renal tumors. Furthermore, it emphasizes the significance of ferroptosis in the transition from AKI to CKD and further accentuates the potential for repurposing drug and utilizing traditional medicine in targeting ferroptosis-related pathways for clinical applications. The integrated review provides valuable insights into the role of ferroptosis in kidney diseases and highlights the potential for targeting ferroptosis as a therapeutic strategy.
Collapse
Affiliation(s)
- Mingzhu Jiang
- The Yangzhou Clinical Medical College of Xuzhou Medical University, Yangzhou, China
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Shujun Wu
- The Yangzhou School of Clinical Medicine of Dalian Medical University, Yangzhou, China
| | - Kun Xie
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Gang Zhou
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Wei Zhou
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Ping Bao
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Zhang M, Guo M, Gao Y, Wu C, Pan X, Huang Z. Mechanisms and therapeutic targets of ferroptosis: Implications for nanomedicine design. J Pharm Anal 2024; 14:100960. [PMID: 39135963 PMCID: PMC11318476 DOI: 10.1016/j.jpha.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 08/15/2024] Open
Abstract
Ferroptosis is a nonapoptotic form of cell death and differs considerably from the well-known forms of cell death in terms of cell morphology, genetics, and biochemistry. The three primary pathways for cell ferroptosis are system Xc-/glutathione peroxidase 4 (GPX4), lipid metabolism, and ferric metabolism. Since the discovery of ferroptosis, mounting evidence has revealed its critical regulatory role in several diseases, especially as a novel potential target for cancer therapy, thereby attracting increasing attention in the fields of tumor biology and anti-tumor therapy. Accordingly, broad prospects exist for identifying ferroptosis as a potential therapeutic target. In this review, we aimed to systematically summarize the activation and defense mechanisms of ferroptosis, highlight the therapeutic targets, and discuss the design of nanomedicines for ferroptosis regulation. In addition, we opted to present the advantages and disadvantages of current ferroptosis research and provide an optimistic vision of future directions in related fields. Overall, we aim to provide new ideas for further ferroptosis research and inspire new strategies for disease diagnosis and treatment.
Collapse
Affiliation(s)
- Meihong Zhang
- College of Pharmacy, University of Jinan, Guangzhou, 510632, China
| | - Mengqin Guo
- College of Pharmacy, University of Jinan, Guangzhou, 510632, China
| | - Yue Gao
- College of Pharmacy, University of Jinan, Guangzhou, 510632, China
| | - Chuanbin Wu
- College of Pharmacy, University of Jinan, Guangzhou, 510632, China
| | - Xin Pan
- College of Pharmacy, University of Sun Yat-sen, Guangzhou, 510275, China
| | - Zhengwei Huang
- College of Pharmacy, University of Jinan, Guangzhou, 510632, China
| |
Collapse
|
4
|
Abdallah AM, Doudin A, Sulaiman TO, Jamil O, Arif R, Sada FA, Yassine HM, Elrayess MA, Elzouki AN, Emara MM, Thillaiappan NB, Cyprian FS. Metabolic predictors of COVID-19 mortality and severity: a survival analysis. Front Immunol 2024; 15:1353903. [PMID: 38799469 PMCID: PMC11127595 DOI: 10.3389/fimmu.2024.1353903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction The global healthcare burden of COVID-19 pandemic has been unprecedented with a high mortality. Metabolomics, a powerful technique, has been increasingly utilized to study the host response to infections and to understand the progression of multi-system disorders such as COVID-19. Analysis of the host metabolites in response to SARS-CoV-2 infection can provide a snapshot of the endogenous metabolic landscape of the host and its role in shaping the interaction with SARS-CoV-2. Disease severity and consequently the clinical outcomes may be associated with a metabolic imbalance related to amino acids, lipids, and energy-generating pathways. Hence, the host metabolome can help predict potential clinical risks and outcomes. Methods In this prospective study, using a targeted metabolomics approach, we studied the metabolic signature in 154 COVID-19 patients (males=138, age range 48-69 yrs) and related it to disease severity and mortality. Blood plasma concentrations of metabolites were quantified through LC-MS using MxP Quant 500 kit, which has a coverage of 630 metabolites from 26 biochemical classes including distinct classes of lipids and small organic molecules. We then employed Kaplan-Meier survival analysis to investigate the correlation between various metabolic markers, disease severity and patient outcomes. Results A comparison of survival outcomes between individuals with high levels of various metabolites (amino acids, tryptophan, kynurenine, serotonin, creatine, SDMA, ADMA, 1-MH and carnitine palmitoyltransferase 1 and 2 enzymes) and those with low levels revealed statistically significant differences in survival outcomes. We further used four key metabolic markers (tryptophan, kynurenine, asymmetric dimethylarginine, and 1-Methylhistidine) to develop a COVID-19 mortality risk model through the application of multiple machine-learning methods. Conclusions Metabolomics analysis revealed distinct metabolic signatures among different severity groups, reflecting discernible alterations in amino acid levels and perturbations in tryptophan metabolism. Notably, critical patients exhibited higher levels of short chain acylcarnitines, concomitant with higher concentrations of SDMA, ADMA, and 1-MH in severe cases and non-survivors. Conversely, levels of 3-methylhistidine were lower in this context.
Collapse
Affiliation(s)
| | - Asmma Doudin
- Biomedical Research Center (BRC), Qatar University, Doha, Qatar
| | - Theeb Osama Sulaiman
- Department of Medicine, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Omar Jamil
- Department of Radiology, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Rida Arif
- Emergency Medicine Department, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Fatima Al Sada
- Neurosurgery Department, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Hadi M. Yassine
- Biomedical Research Center (BRC), Qatar University, Doha, Qatar
| | - Mohamed A. Elrayess
- College of Medicine, Qatar University (QU) Health, Qatar University, Doha, Qatar
- Biomedical Research Center (BRC), Qatar University, Doha, Qatar
| | - Abdel-Naser Elzouki
- College of Medicine, Qatar University (QU) Health, Qatar University, Doha, Qatar
- Department of Medicine, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Mohamed M. Emara
- College of Medicine, Qatar University (QU) Health, Qatar University, Doha, Qatar
| | | | - Farhan S. Cyprian
- College of Medicine, Qatar University (QU) Health, Qatar University, Doha, Qatar
| |
Collapse
|
5
|
Ji HL, Zhang YF, Zhang NY, Wang KM, Meng N, Zhang J, Jiang CS. Design, synthesis, and evaluation of formylpiperazine analogs of Ferrostatin-1 as novel improved ferroptosis inhibitors. Bioorg Med Chem 2024; 105:117716. [PMID: 38608329 DOI: 10.1016/j.bmc.2024.117716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/02/2024] [Accepted: 04/06/2024] [Indexed: 04/14/2024]
Abstract
In this study, a series of new formylpiperazine-derived ferroptosis inhibitors were designed and synthesized based on the structure of a known ferroptosis inhibitor, ferrostatin-1 (Fer-1). The anti-ferroptosis activity of these synthetic compounds in human umbilical vein endothelial cells (HUVECs) induced by Erastin was evaluated. It was found that some of the new compounds, especially compound 26, showed potent anti-ferroptosis activity, as evidenced by its ability to restore cell viability, reduce iron accumulation, scavenge reactive oxygen species, maintain mitochondrial membrane potential, increase GSH levels, decrease LPO and MDA content, and upregulate GPX4 expression. Moreover, compound 26 exhibited superior microsomal stability than Fer-1. The present results suggest that compound 26 is a promising lead compound for the development of new ferroptosis inhibitors for the treatment of vascular diseases.
Collapse
Affiliation(s)
- Hua-Long Ji
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Yi-Fan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Nai-Yu Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Kai-Ming Wang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Ning Meng
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| | - Juan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| | - Cheng-Shi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| |
Collapse
|
6
|
Yehia A, Abulseoud OA. Melatonin: a ferroptosis inhibitor with potential therapeutic efficacy for the post-COVID-19 trajectory of accelerated brain aging and neurodegeneration. Mol Neurodegener 2024; 19:36. [PMID: 38641847 PMCID: PMC11031980 DOI: 10.1186/s13024-024-00728-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024] Open
Abstract
The unprecedented pandemic of COVID-19 swept millions of lives in a short period, yet its menace continues among its survivors in the form of post-COVID syndrome. An exponentially growing number of COVID-19 survivors suffer from cognitive impairment, with compelling evidence of a trajectory of accelerated aging and neurodegeneration. The novel and enigmatic nature of this yet-to-unfold pathology demands extensive research seeking answers for both the molecular underpinnings and potential therapeutic targets. Ferroptosis, an iron-dependent cell death, is a strongly proposed underlying mechanism in post-COVID-19 aging and neurodegeneration discourse. COVID-19 incites neuroinflammation, iron dysregulation, reactive oxygen species (ROS) accumulation, antioxidant system repression, renin-angiotensin system (RAS) disruption, and clock gene alteration. These events pave the way for ferroptosis, which shows its signature in COVID-19, premature aging, and neurodegenerative disorders. In the search for a treatment, melatonin shines as a promising ferroptosis inhibitor with its repeatedly reported safety and tolerability. According to various studies, melatonin has proven efficacy in attenuating the severity of certain COVID-19 manifestations, validating its reputation as an anti-viral compound. Melatonin has well-documented anti-aging properties and combating neurodegenerative-related pathologies. Melatonin can block the leading events of ferroptosis since it is an efficient anti-inflammatory, iron chelator, antioxidant, angiotensin II antagonist, and clock gene regulator. Therefore, we propose ferroptosis as the culprit behind the post-COVID-19 trajectory of aging and neurodegeneration and melatonin, a well-fitting ferroptosis inhibitor, as a potential treatment.
Collapse
Affiliation(s)
- Asmaa Yehia
- Department of Neuroscience, Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Phoenix, AZ, 58054, USA
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Osama A Abulseoud
- Department of Neuroscience, Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Phoenix, AZ, 58054, USA.
- Department of Psychiatry and Psychology, Mayo Clinic Arizona, 5777 E Mayo Blvd, Phoenix, AZ, 85054, USA.
| |
Collapse
|
7
|
Zhao X, Zhang Y, Luo B. Ferroptosis, from the virus point of view: opportunities and challenges. Crit Rev Microbiol 2024:1-18. [PMID: 38588443 DOI: 10.1080/1040841x.2024.2340643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/01/2024] [Indexed: 04/10/2024]
Abstract
Ferroptosis is a new type of cell death, which is mainly dependent on the formation and accumulation of reactive oxygen species and lipid peroxides mediated by iron. It is distinct from other forms of regulation of cell death in morphology, immunology, biochemistry, and molecular biology. Various cell death mechanisms have been observed in many viral infections, and virus-induced cell death has long been considered as a double-edged sword that can inhibit or aggravate viral infections. However, understanding of the role of ferroptosis in various viral infections is limited. Special attention will be paid to the mechanisms of ferroptosis in mediating viral infection and antiviral treatment associated with ferroptosis. In this paper, we outlined the mechanism of ferroptosis. Additionally, this paper also review research on ferroptosis from the perspective of the virus, discussed the research status of ferroptosis in virus infection and classified and summarized research on the interaction between viral infections and ferroptosis.
Collapse
Affiliation(s)
- Xia Zhao
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yan Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
- Department of Clinical Laboratory, Zibo Central Hospital, Zibo, China
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Pereira TA, Espósito BP. Can iron chelators ameliorate viral infections? Biometals 2024; 37:289-304. [PMID: 38019378 DOI: 10.1007/s10534-023-00558-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/25/2023] [Indexed: 11/30/2023]
Abstract
The redox reactivity of iron is a double-edged sword for cell functions, being either essential or harmful depending on metal concentration and location. Deregulation of iron homeostasis is associated with several clinical conditions, including viral infections. Clinical studies as well as in silico, in vitro and in vivo models show direct effects of several viruses on iron levels. There is support for the strategy of iron chelation as an alternative therapy to inhibit infection and/or viral replication, on the rationale that iron is required for the synthesis of some viral proteins and genes. In addition, abnormal iron levels can affect signaling immune response. However, other studies report different effects of viral infections on iron homeostasis, depending on the class and genotype of the virus, therefore making it difficult to predict whether iron chelation would have any benefit. This review brings general aspects of the relationship between iron homeostasis and the nonspecific immune response to viral infections, along with its relevance to the progress or inhibition of the inflammatory process, in order to elucidate situations in which the use of iron chelators could be efficient as antivirals.
Collapse
|
9
|
Qiu Y, Mo C, Chen L, Ye W, Chen G, Zhu T. Alterations in microbiota of patients with COVID-19: implications for therapeutic interventions. MedComm (Beijing) 2024; 5:e513. [PMID: 38495122 PMCID: PMC10943180 DOI: 10.1002/mco2.513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/19/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) recently caused a global pandemic, resulting in more than 702 million people being infected and over 6.9 million deaths. Patients with coronavirus disease (COVID-19) may suffer from diarrhea, sleep disorders, depression, and even cognitive impairment, which is associated with long COVID during recovery. However, there remains no consensus on effective treatment methods. Studies have found that patients with COVID-19 have alterations in microbiota and their metabolites, particularly in the gut, which may be involved in the regulation of immune responses. Consumption of probiotics may alleviate the discomfort caused by inflammation and oxidative stress. However, the pathophysiological process underlying the alleviation of COVID-19-related symptoms and complications by targeting the microbiota remains unclear. In the current study, we summarize the latest research and evidence on the COVID-19 pandemic, together with symptoms of SARS-CoV-2 and vaccine use, with a focus on the relationship between microbiota alterations and COVID-19-related symptoms and vaccine use. This work provides evidence that probiotic-based interventions may improve COVID-19 symptoms by regulating gut microbiota and systemic immunity. Probiotics may also be used as adjuvants to improve vaccine efficacy.
Collapse
Affiliation(s)
- Yong Qiu
- Department of AnesthesiologyNational Clinical Research Center for Geriatrics and The Research Units of West China (2018RU012)West China HospitalSichuan UniversityChengduChina
- Laboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Center of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduChina
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOEState Key Laboratory of BiotherapyWest China Second University HospitalSichuan UniversityChengduChina
| | - Lu Chen
- Department of AnesthesiologyNational Clinical Research Center for Geriatrics and The Research Units of West China (2018RU012)West China HospitalSichuan UniversityChengduChina
- Laboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Center of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduChina
| | - Wanlin Ye
- Department of AnesthesiologyNational Clinical Research Center for Geriatrics and The Research Units of West China (2018RU012)West China HospitalSichuan UniversityChengduChina
- Laboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Center of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduChina
| | - Guo Chen
- Department of AnesthesiologyNational Clinical Research Center for Geriatrics and The Research Units of West China (2018RU012)West China HospitalSichuan UniversityChengduChina
- Laboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Center of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduChina
| | - Tao Zhu
- Department of AnesthesiologyNational Clinical Research Center for Geriatrics and The Research Units of West China (2018RU012)West China HospitalSichuan UniversityChengduChina
- Laboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Center of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
10
|
Liao Z, Wang C, Tang X, Yang M, Duan Z, Liu L, Lu S, Ma L, Cheng R, Wang G, Liu H, Yang S, Xu J, Tadese DA, Mwangi J, Kamau PM, Zhang Z, Yang L, Liao G, Zhao X, Peng X, Lai R. Human transferrin receptor can mediate SARS-CoV-2 infection. Proc Natl Acad Sci U S A 2024; 121:e2317026121. [PMID: 38408250 DOI: 10.1073/pnas.2317026121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/08/2024] [Indexed: 02/28/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been detected in almost all organs of coronavirus disease-19 patients, although some organs do not express angiotensin-converting enzyme-2 (ACE2), a known receptor of SARS-CoV-2, implying the presence of alternative receptors and/or co-receptors. Here, we show that the ubiquitously distributed human transferrin receptor (TfR), which binds to diferric transferrin to traffic between membrane and endosome for the iron delivery cycle, can ACE2-independently mediate SARS-CoV-2 infection. Human, not mouse TfR, interacts with Spike protein with a high affinity (KD ~2.95 nM) to mediate SARS-CoV-2 endocytosis. TfR knock-down (TfR-deficiency is lethal) and overexpression inhibit and promote SARS-CoV-2 infection, respectively. Humanized TfR expression enables SARS-CoV-2 infection in baby hamster kidney cells and C57 mice, which are known to be insusceptible to the virus infection. Soluble TfR, Tf, designed peptides blocking TfR-Spike interaction and anti-TfR antibody show significant anti-COVID-19 effects in cell and monkey models. Collectively, this report indicates that TfR is a receptor/co-receptor of SARS-CoV-2 mediating SARS-CoV-2 entry and infectivity by likely using the TfR trafficking pathway.
Collapse
Affiliation(s)
- Zhiyi Liao
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology-Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaoming Wang
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology-Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaopeng Tang
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology-Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Mengli Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Zilei Duan
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology-Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China
| | - Lei Liu
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shuaiyao Lu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Lei Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Ruomei Cheng
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology-Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China
| | - Gan Wang
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology-Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China
| | - Hongqi Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Shuo Yang
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology-Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingwen Xu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Dawit Adisu Tadese
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology-Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - James Mwangi
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology-Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peter Muiruri Kamau
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology-Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiye Zhang
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology-Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China
| | - Lian Yang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China
| | - Guoyang Liao
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Xudong Zhao
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaozhong Peng
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Ren Lai
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology-Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
11
|
Michalak A, Lach T, Szczygieł K, Cichoż-Lach H. COVID-19, Possible Hepatic Pathways and Alcohol Abuse-What Do We Know up to 2023? Int J Mol Sci 2024; 25:2212. [PMID: 38396888 PMCID: PMC10888568 DOI: 10.3390/ijms25042212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
The pandemic period due to coronavirus disease 2019 (COVID-19) revolutionized all possible areas of global health. Significant consequences were also related to diverse extrapulmonary manifestations of this pathology. The liver was found to be a relatively common organ, beyond the respiratory tract, affected by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Multiple studies revealed the essential role of chronic liver disease (CLD) in the general outcome of coronavirus infection. Present concerns in this field are related to the direct hepatic consequences caused by COVID-19 and pre-existing liver disorders as risk factors for the severe course of the infection. Which mechanism has a key role in this phenomenon-previously existing hepatic disorder or acute liver failure due to SARS-CoV-2-is still not fully clarified. Alcoholic liver disease (ALD) constitutes another not fully elucidated context of coronavirus infection. Should the toxic effects of ethanol or already developed liver cirrhosis and its consequences be perceived as a causative or triggering factor of hepatic impairment in COVID-19 patients? In the face of these discrepancies, we decided to summarize the role of the liver in the whole picture of coronavirus infection, paying special attention to ALD and focusing on the pathological pathways related to COVID-19, ethanol toxicity and liver cirrhosis.
Collapse
Affiliation(s)
- Agata Michalak
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland;
| | - Tomasz Lach
- Department of Orthopedics and Traumatology, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland;
| | - Karolina Szczygieł
- Clinical Dietetics Unit, Department of Bioanalytics, Medical University of Lublin, Chodźki 7, 20-093 Lublin, Poland;
| | - Halina Cichoż-Lach
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland;
| |
Collapse
|
12
|
Deshpande R, Li W, Li T, Fanning KV, Clemens Z, Nyunoya T, Zhang L, Deslouches B, Barchowsky A, Wenzel S, McDyer JF, Zou C. SARS-CoV-2 Accessory Protein Orf7b Induces Lung Injury via c-Myc Mediated Apoptosis and Ferroptosis. Int J Mol Sci 2024; 25:1157. [PMID: 38256231 PMCID: PMC10816122 DOI: 10.3390/ijms25021157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
The pandemic of coronavirus disease 2019 (COVID-19) has been the foremost modern global public health challenge. The airway is the primary target in severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2) infection, with substantial cell death and lung injury being signature hallmarks of exposure. The viral factors that contribute to cell death and lung injury remain incompletely understood. Thus, this study investigated the role of open reading frame 7b (Orf7b), an accessory protein of the virus, in causing lung injury. In screening viral proteins, we identified Orf7b as one of the major viral factors that mediates lung epithelial cell death. Overexpression of Orf7b leads to apoptosis and ferroptosis in lung epithelial cells, and inhibitors of apoptosis and ferroptosis ablate Orf7b-induced cell death. Orf7b upregulates the transcription regulator, c-Myc, which is integral in the activation of lung cell death pathways. Depletion of c-Myc alleviates both apoptotic and ferroptotic cell deaths and lung injury in mouse models. Our study suggests a major role of Orf7b in the cell death and lung injury attributable to COVID-19 exposure, supporting it as a potential therapeutic target.
Collapse
Affiliation(s)
- Rushikesh Deshpande
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA; (R.D.); (B.D.); (A.B.); (S.W.)
| | - Wangyang Li
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA (K.V.F.); (T.N.); (L.Z.); (J.F.M.)
| | - Tiao Li
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA (K.V.F.); (T.N.); (L.Z.); (J.F.M.)
| | - Kristen V. Fanning
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA (K.V.F.); (T.N.); (L.Z.); (J.F.M.)
| | - Zachary Clemens
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA; (R.D.); (B.D.); (A.B.); (S.W.)
| | - Toru Nyunoya
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA (K.V.F.); (T.N.); (L.Z.); (J.F.M.)
| | - Lianghui Zhang
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA (K.V.F.); (T.N.); (L.Z.); (J.F.M.)
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Berthony Deslouches
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA; (R.D.); (B.D.); (A.B.); (S.W.)
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA; (R.D.); (B.D.); (A.B.); (S.W.)
| | - Sally Wenzel
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA; (R.D.); (B.D.); (A.B.); (S.W.)
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA (K.V.F.); (T.N.); (L.Z.); (J.F.M.)
| | - John F. McDyer
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA (K.V.F.); (T.N.); (L.Z.); (J.F.M.)
| | - Chunbin Zou
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA; (R.D.); (B.D.); (A.B.); (S.W.)
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA (K.V.F.); (T.N.); (L.Z.); (J.F.M.)
| |
Collapse
|
13
|
Yang L, Wu Y, Jin W, Mo N, Ye G, Su Z, Tang L, Wang Y, Li Y, Du J. The potential role of ferroptosis in COVID-19-related cardiovascular injury. Biomed Pharmacother 2023; 168:115637. [PMID: 37844358 DOI: 10.1016/j.biopha.2023.115637] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023] Open
Abstract
COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged as a global health threat in 2019. An important feature of the disease is that multiorgan symptoms of SARS-CoV-2 infection persist after recovery. Evidence indicates that people who recovered from COVID-19, even those under the age of 65 years without cardiovascular risk factors such as smoking, obesity, hypertension, and diabetes, had a significantly increased risk of cardiovascular disease for up to one year after diagnosis. Therefore, it is important to closely monitor individuals who have recovered from COVID-19 for potential cardiovascular damage that may manifest at a later stage. Ferroptosis is an iron-dependent form of non-apoptotic cell death characterized by the production of reactive oxygen species (ROS) and increased lipid peroxide levels. Several studies have demonstrated that ferroptosis plays an important role in cancer, ischemia/reperfusion injury (I/RI), and other cardiovascular diseases. Altered iron metabolism, upregulation of reactive oxygen species, and glutathione peroxidase 4 inactivation are striking features of COVID-19-related cardiovascular injury. SARS-CoV-2 can cause cardiovascular ferroptosis, leading to cardiovascular damage. Understanding the mechanism of ferroptosis in COVID-19-related cardiovascular injuries will contribute to the development of treatment regimens for preventing or reducing COVID-19-related cardiovascular complications. In this article, we go over the pathophysiological underpinnings of SARS-CoV-2-induced acute and chronic cardiovascular injury, the function of ferroptosis, and prospective treatment approaches.
Collapse
Affiliation(s)
- Lei Yang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yunyi Wu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Weidong Jin
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Nan Mo
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Gaoqi Ye
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zixin Su
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lusheng Tang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ying Wang
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
14
|
Riegler AN, Benson P, Long K, Leal SM. Differential activation of programmed cell death in patients with severe SARS-CoV-2 infection. Cell Death Discov 2023; 9:420. [PMID: 37985756 PMCID: PMC10662024 DOI: 10.1038/s41420-023-01715-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/26/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes severe lower airway disease and death in a subset of patients. Knowledge on the relative contribution of programmed cell death (PCD) to lung pathology is limited to few human autopsy studies with small sample size/scope, in vitro cell culture, and experimental model systems. In this study, we sought to identify, localize, and quantify activation of apoptosis, ferroptosis, pyroptosis, and necroptosis in FFPE lung tissues from patients that died from severe SARS-CoV-2 infection (n = 28) relative to uninfected controls (n = 13). Immunofluorescence (IF) staining, whole-slide imaging, and Image J software was used to localize and quantify expression of SARS-CoV-2 nucleoprotein and the following PCD protein markers: cleaved Caspase-3, pMLKL, cleaved Gasdermin D, and CD71, respectively. IF showed differential activation of each PCD pathway in infected lungs and dichotomous staining for SARS-CoV-2 nucleoprotein enabling distinction between high (n = 9) vs low viral burden (n = 19). No differences were observed in apoptosis and ferroptosis in SARS-CoV-2 infected lungs relative to uninfected controls. However, both pyroptosis and necroptosis were significantly increased in SARS-CoV-2-infected lungs. Increased pyroptosis was observed in SARS-CoV-2 infected lungs, irrespective of viral burden, suggesting an inflammation-driven mechanism. In contrast, necroptosis exhibited a very strong positive correlation with viral burden (R2 = 0.9925), suggesting a direct SARS-CoV-2 mediated effect. These data indicate a possible novel mechanism for viral-mediated necroptosis and a potential role for both lytic programmed cell death pathways, necroptosis and pyroptosis, in mediating infection outcome.
Collapse
Affiliation(s)
- Ashleigh N Riegler
- Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Paul Benson
- Division of Anatomic Pathology, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kenneth Long
- Division of Infectious Diseases, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sixto M Leal
- Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
15
|
Manivarma T, Kapralov AA, Samovich SN, Tyurina YY, Tyurin VA, VanDemark AP, Nowak W, Bayır H, Bahar I, Kagan VE, Mikulska-Ruminska K. Membrane regulation of 15LOX-1/PEBP1 complex prompts the generation of ferroptotic signals, oxygenated PEs. Free Radic Biol Med 2023; 208:458-467. [PMID: 37678654 PMCID: PMC10952060 DOI: 10.1016/j.freeradbiomed.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023]
Abstract
Ferroptosis is a regulated form of cell death, the mechanism of which is still to be understood. 15-lipoxygenase (15LOX) complex with phosphatidylethanolamine (PE)-binding protein 1 (PEBP1) catalyzes the generation of pro-ferroptotic cell death signals, hydroperoxy-polyunsaturated PE. We focused on gaining new insights into the molecular basis of these pro-ferroptotic interactions using computational modeling and liquid chromatography-mass spectrometry experiments. Simulations of 15LOX-1/PEBP1 complex dynamics and interactions with lipids revealed that association with the membrane triggers a conformational change in the complex. This conformational change facilitates the access of stearoyl/arachidonoyl-PE (SAPE) substrates to the catalytic site. Furthermore, the binding of SAPE promotes tight interactions within the complex and induces further conformational changes that facilitate the oxidation reaction. The reaction yields two hydroperoxides as products, 15-HpETE-PE and 12-HpETE-PE, at a ratio of 5:1. A significant effect of PEBP1 is observed only on the predominant product. Moreover, combined experiments and simulations consistently demonstrate the significance of PEBP1 P112E mutation in generating ferroptotic cell death signals.
Collapse
Affiliation(s)
- Thiliban Manivarma
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Aleksandr A Kapralov
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh, Pittsburgh, PA, USA
| | - Svetlana N Samovich
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh, Pittsburgh, PA, USA; Department of Pediatrics, Division of Critical Care and Hospital Medicine, Redox Health Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Yulia Y Tyurina
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh, Pittsburgh, PA, USA
| | - Vladimir A Tyurin
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrew P VanDemark
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wieslaw Nowak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Hülya Bayır
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh, Pittsburgh, PA, USA; Department of Pediatrics, Division of Critical Care and Hospital Medicine, Redox Health Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Ivet Bahar
- Laufer Center for Physical and Quantitative Biology and Department of Biochemistry and Cell Biology, Stony Brook University, New York, USA.
| | - Valerian E Kagan
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh, Pittsburgh, PA, USA; Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Karolina Mikulska-Ruminska
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Torun, Poland.
| |
Collapse
|
16
|
Peleman C, Van Coillie S, Ligthart S, Choi SM, De Waele J, Depuydt P, Benoit D, Schaubroeck H, Francque SM, Dams K, Jacobs R, Robert D, Roelandt R, Seurinck R, Saeys Y, Rajapurkar M, Jorens PG, Hoste E, Vanden Berghe T. Ferroptosis and pyroptosis signatures in critical COVID-19 patients. Cell Death Differ 2023; 30:2066-2077. [PMID: 37582864 PMCID: PMC10482958 DOI: 10.1038/s41418-023-01204-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/26/2023] [Accepted: 08/04/2023] [Indexed: 08/17/2023] Open
Abstract
Critical COVID-19 patients admitted to the intensive care unit (ICU) frequently suffer from severe multiple organ dysfunction with underlying widespread cell death. Ferroptosis and pyroptosis are two detrimental forms of regulated cell death that could constitute new therapeutic targets. We enrolled 120 critical COVID-19 patients in a two-center prospective cohort study to monitor systemic markers of ferroptosis, iron dyshomeostasis, pyroptosis, pneumocyte cell death and cell damage on the first three consecutive days after ICU admission. Plasma of 20 post-operative ICU patients (PO) and 39 healthy controls (HC) without organ failure served as controls. Subsets of COVID-19 patients displayed increases in individual biomarkers compared to controls. Unsupervised clustering was used to discern latent clusters of COVID-19 patients based on biomarker profiles. Pyroptosis-related interleukin-18 accompanied by high pneumocyte cell death was independently associated with higher odds at mechanical ventilation, while the subgroup with high interleuking-1 beta (but limited pneumocyte cell death) displayed reduced odds at mechanical ventilation and lower mortality hazard. Meanwhile, iron dyshomeostasis with a tendency towards higher ferroptosis marker malondialdehyde had no association with outcome, except for the small subset of patients with very high catalytic iron independently associated with reduced survival. Forty percent of patients did not have a clear signature of the cell death mechanisms studied in this cohort. Moreover, repeated moderate levels of soluble receptor of advanced glycation end products and growth differentiation factor 15 during the first three days after ICU admission are independently associated with adverse clinical outcome compared to sustained lower levels. Altogether, the data point towards distinct subgroups in this cohort of critical COVID-19 patients with different systemic signatures of pyroptosis, iron dyshomeostasis, ferroptosis or pneumocyte cell death markers that have different outcomes in ICU. The distinct groups may allow 'personalized' treatment allocation in critical COVID-19 based on systemic biomarker profiles.
Collapse
Affiliation(s)
- Cédric Peleman
- Laboratory of Experimental Medicine and Paediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium
| | - Samya Van Coillie
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Symen Ligthart
- Laboratory of Experimental Medicine and Paediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Division of Intensive Care, Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Sze Men Choi
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jan De Waele
- Intensive Care Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Pieter Depuydt
- Intensive Care Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Dominique Benoit
- Intensive Care Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Hannah Schaubroeck
- Intensive Care Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Sven M Francque
- Laboratory of Experimental Medicine and Paediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium
| | - Karolien Dams
- Laboratory of Experimental Medicine and Paediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Division of Intensive Care, Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Rita Jacobs
- Laboratory of Experimental Medicine and Paediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Division of Intensive Care, Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Dominique Robert
- Laboratory of Experimental Medicine and Paediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Division of Intensive Care, Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Ria Roelandt
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Ruth Seurinck
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Yvan Saeys
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Mohan Rajapurkar
- Department of Nephrology, Muljibhai Patel Society for Research in Nephro-Urology, Nadiad, India
| | - Philippe G Jorens
- Laboratory of Experimental Medicine and Paediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Division of Intensive Care, Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Eric Hoste
- Intensive Care Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Tom Vanden Berghe
- VIB-UGent Center for Inflammation Research, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
17
|
Sousa RAL, Yehia A, Abulseoud OA. Attenuation of ferroptosis as a potential therapeutic target for neuropsychiatric manifestations of post-COVID syndrome. Front Neurosci 2023; 17:1237153. [PMID: 37554293 PMCID: PMC10405289 DOI: 10.3389/fnins.2023.1237153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023] Open
Abstract
Coronavirus disease-19 (COVID-19), caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), is associated with the persistence of pre-existing or the emergence of new neurological and psychiatric manifestations as a part of a multi-system affection known collectively as "post-COVID syndrome." Cognitive decline is the most prominent feature among these manifestations. The underlying neurobiological mechanisms remain under intense investigation. Ferroptosis is a form of cell death that results from the excessive accumulation of intracellular reactive iron, which mediates lipid peroxidation. The accumulation of lipid-based reactive oxygen species (ROS) and the impairment of glutathione peroxidase 4 (GPX4) activity trigger ferroptosis. The COVID-19-associated cytokine storm enhances the levels of circulating pro-inflammatory cytokines and causes immune-cell hyper-activation that is tightly linked to iron dysregulation. Severe COVID-19 presents with iron overload as one of the main features of its pathogenesis. Iron overload promotes a state of inflammation and immune dysfunction. This is well demonstrated by the strong association between COVID-19 severity and high levels of ferritin, which is a well-known inflammatory and iron overload biomarker. The dysregulation of iron, the high levels of lipid peroxidation biomarkers, and the inactivation of GPX4 in COVID-19 patients make a strong case for ferroptosis as a potential mechanism behind post-COVID neuropsychiatric deficits. Therefore, here we review the characteristics of iron and the attenuation of ferroptosis as a potential therapeutic target for neuropsychiatric post-COVID syndrome.
Collapse
Affiliation(s)
- Ricardo A. L. Sousa
- Department of Psychiatry and Psychology, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Asmaa Yehia
- Department of Psychiatry and Psychology, Mayo Clinic Arizona, Phoenix, AZ, United States
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Osama A. Abulseoud
- Department of Psychiatry and Psychology, Mayo Clinic Arizona, Phoenix, AZ, United States
- Department of Neuroscience, Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Phoenix, AZ, United States
| |
Collapse
|
18
|
Honma K, Kirihara S, Nakayama H, Fukuoka T, Ohara T, Kitamori K, Sato I, Hirohata S, Fujii M, Yamamoto S, Ran S, Watanabe S. Selective autophagy associated with iron overload aggravates non-alcoholic steatohepatitis via ferroptosis. Exp Biol Med (Maywood) 2023; 248:1112-1123. [PMID: 37646078 PMCID: PMC10583757 DOI: 10.1177/15353702231191197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/18/2023] [Indexed: 09/01/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a progressive form of non-alcoholic fatty liver disease (NAFLD) that causes cirrhosis and hepatocellular carcinoma. Iron is an essential trace element in the body; however, excess iron can cause tissue damage and dysfunction. Iron overload is often observed in patients with NASH, and the amount of iron accumulated in the liver positively correlates with the histological severity of NASH. Ferroptosis, a novel form of iron-dependent cell death, is caused by the accumulation of lipid peroxidation and oxidative stress and is related to NASH. In addition, ferroptosis is closely related to autophagy, an intracellular self-degradation process. Although autophagy has many beneficial effects, it may also be harmful to the organism, for example, inducing ferroptosis. It is unclear whether iron overload aggravates NASH via autophagy. The aim of this research is to determine the mechanism by which iron overload induces ferroptosis via autophagy and aggravates NASH. Stroke-prone spontaneously hypertensive rats (SHRSP5/Dmcr) were divided into two groups and fed a high-fat and high-cholesterol (HFC) diet for eight weeks. Iron dextran was administered to the Fe group in addition to the HFC diet. Blood analysis, histological staining, calcineurin activity assay, quantitative reverse transcription polymerase chain reaction (RT-PCR), immunofluorescence staining, and electron microscopy were performed. The results showed that iron overload promoted autophagy via nuclear translocation of transcription factor EB (TFEB) and induced ferritinophagy, which is the autophagic degradation of ferritin. In addition, the HFC diet induced lipophagy, the autophagic degradation of lipid droplets. The Fe group also exhibited promoted ferroptosis and aggravated hepatic inflammation and fibrosis. In conclusion, iron overload accelerates ferritinophagy and lipophagy, aggravating NASH pathology via ferroptosis. These findings indicate the therapeutic potential of inhibiting autophagy and ferroptosis for treating NASH.
Collapse
Affiliation(s)
- Koki Honma
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama 700-8558, Japan
| | - Sora Kirihara
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama 700-8558, Japan
| | - Hinako Nakayama
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama 700-8558, Japan
| | - Taketo Fukuoka
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama 700-8558, Japan
| | - Toshiaki Ohara
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University, Okayama 700-8558, Japan
| | - Kazuya Kitamori
- College of Human Life and Environment, Kinjo Gakuin University, Nagoya 463-8521, Japan
| | - Ikumi Sato
- Academic Field of Health Science, Okayama University, Okayama 700-8558, Japan
| | - Satoshi Hirohata
- Academic Field of Health Science, Okayama University, Okayama 700-8558, Japan
| | - Moe Fujii
- Department of Medical Technology, Ehime Prefectural University of Health Sciences, Ehime 791-2101, Japan
| | - Shusei Yamamoto
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama 700-8558, Japan
- Academic Field of Health Science, Okayama University, Okayama 700-8558, Japan
| | - Shang Ran
- HeiLongjiang Provincial Center for disease control and prevention, Harbin 150030, China
| | - Shogo Watanabe
- Academic Field of Health Science, Okayama University, Okayama 700-8558, Japan
| |
Collapse
|
19
|
Liu L, Du J, Yang S, Zheng B, Shen J, Huang J, Cao L, Huang S, Liu X, Guo L, Li C, Ke C, Peng X, Guo D, Peng H. SARS-CoV-2 ORF3a sensitizes cells to ferroptosis via Keap1-NRF2 axis. Redox Biol 2023; 63:102752. [PMID: 37245288 DOI: 10.1016/j.redox.2023.102752] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 05/30/2023] Open
Abstract
Viral infection-induced cell death has long been considered as a double-edged sword in the inhibition or exacerbation of viral infections. Patients with severe Coronavirus Disease 2019 (COVID-19) are characterized by multiple organ dysfunction syndrome and cytokine storm, which may result from SARS-CoV-2-induced cell death. Previous studies have observed enhanced ROS level and signs of ferroptosis in SARS-CoV-2 infected cells or specimens of patients with COVID-19, but the exact mechanism is not clear yet. Here, we find SARS-CoV-2 ORF3a sensitizes cells to ferroptosis via Keap1-NRF2 axis. SARS-CoV-2 ORF3a promotes the degradation of NRF2 through recruiting Keap1, thereby attenuating cellular resistance to oxidative stress and facilitated cells to ferroptotic cell death. Our study uncovers that SARS-CoV-2 ORF3a functions as a positive regulator of ferroptosis, which might explain SARS-CoV-2-induced damage in multiple organs in COVID-19 patients and imply the potential of ferroptosis inhibition in COVID-19 treatment.
Collapse
Affiliation(s)
- Lihong Liu
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China; Guangzhou Laboratory, Bio-island, Guangzhou, Guangdong, PR China
| | - Jie Du
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Sidi Yang
- Guangzhou Laboratory, Bio-island, Guangzhou, Guangdong, PR China
| | - Birong Zheng
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China; Guangzhou Laboratory, Bio-island, Guangzhou, Guangdong, PR China
| | - Jian Shen
- Department of Laboratory Medicine, Central Hospital of Panyu District, Guangzhou, PR China
| | - Jiacheng Huang
- Guangzhou Laboratory, Bio-island, Guangzhou, Guangdong, PR China
| | - Liu Cao
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Siyao Huang
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Xue Liu
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Liping Guo
- Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Chunmei Li
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Changwen Ke
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, PR China
| | - Xiaofang Peng
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, PR China
| | - Deyin Guo
- Guangzhou Laboratory, Bio-island, Guangzhou, Guangdong, PR China.
| | - Hong Peng
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China; Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China.
| |
Collapse
|
20
|
Roshanshad R, Roshanshad A, Fereidooni R, Hosseini-Bensenjan M. COVID-19 and liver injury: Pathophysiology, risk factors, outcome and management in special populations. World J Hepatol 2023; 15:441-459. [PMID: 37206656 PMCID: PMC10190688 DOI: 10.4254/wjh.v15.i4.441] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/05/2023] [Accepted: 03/20/2023] [Indexed: 04/20/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 is an ongoing health concern. In addition to affecting the respiratory system, COVID-19 can potentially damage other systems in the body, leading to extra-pulmonary manifestations. Hepatic manifestations are among the common consequences of COVID-19. Although the precise mechanism of liver injury is still questionable, several mechanisms have been hypothesized, including direct viral effect, cytokine storm, hypoxic-ischemic injury, hypoxia-reperfusion injury, ferroptosis, and hepatotoxic medications. Risk factors of COVID-19-induced liver injury include severe COVID-19 infection, male gender, advanced age, obesity, and underlying diseases. The presentations of liver involvement comprise abnormalities in liver enzymes and radiologic findings, which can be utilized to predict the prognosis. Increased gamma-glutamyltransferase, aspartate aminotransferase, and alanine aminotransferase levels with hypoalbuminemia can indicate severe liver injury and anticipate the need for intensive care units’ hospitalization. In imaging, a lower liver-to-spleen ratio and liver computed tomography attenuation may indicate a more severe illness. Furthermore, chronic liver disease patients are at a higher risk for severe disease and death from COVID-19. Nonalcoholic fatty liver disease had the highest risk of advanced COVID-19 disease and death, followed by metabolic-associated fatty liver disease and cirrhosis. In addition to COVID-19-induced liver injury, the pandemic has also altered the epidemiology and pattern of some hepatic diseases, such as alcoholic liver disease and hepatitis B. Therefore, it warrants special vigilance and awareness by healthcare professionals to screen and treat COVID-19-associated liver injury accordingly.
Collapse
Affiliation(s)
- Romina Roshanshad
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7184731443, Iran
| | | | - Reza Fereidooni
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran
| | | |
Collapse
|
21
|
Links between Vitamin K, Ferroptosis and SARS-CoV-2 Infection. Antioxidants (Basel) 2023; 12:antiox12030733. [PMID: 36978981 PMCID: PMC10045478 DOI: 10.3390/antiox12030733] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/27/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Ferroptosis is a recently discovered form of programmed cell death. It is characterized by the accumulation of iron and lipid hydroperoxides in cells. Vitamin K is known to have antioxidant properties and plays a role in reducing oxidative stress, particularly in lipid cell membranes. Vitamin K reduces the level of reactive oxygen species by modulating the expression of antioxidant enzymes. Additionally, vitamin K decreases inflammation and potentially prevents ferroptosis. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leading to coronavirus disease 2019 (COVID-19) is associated with oxidant–antioxidant imbalance. Studies have shown that intensified ferroptosis occurs in various tissues and cells affected by COVID-19. Vitamin K supplementation during SARS-CoV-2 infection may have a positive effect on reducing the severity of the disease. Preliminary research suggests that vitamin K may reduce lipid peroxidation and inhibit ferroptosis, potentially contributing to its therapeutic effects in COVID-19 patients. The links between ferroptosis, vitamin K, and SARS-CoV-2 infection require further investigation, particularly in the context of developing potential treatment strategies for COVID-19.
Collapse
|
22
|
Fratta Pasini AM, Stranieri C, Busti F, Di Leo EG, Girelli D, Cominacini L. New Insights into the Role of Ferroptosis in Cardiovascular Diseases. Cells 2023; 12:cells12060867. [PMID: 36980208 PMCID: PMC10047059 DOI: 10.3390/cells12060867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the principal cause of disease burden and death worldwide. Ferroptosis is a new form of regulated cell death mainly characterized by altered iron metabolism, increased polyunsaturated fatty acid peroxidation by reactive oxygen species, depletion of glutathione and inactivation of glutathione peroxidase 4. Recently, a series of studies have indicated that ferroptosis is involved in the death of cardiac and vascular cells and has a key impact on the mechanisms leading to CVDs such as ischemic heart disease, ischemia/reperfusion injury, cardiomyopathies, and heart failure. In this article, we reviewed the molecular mechanism of ferroptosis and the current understanding of the pathophysiological role of ferroptosis in ischemic heart disease and in some cardiomyopathies. Moreover, the comprehension of the machinery governing ferroptosis in vascular cells and cardiomyocytes may provide new insights into preventive and therapeutic strategies in CVDs.
Collapse
|
23
|
Abstract
Herpes simplex virus 1 (HSV-1) is a DNA virus belonging to the family Herpesviridae. HSV-1 infection causes severe neurological disease in the central nervous system (CNS), including encephalitis. Ferroptosis is a nonapoptotic form of programmed cell death that contributes to different neurological inflammatory diseases. However, whether HSV-1 induces ferroptosis in the CNS and the role of ferroptosis in viral pathogenesis remain unclear. Here, we demonstrate that HSV-1 induces ferroptosis, as hallmarks of ferroptosis, including Fe2+ overload, reactive oxygen species (ROS) accumulation, glutathione (GSH) depletion, lipid peroxidation, and mitochondrion shrinkage, are observed in HSV-1-infected cultured human astrocytes, microglia cells, and murine brains. Moreover, HSV-1 infection enhances the E3 ubiquitin ligase Keap1 (Kelch-like ECH-related protein 1)-mediated ubiquitination and degradation of nuclear factor E2-related factor 2 (Nrf2), a transcription factor that regulates the expression of antioxidative genes, thereby disturbing cellular redox homeostasis and promoting ferroptosis. Furthermore, HSV-1-induced ferroptosis is tightly associated with the process of viral encephalitis in a mouse model, and the ferroptosis-activated upregulation of prostaglandin-endoperoxide synthase 2 (PTGS2) and prostaglandin E2 (PGE2) plays an important role in HSV-1-caused inflammation and encephalitis. Importantly, the inhibition of ferroptosis by a ferroptosis inhibitor or a proteasome inhibitor to suppress Nrf2 degradation effectively alleviated HSV-1 encephalitis. Together, our findings demonstrate the interaction between HSV-1 infection and ferroptosis and provide novel insights into the pathogenesis of HSV-1 encephalitis. IMPORTANCE Ferroptosis is a nonapoptotic form of programmed cell death that contributes to different neurological inflammatory diseases. However, whether HSV-1 induces ferroptosis in the CNS and the role of ferroptosis in viral pathogenesis remain unclear. In the current study, we demonstrate that HSV-1 infection induces ferroptosis, as Fe2+ overload, ROS accumulation, GSH depletion, lipid peroxidation, and mitochondrion shrinkage, all of which are hallmarks of ferroptosis, are observed in human cultured astrocytes, microglia cells, and murine brains infected with HSV-1. Moreover, HSV-1 infection enhances Keap1-dependent Nrf2 ubiquitination and degradation, which results in substantial reductions in the expression levels of antiferroptotic genes downstream of Nrf2, thereby disturbing cellular redox homeostasis and promoting ferroptosis. Furthermore, HSV-1-induced ferroptosis is tightly associated with the process of viral encephalitis in a mouse model, and the ferroptosis-activated upregulation of PTGS2 and PGE2 plays an important role in HSV-1-caused inflammation and encephalitis. Importantly, the inhibition of ferroptosis by either a ferroptosis inhibitor or a proteasome inhibitor to suppress HSV-1-induced Nrf2 degradation effectively alleviates HSV-1-caused neuro-damage and inflammation in infected mice. Overall, our findings uncover the interaction between HSV-1 infection and ferroptosis, shed novel light on the physiological impacts of ferroptosis on the pathogenesis of HSV-1 infection and encephalitis, and provide a promising therapeutic strategy to treat this important infectious disease with a worldwide distribution.
Collapse
|
24
|
Lee CY, Nguyen AT, Doan LH, Chu LW, Chang CH, Liu HK, Lee IL, Wang TH, Lai JM, Tsao SM, Liao HJ, Ping YH, Huang CYF. Repurposing Astragalus Polysaccharide PG2 for Inhibiting ACE2 and SARS-CoV-2 Spike Syncytial Formation and Anti-Inflammatory Effects. Viruses 2023; 15:641. [PMID: 36992350 PMCID: PMC10054482 DOI: 10.3390/v15030641] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/05/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a serious threat to global public health. In an effort to develop novel anti-coronavirus therapeutics and achieve prophylactics, we used gene set enrichment analysis (GSEA) for drug screening and identified that Astragalus polysaccharide (PG2), a mixture of polysaccharides purified from Astragalus membranaceus, could effectively reverse COVID-19 signature genes. Further biological assays revealed that PG2 could prevent the fusion of BHK21-expressing wild-type (WT) viral spike (S) protein and Calu-3-expressing ACE2. Additionally, it specifically prevents the binding of recombinant viral S of WT, alpha, and beta strains to ACE2 receptor in our non-cell-based system. In addition, PG2 enhances let-7a, miR-146a, and miR-148b expression levels in the lung epithelial cells. These findings speculate that PG2 has the potential to reduce viral replication in lung and cytokine storm via these PG2-induced miRNAs. Furthermore, macrophage activation is one of the primary issues leading to the complicated condition of COVID-19 patients, and our results revealed that PG2 could regulate the activation of macrophages by promoting the polarization of THP-1-derived macrophages into an anti-inflammatory phenotype. In this study, PG2 stimulated M2 macrophage activation and increased the expression levels of anti-inflammatory cytokines IL-10 and IL-1RN. Additionally, PG2 was recently used to treat patients with severe COVID-19 symptoms by reducing the neutrophil-to-lymphocyte ratio (NLR). Therefore, our data suggest that PG2, a repurposed drug, possesses the potential to prevent WT SARS-CoV-2 S-mediated syncytia formation with the host cells; it also inhibits the binding of S proteins of WT, alpha, and beta strains to the recombinant ACE2 and halts severe COVID-19 development by regulating the polarization of macrophages to M2 cells.
Collapse
Affiliation(s)
- Chia-Yin Lee
- Taiwan National Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 112304, Taiwan
| | - Anh Thuc Nguyen
- Taiwan National Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 112304, Taiwan
| | - Ly Hien Doan
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Li-Wei Chu
- Department and Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Chih-Hung Chang
- Department of Orthopedic Surgery, Far Eastern Memorial Hospital, New Taipei City 220216, Taiwan
| | - Hui-Kang Liu
- Division of Basic Chinese Medicine, National Research Institute of Chinese Medicine (NRICM), Ministry of Health and Welfare, Taipei 112304, Taiwan
| | - I-Lin Lee
- PhytoHeath Corporation, Taipei 105403, Taiwan
| | | | - Jin-Mei Lai
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Shih-Ming Tsao
- Division of Pulmonary Medicine, School of Medicine, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 402306, Taiwan
| | - Hsiu-Jung Liao
- Department of Medical Research, Far Eastern Memorial Hospital, New Taipei City 220216, Taiwan
| | - Yueh-Hsin Ping
- Department and Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Chi-Ying F. Huang
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| |
Collapse
|
25
|
Jankauskas SS, Kansakar U, Sardu C, Varzideh F, Avvisato R, Wang X, Matarese A, Marfella R, Ziosi M, Gambardella J, Santulli G. COVID-19 Causes Ferroptosis and Oxidative Stress in Human Endothelial Cells. Antioxidants (Basel) 2023; 12:326. [PMID: 36829885 PMCID: PMC9952002 DOI: 10.3390/antiox12020326] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 02/03/2023] Open
Abstract
Oxidative stress and endothelial dysfunction have been shown to play crucial roles in the pathophysiology of COVID-19 (coronavirus disease 2019). On these grounds, we sought to investigate the impact of COVID-19 on lipid peroxidation and ferroptosis in human endothelial cells. We hypothesized that oxidative stress and lipid peroxidation induced by COVID-19 in endothelial cells could be linked to the disease outcome. Thus, we collected serum from COVID-19 patients on hospital admission, and we incubated these sera with human endothelial cells, comparing the effects on the generation of reactive oxygen species (ROS) and lipid peroxidation between patients who survived and patients who did not survive. We found that the serum from non-survivors significantly increased lipid peroxidation. Moreover, serum from non-survivors markedly regulated the expression levels of the main markers of ferroptosis, including GPX4, SLC7A11, FTH1, and SAT1, a response that was rescued by silencing TNFR1 on endothelial cells. Taken together, our data indicate that serum from patients who did not survive COVID-19 triggers lipid peroxidation in human endothelial cells.
Collapse
Affiliation(s)
- Stanislovas S. Jankauskas
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Urna Kansakar
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Celestino Sardu
- University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Fahimeh Varzideh
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Roberta Avvisato
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- “Federico II” University, 80131 Naples, Italy
| | - Xujun Wang
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | | | | | | | - Jessica Gambardella
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- “Federico II” University, 80131 Naples, Italy
| | - Gaetano Santulli
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- “Federico II” University, 80131 Naples, Italy
- Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation (INI), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
26
|
Preparation of Tryptanthrin Derivates Bearing a Thiosemicarbazone Moiety to Inhibit SARS-CoV-2 Replication. SEPARATIONS 2023. [DOI: 10.3390/separations10020073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
SARS-CoV-2 is a serious viral pathogen, and agents that inhibit its replication are in high demand. In the present work, we prepared two novel tryptanthrin derivates bearing a thiosemicarbazone moiety as potential antiviral agents. Both compounds displayed potent chelation activity against Fe(III/II) ion-associated COVID-19. The molecular docking results suggest that the compounds can display significant affinity towards SARS-CoV-2 papain-like proteases and SARS-CoV-2 main proteases. In addition, administering T8H-TSC can repress viral replication in the used model (Vero cells). Moreover, the therapeutic potential of the prepared compounds was predicted and analysed in terms of Lipinski’s rules, drug-likeness and drug score.
Collapse
|
27
|
Podzolkov VI, Tarzimanova AI, Ponomareva LA, Popova EN, Ponomarev AB. Ferroptosis-associated lesion as a potential target for cardiovascular disease: A review. TERAPEVT ARKH 2023; 94:1421-1425. [PMID: 37167188 DOI: 10.26442/00403660.2022.12.201996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023]
Abstract
Cell death is an important feature of the development of multicellular organisms, a critical factor in the occurrence of cardiovascular diseases. Understanding the mechanisms that control cell death is crucial to determine its role in the development of the pathological process. However, the most well-known types of cell death cannot fully explain the pathophysiology of heart disease. Understanding how cardiomyocytes die and why their regeneration is limited is an important area of research. Ferroptosis is an iron-dependent cell death that differs from apoptosis, necrosis, autophagy, and other forms of cell death in terms of morphology, metabolism, and protein expression. Ferroptotic cell death is characterized by the accumulation of reactive oxygen species resulting from lipid peroxidation and subsequent oxidative stress, which can be prevented by iron chelates (eg, deferoxamine) and small lipophilic antioxidants (eg, ferrostatin, liproхstatin). In recent years, many studies have been carried out on ferroptosis in the context of the development of atherosclerosis, myocardial infarction, heart failure, and other diseases. In addition to cardiovascular diseases, the review also presents data on the role of ferroptosis in the development of other socially significant diseases, such as COVID-19, chronic obstructive pulmonary disease. With the study of ferroptosis, it turned out that ferroptosis participates in the development of bacterial infection associated with the persistence in the host body of Pseudomonas aeruginosa. The review summarizes the recent advances in the study of ferroptosis, characterizing this type of cell death as a novel therapeutic target.
Collapse
|
28
|
Zeng J, Guo J, Huang S, Cheng Y, Luo F, Xu X, Chen R, Ma G, Wang Y. The roles of sirtuins in ferroptosis. Front Physiol 2023; 14:1131201. [PMID: 37153222 PMCID: PMC10157232 DOI: 10.3389/fphys.2023.1131201] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
Ferroptosis represents a novel non-apoptotic form of regulated cell death that is driven by iron-dependent lipid peroxidation and plays vital roles in various diseases including cardiovascular diseases, neurodegenerative disorders and cancers. Plenty of iron metabolism-related proteins, regulators of lipid peroxidation, and oxidative stress-related molecules are engaged in ferroptosis and can regulate this complex biological process. Sirtuins have broad functional significance and are targets of many drugs in the clinic. Recently, a growing number of studies have revealed that sirtuins can participate in the occurrence of ferroptosis by affecting many aspects such as redox balance, iron metabolism, and lipid metabolism. This article reviewed the studies on the roles of sirtuins in ferroptosis and the related molecular mechanisms, highlighting valuable targets for the prevention and treatment of ferroptosis-associated diseases.
Collapse
Affiliation(s)
- Jieqing Zeng
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Junhao Guo
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Si Huang
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Yisen Cheng
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Fei Luo
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Xusan Xu
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Riling Chen
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Guoda Ma
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
- *Correspondence: Guoda Ma, ; Yajun Wang,
| | - Yajun Wang
- Institute of Respiratory, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
- *Correspondence: Guoda Ma, ; Yajun Wang,
| |
Collapse
|
29
|
Gao J, Wang Q, Tang YD, Zhai J, Hu W, Zheng C. When ferroptosis meets pathogenic infections. Trends Microbiol 2022; 31:468-479. [PMID: 36496309 DOI: 10.1016/j.tim.2022.11.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022]
Abstract
Apoptosis, necrosis, or autophagy are diverse types of regulated cell death (RCD), recognized as the strategies that host cells use to defend against pathogens such as viruses, bacteria, or fungi. Pathogens can induce or block different types of host cell RCD, promoting propagation or evading host immune surveillance. Ferroptosis is a newly identified RCD. Evidence has demonstrated how pathogens regulate ferroptosis to promote their replication, dissemination, and pathogenesis. However, the interaction between ferroptosis and pathogenic infections still needs to be completely elucidated. This review summarizes the advances in the interaction between pathogenic infections and host ferroptotic processes, focusing on the underlying mechanisms of how pathogens exploit ferroptosis, and discussing possible therapeutic measures against pathogen-associated diseases in a ferroptosis-dependent manner.
Collapse
|
30
|
Kluknavsky M, Micurova A, Cebova M, Şaman E, Cacanyiova S, Bernatova I. MLN-4760 Induces Oxidative Stress without Blood Pressure and Behavioural Alterations in SHRs: Roles of Nfe2l2 Gene, Nitric Oxide and Hydrogen Sulfide. Antioxidants (Basel) 2022; 11:antiox11122385. [PMID: 36552591 PMCID: PMC9774314 DOI: 10.3390/antiox11122385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
Reduced angiotensin 1-7 bioavailability due to inhibition of angiotensin-converting enzyme 2 (ACE2) may contribute to increased mortality in hypertensive individuals during COVID-19. However, effects of ACE2 inhibitor MLN-4760 in brain functions remain unknown. We investigated the selected behavioural and hemodynamic parameters in spontaneously hypertensive rats (SHRs) after a 2-week s.c. infusion of MLN-4760 (dose 1 mg/kg/day). The biochemical and molecular effects of MLN-4760 were investigated in the brainstem and blood plasma. MLN-4760 had no effects on hemodynamic and behavioural parameters. However, MLN-4760 increased plasma hydrogen sulfide (H2S) level and total nitric oxide (NO) synthase activity and conjugated dienes in the brainstem. Increased NO synthase activity correlated positively with gene expression of Nos3 while plasma H2S levels correlated positively with gene expressions of H2S-producing enzymes Mpst, Cth and Cbs. MLN-4760 administration increased gene expression of Ace2, Sod1, Sod2, Gpx4 and Hmox1, which positively correlated with expression of Nfe2l2 gene encoding the redox-sensitive transcription factor NRF2. Collectively, MLN-4760 did not exacerbate pre-existing hypertension and behavioural hyperactivity/anxiety in SHRs. However, MLN-4760-induced oxidative damage in brainstem was associated with activation of NO- and H2S-mediated compensatory mechanisms and with increased gene expression of antioxidant, NO- and H2S-producing enzymes that all correlated positively with elevated Nfe2l2 expression.
Collapse
|
31
|
Fan Y, Zhang Y, Shi K, Cheng S, Pei D, Shu X. Identification of a group of bisbenzylisoquinoline (BBIQ) compounds as ferroptosis inhibitors. Cell Death Dis 2022; 13:1000. [PMID: 36435804 PMCID: PMC9701226 DOI: 10.1038/s41419-022-05447-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/28/2022]
Abstract
Ferroptosis induced by detrimental accumulation of lipid peroxides has been recently linked to a variety of pathological conditions ranging from acute tissue injuries to chronic degenerative diseases and suppression of ferroptosis by small chemical inhibitors is beneficial to the prevention and treatment of these diseases. However, in vivo applicable small chemical ferroptosis inhibitors are limited currently. In this study, we screened an alkaloid natural compound library for compounds that can inhibit RSL3-induced ferroptosis in HT1080 cells and identified a group of bisbenzylisoquinoline (BBIQ) compounds as novel ferroptosis-specific inhibitors. These BBIQ compounds are structurally different from known ferroptosis inhibitors and they do not appear to regulate iron homeostasis or lipid ROS generation pathways, while they are able to scavenge 1,1-diphenyl-2-picryl-hydrazyl (DPPH) in cell-free reactions and prevent accumulation of lipid peroxides in living cells. These BBIQ compounds demonstrate good in vivo activities as they effectively protect mice from folic acid-induced renal tubular ferroptosis and acute kidney injury. Several BBIQ compounds are approved drugs in Japan and China for traditional uses and cepharanthine is currently in clinical trials against SARS-CoV-2, our discovery of BBIQs as in vivo applicable ferroptosis inhibitors will expand their usage to prevent ferroptotic tissue damages under various pathological conditions.
Collapse
Affiliation(s)
- Yipu Fan
- grid.428926.30000 0004 1798 2725CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yihan Zhang
- grid.508040.90000 0004 9415 435XGuangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou, 510005 China
| | - Kunyu Shi
- grid.508040.90000 0004 9415 435XGuangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou, 510005 China
| | - Shan Cheng
- grid.494629.40000 0004 8008 9315School of Life Science, Westlake University, Hangzhou, 310030 China
| | - Duanqing Pei
- grid.428926.30000 0004 1798 2725CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Xiaodong Shu
- grid.428926.30000 0004 1798 2725CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China ,grid.508040.90000 0004 9415 435XGuangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou, 510005 China ,grid.410737.60000 0000 8653 1072Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 511436 China
| |
Collapse
|
32
|
Wang B, Shen WB, Yang P, Turan S. SARS-CoV-2 infection induces activation of ferroptosis in human placenta. Front Cell Dev Biol 2022; 10:1022747. [PMID: 36425527 PMCID: PMC9679405 DOI: 10.3389/fcell.2022.1022747] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/27/2022] [Indexed: 09/01/2023] Open
Abstract
Ferroptosis, a regulated non-apoptotic form of cell death, has been implicated in the response to varied types of infectious agents including virus. In this study, we sought to determine whether SARS-CoV-2 infection can induce activation of ferroptosis in the human placenta. We collected placentas from 23 pregnant females with laboratory-confirmed SARS-CoV-2 following delivery and then used RNA in situ hybridization assay for detection of viral positive-sense strand (PSS) to confirm that these placentas have been infected. We also used immunohistochemistry assay to assess expression levels of acyl-CoA synthetase long-chain family member 4 (ACSL4), an essential executioner of ferroptosis in the same specimens. Our results showed that ACSL4 expression was significantly increased in the group with positive positive-sense strand staining compared to their negative counterparts (p = 0.00022). Furthermore, we found that there was a positive trend for increased PSS staining along with increased ACSL4 expression. Our study supports that ferroptosis is activated in the response to SARS-CoV-2 infection in the human placenta, highlighting a molecular mechanism potentially linking this coronavirus infection and pathogenesis of adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Bingbing Wang
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | | | - Peixin Yang
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Sifa Turan
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
33
|
Amaral EP, Foreman TW, Namasivayam S, Hilligan KL, Kauffman KD, Barbosa Bomfim CC, Costa DL, Barreto-Duarte B, Gurgel-Rocha C, Santana MF, Cordeiro-Santos M, Du Bruyn E, Riou C, Aberman K, Wilkinson RJ, Barber DL, Mayer-Barber KD, Andrade BB, Sher A. GPX4 regulates cellular necrosis and host resistance in Mycobacterium tuberculosis infection. J Exp Med 2022; 219:e20220504. [PMID: 36069923 PMCID: PMC9458471 DOI: 10.1084/jem.20220504] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/23/2022] [Accepted: 08/11/2022] [Indexed: 01/15/2023] Open
Abstract
Cellular necrosis during Mycobacterium tuberculosis (Mtb) infection promotes both immunopathology and bacterial dissemination. Glutathione peroxidase-4 (Gpx4) is an enzyme that plays a critical role in preventing iron-dependent lipid peroxidation-mediated cell death (ferroptosis), a process previously implicated in the necrotic pathology seen in Mtb-infected mice. Here, we document altered GPX4 expression, glutathione levels, and lipid peroxidation in patients with active tuberculosis and assess the role of this pathway in mice genetically deficient in or overexpressing Gpx4. We found that Gpx4-deficient mice infected with Mtb display substantially increased lung necrosis and bacterial burdens, while transgenic mice overexpressing the enzyme show decreased bacterial loads and necrosis. Moreover, Gpx4-deficient macrophages exhibited enhanced necrosis upon Mtb infection in vitro, an outcome suppressed by the lipid peroxidation inhibitor, ferrostatin-1. These findings provide support for the role of ferroptosis in Mtb-induced necrosis and implicate the Gpx4/GSH axis as a target for host-directed therapy of tuberculosis.
Collapse
Affiliation(s)
- Eduardo P. Amaral
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD
| | - Taylor W. Foreman
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD
| | - Sivaranjani Namasivayam
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD
| | - Kerry L. Hilligan
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD
| | - Keith D. Kauffman
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD
| | - Caio Cesar Barbosa Bomfim
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD
| | - Diego L. Costa
- Departmento de Bioquímica e Imunologia, Programa de Pós-Graduação em Imunologia Básica e Aplicada, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Beatriz Barreto-Duarte
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Brazil
- Curso de Medicina, Universidade Salvador, Laureate Universities, Salvador, Brazil
| | - Clarissa Gurgel-Rocha
- Department of Pathology, School of Medicine of the Federal University of Bahia, Salvador, Bahia, Brazil
- Center for Biotechnology and Cell Therapy, D’Or Institute for Research and Education, Sao Rafael Hospital, Salvador, Bahia, Brazil
| | - Monique Freire Santana
- Departmento de Ensino e Pesquisa, Fundação Centro de Controle de Oncologia do Estado do Amazonas, Manaus, Brazil
- Fundação Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Marcelo Cordeiro-Santos
- Fundação Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Faculdade de Medicina, Universidade Nilton Lins, Manaus, Brazil
| | - Elsa Du Bruyn
- Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Catherine Riou
- Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Kate Aberman
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD
| | - Robert John Wilkinson
- Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- The Francis Crick Institute, London, Northwick Park Hospital, Harrow, UK
- Department of Infectious Disease, Imperial College London, London, UK
| | - Daniel L. Barber
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD
| | - Katrin D. Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Bruno B. Andrade
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Brazil
- Curso de Medicina, Universidade Salvador, Laureate Universities, Salvador, Brazil
- Curso de Medicina, Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Brazil
- Curso de Medicina, Universidade Faculdade de Tecnologia e Ciências, Salvador, Bahia, Brazil
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD
| |
Collapse
|
34
|
Lin Z, Yang X, Guan L, Qin L, Ding J, Zhou L. The link between ferroptosis and airway inflammatory diseases: A novel target for treatment. Front Mol Biosci 2022; 9:985571. [PMID: 36060261 PMCID: PMC9428508 DOI: 10.3389/fmolb.2022.985571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Ferroptosis is an iron-dependent mode of cell death characterized by intracellular lipid peroxide accumulation and a redox reaction imbalance. Compared with other modes of cell death, ferroptosis has specific biological and morphological features. The iron-dependent lipid peroxidation accumulation is manifested explicitly in the abnormal metabolism of intracellular lipid oxides catalyzed by excessive iron ions with the production of many reactive oxygen species and over-oxidization of polyunsaturated fatty acids. Recent studies have shown that various diseases, which include intestinal diseases and cancer, are associated with ferroptosis, but few studies are related to airway inflammatory diseases. This review provides a comprehensive analysis of the primary damage mechanisms of ferroptosis and summarizes the relationship between ferroptosis and airway inflammatory diseases. In addition to common acute and chronic airway inflammatory diseases, we also focus on the progress of research on COVID-19 in relation to ferroptosis. New therapeutic approaches and current issues to be addressed in the treatment of inflammatory airway diseases using ferroptosis are further proposed.
Collapse
|
35
|
Yang Y, Li W, You B, Zhou C. Advances in cell death mechanisms involved in viral myocarditis. Front Cardiovasc Med 2022; 9:968752. [PMID: 36017100 PMCID: PMC9395613 DOI: 10.3389/fcvm.2022.968752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022] Open
Abstract
Viral myocarditis is an acute inflammatory disease of the myocardium. Although many etiopathogenic factors exist, coxsackievirus B3 is a the leading cause of viral myocarditis. Abnormal cardiomyocyte death is the underlying problem for most cardiovascular diseases and fatalities. Various types of cell death occur and are regulated to varying degrees. In this review, we discuss the different cell death mechanisms in viral myocarditis and the potential interactions between them. We also explore the role and mechanism of cardiomyocyte death with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Exploring the mechanisms may help in the early identification and the development of effective treatments, thus improving the quality of life of patients with viral myocarditis. We believe that the inhibition of cardiomyocyte death has immense therapeutic potential in increasing the longevity and health of the heart.
Collapse
Affiliation(s)
- Yang Yang
- Taizhou People’s Hospital Affiliated to Nanjing Medical University, Taizhou, China
- Clinical Laboratory Center, Jiangsu Taizhou People’s Hospital, Taizhou, China
- *Correspondence: Yang Yang,
| | - Wang Li
- Taizhou People’s Hospital Affiliated to Nanjing Medical University, Taizhou, China
- Clinical Laboratory Center, Jiangsu Taizhou People’s Hospital, Taizhou, China
| | - Benshuai You
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Chenglin Zhou
- Taizhou People’s Hospital Affiliated to Nanjing Medical University, Taizhou, China
- Clinical Laboratory Center, Jiangsu Taizhou People’s Hospital, Taizhou, China
- Chenglin Zhou,
| |
Collapse
|
36
|
Liu J, Li ZB, Lu QQ, Yu Y, Zhang SQ, Ke PF, Zhang F, Li JC. Metabolite profile of COVID-19 revealed by UPLC-MS/MS-based widely targeted metabolomics. Front Immunol 2022; 13:894170. [PMID: 35924246 PMCID: PMC9339702 DOI: 10.3389/fimmu.2022.894170] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/28/2022] [Indexed: 02/05/2023] Open
Abstract
The metabolic characteristics of COVID-19 disease are still largely unknown. Here, 44 patients with COVID-19 (31 mild COVID-19 patients and 13 severe COVID-19 patients), 42 healthy controls (HC), and 42 patients with community-acquired pneumonia (CAP), were involved in the study to assess their serum metabolomic profiles. We used widely targeted metabolomics based on an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The differentially expressed metabolites in the plasma of mild and severe COVID-19 patients, CAP patients, and HC subjects were screened, and the main metabolic pathways involved were analyzed. Multiple mature machine learning algorithms confirmed that the metabolites performed excellently in discriminating COVID-19 groups from CAP and HC subjects, with an area under the curve (AUC) of 1. The specific dysregulation of AMP, dGMP, sn-glycero-3-phosphocholine, and carnitine was observed in the severe COVID-19 group. Moreover, random forest analysis suggested that these metabolites could discriminate between severe COVID-19 patients and mild COVID-19 patients, with an AUC of 0.921. This study may broaden our understanding of pathophysiological mechanisms of COVID-19 and may offer an experimental basis for developing novel treatment strategies against it.
Collapse
Affiliation(s)
- Jun Liu
- Medical Research Center, Yue Bei People’s Hospital, Shantou University Medical College, Shaoguan, China
| | - Zhi-Bin Li
- The Central Laboratory, Yangjiang People’s Hospital, Yangjiang, China
| | - Qi-Qi Lu
- Medical Research Center, Yue Bei People’s Hospital, Shantou University Medical College, Shaoguan, China
| | - Yi Yu
- Medical Research Center, Yue Bei People’s Hospital, Shantou University Medical College, Shaoguan, China
- The Central Laboratory, Yangjiang People’s Hospital, Yangjiang, China
| | - Shan-Qiang Zhang
- Medical Research Center, Yue Bei People’s Hospital, Shantou University Medical College, Shaoguan, China
| | - Pei-Feng Ke
- Medical Research Center, Yue Bei People’s Hospital, Shantou University Medical College, Shaoguan, China
| | - Fan Zhang
- Medical Research Center, Yue Bei People’s Hospital, Shantou University Medical College, Shaoguan, China
| | - Ji-Cheng Li
- Medical Research Center, Yue Bei People’s Hospital, Shantou University Medical College, Shaoguan, China
- The Central Laboratory, Yangjiang People’s Hospital, Yangjiang, China
- Department of Histology and Embryology, Shaoguan University School of Medicine, Shaoguan, China
- Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
37
|
Szabo R, Petrisor C, Bodolea C, Simon R, Maries I, Tranca S, Mocan T. Hyperferritinemia, Low Circulating Iron and Elevated Hepcidin May Negatively Impact Outcome in COVID-19 Patients: A Pilot Study. Antioxidants (Basel) 2022; 11:antiox11071364. [PMID: 35883855 PMCID: PMC9311882 DOI: 10.3390/antiox11071364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 01/27/2023] Open
Abstract
Inflammation in COVID-19 produces intracellular iron overload with low circulating iron available for metabolic processes. The accumulated intracellular iron generates reactive species of oxygen and results in ferroptosis, a non-programmed cell death. Since no organ is spared, iron dysmetabolism increases the mortality and morbidity. Hepcidin and the mediator interleukin 6 are believed to play a role in the process. Our aim is to evaluate the predictive values of serologic iron and inflammatory parameters in COVID-19 critically ill patients. Hence, 24 patients were included. Hepcidin and interleukin 6, along with routine blood parameters, were determined and outcomes, such as death, multiple organ damage (MOD), anemia, and need for transfusions, were assessed. The results of this pilot study indicate that iron metabolism parameters individually, as well as models consisting of multiple laboratory and clinical variables, may predict the outcomes. Further larger studies are needed to validate the results of this pilot stud. However, this paper identifies a new direction for research.
Collapse
Affiliation(s)
- Robert Szabo
- Physiology Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (R.S.); (T.M.)
- Anaesthesia II Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (C.P.); (R.S.); (I.M.); (S.T.)
- Clinical County Emergency Hospital, 400000 Cluj-Napoca, Romania
| | - Cristina Petrisor
- Anaesthesia II Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (C.P.); (R.S.); (I.M.); (S.T.)
- Clinical County Emergency Hospital, 400000 Cluj-Napoca, Romania
| | - Constantin Bodolea
- Anaesthesia II Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (C.P.); (R.S.); (I.M.); (S.T.)
- Municipal Clinical Hospital, 400139 Cluj-Napoca, Romania
- Correspondence:
| | - Robert Simon
- Anaesthesia II Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (C.P.); (R.S.); (I.M.); (S.T.)
| | - Ioana Maries
- Anaesthesia II Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (C.P.); (R.S.); (I.M.); (S.T.)
| | - Sebastian Tranca
- Anaesthesia II Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (C.P.); (R.S.); (I.M.); (S.T.)
- Clinical County Emergency Hospital, 400000 Cluj-Napoca, Romania
| | - Teodora Mocan
- Physiology Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (R.S.); (T.M.)
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology, 400000 Cluj-Napoca, Romania
| |
Collapse
|
38
|
Marchi G, Bozzini C, Bertolone L, Dima F, Busti F, Castagna A, Stranieri C, Fratta Pasini AM, Friso S, Lippi G, Girelli D, Vianello A. Red Blood Cell Morphologic Abnormalities in Patients Hospitalized for COVID-19. Front Physiol 2022; 13:932013. [PMID: 35860651 PMCID: PMC9289213 DOI: 10.3389/fphys.2022.932013] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/14/2022] [Indexed: 12/16/2022] Open
Abstract
Peripheral blood smear is a simple laboratory tool, which remains of invaluable help for diagnosing primary and secondary abnormalities of blood cells despite advances in automated and molecular techniques. Red blood cells (RBCs) abnormalities are known to occur in many viral infections, typically in the form of mild normo-microcytic anemia. While several hematological alterations at automated complete blood count (including neutrophilia, lymphopenia, and increased red cell distribution width—RDW) have been consistently associated with severity of COVID-19, there is scarce information on RBCs morphological abnormalities, mainly as case-reports or small series of patients, which are hardly comparable due to heterogeneity in sampling times and definition of illness severity. We report here a systematic evaluation of RBCs morphology at peripheral blood smear in COVID-19 patients within the first 72 h from hospital admission. One hundred and fifteen patients were included, with detailed collection of other clinical variables and follow-up. A certain degree of abnormalities in RBCs morphology was observed in 75 (65%) patients. Heterogenous alterations were noted, with spiculated cells being the more frequent morphology. The group with >10% RBCs abnormalities had more consistent lymphopenia and thrombocytopenia compared to those without abnormalities or <10% RBCs abnormalities (p < 0.018, and p < 0.021, respectively), thus underpinning a possible association with an overall more sustained immune-inflammatory “stress” hematopoiesis. Follow-up analysis showed a different mortality rate across groups, with the highest rate in those with more frequent RBCs morphological alterations compared to those with <10% or no abnormalities (41.9%, vs. 20.5%, vs. 12.5%, respectively, p = 0.012). Despite the inherent limitations of such simple association, our results point out towards further studies on erythropoiesis alterations in the pathophysiology of COVID-19.
Collapse
Affiliation(s)
- Giacomo Marchi
- Section of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
- EuroBloodNet Referral Center for Rare Hematological Disorders, University of Verona, Verona, Italy
| | - Claudia Bozzini
- Section of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
- EuroBloodNet Referral Center for Rare Hematological Disorders, University of Verona, Verona, Italy
| | - Lorenzo Bertolone
- Section of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
- EuroBloodNet Referral Center for Rare Hematological Disorders, University of Verona, Verona, Italy
| | - Francesco Dima
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| | - Fabiana Busti
- Section of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
- EuroBloodNet Referral Center for Rare Hematological Disorders, University of Verona, Verona, Italy
| | - Annalisa Castagna
- Section of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
- EuroBloodNet Referral Center for Rare Hematological Disorders, University of Verona, Verona, Italy
| | - Chiara Stranieri
- Section of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
- EuroBloodNet Referral Center for Rare Hematological Disorders, University of Verona, Verona, Italy
| | | | - Simonetta Friso
- Section of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Giuseppe Lippi
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| | - Domenico Girelli
- Section of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
- EuroBloodNet Referral Center for Rare Hematological Disorders, University of Verona, Verona, Italy
| | - Alice Vianello
- Section of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
- EuroBloodNet Referral Center for Rare Hematological Disorders, University of Verona, Verona, Italy
- *Correspondence: Alice Vianello, , orcid.org/0000-0002-2428-4760
| |
Collapse
|
39
|
Rex DAB, Keshava Prasad TS, Kandasamy RK. Revisiting Regulated Cell Death Responses in Viral Infections. Int J Mol Sci 2022; 23:ijms23137023. [PMID: 35806033 PMCID: PMC9266763 DOI: 10.3390/ijms23137023] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/07/2023] Open
Abstract
The fate of a viral infection in the host begins with various types of cellular responses, such as abortive, productive, latent, and destructive infections. Apoptosis, necroptosis, and pyroptosis are the three major types of regulated cell death mechanisms that play critical roles in viral infection response. Cell shrinkage, nuclear condensation, bleb formation, and retained membrane integrity are all signs of osmotic imbalance-driven cytoplasmic swelling and early membrane damage in necroptosis and pyroptosis. Caspase-driven apoptotic cell demise is considered in many circumstances as an anti-inflammatory, and some pathogens hijack the cell death signaling routes to initiate a targeted attack against the host. In this review, the selected mechanisms by which viruses interfere with cell death were discussed in-depth and were illustrated by compiling the general principles and cellular signaling mechanisms of virus–host-specific molecule interactions.
Collapse
Affiliation(s)
| | - Thottethodi Subrahmanya Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
- Correspondence: (T.S.K.P.); (R.K.K.)
| | - Richard K. Kandasamy
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O Box 505055, United Arab Emirates
- Correspondence: (T.S.K.P.); (R.K.K.)
| |
Collapse
|
40
|
Kontoghiorghes GJ. Deferiprone: A Forty-Year-Old Multi-Targeting Drug with Possible Activity against COVID-19 and Diseases of Similar Symptomatology. Int J Mol Sci 2022; 23:ijms23126735. [PMID: 35743183 PMCID: PMC9223898 DOI: 10.3390/ijms23126735] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023] Open
Abstract
The need for preparing new strategies for the design of emergency drug therapies against COVID-19 and similar diseases in the future is rather urgent, considering the high rate of morbidity and especially mortality associated with COVID-19, which so far has exceeded 18 million lives. Such strategies could be conceived by targeting the causes and also the serious toxic side effects of the diseases, as well as associated biochemical and physiological pathways. Deferiprone (L1) is an EMA- and FDA-approved drug used worldwide for the treatment of iron overload and also other conditions where there are no effective treatments. The multi-potent effects and high safety record of L1 in iron loaded and non-iron loaded categories of patients suggests that L1 could be developed as a “magic bullet” drug against COVID-19 and diseases of similar symptomatology. The mode of action of L1 includes antiviral, antimicrobial, antioxidant, anti-hypoxic and anti-ferroptotic effects, iron buffering interactions with transferrin, iron mobilizing effects from ferritin, macrophages and other cells involved in the immune response and hyperinflammation, as well as many other therapeutic interventions. Similarly, several pharmacological and other characteristics of L1, including extensive tissue distribution and low cost of production, increase the prospect of worldwide availability, as well as many other therapeutic approach strategies involving drug combinations, adjuvant therapies and disease prevention.
Collapse
Affiliation(s)
- George J Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, Limassol 3021, Cyprus
| |
Collapse
|
41
|
Gu SX, Dayal S. Redox Mechanisms of Platelet Activation in Aging. Antioxidants (Basel) 2022; 11:995. [PMID: 35624860 PMCID: PMC9137594 DOI: 10.3390/antiox11050995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
Aging is intrinsically linked with physiologic decline and is a major risk factor for a broad range of diseases. The deleterious effects of advancing age on the vascular system are evidenced by the high incidence and prevalence of cardiovascular disease in the elderly. Reactive oxygen species are critical mediators of normal vascular physiology and have been shown to gradually increase in the vasculature with age. There is a growing appreciation for the complexity of oxidant and antioxidant systems at the cellular and molecular levels, and accumulating evidence indicates a causal association between oxidative stress and age-related vascular disease. Herein, we review the current understanding of mechanistic links between oxidative stress and thrombotic vascular disease and the changes that occur with aging. While several vascular cells are key contributors, we focus on oxidative changes that occur in platelets and their mediation in disease progression. Additionally, we discuss the impact of comorbid conditions (i.e., diabetes, atherosclerosis, obesity, cancer, etc.) that have been associated with platelet redox dysregulation and vascular disease pathogenesis. As we continue to unravel the fundamental redox mechanisms of the vascular system, we will be able to develop more targeted therapeutic strategies for the prevention and management of age-associated vascular disease.
Collapse
Affiliation(s)
- Sean X. Gu
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06511, USA;
| | - Sanjana Dayal
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa City VA Healthcare System, Iowa City, IA 52246, USA
| |
Collapse
|
42
|
Association between Severe SARS-CoV-2 Infection and Severe Acute Pancreatitis in Pregnancy and Postpartum. J Clin Med 2022; 11:jcm11092554. [PMID: 35566679 PMCID: PMC9102136 DOI: 10.3390/jcm11092554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION SARS-CoV-2 infection (COVID-19) affects the respiratory system but is not limited to it. The gastrointestinal symptoms are polymorphic, including diarrhea, vomiting, abdominal pain, and even acute pancreatitis (AP). Pregnant women are more vulnerable to SARS-CoV-2 infection and have a higher risk of severe outcomes of COVID-19. CASE REPORT We present a case report of a 31-year-old primigravid patient at 30 weeks of gestation, unvaccinated, with a medical history of thrombophilia, chronic nephropathy of unknown origin, hypertension, and optic neuropathy with left eye hemianopsia. She was diagnosed with moderate-to-severe COVID-19 and respiratory failure, with indication for cesarean section. Postpartum, she developed severe acute pancreatitis, complicated by peripancreatic and supradiaphragmatic abscesses. After 3 months of hospitalization and eight surgical interventions, the patient was discharged. A short mini-review of the literature is introduced. CONCLUSION Pregnant women with cardiovascular comorbidities are prone to severe complications of SARS-CoV-2 infection. Clinicians should be aware of the association of SARS-CoV-2 and AP in pregnant women.
Collapse
|
43
|
Hyperglycemia and Loss of Redox Homeostasis in COVID-19 Patients. Cells 2022; 11:cells11060932. [PMID: 35326383 PMCID: PMC8946177 DOI: 10.3390/cells11060932] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
The infection with SARS-CoV-2 impairs the glucose−insulin axis and this contributes to oxidative (OS) and nitrosative (NSS) stress. Here, we evaluated changes in glucose metabolism that could promote the loss of redox homeostasis in COVID-19 patients. This was comparative cohort and analytical study that compared COVID-19 patients and healthy subjects. The study population consisted of 61 COVID-19 patients with and without comorbidities and 25 healthy subjects (HS). In all subjects the plasma glucose, insulin, 8-isoprostane, Vitamin D, H2S and 3-nitrotyrosine were determined by ELISA. The nitrites (NO2−), lipid-peroxidation (LPO), total-antioxidant-capacity (TAC), thiols, glutathione (GSH) and selenium (Se) were determined by spectrophotometry. The glucose, insulin and HOMA-IR (p < 0.001), 8-isoprostanes, 3-nitrotyrosine (p < 0.001) and LPO were increased (p = 0.02) while Vitamin D (p = 0.01), H2S, thiols, TAC, GSH and Se (p < 0.001) decreased in COVID-19 patients in comparison to HS. The SARS-CoV-2 infection resulted in alterations in the glucose−insulin axis that led to hyperglycemia, hyperinsulinemia and IR in patients with and without comorbidities. These alterations increase OS and NSS reflected in increases or decreases in some oxidative markers in plasma with major impact or fatal consequences in patients that course with metabolic syndrome. Moreover, subjects without comorbidities could have long-term alterations in the redox homeostasis after infection.
Collapse
|
44
|
Effect of Antioxidant Therapy on Oxidative Stress In Vivo 2021. Antioxidants (Basel) 2022; 11:antiox11030448. [PMID: 35326099 PMCID: PMC8944671 DOI: 10.3390/antiox11030448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/05/2023] Open
|
45
|
Implication of COVID-19 on Erythrocytes Functionality: Red Blood Cell Biochemical Implications and Morpho-Functional Aspects. Int J Mol Sci 2022; 23:ijms23042171. [PMID: 35216286 PMCID: PMC8878454 DOI: 10.3390/ijms23042171] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 01/08/2023] Open
Abstract
Several diseases (such as diabetes, cancer, and neurodegenerative disorders) affect the morpho-functional aspects of red blood cells, sometimes altering their normal metabolism. In this review, the hematological changes are evaluated, with particular focus on the morphology and metabolic aspects of erythrocytes. Changes in the functionality of such cells may, in fact, help provide important information about disease severity and progression. The viral infection causes significant damage to the blood cells that are altered in size, rigidity, and distribution width. Lower levels of hemoglobin and anemia have been reported in several studies, and an alteration in the concentration of antioxidant enzymes has been shown to promote a dangerous state of oxidative stress in red blood cells. Patients with severe COVID-19 showed an increase in hematological changes, indicating a progressive worsening as COVID-19 severity progressed. Therefore, monitored hematological alterations in patients with COVID-19 may play an important role in the management of the disease and prevent the risk of a severe course of the disease. Finally, monitored changes in erythrocytes and blood, in general, may be one of the causes of the condition known as Long COVID.
Collapse
|
46
|
Cavezzi A, Menicagli R, Troiani E, Corrao S. COVID-19, Cation Dysmetabolism, Sialic Acid, CD147, ACE2, Viroporins, Hepcidin and Ferroptosis: A Possible Unifying Hypothesis. F1000Res 2022; 11:102. [PMID: 35340277 PMCID: PMC8921693 DOI: 10.12688/f1000research.108667.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/20/2022] [Indexed: 08/26/2024] Open
Abstract
Background: iron and calcium dysmetabolism, with hyperferritinemia, hypoferremia, hypocalcemia and anemia have been documented in the majority of COVID-19 patients at later/worse stages. Furthermore, complementary to ACE2, both sialic acid (SA) molecules and CD147 proved relevant host receptors for SARS-CoV-2 entry, which explains the viral attack to multiple types of cells, including erythrocytes, endothelium and neural tissue. Several authors advocated that cell ferroptosis may be the core and final cell degenerative mechanism. Methods: a literature research was performed in several scientific search engines, such as PubMed Central, Cochrane Library, Chemical Abstract Service. More than 500 articles were retrieved until mid-December 2021, to highlight the available evidence about the investigated issues. Results: based on COVID-19 literature data, we have highlighted a few pathophysiological mechanisms, associated with virus-based cation dysmetabolism, multi-organ attack, mitochondria degeneration and ferroptosis. Our suggested elucidated pathological sequence is: a) spike protein subunit S1 docking with sialylated membrane glycoproteins/receptors (ACE2, CD147), and S2 subunit fusion with the lipid layer; b) cell membrane morpho-functional changes due to the consequent electro-chemical variations and viroporin action, which induce an altered ion channel function and intracellular cation accumulation; c) additional intracellular iron concentration due to a deregulated hepcidin-ferroportin axis, with higher hepcidin levels. Viral invasion may also affect erythrocytes/erythroid precursors, endothelial cells and macrophages, through SA and CD147 receptors, with relative hemoglobin and iron/calcium dysmetabolism. AB0 blood group, hemochromatosis, or environmental elements may represent possible factors which affect individual susceptibility to COVID-19. Conclusions: our literature analysis confirms the combined role of SA molecules, ACE2, CD147, viroporins and hepcidin in determining the cation dysmetabolism and final ferroptosis in the cells infected by SARS-CoV-2. The altered ion channels and electrochemical gradients of the cell membrane have a pivotal role in the virus entry and cell dysmetabolism, with subsequent multi-organ immune-inflammatory degeneration and erythrocyte/hemoglobin alterations.
Collapse
Affiliation(s)
- Attilio Cavezzi
- Eurocenter Venalinfa, San Benedetto del Tronto, AP, 63074, Italy
| | | | - Emidio Troiani
- Cardiology Unit, Social Security Institute, State Hospital, Cailungo, 47893, San Marino
| | - Salvatore Corrao
- Department of Clinical Medicine, Internal Medicine Division,, ARNAS Civico Di Cristina Benfratelli Hospital Trust, Palermo, Italy
| |
Collapse
|
47
|
Cavezzi A, Menicagli R, Troiani E, Corrao S. COVID-19, Cation Dysmetabolism, Sialic Acid, CD147, ACE2, Viroporins, Hepcidin and Ferroptosis: A Possible Unifying Hypothesis. F1000Res 2022; 11:102. [PMID: 35340277 PMCID: PMC8921693 DOI: 10.12688/f1000research.108667.2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/17/2022] [Indexed: 12/15/2022] Open
Abstract
Background: iron and calcium dysmetabolism, with hyperferritinemia, hypoferremia, hypocalcemia and anemia have been documented in the majority of COVID-19 patients at later/worse stages. Furthermore, complementary to ACE2, both sialic acid (SA) molecules and CD147 proved relevant host receptors for SARS-CoV-2 entry, which explains the viral attack to multiple types of cells, including erythrocytes, endothelium and neural tissue. Several authors advocated that cell ferroptosis may be the core and final cell degenerative mechanism. Methods: a literature research was performed in several scientific search engines, such as PubMed Central, Cochrane Library, Chemical Abstract Service. More than 500 articles were retrieved until mid-December 2021, to highlight the available evidence about the investigated issues. Results: based on COVID-19 literature data, we have highlighted a few pathophysiological mechanisms, associated with virus-based cation dysmetabolism, multi-organ attack, mitochondria degeneration and ferroptosis. Our suggested elucidated pathological sequence is: a) spike protein subunit S1 docking with sialylated membrane glycoproteins/receptors (ACE2, CD147), and S2 subunit fusion with the lipid layer; b) cell membrane morpho-functional changes due to the consequent electro-chemical variations and viroporin action, which induce an altered ion channel function and intracellular cation accumulation; c) additional intracellular iron concentration due to a deregulated hepcidin-ferroportin axis, with higher hepcidin levels. Viral invasion may also affect erythrocytes/erythroid precursors, endothelial cells and macrophages, through SA and CD147 receptors, with relative hemoglobin and iron/calcium dysmetabolism. AB0 blood group, hemochromatosis, or environmental elements may represent possible factors which affect individual susceptibility to COVID-19. Conclusions: our literature analysis confirms the combined role of SA molecules, ACE2, CD147, viroporins and hepcidin in determining the cation dysmetabolism and final ferroptosis in the cells infected by SARS-CoV-2. The altered ion channels and electrochemical gradients of the cell membrane have a pivotal role in the virus entry and cell dysmetabolism, with subsequent multi-organ immune-inflammatory degeneration and erythrocyte/hemoglobin alterations.
Collapse
Affiliation(s)
- Attilio Cavezzi
- Eurocenter Venalinfa, San Benedetto del Tronto, AP, 63074, Italy
| | | | - Emidio Troiani
- Cardiology Unit, Social Security Institute, State Hospital, Cailungo, 47893, San Marino
| | - Salvatore Corrao
- Department of Clinical Medicine, Internal Medicine Division,, ARNAS Civico Di Cristina Benfratelli Hospital Trust, Palermo, Italy
| |
Collapse
|