1
|
Bezerra FDS, Ramos GMS, Carvalho MGDO, Carvalho HS, de Souza JP, de Carvalho Neto SL, de Souza SMAGU, Ferraz DCDC, Koblitz MGB. Cytotoxic potential of sunflower meal NaDES and liquid-liquid extracts. Food Chem 2025; 474:143148. [PMID: 39919417 DOI: 10.1016/j.foodchem.2025.143148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/13/2025] [Accepted: 01/28/2025] [Indexed: 02/09/2025]
Abstract
Sunflower meal, a by-product rich in proteins and phenolic compounds, has potential applications in food and healthcare due to its bioactive phenolic compounds. However, challenges arise in extracting these compounds, as phenol-protein complexes can reduce digestibility and nutritional value. This study explored phenolic compound extraction from sunflower meal using NaDES and hydroethanolic extract, followed by liquid-liquid extraction (LLE) with organic solvents to recover target compounds. Cytotoxicity assays were performed on breast cancer cell lines and pathogenic bacteria. Acetonitrile was the most effective solvent for phenolic recovery in Choline Chloride:Glycerol and Urea:Glycerol solvents, achieving 80 % and 63 % recovery, respectively. These NaDES combinations reduced cell viability by up to 78.4 % in MCF-7 cells and 74 % in MDA-MB-231 cells. Hydroethanolic extracts showed the highest antimicrobial activity, with up to 100 % bacterial viability reduction. This study confirms NaDES as effective green solvents and highlights their bioactivity, stressing the need for optimal extraction parameters.
Collapse
Affiliation(s)
- Fernanda de Sousa Bezerra
- Food and nutrition graduate program - PPGAN, Federal University of the State of Rio de Janeiro - UNIRIO, 296 Pasteur Av. 2nd floor. Urca, Rio de Janeiro, - RJ 22290-240, Brazil.
| | - Gabriela Macello Soares Ramos
- Food and nutrition graduate program - PPGAN, Federal University of the State of Rio de Janeiro - UNIRIO, 296 Pasteur Av. 2nd floor. Urca, Rio de Janeiro, - RJ 22290-240, Brazil.
| | - Matheus Grilo de Oliveira Carvalho
- Food and nutrition graduate program - PPGAN, Federal University of the State of Rio de Janeiro - UNIRIO, 296 Pasteur Av. 2nd floor. Urca, Rio de Janeiro, - RJ 22290-240, Brazil.
| | - Helena Sacco Carvalho
- Food and nutrition graduate program - PPGAN, Federal University of the State of Rio de Janeiro - UNIRIO, 296 Pasteur Av. 2nd floor. Urca, Rio de Janeiro, - RJ 22290-240, Brazil.
| | - Jonathan Pinheiro de Souza
- Food and nutrition graduate program - PPGAN, Federal University of the State of Rio de Janeiro - UNIRIO, 296 Pasteur Av. 2nd floor. Urca, Rio de Janeiro, - RJ 22290-240, Brazil.
| | - Sálvio Lima de Carvalho Neto
- Chemical engineering graduate program - PósEnq, Federal University of Santa Catarina - UFSC, P.O. Box 476, Florianópolis, SC 88040-900, Brazil
| | | | - Danielly C da Costa Ferraz
- Food, nutrition and health graduate program, State University of Rio de Janeiro - UERJ, 524 São Francisco Xavier St. 12th floor. Maracanã, Rio de Janeiro -, RJ 20550-170, Brazil
| | - Maria Gabriela Bello Koblitz
- Food and nutrition graduate program - PPGAN, Federal University of the State of Rio de Janeiro - UNIRIO, 296 Pasteur Av. 2nd floor. Urca, Rio de Janeiro, - RJ 22290-240, Brazil.
| |
Collapse
|
2
|
Soni R, Mathur K, Rathod H, Khairnar A, Shah J. Hyperglycemia-Driven Insulin Signaling Defects Promote Parkinson's Disease-like Pathology in Mice. ACS Pharmacol Transl Sci 2024; 7:4155-4164. [PMID: 39698281 PMCID: PMC11650731 DOI: 10.1021/acsptsci.4c00586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/20/2024]
Abstract
This study aims to determine the effect of chronic hyperglycemia, induced by a high-fat diet and STZ-induced diabetes, on the development of Parkinson's disease-like characteristics. Understanding this relationship is crucial in pharmacology, neurology, and diabetes, as it could potentially lead to developing new therapeutic strategies for Parkinson's disease. Our study employed a comprehensive approach to investigate the effect of hyperglycemia on Parkinson's disease-like characteristics. Hyperglycemia was induced by a high-fat diet for 6- and 9-week duration with a single intraperitoneal STZ (100 mg/kg) injection at week 5 in C57/BL6 mice. Rotenone (10 mg/kg p.o.) was administered to C57/BL6 mice for 6 and 9 weeks. Time-dependent behavioral studies (wire-hang tests, pole tests, Y-maze tests, and round beam walk tests) were carried out to monitor pathology progression and deficits. Molecular protein levels (GLP1, PI3K, AKT, GSK-3β, NF-κB, and α-syn), oxidative stress (GSH and MDA) parameters, and histopathological alterations (H&E and Nissl staining) were determined after 6 weeks as well as 9 weeks. After 9 weeks of study, molecular protein expression (p-AKT and p-α-syn) was determined. Hyperglycemia induced by HFD and STZ induced significant motor impairment in mice, correlated with the rotenone group. Insulin receptor signaling (GLP1/PI3K/AKT) was found to be disrupted in the HFD+STZ group and also in rotenone-treated mice, which further enhanced phosphorylation of α-syn, suggesting its role in α-syn accumulation. Histopathological alterations indicating neuroinflammation and neurodegeneration were quite evident in the HFD+STZ and rotenone groups. Exposure to hyperglycemia induced by HFD+STZ administration exhibits PD-like characteristics after 9 weeks of duration, which was correlative with rotenone-induced PD-like symptoms.
Collapse
Affiliation(s)
- Ritu Soni
- Department
of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Kirti Mathur
- Department
of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Hritik Rathod
- Department
of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Amit Khairnar
- International
Clinical Research Centre, St. Anne’s
University Hospital, Brno, Czech Republic, ICRC, FNUSA, Brno 60200, Czechia
- Department
of Physiology, Faculty of Medicine, Masaryk
University, Kamenice
753/5, Brno 62500, Czechia
- International
Clinical Research Centre, Faculty of Medicine, Masaryk University, Kamenice 753/5, Brno 62500, Czechia
| | - Jigna Shah
- Department
of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| |
Collapse
|
3
|
Peng S, Wang J, Farag MA, Salah M, Liu L, Fang Y, Zhang W. Impact of refining on phytochemicals and anti-inflammatory activity of papaya (Carica papaya L.) seed oil in LPS-stimulated THP-1 cells. Food Chem 2024; 459:140299. [PMID: 38986200 DOI: 10.1016/j.foodchem.2024.140299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/21/2024] [Accepted: 06/29/2024] [Indexed: 07/12/2024]
Abstract
This study investigated the changes in phytochemical composition and inflammatory response of crude papaya (Carica papaya L.) seed oil (CPO) and its refined forms (degummed, PDG; deacidified, PDA; decolorized, PDC; deodorized, PDO). Oils were analyzed for their phytochemical composition, oil quality parameters, antioxidant activity, and their inflammatory response in LPS-stimulated THP-1 macrophages. At higher refining degrees, particularly after deacidification, the contents of phytochemicals (sterols, tocopherols, and polyphenols) decreased while oxidation products increased. Both CPO (0.1-1.0 mg/mL) and PDG reduced the secretion and mRNA expression of LPS-stimulated inflammatory cytokines and mediators and also blocked the activation of the NF-κB pathway. PDA, PDC, and PDO showed low anti-inflammatory or even pro-inflammatory activity. Correlation analysis showed that 4 polyphenols and 2 phytosterols were responsible for the oil's anti-inflammatory effects. These findings indicated that moderate refining is suggested for papaya seed oil processing for retaining bioactive ingredients and anti-inflammatory ability.
Collapse
Affiliation(s)
- Siqi Peng
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, Hainan, China
| | - Jing Wang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, Hainan, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., P.B. 11562 Cairo, Egypt
| | - Mahmoud Salah
- Mahmoud Salah Department of Environmental Agricultural Science, Faculty of Graduate Studies and Environmental Research, Ain Shams University, Cairo 11566, Egypt
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Yajing Fang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, Hainan, China..
| | - Weimin Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, Hainan, China..
| |
Collapse
|
4
|
Mei H, Li Y, Wu S, He J. Natural plant polyphenols contribute to the ecological and healthy swine production. J Anim Sci Biotechnol 2024; 15:146. [PMID: 39491001 PMCID: PMC11533317 DOI: 10.1186/s40104-024-01096-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/25/2024] [Indexed: 11/05/2024] Open
Abstract
The absence of trace amounts of natural bioactive compounds with important biological activities in traditional dietary models for global farm animals, coupled with an incomplete theoretical system for animal nutrition, has led to unbalanced and inadequate animal nutrition. This deficiency has adversely impacted animal health and the ecological environment, presenting formidable challenges to the advancement of the swine breeding industry in various countries around the world toward high-quality development. Recently, due to the ban of antibiotics for growth promotion in swine diets, botanical active compounds have been extensively investigated as feed additives. Polyphenols represent a broad group of plant secondary metabolites. They are natural, non-toxic, pollution-free, and highly reproducible compounds that have a wide range of physiological functions, such as antioxidant, anti-inflammatory, immunomodulatory, antiviral, antibacterial, and metabolic activities. Accordingly, polyphenols have been widely studied and used as feed additives in swine production. This review summarizes the structural characteristics, classification, current application situation, general properties of polyphenols, and the latest research advances on their use in swine production. Additionally, the research and application bottlenecks and future development of plant polyphenols in the animal feed industry are reviewed and prospected. This review aims to stimulate the in-depth study of natural plant polyphenols and the research and development of related products in order to promote the green, healthy, and high-quality development of swine production, while also providing ideas for the innovation and development in the theoretical system of animal nutrition.
Collapse
Affiliation(s)
- Huadi Mei
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, 410128, China
| | - Yuanfei Li
- Jiangxi Province Key Laboratory of Genetic Improvement of Indigenous Chicken Breeds, Institute of Biotechnology, Nanchang Normal University, Nanchang, Jiangxi, 330000, China
| | - Shusong Wu
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, 410128, China.
| | - Jianhua He
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, 410128, China.
| |
Collapse
|
5
|
Lu J, An Y, Wang X, Zhang C, Guo S, Ma Y, Qiu Y, Wang S. Alleviating effect of chlorogenic acid on oxidative damage caused by hydrogen peroxide in bovine intestinal epithelial cells. J Vet Med Sci 2024; 86:1016-1026. [PMID: 39069486 PMCID: PMC11422687 DOI: 10.1292/jvms.24-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
Chlorogenic acid (CGA) is a polyphenol substance contained in many plants, which has good antioxidant activity. This experiment aimed to explore the protective effects of CGA on hydrogen peroxide (H2O2)-induced inflammatory response, apoptosis, and antioxidant capacity of bovine intestinal epithelial cells (BIECs-21) under oxidative stress and its mechanism. The results showed that compared with cells treated with H2O2 alone, CGA pretreatment could improve the viability of BIECs-21. Importantly, Chlorogenic acid pretreatment significantly reduced the formation of malondialdehyde (MDA), lowered reactive oxygen species (ROS) levels, and enhanced the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) (P<0.05). In addition, CGA can also improve the intestinal barrier by increasing the abundance of tight junction proteins claudin-1 and occludin. Meanwhile, CGA can reduce the gene expression levels of pro-inflammatory factors Interleukin-6 (IL-6) and Interleukin-8 (IL-8), increase the expression of anti-inflammatory factor Interleukin-10 (IL-10), promote the expression of the nuclear factor-related factor 2 (Nrf2) signaling pathway, enhance cell antioxidant capacity, and inhibit Nuclear Factor Kappa B (NF-κB) the activation of the signaling pathway reducing the inflammatory response, thereby alleviating inflammation and oxidative stress damage.
Collapse
Affiliation(s)
- Jia Lu
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Yongsheng An
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Xueying Wang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Cai Zhang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Shuai Guo
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Yanbo Ma
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Yan Qiu
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Shuai Wang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
6
|
Hu S, Zhao R, Chen T, Chi X, Li Y, Wu D, Zhu B, Hu J. Construction of chlorogenic acid nanoparticles for effective alleviation of ulcerative colitis. Food Funct 2024; 15:9085-9099. [PMID: 39157985 DOI: 10.1039/d4fo02122c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The onset and progression of ulcerative colitis (UC) are intricately linked to the worsening of intestinal inflammation, an imbalance in oxidative stress, and impairment of the intestinal mucosal barrier. Although chlorogenic acid (CA) shows potential in effectively alleviating the symptoms of UC, its clinical application is hindered by its poor bioavailability, stability, rapid metabolism, and quick excretion. This study utilized a one-step enzyme-catalyzed polymerization technique to create chlorogenic acid nanoparticles (CA NPs), aiming to improve the bioavailability and stability of CA. The CA NPs exhibited an optimal nanosize (106.65 ± 4.12 nm) and showed increased cellular uptake over time. Importantly, CA NPs significantly prolonged retention time in inflamed colonic tissues, enhancing accumulation and providing a targeted therapy for UC. Animal studies confirmed the substantial benefits of CA NPs, including reduced weight loss, lessened reduction in colon length, and a lowered disease activity index (DAI) score in DSS-induced UC mice. Moreover, CA NPs effectively reduced oxidative stress and levels of inflammatory factors in the colonic tissues of UC mice, thus mitigating tissue damage and restoring the integrity of the intestinal mucosal barrier. In conclusion, our research proposes a novel approach to increase the bioavailability and stability of CA, offering a promising avenue for its effective application in preventing UC.
Collapse
Affiliation(s)
- Shumeng Hu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China.
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Runan Zhao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China.
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Tao Chen
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China.
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Xuesong Chi
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China.
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Yangjing Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China.
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Di Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China.
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Beiwei Zhu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China.
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, PR China
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Jiangning Hu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China.
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, PR China
| |
Collapse
|
7
|
Zhang L, Lu J. Rosemary (Rosmarinus officinalis L.) polyphenols and inflammatory bowel diseases: Major phytochemicals, functional properties, and health effects. Fitoterapia 2024; 177:106074. [PMID: 38906386 DOI: 10.1016/j.fitote.2024.106074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
Major polyphenols in Rosmarinus officinalis L. primarily consist of phenolic acids, phenolic diterpenes, and flavonoids, all of which have pharmacological properties including anti-inflammatory and antibacterial characteristics. Numerous in vitro and animal studies have found that rosemary polyphenols have the potential to decrease the severity of intestinal inflammation. The beneficial effects of rosemary polyphenols were associated with anti-inflammatory properties, including improved gut barrier (increased mucus secretion and tight junction), increased antioxidant enzymes, inhibiting inflammatory pathways and cytokines (downregulation of NF-κB, NLRP3 inflammasomes, STAT3 and activation of Nrf2), and modulating gut microbiota community (increased core probiotics and SCFA-producing bacteria, and decreased potential pathogens) and metabolism (changes in SCFA and bile acid metabolites). This paper provides a better understanding of the anti-inflammatory properties of rosemary polyphenols and suggests that rosemary polyphenols might be employed as strong anti-inflammatory agents to prevent intestinal inflammation and lower the risk of inflammatory bowel disease and related diseases.
Collapse
Affiliation(s)
- Lianhua Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Jie Lu
- China Animal Husbandry Group, Beijing 100070, China
| |
Collapse
|
8
|
Wen X, Tang S, Wan F, Zhong R, Chen L, Zhang H. The PI3K/Akt-Nrf2 Signaling Pathway and Mitophagy Synergistically Mediate Hydroxytyrosol to Alleviate Intestinal Oxidative Damage. Int J Biol Sci 2024; 20:4258-4276. [PMID: 39247828 PMCID: PMC11379072 DOI: 10.7150/ijbs.97263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/24/2024] [Indexed: 09/10/2024] Open
Abstract
Oxidative stress is a major pathogenic factor in many intestinal diseases, such as inflammatory bowel disease (IBD) and colorectal cancer (CRC). The Nrf2 signaling pathway and mitophagy can reduce reactive oxygen species (ROS) and alleviate oxidative stress, but their relationship is unclear. Hydroxytyrosol (HT), a polyphenolic compound abundant in olive oil, has strong antioxidant activity and may help treat these diseases. We used pigs as a model to investigate HT's effect on intestinal oxidative damage and its mechanisms. Diquat (DQ) induced oxidative stress and impaired intestinal barrier function, which HT mitigated. Mechanistic studies in IPEC-J2 cells showed that HT protected against oxidative damage by activating the PI3K/Akt-Nrf2 signaling pathway and promoting mitophagy. Our study highlighted the synergistic relationship between Nrf2 and mitophagy in mediating HT's antioxidant effects. Inhibition studies confirmed that disrupting either pathway compromised HT's protective effects. Maintaining redox balance through Nrf2 and mitophagy is important for eliminating excess ROS. Nrf2 increases antioxidant enzymes to clear existing ROS, while mitophagy removes damaged mitochondria and reduces ROS generation. This study demonstrates that these pathways collaboratively modulate the antioxidant effects of HT, with neither being dispensable. Targeting Nrf2 and mitophagy could be a promising strategy for treating oxidative stress-related intestinal diseases, with HT as a potential treatment.
Collapse
Affiliation(s)
- Xiaobin Wen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shanlong Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Fan Wan
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
9
|
Li S, Zhang K, Bai S, Wang J, Zeng Q, Peng H, Lv H, Mu Y, Xuan Y, Li S, Ding X. Extract of Scutellaria baicalensis and Lonicerae flos improves growth performance, antioxidant capacity, and intestinal barrier of yellow-feather broiler chickens against Clostridium perfringens. Poult Sci 2024; 103:103718. [PMID: 38692178 PMCID: PMC11077025 DOI: 10.1016/j.psj.2024.103718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/26/2024] [Accepted: 03/31/2024] [Indexed: 05/03/2024] Open
Abstract
In this study, we aimed to investigate the effect of Scutellaria baicalensis and Lonicerae Flos (SL) extract on the growth performance and intestinal health of yellow-feather broilers following a Clostridium perfringens challenge. In total, 600 one-day-old yellow-feather broilers were divided into five treatments (6 replicate pens of 20 birds per treatment), including a control (Con) group fed a basal diet and the infected group (iCon) fed a basal diet and infected with Clostridium perfringens, the other 3 groups receiving different doses of SL (150, 300, and 450 mg/kg) and infected with Clostridium perfringens. The total experimental period was 80 d. When the birds were 24-days-old, a subclinical necrotizing enteritis model was induced by orally inoculating the birds with 11,000 oocysts of mixed Eimeria species on d 24, followed by C. perfringens (108 CFU/mL) from d 28 to 30. The birds were evaluated for parameters such as average weight gain (AWG), average daily feed intake (ADFI), mortality, feed conversion ration (FCR), intestinal lesion score, intestinal C. perfringens counts, and villus histomorphometry. Results indicated that C. perfringens infection led to reduced AWG and the levels of tight junction proteins, increased the FCR, ileum E. coli load, and intestinal permeability, causing damage to the intestinal mucosal barrier (P < 0.05). Compared with the infected group, supplementing 300 mg/kg of SL significantly increased AWG at 43 to 80 d, the ratio of villus height to crypt depth in the jejunum and ileum at 35 d, and the activity of superoxide dismutase (SOD) in serum. It also significantly reduced the FCR at 22 to 42 d, intestinal lesion score, and the amount of C. perfringens in the ileum (P < 0.05). Additionally, compared with the infected group, the addition of 300 mg/kg SL significantly increased mRNA levels of claudin-2, claudin-3, mucin-2, and toll-like receptor 2 (TLR-2) in the ileum of infected birds at 35 d of age. In conclusion, supplementation with SL extract could effectively mitigate the negative effects of C. perfringens challenge by improving intestinal barrier function and histomorphology, positively influencing the growth performance of challenged birds.
Collapse
Affiliation(s)
- Shi Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Keying Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Shiping Bai
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Jianping Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Qiufeng Zeng
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Huanwei Peng
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Huiyuan Lv
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing 100193, China; Beijing Centre Biology Co. Ltd. Daxing District, Beijing 102218, China
| | - Yadong Mu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Yue Xuan
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Shanshan Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Xuemei Ding
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China.
| |
Collapse
|
10
|
Liu J, Jiang J, Xu Q, Xu Y, Guo M, Hu Y, Wang Y, Wang Y. Xuanfu Daizhe Tang alleviates reflux esophagitis in rats by inhibiting the STAT1/TREM-1 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117903. [PMID: 38342154 DOI: 10.1016/j.jep.2024.117903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Reflux esophagitis (RE) is a common chronic inflammatory disease of the esophageal mucosa with a high prevalence and recurrence rate, for which a satisfactory therapeutic strategy is still lacking. Chinese medicine has its characteristics and advantages in treating RE, and the clinical application of Xuanfu Daizhe Tang (XDT) in treating RE has achieved sound therapeutic effects. However, there needs to be more research on its mechanism of action. AIM OF THE STUDY The present work aimed to investigate the mechanism of XDT action in RE through the Signal Transducer and Activator of Transcription 1 (STAT1)/Triggering Receptor Expressed on Myeloid cells-1 (TREM-1) pathway. MATERIALS AND METHODS The main active components of XDT were analyzed by ultra-performance liquid chromatography-mass spectrometer (UPLC-MS). The effect of XDT on RE was evaluated in a rat model of RE induced by "Cardioplasty + pyloric ligation + Roux-en-Y esophagojejunostomy". Each administration group was treated by gavage. The degree of damage to the esophageal mucosa was evaluated by visual observation, and the Potential of Hydrogen (PH) method and Hematoxylin-eosin staining (HE) staining were performed. Serum levels of Interleukin-1β (IL-1β), Interleukin-6 (IL-6), Tumor Necrosis Factor alpha (TNF-α), and Inducible Nitric Oxide Synthase (iNOS) were measured by ELISA. Quantitative Real-time PCR (qPCR), Western Blot (WB), and Immunofluorescence (IF) methods were used to detect Claudin-4, Claudin-5, TREM-1, and p-STAT1 in esophageal tissues for studying the mechanism of action and signaling pathway of XDT. Immunohistochemistry (IHC) analysis was used to detect the expression of TREM-1 and CD68 in esophageal tissues. Flow Cytometry (FC) was used to detect the polarization of macrophages in the blood. After conducting preliminary experiments to verify our hypothesis, we performed molecular docking between the active component of XDT and STAT1 derived from rats and parallel experiments with STAT1 inhibitor. The selective increaser of STAT1 transcription (2-NP) group was used to validate the mechanism by which XDT acts. RESULTS XDT alleviated esophageal injury and attenuated histopathological changes in RE rats. XDT also inhibited the inflammatory response and decreased serum IL-1β, IL-6, TNF-α, and iNOS levels in RE rats. qPCR and WB results revealed that XDT inhibited the expression of Claudin-4, Claudin-5, TREM-1, and STAT1 in the esophageal mucosa of RE rats. IHC and FC results showed that XDT reduced TREM-1 levels in esophageal tissues and polarized macrophages toward M2. The molecular docking results showed that rat-derived STAT1 can strongly bind to Isochronogenic acid A in XDT. The parallel experimental results of STAT1 inhibitor showed that XDT has anti-inflammatory effects similar to STAT1 inhibitors. The 2-NP group confirmed that XDT exerts its therapeutic effect on reflux esophagitis through the STAT1/TREM-1 pathway, with STAT1 as the upstream protein. CONCLUSIONS This study suggests that XDT may treat reflux esophagitis by modulating the STAT1/TREM-1 pathway.
Collapse
Affiliation(s)
- Ju Liu
- Office of Science and Technology Administration, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Jiaxin Jiang
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qianfei Xu
- Department of Spleen, Stomach and Hepatobiliary, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Yunyan Xu
- Preventive Treatment Department, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Manman Guo
- Pharmaceutical Department, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Yun Hu
- Department of Spleen, Stomach and Hepatobiliary, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Yan Wang
- Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yi Wang
- Pharmaceutical Department, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China.
| |
Collapse
|
11
|
Wen X, Wan F, Zhong R, Chen L, Zhang H. Hydroxytyrosol Alleviates Intestinal Oxidative Stress by Regulating Bile Acid Metabolism in a Piglet Model. Int J Mol Sci 2024; 25:5590. [PMID: 38891778 PMCID: PMC11171822 DOI: 10.3390/ijms25115590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Infants and young animals often suffer from intestinal damage caused by oxidative stress, which may adversely affect their overall health. Hydroxytyrosol, a plant polyphenol, has shown potential in decreasing intestinal oxidative stress, but its application and mechanism of action in infants and young animals are still inadequately documented. This study selected piglets as a model to investigate the alleviating effects of hydroxytyrosol on intestinal oxidative stress induced by diquat and its potential mechanism. Hydroxytyrosol improved intestinal morphology, characterized by higher villus height and villus height/crypt depth. Meanwhile, hydroxytyrosol led to higher expression of Occludin, MUC2, Nrf2, and its downstream genes, and lower expression of cytokines IL-1β, IL-6, and TNF-α. Both oxidative stress and hydroxytyrosol resulted in a higher abundance of Clostridium_sensu_stricto_1, and a lower abundance of Lactobacillus and Streptococcus, without a significant effect on short-chain fatty acids levels. Oxidative stress also led to disorders in bile acid (BA) metabolism, such as the lower levels of primary BAs, hyocholic acid, hyodeoxycholic acid, and tauroursodeoxycholic acid, which were partially restored by hydroxytyrosol. Correlation analysis revealed a positive correlation between these BA levels and the expression of Nrf2 and its downstream genes. Collectively, hydroxytyrosol may reduce oxidative stress-induced intestinal damage by regulating BA metabolism.
Collapse
Affiliation(s)
| | | | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.W.); (F.W.); (H.Z.)
| | - Liang Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.W.); (F.W.); (H.Z.)
| | | |
Collapse
|
12
|
Liu H, Meng H, Du M, Lv H, Wang Y, Zhang K. Chlorogenic acid ameliorates intestinal inflammation by inhibiting NF-κB and endoplasmic reticulum stress in lipopolysaccharide-challenged broilers. Poult Sci 2024; 103:103586. [PMID: 38442474 PMCID: PMC11067738 DOI: 10.1016/j.psj.2024.103586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
Intestinal inflammation is a primary contributor to poor growth performance during poultry production. Chlorogenic acid (CGA) is a natural phenolic acid that exhibits superior anti-inflammatory activity and improved intestinal health. To investigate the protective effects and molecular mechanisms of CGA during intestinal inflammation in lipopolysaccharide (LPS)-challenged broilers, we randomly divided 288 one-day-old male Cobb broilers into 4 groups: a control group fed a basal diet (CON group), a basal diet + LPS group (LPS group), and 2 basal diet groups fed 500 or 750 mg/kg CGA + LPS (CGA_500 or CGA_750 groups). Broilers were injected with LPS or saline at 15, 17, 19, and 21 d old. Chlorogenic acid supplementation improved the growth performance of LPS-challenged broilers by increasing average daily gain (ADG) and reducing feed/gain (F/G) ratios (P < 0.05). CGA also improved intestinal barrier function in LPS-challenged boilers by enhancing jejunum morphology and integrity, decreasing intestinal permeability, and increasing occludin 3, zonula occludens-1, and mucin 2 expression (P < 0.05). CGA supplementation also improved systemic and jejunum antioxidant capacity by significantly enhancing glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT) activities (P < 0.05), and reducing malonaldehyde (MDA) and protein carbonyl (PCO) levels (P < 0.05). Chlorogenic acid supplementation reduced systemic and jejunum pro-inflammatory cytokines (interleukin (IL)-1β, IL-6, and IL-12) and increased anti-inflammatory cytokines (IL-10) in LPS-challenged broilers (P < 0.05) by inhibiting the toll like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) signaling pathway (P < 0.05). In addition, the protective effects of CGA toward intestinal inflammation and apoptosis appeared to be correlated with inhibited endoplasmic reticulum (ER) stress (P < 0.05). In summary, CGA supplementation improved intestinal morphology and integrity by inhibiting TLR4/NF-κB and ER stress pathways, which potentially reduced oxidative stress and inflammation, and ultimately improved the growth performance of LPS-challenged broilers.
Collapse
Affiliation(s)
- Huawei Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Hongling Meng
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Mengmeng Du
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Huimin Lv
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Kai Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
13
|
Ma F, Liu J, Li S, Sun P. Effects of Lonicera japonica Extract with Different Contents of Chlorogenic Acid on Lactation Performance, Serum Parameters, and Rumen Fermentation in Heat-Stressed Holstein High-Yielding Dairy Cows. Animals (Basel) 2024; 14:1252. [PMID: 38672400 PMCID: PMC11047513 DOI: 10.3390/ani14081252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
This examined the effects of Lonicera japonica extract (LJE) with different chlorogenic acid (CGA) contents on lactation performance, antioxidant status and immune function and rumen fermentation in heat-stressed high-yielding dairy cows. In total, 45 healthy Chinese Holstein high-yielding dairy cows, all with similar milk yield, parity, and days in milk were randomly allocated to 3 groups: (1) the control group (CON) without LJE; (2) the LJE-10% CGA group, receiving 35 g/(d·head) of LJE-10% CGA, and (3) the LJE-20% CGA group, receiving 17.5 g/(d·head) of LJE-20% CGA. The results showed that the addition of LJE significantly reduced RT, and enhanced DMI, milk yield, milk composition, and improved rumen fermentation in high-yielding dairy cows experiencing heat stress. Through the analysis of the serum biochemical, antioxidant, and immune indicators, we observed a reduction in CREA levels and increased antioxidant and immune function. In this study, while maintaining consistent CGA content, the effects of addition from both types of LJE are similar. In conclusion, the addition of LJE at a level of 4.1 g CGA/(d·head) effectively relieved heat stress and improved the lactation performance of dairy cows, with CGA serving as the effective ingredient responsible for its anti-heat stress properties.
Collapse
Affiliation(s)
- Fengtao Ma
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (F.M.)
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Junhao Liu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (F.M.)
| | - Shengli Li
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Peng Sun
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (F.M.)
| |
Collapse
|
14
|
Dai C, Li H, Zhao W, Fu Y, Cheng J. Bioactive functions of chlorogenic acid and its research progress in pig industry. J Anim Physiol Anim Nutr (Berl) 2024; 108:439-450. [PMID: 37975278 DOI: 10.1111/jpn.13905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/04/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
Chlorogenic acid (CGA), also known as 3-caffeioylquinic acid or coffee tannin, is a water-soluble polyphenol phenylacrylate compound produced through the shikimate pathway by plants during aerobic respiration. CGA widely exists in higher dicotyledons, ferns and many Chinese medicinal materials, and enjoys the reputation of 'plant gold'. Here, we summarized the source, chemical structure, biological activity functions of CGA and its research progress in pigs, aiming to provide a more comprehensive understanding and theoretical basis for the prospect of CGA replacing antibiotics as a pig feed additive.
Collapse
Affiliation(s)
- Chaohui Dai
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Crop and Livestock Integration Ministry of Agriculture and Rural Affairs, Nanjing, China
- Jiangsu Germplasm Resources Protection and Utilization Platform, Nanjing, China
| | - Hui Li
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Crop and Livestock Integration Ministry of Agriculture and Rural Affairs, Nanjing, China
- Jiangsu Germplasm Resources Protection and Utilization Platform, Nanjing, China
| | - Weimin Zhao
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Crop and Livestock Integration Ministry of Agriculture and Rural Affairs, Nanjing, China
- Jiangsu Germplasm Resources Protection and Utilization Platform, Nanjing, China
| | - Yanfeng Fu
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Crop and Livestock Integration Ministry of Agriculture and Rural Affairs, Nanjing, China
- Jiangsu Germplasm Resources Protection and Utilization Platform, Nanjing, China
| | - Jinhua Cheng
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Crop and Livestock Integration Ministry of Agriculture and Rural Affairs, Nanjing, China
- Jiangsu Germplasm Resources Protection and Utilization Platform, Nanjing, China
| |
Collapse
|
15
|
Lyu CC, Ji XY, Che HY, Meng Y, Wu HY, Zhang JB, Zhang YH, Yuan B. CGA alleviates LPS-induced inflammation and milk fat reduction in BMECs through the NF-κB signaling pathway. Heliyon 2024; 10:e25004. [PMID: 38317876 PMCID: PMC10838784 DOI: 10.1016/j.heliyon.2024.e25004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 01/06/2024] [Accepted: 01/18/2024] [Indexed: 02/07/2024] Open
Abstract
Mastitis is an easy clinical disease in dairy cows, which seriously affects the milk yield and quality of dairy cows. Chlorogenic acid (CGA), a polyphenolic substance, is abundant in Eucommia ulmoides leaves and has anti-inflammatory and anti-oxidative stress effects. Here, we explore whether CGA attenuated lipopolysaccharide (LPS)-induced inflammation and decreased milk fat in bovine mammary epithelial cells (BMECs). 10 μg/mL LPS was used to induce mastitis in BMECs. QRT-PCR, Western blotting, oil red O staining, and triglyceride (TG) assay were used to examine the effects of CGA on BMECs, including inflammatory response, oxidative stress response, and milk fat synthesis. The results showed that CGA repaired LPS-induced inflammation in BMECs. The expression of IL-6, IL-8, TNF-α, IL-1β, and iNOS was decreased, and the expression levels of CHOP, XCT, NRF2, and HO-1 were increased, which reduced the oxidative stress level of cells and alleviated the reduction of milk fat synthesis. In addition, the regulation of P65 phosphorylation by CGA suggests that CGA may exert its anti-inflammatory and anti-oxidative effects through the NF-κB signaling pathway. Our study showed that CGA attenuated LPS-induced inflammation and oxidative stress, and restored the decrease in milk fat content in BMECs by regulating the NF-κB signaling pathway.
Collapse
Affiliation(s)
| | | | - Hao-Yu Che
- College of Animal Science, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, PR China
| | - Yu Meng
- College of Animal Science, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, PR China
| | - Hong-Yu Wu
- College of Animal Science, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, PR China
| | - Jia-Bao Zhang
- College of Animal Science, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, PR China
| | | | | |
Collapse
|
16
|
Tang Y, Fang C, Shi J, Chen H, Chen X, Yao X. Antioxidant potential of chlorogenic acid in Age-Related eye diseases. Pharmacol Res Perspect 2024; 12:e1162. [PMID: 38189160 PMCID: PMC10772849 DOI: 10.1002/prp2.1162] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/09/2023] [Accepted: 11/23/2023] [Indexed: 01/09/2024] Open
Abstract
Oxidative stress is an important mechanism of aging, and in turn, aging can also aggravate oxidative stress, which leads to a vicious cycle. In the process of the brain converting light into visual signals, the eye is stimulated by harmful blue-light radiation directly. Thus, the eye is especially vulnerable to oxidative stress and becomes one of the organs most seriously involved during the aging process. Cataracts, age-related macular degeneration (AMD), glaucoma, diabetic retinopathy (DR), and dry eye are inextricably linked to the aging process and oxidative stress. Chlorogenic acid (CGA) has been demonstrated to have antioxidant and anti-inflammatory activities, and its validity has been established experimentally in numerous fields, including cardiovascular disease, metabolic disorders, cancers, and other chronic diseases. There has previously been evidence of CGA's therapeutic effect in the field of ophthalmopathy. Considering that many ophthalmic drugs lead to systemic side effects, CGA may act as a natural exogenous antioxidant for patients to take regularly, controlling their condition while minimizing side effects. In this paper, in vitro and in vivo studies of CGA in the treatment of age-related eye diseases are reviewed, and the prospects of CGA's antioxidant application for the eye are discussed. The aim of this review is to summarize the relevant knowledge and provide theoretical support for future research.
Collapse
Affiliation(s)
- Yu Tang
- Department of OphthalmologyThe First Hospital of Hunan University of Chinese MedicineChangshaChina
- Hunan University of Chinese MedicineChangshaChina
| | - Chi Fang
- Department of Scientific ResearchThe First Hospital of Hunan University of Chinese MedicineChangshaChina
| | - Jian Shi
- Hunan University of Chinese MedicineChangshaChina
- Hunan Provincial Key Laboratory for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese MedicineChangshaChina
| | - Huimei Chen
- Hunan University of Chinese MedicineChangshaChina
- Hunan Provincial Key Laboratory for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese MedicineChangshaChina
| | - Xiong Chen
- Department of OphthalmologyThe First Hospital of Hunan University of Chinese MedicineChangshaChina
- Hunan University of Chinese MedicineChangshaChina
| | - Xiaolei Yao
- Department of OphthalmologyThe First Hospital of Hunan University of Chinese MedicineChangshaChina
- Hunan University of Chinese MedicineChangshaChina
| |
Collapse
|
17
|
Makiso MU, Tola YB, Ogah O, Endale FL. Bioactive compounds in coffee and their role in lowering the risk of major public health consequences: A review. Food Sci Nutr 2024; 12:734-764. [PMID: 38370073 PMCID: PMC10867520 DOI: 10.1002/fsn3.3848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 02/20/2024] Open
Abstract
This article addresses the bioactive components in coffee aroma, their metabolism, and the mechanism of action in lowering the risk of various potential health problems. The main bioactive components involved in the perceived aroma of coffee and its related health benefits are caffeine, chlorogenic acid (CGA), trigonelline, diterpenes, and melanoids. These compounds are involved in various physiological activities. Caffeine has been shown to have anticancer properties, as well as the ability to prevent the onset and progression of hepatocellular carcinoma and to be anti-inflammatory. CGA exhibits antioxidant action and is implicated in gut health, neurodegenerative disease protection, type 2 diabetes, and cardiovascular disease prevention. Furthermore, together with diterpenes, CGA has been linked to anticancer activity. Trigonelline, on the other side, has been found to lower oxidative stress by increasing antioxidant enzyme activity and scavenging reactive oxygen species. It also prevents the formation of kidney stones. Diterpenes and melanoids possess anti-inflammatory and antioxidant properties, respectively. Consuming three to four cups of filtered coffee per day, depending on an individual's physiological condition and health status, has been linked to a lower risk of several degenerative diseases. Despite their health benefits, excessive coffee intake above the recommended daily dosage, calcium and vitamin D deficiency, and unfiltered coffee consumption all increase the risk of potential health concerns. In conclusion, moderate coffee consumption lowers the risk of different noncommunicable diseases.
Collapse
Affiliation(s)
- Markos Urugo Makiso
- Department of Food Science and Postharvest TechnologyCollege of Agricultural SciencesWachemo UniversityHossanaEthiopia
- Department of Postharvest ManagementCollege of Agriculture and Veterinary MedicineJimma UniversityJimmaEthiopia
| | - Yetenayet Bekele Tola
- Department of Postharvest ManagementCollege of Agriculture and Veterinary MedicineJimma UniversityJimmaEthiopia
| | - Onwuchekwa Ogah
- Department of Applied BiologyEbonyi State UniversityIsiekeNigeria
| | - Fitsum Liben Endale
- Department of Public HealthCollege of Medicine and Health SciencesWachemo UniversityHossanaEthiopia
| |
Collapse
|
18
|
Bona NP, Soares de Aguiar MS, Spohr L, Pedra NS, Dos Santos FDS, Saraiva JT, Alvez FL, de Moraes Meine B, Recart V, Farias IV, Ortmann CF, Spanevello RM, Reginatto FH, Stefanello FM. Protective action of Cecropia pachystachya extract and enriched flavonoid fraction against memory deficits, inflammation and oxidative damage in lipopolysaccharide challenged mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117080. [PMID: 37625607 DOI: 10.1016/j.jep.2023.117080] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cecropia pachystachya (CP) Trécul is a medicinal plant native to South and Central America with several pharmacological properties, such as anti-inflammatory and neuroprotective. AIM OF THE STUDY In this study, we investigated the effect of CP extract (200 mg/kg) and its enriched flavonoid fraction (EFF-CP) (50 and 100 mg/kg) in a model of lipopolysaccharide (LPS)-induced neuroinflammation. MATERIAL AND METHODS CP and EFF-CP were administered intragastrically for 14 days and LPS (250 μg/kg) was administered intraperitoneally from the 8th to the 14th days. LC/DAD/MS analysis showed the presence of isoorientin, orientin, and isovitexin as major compounds. RESULTS The results demonstrated that CP extract and EFF-CP gave protection against LPS-induced short-term and long-term memory deficits. The treatment with CP and/or EFF-CP protected against LPS-induced increases in reactive species, nitrites, total thiol and lipoperoxidation in the cerebral cortex, hippocampus and striatum. Moreover, CP and EFF-CP restored superoxide dismutase and catalase activities that had been reduced by LPS in the cerebral cortex, hippocampus and striatum. TNF-α levels were increased in the cortex, striatum and hippocampus in the LPS group, while CP treatment prevented this change in the cerebral cortex. EFF-CP decreased the levels of this cytokine in all structures analyzed at both doses. CONCLUSION CP extract and its EFF-CP are important therapeutic targets for the management of neuroinflammation observed in neurodegenerative diseases.
Collapse
Affiliation(s)
- Natália Pontes Bona
- Programa de Pós-Graduação Em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil.
| | - Mayara Sandrielly Soares de Aguiar
- Programa de Pós-Graduação Em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil.
| | - Luiza Spohr
- Programa de Pós-Graduação Em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil.
| | - Nathalia Stark Pedra
- Programa de Pós-Graduação Em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil.
| | - Francieli da Silva Dos Santos
- Programa de Pós-Graduação Em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil.
| | - Juliane Torchelsen Saraiva
- Programa de Pós-Graduação Em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil.
| | - Fernando Lopez Alvez
- Programa de Pós-Graduação Em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil.
| | - Bernardo de Moraes Meine
- Programa de Pós-Graduação Em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil.
| | - Vânia Recart
- Programa de Pós-Graduação Em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil.
| | - Ingrid Vicente Farias
- Programa de Pós-Graduação Em Farmácia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | - Caroline Flach Ortmann
- Programa de Pós-Graduação Em Farmácia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | - Roselia Maria Spanevello
- Programa de Pós-Graduação Em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil.
| | - Flavio Henrique Reginatto
- Programa de Pós-Graduação Em Farmácia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | - Francieli Moro Stefanello
- Programa de Pós-Graduação Em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil.
| |
Collapse
|
19
|
Ling X, Yan W, Yang F, Jiang S, Chen F, Li N. Research progress of chlorogenic acid in improving inflammatory diseases. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:1611-1620. [PMID: 38432890 PMCID: PMC10929889 DOI: 10.11817/j.issn.1672-7347.2023.230146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Indexed: 03/05/2024]
Abstract
Long-term inflammation will develop into chronic inflammation and become inflammatory diseases. Antibiotics are commonly used in clinical practice to treat inflammatory diseases. But patients are prone to drug resistance. So we need to find new treatment. Chlorogenic acid is an organic compound extracted from honeysuckle and other plants. Its anti-inflammatory activity is strong, and it has a significant anti-inflammatory effect on inflammatory diseases in various systems. It has been shown that chlorogenic acid can regulate inflammation-related signaling pathways, such as nuclear factor κB (NF-κB) canonical signaling pathway, NF-κB atypical signaling pathway, nuclear factor-erythroid 2-related factor 2 (Nrf2) canonical signaling pathway, and Nrf2 atypical signaling pathway, etc. It can up-regulate the expression of anti-inflammatory cytokines such as interleukin (IL)-4, IL-10, IL-13 and down-regulate the expression of pro-inflammatory cytokine such as IL-1β, IL-6, and IL-8. Although chlorogenic acid has a strong anti-inflammatory effect, but clinical trials and application still face many difficulties. In the future, the anti-inflammatory molecular mechanism of chlorogenic acid should be further studied to explore its clinical application value and improve new ideas for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Xinping Ling
- Nursing School, Nanchang University, Nanchang 330006.
| | - Wei Yan
- Nursing School, Nanchang University, Nanchang 330006
| | - Fen Yang
- Department of Stomatology, First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Shuling Jiang
- Nursing School, Nanchang University, Nanchang 330006
| | - Fuqing Chen
- Department of Stomatology, First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Na Li
- Department of Stomatology, First Affiliated Hospital of Nanchang University, Nanchang 330000, China.
| |
Collapse
|
20
|
Huang J, Xie M, He L, Song X, Cao T. Chlorogenic acid: a review on its mechanisms of anti-inflammation, disease treatment, and related delivery systems. Front Pharmacol 2023; 14:1218015. [PMID: 37781708 PMCID: PMC10534970 DOI: 10.3389/fphar.2023.1218015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
Chlorogenic acid is a bioactive compound ubiquitously present in the natural realm, lauded for its salient anti-inflammatory and antioxidant attributes. It executes its anti-inflammatory function by moderating the synthesis and secretion of inflammatory mediators, namely, TNF-α, IL-1β, IL-6, IL-8, NO, and PGE2. Concurrently, it modulates key signaling pathways and associated factors, including NF-κB, MAPK, Nrf2, and others, bestowing protection upon cells and tissues against afflictions such as cardio-cerebrovascular and diabetes mellitus. Nevertheless, the inherent low bioavailability of chlorogenic acid poses challenges in practical deployments. To surmount this limitation, sophisticated delivery systems, encompassing liposomes, micelles, and nanoparticles, have been devised, accentuating their stability, release mechanisms, and bioactivity. Given its innate anti-inflammatory prowess and safety profile, chlorogenic acid stands as a promising contender for advanced biomedical investigations and translational clinical endeavors.
Collapse
Affiliation(s)
- Jianhuan Huang
- Breast Surgery, Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The Graduate School, Guilin Medical University, Guilin, Guangxi, China
| | - Mingxiang Xie
- Breast Surgery, Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Liang He
- Department of Anesthesiology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoping Song
- Breast Surgery, Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Tianze Cao
- Breast Surgery, Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
21
|
Tang P, Ding Q, Lin J, Yang X, Wang Y, Liu F, Zheng Y, Lin L, Wang D, Lin B. Pen Yan Jing Tablets Alleviates Pelvic Inflammatory Disease by Inhibiting Akt/NF-κB Pathway. Int J Med Sci 2023; 20:1386-1398. [PMID: 37790843 PMCID: PMC10542183 DOI: 10.7150/ijms.87433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/25/2023] [Indexed: 10/05/2023] Open
Abstract
Purpose: Pen Yan Jing tablets (PYJ), a Chinese patent medicine, has being used for pelvic inflammatory disease (PID) effectively. This study was designed to explore the underlying mechanisms of PYJ for treating PID. Methods: A rat model of PID was established by mixed bacteria liquid plus mechanical damage. After PYJ treatment, the morphology of uteri and extent of pelvic adhesion were observed. The pathological changes were evaluated by hematoxylin-eosin (HE) staining. The protein expressions of CD68, intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), monocyte chemotactic protein-1 (MCP-1) and cyclooxygenase-2 (COX-2) were quantitated by immunohistochemistry. A cell model of lipopolysaccharide (LPS)-activated RAW 264.7 macrophages was performed. The cell proliferation and NO level were measured by CCK-8 and Griess method, respectively. The tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels were detected by ELISA. The protein kinase B (Akt)/nuclear factor kappa-B (NF-κB) pathway-related protein expressions were assayed by western blot or immunofluorescence. Results: PYJ alleviated pelvic adhesion and inflammatory lesions of uteri in PID rats. PYJ down-regulated protein expressions of ICAM-1, VCAM-1, MCP-1, COX-2, p-Akt, p-IκB kinaseα/β (p-IKKα/β), p-IκBα, p65, and p-p65 in uteri of PID rats. Moreover, PYJ medicated serum inhibited abnormal cell proliferation, NO release, levels of TNF-α and IL-6, nuclear translocation of p65, and protein expressions of p-Akt, p-p65 and p-IκBα in LPS-activated RAW 264.7 macrophages. Conclusions: Taken together, PYJ may alleviates PID through inhibiting Akt/NF-κB pathway.
Collapse
Affiliation(s)
- Ping Tang
- Experimental Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Qi Ding
- Experimental Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Juan Lin
- Hutchison Whampoa Guangzhou Baiyunshan Chinese Medicine Co., Ltd., Guangzhou, 510515, China
| | - Xinrong Yang
- Experimental Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yiting Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Fangle Liu
- Experimental Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yuying Zheng
- Experimental Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Liuqing Lin
- Experimental Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Deqin Wang
- Hutchison Whampoa Guangzhou Baiyunshan Chinese Medicine Co., Ltd., Guangzhou, 510515, China
| | - Baoqin Lin
- Experimental Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| |
Collapse
|
22
|
Gao J, Cao B, Zhao R, Li H, Xu Q, Wei B. Critical Signaling Transduction Pathways and Intestinal Barrier: Implications for Pathophysiology and Therapeutics. Pharmaceuticals (Basel) 2023; 16:1216. [PMID: 37765024 PMCID: PMC10537644 DOI: 10.3390/ph16091216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
The intestinal barrier is a sum of the functions and structures consisting of the intestinal mucosal epithelium, mucus, intestinal flora, secretory immunoglobulins, and digestive juices. It is the first-line defense mechanism that resists nonspecific infections with powerful functions that include physical, endocrine, and immune defenses. Health and physiological homeostasis are greatly dependent on the sturdiness of the intestinal barrier shield, whose dysfunction can contribute to the progression of numerous types of intestinal diseases. Disorders of internal homeostasis may also induce barrier impairment and form vicious cycles during the response to diseases. Therefore, the identification of the underlying mechanisms involved in intestinal barrier function and the development of effective drugs targeting its damage have become popular research topics. Evidence has shown that multiple signaling pathways and corresponding critical molecules are extensively involved in the regulation of the barrier pathophysiological state. Ectopic expression or activation of signaling pathways plays an essential role in the process of shield destruction. Although some drugs, such as molecular or signaling inhibitors, are currently used for the treatment of intestinal diseases, their efficacy cannot meet current medical requirements. In this review, we summarize the current achievements in research on the relationships between the intestinal barrier and signaling pathways. The limitations and future perspectives are also discussed to provide new horizons for targeted therapies for restoring intestinal barrier function that have translational potential.
Collapse
Affiliation(s)
- Jingwang Gao
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Bo Cao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Ruiyang Zhao
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Hanghang Li
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Qixuan Xu
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Bo Wei
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
| |
Collapse
|
23
|
Wen X, Wan F, Wu Y, Liu L, Liu Y, Zhong R, Chen L, Zhang H. Caffeic acid supplementation ameliorates intestinal injury by modulating intestinal microbiota in LPS-challenged piglets. Food Funct 2023; 14:7705-7717. [PMID: 37547959 DOI: 10.1039/d3fo02286b] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
During weaning, piglets are susceptible to intestinal injuries caused by a range of infections, which result in serious economic losses for pig producers. Caffeic acid (CA) is a plant-derived phenolic acid that exhibits potential as a dietary supplement for enhancing intestinal health. There is, however, limited information available about the potential benefits of CA supplementation on intestinal injury and growth performance in piglets. A 28-day study was conducted to examine the effectiveness of CA supplementation in protecting against intestinal injury induced by intraperitoneal injection of Escherichia coli lipopolysaccharide (LPS) in piglets. Twenty-four piglets (7.43 ± 0.79 kg body weight; Duroc × Landrace × Large White; barrows) were randomly divided into 4 groups: the control group, the LPS group, the LPS + CA group, and the CA group. Piglets were administered with LPS or saline on d21 and d28 of the experiment. Supplementation with CA improved intestinal barrier function in LPS-challenged piglets by enhancing intestinal morphology and integrity, as well as increasing the expression of Claudin-1 and ZO-1. Meanwhile, CA supplementation improved the systemic and colonic inflammation responses, oxidative stress, and apoptosis induced by LPS. CA supplementation improved the alpha diversity and structure of the intestinal microbiota by increasing the abundance of beneficial microbiota. Additionally, it was found that it improves metabolic disorders of colonic bile acids (BAs) and short-chain fatty acids (SCFAs) in LPS-challenged piglets, including an increase in primary BAs and isovalerate. In conclusion, CA supplementation could enhance intestinal integrity and barrier function by modifying intestinal microbiota and its metabolites, which could lead to a reduction in inflammatory responses and oxidative stress and ultimately enhanced growth performance in piglets.
Collapse
Affiliation(s)
- Xiaobin Wen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Fan Wan
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- State Key Laboratory of Grassland Agro-Ecosystem, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - You Wu
- College of Biological Science and Engineering, Beijing University of Agriculture, Beijing 102206, China
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lei Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Yueping Liu
- College of Biological Science and Engineering, Beijing University of Agriculture, Beijing 102206, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
24
|
Chen X, Chen C, Fu X. Dendrobium officinale Polysaccharide Alleviates Type 2 Diabetes Mellitus by Restoring Gut Microbiota and Repairing Intestinal Barrier via the LPS/TLR4/TRIF/NF-kB Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11929-11940. [PMID: 37526282 DOI: 10.1021/acs.jafc.3c02429] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Dendrobium officinale polysaccharide (DOP), the main active component, has a variety of bioactivities. In this study, a type 2 diabetes mellitus (T2DM) and antibiotic-induced pseudo-germ-free mouse models were used to investigate the hypoglycemic mechanisms of DOP. The findings showed that DOP ameliorated dysfunctional glucolipid metabolism, lipopolysaccharide (LPS) leakage, and metabolic inflammation levels in T2DM mice. Furthermore, DOP significantly upregulated the mRNA expression of tight junction proteins Claudin-1, Occludin, and ZO-1 and reduced intestinal inflammation and oxidative stress damage through the LPS/TLR4/TRIF/NF-κB axis to repair the intestinal barrier. Interestingly, pseudo-germ-free mouse experiments confirmed that the above beneficial effects of DOP were dependent on gut microbiota. 16S rRNA analysis showed that DOP strongly inhibited the harmful bacterium Helicobacter by 94.57% and facilitated the proliferation of probiotics Allobaculum, Bifidobacterium, and Lactobacillus by 34.96, 139.41, and 88.95%, respectively. Therefore, DOP is capable of rebuilding certain specific intestinal microbiota to restore intestinal barrier injury, which supports the utilization of DOP as a new type of prebiotic in functional foods for T2DM.
Collapse
Affiliation(s)
- Xiaoxia Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Chun Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- SCUT-Zhuhai Institute of Modern Industrial Innovation, Zhuhai 519175, China
- Guangzhou Institute of Modern Industrial Technology, Nansha 511458, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Xiong Fu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- SCUT-Zhuhai Institute of Modern Industrial Innovation, Zhuhai 519175, China
- Guangzhou Institute of Modern Industrial Technology, Nansha 511458, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| |
Collapse
|
25
|
Machado F, Coimbra MA, Castillo MDD, Coreta-Gomes F. Mechanisms of action of coffee bioactive compounds - a key to unveil the coffee paradox. Crit Rev Food Sci Nutr 2023; 64:10164-10186. [PMID: 37338423 DOI: 10.1080/10408398.2023.2221734] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
The knowledge of the relationship between the chemical structure of food components with their mechanisms of action is crucial for the understanding of diet health benefits. This review relates the chemical variability present in coffee beverages with the mechanisms involved in key physiological events, supporting coffee as a polyvalent functional food. Coffee intake has been related with several health-promoting properties such as neuroprotective (caffeine, chlorogenic acids and melanoidins), anti-inflammatory (caffeine, chlorogenic acids, melanoidins, diterpenes), microbiota modulation (polysaccharides, melanoidins, chlorogenic acids), immunostimulatory (polysaccharides), antidiabetic (trigonelline, chlorogenic acids), antihypertensive (chlorogenic acids) and hypocholesterolemic (polysaccharides, chlorogenic acids, lipids). Nevertheless, caffeine and diterpenes are coffee components with ambivalent effects on health. Additionally, a large range of potentially harmful compounds, including acrylamide, hydroxymethylfurfural, furan, and advanced glycation end products, are formed during the roasting of coffee and are present in the beverages. However, coffee beverages are part of the daily human dietary healthy habits, configuring a coffee paradox.
Collapse
Affiliation(s)
- Fernanda Machado
- LAQV-REQUIMTE, Chemistry Department, University of Aveiro, Aveiro, Portugal
| | - Manuel A Coimbra
- LAQV-REQUIMTE, Chemistry Department, University of Aveiro, Aveiro, Portugal
| | | | - Filipe Coreta-Gomes
- LAQV-REQUIMTE, Chemistry Department, University of Aveiro, Aveiro, Portugal
- Department of Chemistry, Coimbra Chemistry Centre - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
26
|
Olędzka AJ, Czerwińska ME. Role of Plant-Derived Compounds in the Molecular Pathways Related to Inflammation. Int J Mol Sci 2023; 24:ijms24054666. [PMID: 36902097 PMCID: PMC10003729 DOI: 10.3390/ijms24054666] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Inflammation is the primary response to infection and injury. Its beneficial effect is an immediate resolution of the pathophysiological event. However, sustained production of inflammatory mediators such as reactive oxygen species and cytokines may cause alterations in DNA integrity and lead to malignant cell transformation and cancer. More attention has recently been paid to pyroptosis, which is an inflammatory necrosis that activates inflammasomes and the secretion of cytokines. Taking into consideration that phenolic compounds are widely available in diet and medicinal plants, their role in the prevention and support of the treatment of chronic diseases is apparent. Recently, much attention has been paid to explaining the significance of isolated compounds in the molecular pathways related to inflammation. Therefore, this review aimed to screen reports concerning the molecular mode of action assigned to phenolic compounds. The most representative compounds from the classes of flavonoids, tannins, phenolic acids, and phenolic glycosides were selected for this review. Our attention was focused mainly on nuclear factor-κB (NF-κB), nuclear factor erythroid 2-related factor 2 (Nrf2), and mitogen-activated protein kinase (MAPK) signaling pathways. Literature searching was performed using Scopus, PubMed, and Medline databases. In conclusion, based on the available literature, phenolic compounds regulate NF-κB, Nrf2, and MAPK signaling, which supports their potential role in chronic inflammatory disorders, including osteoarthritis, neurodegenerative diseases, cardiovascular, and pulmonary disorders.
Collapse
Affiliation(s)
- Agata J. Olędzka
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
- Centre for Preclinical Research, Medical University of Warsaw, 1B Banacha Str., 02-097 Warsaw, Poland
| | - Monika E. Czerwińska
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
- Centre for Preclinical Research, Medical University of Warsaw, 1B Banacha Str., 02-097 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-116-61-85
| |
Collapse
|
27
|
Liu Z, Yan J, Li N, Zheng Z, Zhang C, Liu Z, Song C, Mu S. Influence of Lonicera japonica and Radix Puerariae crude extracts on the Growth Performance, Antioxidant Capacity, and Immunological Functions of Finishing Pigs. Livest Sci 2023. [DOI: 10.1016/j.livsci.2023.105192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
28
|
Pan Y, Lin H, Jiao H, Zhao J, Wang X. Effects of in ovo feeding of chlorogenic acid on antioxidant capacity of postnatal broilers. Front Physiol 2023; 14:1091520. [PMID: 36726849 PMCID: PMC9885134 DOI: 10.3389/fphys.2023.1091520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/06/2023] [Indexed: 01/17/2023] Open
Abstract
In this study, chlorogenic acid (CGA) was injected into the amniotic cavity of chicken embryos to study the effects of in ovo feeding of CGA on the antioxidant capacity of postnatal broilers. On the 17th day of embryonic age, a total of 300 healthy broiler fertile eggs with similar weights were randomly subjected to five groups as follows; in ovo injection with 0.5 ml CGA at 4 mg/egg (4CGA) or 7 mg/egg (7CGA) or 10 mg/egg (10CGA), or sham-injection with saline (positive control, PC) or no injection (negative control, NC). Each group had six replicates of ten embryos. Six healthy chicks with similar body weights hatched from each replicate were selected and reared until heat stress treatment (35°C ± 1°C, 8 h/d) at 28-42 days of age. The results showed that there was no significant difference in the hatching rate between the groups (p > 0.05). After heat stress treatment, 4CGA group showed an improved intestinal morphology which was demonstrated by a higher villus height in the duodenum and a higher villus height/crypt depth ratio in the jejunum, compared with the NC group (p < 0.05). The antioxidant capacity of chickens was improved by in ovo feeding of CGA since 4CGA decreased the plasma content of malondialdehyde (MDA) (p < 0.05), whereas, it increased the superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT) activities compared with NC group (p < 0.05). Also, the MDA content of the different injection groups had a quadratic effect, with the 4CGA group having the lowest MDA content (P quadratic < 0.05). In the duodenum, 4CGA injection significantly increased the mRNA expressions of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase 1 (H O -1), glutathione synthetase (GSS), and SOD1 compared to the NC and PC groups (p < 0.05). The mRNA expressions of glutathione reductase (GSR) and GPX7 were significantly increased in all CGA-treated groups compared with the PC group (p < 0.05), while the mRNA expression of CAT was significantly increased by 4CGA group than the NC group (p < 0.05). The mRNA expressions of epigenetic-related genes, ten eleven translocation 1 and 2 (Tet1 and Tet2), and DNA-methyltransferase 3 alpha (DNMT3A) in the duodenum of 4CGA injected group was significantly increased compared with the NC and PC groups (p < 0.05). The mRNA expressions of Nrf2, SOD1, and Tet2 showed a significant quadratic effects with the 4CGA group having the highest expression (P quadratic < 0.05). In conclusion, in ovo feeding of CGA alleviated heat stress-induced intestinal oxidative damage. Injection with CGA of 4 mg/egg is considered most effective due to its actions in improving intestinal antioxidant capacity, especially in the duodenum. The antioxidant effects of in ovo CGA on postnatal heat-stressed broilers may be related to its regulation of epigenetic mechanisms. Thus, this study provides technical knowledge to support the in ovo feeding of CGA to alleviate oxidative stress in postnatal heat-stressed broilers.
Collapse
Affiliation(s)
- Yali Pan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an, China,Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tai’an, China
| | - Hai Lin
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an, China,Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tai’an, China
| | - Hongchao Jiao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an, China,Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tai’an, China
| | - Jingpeng Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an, China,Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tai’an, China
| | - Xiaojuan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an, China,Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tai’an, China,*Correspondence: Xiaojuan Wang,
| |
Collapse
|
29
|
Surma S, Sahebkar A, Banach M. Coffee or tea: Anti-inflammatory properties in the context of atherosclerotic cardiovascular disease prevention. Pharmacol Res 2023; 187:106596. [PMID: 36473629 DOI: 10.1016/j.phrs.2022.106596] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/15/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of premature death worldwide. Inflammation and its biomarkers, like C-reactive protein (CRP), among the risk factors, such as hypertension, lipid disorders, and diabetes, may be also responsible for the residual cardiovascular disease (CVD) risk. Modern lipid-lowering treatment with statins, ezetimibe, PCSK9 inhibitors, or bempedoic acid does not fully protect against inflammation. The recommendations of the International Lipid Expert Panel (ILEP) indicate selected nutraceuticals with anti-inflammatory properties. Diet may have a significant impact on inflammation. Especially interesting in the context of inflammation is the consumption of coffee and tea. These drinks in many observational studies significantly reduced cardiovascular risk and mortality. The question is whether the anti-inflammatory effects of these drinks contribute significantly to the observed clinical effects. Thus, in this narrative review, we primarily discuss the anti-inflammatory properties of consuming tea and coffee. Based on a comprehensive analysis of the studies and their meta-analyses, inconsistent results were obtained, which makes it impossible to conclusively state how clinically significant the potential anti-inflammatory properties of black and green tea and coffee are. A number of confounding factors can cause the inconsistency of the available results. Consumption of tea and coffee appears to increase adiponectin concentrations, decrease reactive oxygen species, decrease low density lipoprotein (LDL) cholesterol concentrations (effect of green tea, etc.). Despite the still uncertain anti-inflammatory effect of tea and coffee, we recommend their consumption as a part of the healthy diet.
Collapse
Affiliation(s)
- Stanisław Surma
- Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran.
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), 93-338 Lodz, Poland; Cardiovascular Research Centre, University of Zielona Gora, 65-417 Zielona Gora, Poland; Department of Cardiology and Congenital Diseases of Adults, Polish Mother's Memorial Hospital Research Institute (PMMHRI), 93-338 Lodz, Poland.
| |
Collapse
|
30
|
Effects of different levels of dietary chlorogenic acid supplementation on growth performance, intestinal integrity, and antioxidant status of broiler chickens at an early age. Anim Feed Sci Technol 2023. [DOI: 10.1016/j.anifeedsci.2023.115570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
31
|
Chen J, Song Z, Ji R, Liu Y, Zhao H, Liu L, Li F. Chlorogenic acid improves growth performance of weaned rabbits via modulating the intestinal epithelium functions and intestinal microbiota. Front Microbiol 2022; 13:1027101. [PMID: 36419414 PMCID: PMC9676508 DOI: 10.3389/fmicb.2022.1027101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/18/2022] [Indexed: 12/10/2023] Open
Abstract
This study was conducted to investigate the impacts of chlorogenic acid (CGA) on growth performance, intestinal permeability, intestinal digestion and absorption-related enzyme activities, immune responses, antioxidant capacity and cecum microbial composition in weaned rabbits. One hundred and sixty weaned rabbits were allotted to four treatment groups and fed with a basal diet or a basal diet supplemented with 400, 800, or 1,600 mg/kg CGA, respectively. After a 35-d trial, rabbits on the 800 mg/kg CGA-supplemented group had higher (p < 0.05) ADG and lower (p < 0.05) F/G than those in control (CON) group. According to the result of growth performance, eight rabbits per group were randomly selected from the CON group and 800 mg/kg CGA group to collect serum, intestinal tissue samples and cecum chyme samples. Results showed that compared with the CON group, supplementation with 800 mg/kg CGA decreased (p < 0.05) levels of D-lactate, diamine oxidase, IL-1β, IL-6, and malondialdehyde (MDA), and increased IL-10 concentration in the serum; increased (p < 0.05) jejunal ratio of villus height to crypt depth, enhanced (p < 0.05) activities of maltase and sucrase, increased (p < 0.05) concentrations of IL-10, T-AOC, MHCII and transforming growth factor-α, and decreased (p < 0.05) levels of TNF-α and MDA in the jejunum of weaned rabbits. In addition, results of high-throughput sequencing showed that CGA supplementation elevated (p < 0.05) microbial diversity and richness, and increased (p < 0.05) the abundances of butyrate-producing bacteria (including genera V9D2013_group, Monoglobus, Papillibacter, UCG-005, and Ruminococcus). These results indicated that dietary supplementation with 800 mg/kg CGA could improve the growth performance of weaned rabbits by enhancing intestinal structural integrity, improving the intestinal epithelium functions, and modulating the composition and diversity of gut microbiota.
Collapse
Affiliation(s)
- Jiali Chen
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China
| | - Zhicheng Song
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China
| | - Rongmei Ji
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China
| | - Yongxu Liu
- Qingdao Kangda Food Co., Ltd., Qingdao, China
| | - Hong Zhao
- Qingdao Kangda Food Co., Ltd., Qingdao, China
| | - Lei Liu
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China
| | - Fuchang Li
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
32
|
Niu J, Wang Q, Jing C, Liu Y, Liu H, Jiao N, Huang L, Jiang S, Guan Q, Li Y, Yang W. Dietary Galla Chinensis tannic acid supplementation in the diets improves growth performance, immune function and liver health status of broiler chicken. Front Vet Sci 2022; 9:1024430. [PMID: 36311675 PMCID: PMC9614106 DOI: 10.3389/fvets.2022.1024430] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/26/2022] [Indexed: 11/04/2022] Open
Abstract
This experiment was conducted to investigate the effects of Galla Chinensis tannic acid (TA) on growth performance, immune function, and liver health status in broilers. A total of 288 1-day-old Arbor Acres broiler chickens were randomly divided into two groups in a 42-days study. The two groups were a basal diet (CON group) and a basal diet supplemented with 300 mg/kg Galla Chinensis tannic acid (TA group). The results showed that the TA group had significantly decreased feed-to-gain ratio (F/G) throughout the experiment (P < 0.05). The levels of total protein, albumin, low density lipoprotein, high density lipoprotein, urea, total cholesterol, and glucose in the TA group were significantly higher than in the CON group (P < 0.05). In addition, the serum immunoglobulin G, immunoglobulin M, and complements (C3, C4) levels in the TA group were significantly higher than those in the CON group (P < 0.05). Compared with the CON group, the hepatic interleukin-6, interleukin-18, NLRs family pyrin domain containing 3 (NLRP3), caspase-1, and caspase-3 in the TA group were significantly decreased (P < 0.05). Besides, TA group had significantly lower mRNA expression levels of toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), nuclear factor-kappa B (NF-κB), and NLRP3 in liver (P < 0.05). The TA group had significantly higher the mRNA expression levels of Bcl-2 than CON group in liver (P < 0.05). Moreover, TA group tended to decrease Bax/Bcl-2 ratio in liver (P < 0.10). To sum up, dietary supplemented with microencapsulated TA from Galla Chinensis had beneficial effects on growth performance, immune function, and liver health status in broilers. The protective role of TA from Galla Chinensis in liver health of broilers might be related to the inhibition of hepatic apoptosis and pyroptosis via inactivation of TLR4/MyD88/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Jiaxing Niu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Qinjin Wang
- Shandong Wonong Agro-tech Group Co., Ltd., Weifang, China
| | - Changwei Jing
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Yang Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Hua Liu
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, China
| | - Ning Jiao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Libo Huang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Shuzhen Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Qinglin Guan
- Shandong Landoff Biotechnology Co., Ltd., Taian, China
| | - Yang Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China,*Correspondence: Yang Li
| | - Weiren Yang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China,Weiren Yang
| |
Collapse
|
33
|
Pharmacological Effects of Polyphenol Phytochemicals on the Intestinal Inflammation via Targeting TLR4/NF-κB Signaling Pathway. Int J Mol Sci 2022; 23:ijms23136939. [PMID: 35805952 PMCID: PMC9266441 DOI: 10.3390/ijms23136939] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 02/05/2023] Open
Abstract
TLR4/NF-κB is a key inflammatory signaling transduction pathway, closely involved in cell differentiation, proliferation, apoptosis, and pro-inflammatory response. Toll like receptor 4 (TLR4), the first mammalian TLR to be characterized, is the innate immune receptor that plays a key role in inflammatory signal transductions. Nuclear factor kappa B (NF-κB), the TLR4 downstream, is the key to accounting for the expression of multiple genes involved in inflammatory responses, such as pro-inflammatory cytokines. Inflammatory bowel disease (IBD) in humans is a chronic inflammatory disease with high incidence and prevalence worldwide. Targeting the TLR4/NF-κB signaling pathway might be an effective strategy to alleviate intestinal inflammation. Polyphenol phytochemicals have shown noticeable alleviative effects by acting on the TLR4/NF-κB signaling pathway in intestinal inflammation. This review summarizes the pharmacological effects of more than 20 kinds of polyphenols on intestinal inflammation via targeting the TLR4/NF-κB signaling pathway. We expected that polyphenol phytochemicals targeting the TLR4/NF-κB signaling pathway might be an effective approach to treat IBD in future clinical research applications.
Collapse
|
34
|
Anti-Cancer Effects of Dietary Polyphenols via ROS-Mediated Pathway with Their Modulation of MicroRNAs. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123816. [PMID: 35744941 PMCID: PMC9227902 DOI: 10.3390/molecules27123816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/23/2022]
Abstract
Consumption of coffee, tea, wine, curry, and soybeans has been linked to a lower risk of cancer in epidemiological studies. Several cell-based and animal studies have shown that dietary polyphenols like chlorogenic acid, curcumin, epigallocatechin-3-O-gallate, genistein, quercetin and resveratrol play a major role in these anticancer effects. Several mechanisms have been proposed to explain the anticancer effects of polyphenols. Depending on the cellular microenvironment, these polyphenols can exert double-faced actions as either an antioxidant or a prooxidant, and one of the representative anticancer mechanisms is a reactive oxygen species (ROS)-mediated mechanism. These polyphenols can also influence microRNA (miR) expression. In general, they can modulate the expression/activity of the constituent molecules in ROS-mediated anticancer pathways by increasing the expression of tumor-suppressive miRs and decreasing the expression of oncogenic miRs. Thus, miR modulation may enhance the anticancer effects of polyphenols through the ROS-mediated pathways in an additive or synergistic manner. More precise human clinical studies on the effects of dietary polyphenols on miR expression will provide convincing evidence of the preventive roles of dietary polyphenols in cancer and other diseases.
Collapse
|
35
|
Ohishi T, Hayakawa S, Miyoshi N. Involvement of microRNA modifications in anticancer effects of major polyphenols from green tea, coffee, wine, and curry. Crit Rev Food Sci Nutr 2022; 63:7148-7179. [PMID: 35289676 DOI: 10.1080/10408398.2022.2038540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epidemiological studies have shown that consumption of green tea, coffee, wine, and curry may contribute to a reduced risk of various cancers. However, there are some cancer site-specific differences in their effects; for example, the consumption of tea or wine may reduce bladder cancer risk, whereas coffee consumption may increase the risk. Animal and cell-based experiments have been used to elucidate the anticancer mechanisms of these compounds, with reactive oxygen species (ROS)-based mechanisms emerging as likely candidates. Chlorogenic acid (CGA), curcumin (CUR), epigallocatechin gallate (EGCG), and resveratrol (RSV) can act as antioxidants that activate AMP-activated protein kinase (AMPK) to downregulate ROS, and as prooxidants to generate ROS, leading to the downregulation of NF-κB. Polyphenols can modulate miRNA (miR) expression, with these dietary polyphenols shown to downregulate tumor-promoting miR-21. CUR, EGCG, and RSV can upregulate tumor-suppressing miR-16, 34a, 145, and 200c, but downregulate tumor-promoting miR-25a. CGA, EGCG, and RSV downregulate tumor-suppressing miR-20a, 93, and 106b. The effects of miRs may combine with ROS-mediated pathways, enhancing the anticancer effects of these polyphenols. More precise analysis is needed to determine how the different modulations of miRs by polyphenols relate to the cancer site-specific differences found in epidemiological studies related to the consumption of foods containing these polyphenols.
Collapse
Affiliation(s)
- Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Shizuoka, Japan
| | - Sumio Hayakawa
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Noriyuki Miyoshi
- Laboratory of Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
36
|
Chen J, Chen D, Yu B, Luo Y, Zheng P, Mao X, Yu J, Luo J, Huang Z, Yan H, He J. Chlorogenic Acid Attenuates Oxidative Stress-Induced Intestinal Mucosa Disruption in Weaned Pigs. Front Vet Sci 2022; 9:806253. [PMID: 35237678 PMCID: PMC8884245 DOI: 10.3389/fvets.2022.806253] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/04/2022] [Indexed: 01/13/2023] Open
Abstract
Chlorogenic acid (CGA) is a natural polyphenol that possesses potent antioxidant activity. However, little is known about its exact role in regulating the intestinal health under oxidative stress. This study was conducted to explore the effect of dietary CGA supplementation on intestinal barrier functions in weaned pigs upon oxidative stress. Twenty-four weaned pigs were allocated to three treatments and were given a basal diet (control) or basal diet containing CGA (1,000 mg/kg) for 21 days. Pigs were challenged by sterile saline (control) or diquat [10 mg/kg body weight (BW)] on the 15th day. Results showed that CGA attenuated the BW reduction, reduced the serum concentrations of diamine oxidase and D-lactate, and elevated serum antioxidant enzymes activities in diquat-challenged weaned pigs (P < 0.05). Moreover, diquat challenge decreased villus height and activities of sucrase and alkaline phosphatase in jejunum and ileum (P < 0.05), but CGA elevated the villus height and enzyme activities in the intestinal mucosa (P < 0.05). In addition, CGA not only decreased the expression levels of Bax, caspase-3, and caspase-9 (P < 0.05) but also elevated the expression levels of sodium glucose transport protein-1, glucose transporter-2, occludin, claudin-1, zonula occludens-1, and antioxidant genes such as nuclear factor erythroid-derived 2-related factor 2 and heme oxygenase-1 in intestinal mucosa of weaned pigs upon oxidative stress (P < 0.05). These findings suggested that CGA can attenuate oxidative stress-induced growth retardation and intestinal mucosa disruption, which was linked to elevated antioxidative capacity and enhanced intestinal barrier integrity.
Collapse
Affiliation(s)
- Jiali Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu, China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu, China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu, China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu, China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu, China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu, China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu, China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu, China
- *Correspondence: Jun He
| |
Collapse
|