1
|
Regolo L, Giampieri F, Battino M, Armas Diaz Y, Mezzetti B, Elexpuru-Zabaleta M, Mazas C, Tutusaus K, Mazzoni L. From by-products to new application opportunities: the enhancement of the leaves deriving from the fruit plants for new potential healthy products. Front Nutr 2024; 11:1083759. [PMID: 38895662 PMCID: PMC11184148 DOI: 10.3389/fnut.2024.1083759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 05/03/2024] [Indexed: 06/21/2024] Open
Abstract
In the last decades, the world population and demand for any kind of product have grown exponentially. The rhythm of production to satisfy the request of the population has become unsustainable and the concept of the linear economy, introduced after the Industrial Revolution, has been replaced by a new economic approach, the circular economy. In this new economic model, the concept of "the end of life" is substituted by the concept of restoration, providing a new life to many industrial wastes. Leaves are a by-product of several agricultural cultivations. In recent years, the scientific interest regarding leaf biochemical composition grew, recording that plant leaves may be considered an alternative source of bioactive substances. Plant leaves' main bioactive compounds are similar to those in fruits, i.e., phenolic acids and esters, flavonols, anthocyanins, and procyanidins. Bioactive compounds can positively influence human health; in fact, it is no coincidence that the leaves were used by our ancestors as a natural remedy for various pathological conditions. Therefore, leaves can be exploited to manufacture many products in food (e.g., being incorporated in food formulations as natural antioxidants, or used to create edible coatings or films for food packaging), cosmetic and pharmaceutical industries (e.g., promising ingredients in anti-aging cosmetics such as oils, serums, dermatological creams, bath gels, and other products). This review focuses on the leaves' main bioactive compounds and their beneficial health effects, indicating their applications until today to enhance them as a harvesting by-product and highlight their possible reuse for new potential healthy products.
Collapse
Affiliation(s)
- Lucia Regolo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali – Università Politecnica delle Marche, Ancona, Italy
| | - Francesca Giampieri
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Maurizio Battino
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Product Processing, Jiangsu University, Zhenjiang, China
| | - Yasmany Armas Diaz
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Bruno Mezzetti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali – Università Politecnica delle Marche, Ancona, Italy
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
| | - Maria Elexpuru-Zabaleta
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
| | - Cristina Mazas
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Universidad Internacional Iberoamericana, Campeche, Mexico
| | - Kilian Tutusaus
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Research Center for Foods, Nutritional Biochemistry and Health, Universidade Internacional do Cuanza, Cuito, Angola
| | - Luca Mazzoni
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali – Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
2
|
Siddiqui SA, Khan S, Mehdizadeh M, Bahmid NA, Adli DN, Walker TR, Perestrelo R, Câmara JS. Phytochemicals and bioactive constituents in food packaging - A systematic review. Heliyon 2023; 9:e21196. [PMID: 37954257 PMCID: PMC10632435 DOI: 10.1016/j.heliyon.2023.e21196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023] Open
Abstract
Designing and manufacturing functional bioactive ingredients and pharmaceuticals have grown worldwide. Consumers demand for safe ingredients and concerns over harmful synthetic additives have prompted food manufacturers to seek safer and sustainable alternative solutions. In recent years the preference by consumers to natural bioactive agents over synthetic compounds increased exponentially, and consequently, naturally derived phytochemicals and bioactive compounds, with antimicrobial and antioxidant properties, becoming essential in food packaging field. In response to societal needs, packaging needs to be developed based on sustainable manufacturing practices, marketing strategies, consumer behaviour, environmental concerns, and the emergence of new technologies, particularly bio- and nanotechnology. This critical systematic review assessed the role of antioxidant and antimicrobial compounds from natural resources in food packaging and consumer behaviour patterns in relation to phytochemical and biologically active substances used in the development of food packaging. The use of phytochemicals and bioactive compounds inside packaging materials used in food industry could generate unpleasant odours derived from the diffusion of the most volatile compounds from the packaging material to the food and food environment. These consumer concerns must be addressed to understand minimum concentrations that will not affect consumer sensory and aroma negative perceptions. The research articles were carefully chosen and selected by following the Preferred Reporting Items for Systematic Reviews (PRISMA) guidelines.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing Str. 7, 49610, D-Quakenbrück, Germany
| | - Sipper Khan
- Tropics and Subtropics Group, Institute of Agricultural Engineering, University of Hohenheim, 70593, Stuttgart, Germany
| | - Mohammad Mehdizadeh
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
- Ilam Science and Technology Park, Iran
| | - Nur Alim Bahmid
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Gading, Playen, Gunungkidul, 55861, Yogyakarta, Indonesia
- Agricultural Product Technology Department, Universitas Sulawesi Barat, Majene, 90311, Indonesia
| | - Danung Nur Adli
- Faculty of Animal Science, University of Brawijaya, Malang, East Java, 65145, Indonesia
| | - Tony R. Walker
- School for Resource and Environmental Studies, Dalhousie University, Halifax, Nova Scotia, B3H, 4R2, Canada
| | - Rosa Perestrelo
- CQM – Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - José S. Câmara
- CQM – Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
- Departamento de Química, Faculdade de Ciências Exatas e da Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| |
Collapse
|
3
|
Jin Y, Hu C, Wang J, Ding Y, Shi J, Wang Z, Xu S, Yuan L. Thiol-Aldehyde Polycondensation for Bio-based Adaptable and Degradable Phenolic Polymers. Angew Chem Int Ed Engl 2023; 62:e202305677. [PMID: 37204428 DOI: 10.1002/anie.202305677] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/20/2023]
Abstract
Designing sustainable materials with tunable mechanical properties, intrinsic degradability, and recyclability from renewable biomass through a mild process has become vital in polymer science. Traditional phenolic resins are generally considered to be not degradable or recyclable. Here we report the design and synthesis of linear and network structured phenolic polymers using facile polycondensation between natural aldehyde-bearing phenolic compounds and polymercaptans. Linear phenolic products are amorphous with Tg between -9 °C and 12 °C. Cross-linked networks from vanillin and its di-aldehyde derivative exhibited excellent mechanical strength between 6-64 MPa. The connecting dithioacetals are associatively adaptable strong bonds and susceptible to degradation in oxidative conditions to regenerate vanillin. These results highlight the potential of biobased sustainable phenolic polymers with recyclability and selective degradation, as a complement to the traditional phenol-formaldehyde resins.
Collapse
Affiliation(s)
- Yu Jin
- Anhui Agricultural University, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Hefei, 230036, China
| | - Chengcheng Hu
- Anhui Agricultural University, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Hefei, 230036, China
| | - Jie Wang
- Anhui Agricultural University, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Hefei, 230036, China
| | - Yongliang Ding
- Anhui Agricultural University, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Hefei, 230036, China
| | - Junjie Shi
- Anhui Agricultural University, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Hefei, 230036, China
| | - Zhongkai Wang
- Anhui Agricultural University, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Hefei, 230036, China
| | - Shichao Xu
- Chinese Academy of Forestry, Institute of Chemical Industry of Forest Products, Nanjing, 210042, China
| | - Liang Yuan
- Anhui Agricultural University, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Hefei, 230036, China
| |
Collapse
|
4
|
Myrtsi ED, Vlachostergios DN, Petsoulas C, Evergetis E, Koulocheri SD, Haroutounian SA. An Interdisciplinary Assessment of Biochemical and Antioxidant Attributes of Six Greek Vicia sativa L. Varieties. PLANTS (BASEL, SWITZERLAND) 2023; 12:2807. [PMID: 37570961 PMCID: PMC10421230 DOI: 10.3390/plants12152807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023]
Abstract
Common vetch (Vicia sativa L.) is one of the most cultivated feed crops with extensive agricultural diversity and numerous cultivars. This study concerns the first-time investigation of the dry plant biomass and grains of six vetch cultivars to define the detailed fingerprint of their phenolic and fatty acid content, along with their respective antioxidant potencies. The results revealed a substantial variation in the feed quality traits among the tested Vicia sativa varieties, highlighting the crucial role and influence the genotype plays in the achievement of high-quality livestock nutrition. Among the six varieties tested, Istros and M-6900 displayed a particularly intriguing phytochemical profile characterized by elevated phenolic content, significant antioxidant potency and remarkably high fatty acid indices. These findings are indicative of the great potential of these varieties to function as suitable candidates for incorporation into farm animal diets either in the form of dry biomass (hay) or as a grain feed additive.
Collapse
Affiliation(s)
- Eleni D. Myrtsi
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Bioscience, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.D.M.); (E.E.); (S.D.K.)
| | - Dimitrios N. Vlachostergios
- Institute of Industrial and Forage Crops, Hellenic Agricultural Organization ELGO-DIMITRA, 41335 Larissa, Greece;
| | - Christos Petsoulas
- Institute of Industrial and Forage Crops, Hellenic Agricultural Organization ELGO-DIMITRA, 41335 Larissa, Greece;
| | - Epameinondas Evergetis
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Bioscience, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.D.M.); (E.E.); (S.D.K.)
| | - Sofia D. Koulocheri
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Bioscience, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.D.M.); (E.E.); (S.D.K.)
| | - Serkos A. Haroutounian
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Bioscience, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.D.M.); (E.E.); (S.D.K.)
| |
Collapse
|
5
|
Jung J, Ku M, Jeong S, Yoon N, Park JH, Youn HS, Yang J, Seo S. Antioxidative Impact of Phenolics-Loaded Nanocarriers on Cytoskeletal Network Remodeling of Invasive Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37438323 PMCID: PMC10375430 DOI: 10.1021/acsami.3c04693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Natural phenolic compounds have antioxidant properties owing to their free radical-scavenging capability. The combined effect of a mixture of phenolic compounds has been studied; however, the detailed investigation for finding a correlation between single phenolic molecules and antioxidant activity has not been explored. Herein, we revealed that the number of phenolic hydroxyl groups in phenolics played a central role in their antioxidant capacity. Based on the finding, tannic acid showed the most effective antioxidant potential, e.g., 76% in tannic acid versus 22% in vitamin C as a standard antioxidant component. Because cancer progression is closely related to oxidative processes at the cellular level, we further applied the surface treatment of tannic acid drug-delivery nanocarriers. Tannic acid-loaded nanocarriers reduced reactive oxygen species of cancer cells as much as 41% of vehicle treatment and remodeled cytoskeletal network. By a gelatin degradation study, TA-loaded nanocarrier-treated cells induced 44.6% reduction of degraded area than vehicle-treated cells, implying a potential of blocking invasiveness of cancer cells.
Collapse
Affiliation(s)
- Jaewon Jung
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Minhee Ku
- Department of Radiology, College of Medicine, Seoul 03722, Republic of Korea
- Systems Molecular Radiology, Yonsei University, Seoul 03722, Republic of Korea
- Convergence Research Center for Systems Molecular Radiological Science, Yonsei University, Seoul 03722, Republic of Korea
| | - Suhui Jeong
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Nara Yoon
- Department of Radiology, College of Medicine, Seoul 03722, Republic of Korea
- Systems Molecular Radiology, Yonsei University, Seoul 03722, Republic of Korea
- Convergence Research Center for Systems Molecular Radiological Science, Yonsei University, Seoul 03722, Republic of Korea
| | - Jae Hyun Park
- Young Chemical Co. Ltd., 80-93, Golden Root-ro, Juchon-myeon, Gimhae 50969, Republic of Korea
| | - Han Sung Youn
- Young Chemical Co. Ltd., 80-93, Golden Root-ro, Juchon-myeon, Gimhae 50969, Republic of Korea
| | - Jaemoon Yang
- Department of Radiology, College of Medicine, Seoul 03722, Republic of Korea
- Systems Molecular Radiology, Yonsei University, Seoul 03722, Republic of Korea
- Convergence Research Center for Systems Molecular Radiological Science, Yonsei University, Seoul 03722, Republic of Korea
| | - Sungbaek Seo
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| |
Collapse
|
6
|
Tamim K, Gale CB, Silverthorne KEC, Lu G, Iao CH, Brook MA. Antioxidant Silicone Elastomers without Covalent Cross-Links. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:7062-7071. [PMID: 37192891 PMCID: PMC10171216 DOI: 10.1021/acssuschemeng.3c00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/11/2023] [Indexed: 05/18/2023]
Abstract
Improved sustainability is associated with elastomers that readily breakdown in the environment at end of life and, as importantly, that can be reprocessed/reused long before end of life arises. We report the preparation of silicone elastomers that possess both thermoplasticity-reprocessability-and antioxidant activity. A combination of ionic and H-bonding links natural phenolic antioxidants, including catechol, pyrogallol, tannic acid, and others, to telechelic aminoalkylsilicones. The mechanical properties of the elastomers, including their processability, are intimately linked to the ratio of [ArOH]/[H2NR] that was found to be optimal when the ratio exceeded 1:1.
Collapse
Affiliation(s)
- Khaled Tamim
- Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Cody B. Gale
- Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Kaitlyn E. C. Silverthorne
- Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Guanhua Lu
- Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Cheok Hang Iao
- Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Michael A. Brook
- Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
7
|
Molecular Dynamic, Hirshfeld Surface, Molecular Docking and Drug likeness Studies of a Potent Anti-oxidant, Anti-malaria and Anti-Inflammatory medicine: Pyrogallol. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
8
|
Hafez MSMAE, Rashedy SH, Abdelmotilib NM, El-Hassayeb HEA, Cotas J, Pereira L. Fillet Fish Fortified with Algal Extracts of Codium tomentosum and Actinotrichia fragilis, as a Potential Antibacterial and Antioxidant Food Supplement. Mar Drugs 2022; 20:md20120785. [PMID: 36547932 PMCID: PMC9781850 DOI: 10.3390/md20120785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
With respect to the potential natural resources in the marine environment, marine macroalgae or seaweeds are recognized to have health impacts. Two marine algae that are found in the Red Sea, Codium tomentosum (Green algae) and Actinotrichia fragilis (Red algae), were collected. Antibacterial and antioxidant activities of aqueous extracts of these algae were evaluated in vitro. Polyphenols from the extracts were determined using HPLC. Fillet fish was fortified with these algal extracts in an attempt to improve its nutritional value, and sensory evaluation was performed. The antibacterial effect of C. tomentosum extract was found to be superior to that of A. fragilis extract. Total phenolic contents of C. tomentosum and A. fragilis aqueous extract were 32.28 ± 1.63 mg/g and 19.96 ± 1.28 mg/g, respectively, while total flavonoid contents were 4.54 ± 1.48 mg/g and 3.86 ± 1.02 mg/g, respectively. Extract of C. tomentosum demonstrates the highest antioxidant activity, with an IC50 value of 75.32 ± 0.07 μg/mL. The IC50 of L-ascorbic acid as a positive control was 22.71 ± 0.03 μg/mL. The IC50 values for inhibiting proliferation on normal PBMC cells were 33.7 ± 1.02 µg/mL and 51.0 ± 1.14 µg/mL for C. tomentosum and A. fragilis, respectively. The results indicated that both algal aqueous extracts were safe, with low toxicity to normal cells. Interestingly, fillet fish fortified with C. tomentosum extract demonstrated the greatest overall acceptance score. These findings highlight the potential of these seaweed species for cultivation as a sustainable and safe source of therapeutic compounds for treating human and fish diseases, as well as effective food supplements and preservatives instead of chemical ones after performing in vivo assays.
Collapse
Affiliation(s)
- Mohamed S. M. Abd El Hafez
- National Institute of Oceanography and Fisheries, NIOF, Cairo 11516, Egypt
- Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industries Development Center (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City 21934, Egypt
- Correspondence: (M.S.M.A.E.H.); (L.P.)
| | - Sarah H. Rashedy
- National Institute of Oceanography and Fisheries, NIOF, Cairo 11516, Egypt
| | - Neveen M. Abdelmotilib
- Department of Food Technology, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-CITY), New Borg El-Arab City 21934, Egypt
| | | | - João Cotas
- MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Leonel Pereira
- MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- Correspondence: (M.S.M.A.E.H.); (L.P.)
| |
Collapse
|
9
|
Ezati P, Khan A, Rhim JW, Roy S, Hassan ZU. Saffron: Perspectives and Sustainability for Active and Intelligent Food Packaging Applications. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02949-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Argenziano R, Moccia F, Esposito R, D’Errico G, Panzella L, Napolitano A. Recovery of Lignins with Potent Antioxidant Properties from Shells of Edible Nuts by a Green Ball Milling/Deep Eutectic Solvent (DES)-Based Protocol. Antioxidants (Basel) 2022; 11:antiox11101860. [PMID: 36290583 PMCID: PMC9598286 DOI: 10.3390/antiox11101860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022] Open
Abstract
Lignins are phenolic polymers endowed with potent antioxidant properties that are finding increasing applications in a variety of fields. Consequently, there is a growing need for easily available and sustainable sources, as well as for green extraction methodologies of these compounds. Herein, a ball milling/deep eutectic solvent (DES)-based treatment is reported as an efficient strategy for the recovery of antioxidant lignins from the shells of edible nuts, namely chestnuts, hazelnuts, peanuts, pecan nuts, and pistachios. In particular, preliminarily ball-milled shells were treated with 1:2 mol/mol choline chloride:lactic acid at 120 °C for 24 h, and the extracted material was recovered in 19–27% w/w yields after precipitation by the addition of 0.01 M HCl. Extensive spectroscopic and chromatographic analysis allowed for confirmation that the main phenolic constituents present in the shell extracts were lignins, accompanied by small amounts (0.9% w/w) of ellagic acid, in the case of chestnut shells. The recovered samples exhibited very promising antioxidant properties, particularly in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay (EC50 values ranging from 0.03 to 0.19 mg/mL). These results open new perspectives for the valorization of nut shells as green sources of lignins for applications as antioxidants, e.g., in the biomedical, food, and/or cosmetic sector.
Collapse
|
11
|
Samar J, Butt GY, Shah AA, Shah AN, Ali S, Jan BL, Abdelsalam NR, Hussaan M. Phycochemical and Biological Activities From Different Extracts of Padina antillarum (Kützing) Piccone. FRONTIERS IN PLANT SCIENCE 2022; 13:929368. [PMID: 35937357 PMCID: PMC9354264 DOI: 10.3389/fpls.2022.929368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Seaweeds are non-vascular, photosynthetic that inhabit the coastal regions commonly within rocky intertidal or submerged reef-like habitats and have been one of the richest and most promising sources of bioactive primary and secondary metabolites with antimicrobial properties. They selectively absorb elements like Na, K, Ca, Mg, I, and Br from the seawater and accumulate them in their thalli. Padina antillarum (Kützing) Piccone is a member of Phaeophycota and has remarkable phycochemistry as well as bioactivity. The phycochemical tests of the different extracts showed the presence of alkaloids, terpenoids, saponins, tannins, steroids, and phenols. The relative percentage of Oxirane, tetradecyl (C16H32O), and Cyclononasiloxane (C18H54O9Si9) are higher while Tetrasiloxane (C16H50O7Si8) is lowest in Gas Chromatography - Mass Spectrometry analysis. FRAP, %inhibition, the total antioxidant value of P. antillarum was higher in methanolic extract. Hexane, chloroform extracts showed no zone of inhibition against Bacillus subtilis, Escherichia coli, Klebsiella pneumonia, Staphylococcus aureus, and Staphylococcus epidermidis. The methanolic extract of P. antillarum exhibits a maximum zone of inhibition against S. epidermidis (18.66 ± 0.09). Antifungal activity of the P. antillarum in hexane extract exhibited no zone of inhibition against Aspergillus niger and Penicillium notatum while the chloroform extract yields maximum zone (37 ± 0.012, 21.66 ± 0.03). Diabetes mellitus is one of the most familiar chronic diseases associated with carbohydrate metabolism. It is also an indication of co-morbidities such as obesity, hypertension, and hyperlipidemia which are metabolic complications of both clinical and experimental diabetes. The treatment of P. antillarum methanol extract in mice reduced the body weight loss, low level of triglycerides, and elevated HDL cholesterol level as compared to diabetic mice.
Collapse
Affiliation(s)
- Juveria Samar
- Department of Botany, Government College University, Lahore, Pakistan
| | | | - Anis Ali Shah
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Basit Latief Jan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nader R. Abdelsalam
- Department of Agricultural Botany, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Muhammad Hussaan
- Department of Botany, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
12
|
El-Beltagi HS, Mohamed AA, Mohamed HI, Ramadan KMA, Barqawi AA, Mansour AT. Phytochemical and Potential Properties of Seaweeds and Their Recent Applications: A Review. Mar Drugs 2022; 20:md20060342. [PMID: 35736145 PMCID: PMC9227187 DOI: 10.3390/md20060342] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 02/06/2023] Open
Abstract
Since ancient times, seaweeds have been employed as source of highly bioactive secondary metabolites that could act as key medicinal components. Furthermore, research into the biological activity of certain seaweed compounds has progressed significantly, with an emphasis on their composition and application for human and animal nutrition. Seaweeds have many uses: they are consumed as fodder, and have been used in medicines, cosmetics, energy, fertilizers, and industrial agar and alginate biosynthesis. The beneficial effects of seaweed are mostly due to the presence of minerals, vitamins, phenols, polysaccharides, and sterols, as well as several other bioactive compounds. These compounds seem to have antioxidant, anti-inflammatory, anti-cancer, antimicrobial, and anti-diabetic activities. Recent advances and limitations for seaweed bioactive as a nutraceutical in terms of bioavailability are explored in order to better comprehend their therapeutic development. To further understand the mechanism of action of seaweed chemicals, more research is needed as is an investigation into their potential usage in pharmaceutical companies and other applications, with the ultimate objective of developing sustainable and healthier products. The objective of this review is to collect information about the role of seaweeds on nutritional, pharmacological, industrial, and biochemical applications, as well as their impact on human health.
Collapse
Affiliation(s)
- Hossam S. El-Beltagi
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
- Correspondence: (H.S.E.-B.); (A.A.M.); (H.I.M.)
| | - Amal A. Mohamed
- Chemistry Department, Al-Leith University College, Umm Al-Qura University, Makkah 24831, Saudi Arabia;
- Plant Biochemistry Department, National Research Centre, Cairo 12622, Egypt
- Correspondence: (H.S.E.-B.); (A.A.M.); (H.I.M.)
| | - Heba I. Mohamed
- Biological and Geological Science Department, Faculty of Education, Ain Shams University, Cairo 11757, Egypt
- Correspondence: (H.S.E.-B.); (A.A.M.); (H.I.M.)
| | - Khaled M. A. Ramadan
- Central Laboratories, Department of Chemistry, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Biochemistry Department, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
| | - Aminah A. Barqawi
- Chemistry Department, Al-Leith University College, Umm Al-Qura University, Makkah 24831, Saudi Arabia;
| | - Abdallah Tageldein Mansour
- Animal and Fish Production Department, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| |
Collapse
|
13
|
Gonçalves AC, Gaspar D, Flores-Félix JD, Falcão A, Alves G, Silva LR. Effects of Functional Phenolics Dietary Supplementation on Athletes' Performance and Recovery: A Review. Int J Mol Sci 2022; 23:4652. [PMID: 35563043 PMCID: PMC9102074 DOI: 10.3390/ijms23094652] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
In recent years, many efforts have been made to identify micronutrients or nutritional strategies capable of preventing, or at least, attenuating, exercise-induced muscle damage and oxidative stress, and improving athlete performance. The reason is that most exercises induce various changes in mitochondria and cellular cytosol that lead to the generation of reactive species and free radicals whose accumulation can be harmful to human health. Among them, supplementation with phenolic compounds seems to be a promising approach since their chemical structure, composed of catechol, pyrogallol, and methoxy groups, gives them remarkable health-promoting properties, such as the ability to suppress inflammatory processes, counteract oxidative damage, boost the immune system, and thus, reduce muscle soreness and accelerate recovery. Phenolic compounds have also already been shown to be effective in improving temporal performance and reducing psychological stress and fatigue. Therefore, the aim of this review is to summarize and discuss the current knowledge on the effects of dietary phenolics on physical performance and recovery in athletes and sports practitioners. Overall, the reports show that phenolics exert important benefits on exercise-induced muscle damage as well as play a biological/physiological role in improving physical performance.
Collapse
Affiliation(s)
- Ana C. Gonçalves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (G.A.)
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Dário Gaspar
- Department of Sport Sciences, University of Beira Interior, 6201-001 Covilhã, Portugal;
| | - José David Flores-Félix
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (G.A.)
| | - Amílcar Falcão
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal;
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (G.A.)
| | - Luís R. Silva
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (G.A.)
- CPIRN-UDI/IPG—Center of Potential and Innovation of Natural Resources, Research Unit for Inland Development (UDI), Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
| |
Collapse
|
14
|
Le CC, Bae M, Kiamehr S, Balskus EP. Emerging Chemical Diversity and Potential Applications of Enzymes in the DMSO Reductase Superfamily. Annu Rev Biochem 2022; 91:475-504. [PMID: 35320685 DOI: 10.1146/annurev-biochem-032620-110804] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Molybdenum- and tungsten-dependent proteins catalyze essential processes in living organisms and biogeochemical cycles. Among these enzymes, members of the dimethyl sulfoxide (DMSO) reductase superfamily are considered the most diverse, facilitating a wide range of chemical transformations that can be categorized as oxygen atom installation, removal, and transfer. Importantly, DMSO reductase enzymes provide high efficiency and excellent selectivity while operating under mild conditions without conventional oxidants such as oxygen or peroxides. Despite the potential utility of these enzymes as biocatalysts, such applications have not been fully explored. In addition, the vast majority of DMSO reductase enzymes still remain uncharacterized. In this review, we describe the reactivities, proposed mechanisms, and potential synthetic applications of selected enzymes in the DMSO reductase superfamily. We also highlight emerging opportunities to discover new chemical activity and current challenges in studying and engineering proteins in the DMSO reductase superfamily. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Chi Chip Le
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA;
| | - Minwoo Bae
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA;
| | - Sina Kiamehr
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA;
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA;
| |
Collapse
|
15
|
Panzella L, Napolitano A. Condensed Tannins, a Viable Solution To Meet the Need for Sustainable and Effective Multifunctionality in Food Packaging: Structure, Sources, and Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:751-758. [PMID: 35029982 PMCID: PMC8796238 DOI: 10.1021/acs.jafc.1c07229] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 05/21/2023]
Abstract
Condensed tannins (CT) have been the focus of increasing interest in the last years as a result of their potent biological properties, which have prompted their use in the food and feed sector as functional ingredients. The possible exploitation of these compounds as multifunctional additives for the implementation of active food packaging has also been recently appreciated. In this perspective, an overview of the structural features, accessible sources, methods of analysis, and functional properties of CT is provided, with the aim of critically emphasizing the opportunities offered by this widespread class of natural phenolic compounds for the rational design of multifunctional and sustainable food packaging materials.
Collapse
|
16
|
Seaweeds as a Fermentation Substrate: A Challenge for the Food Processing Industry. Processes (Basel) 2021. [DOI: 10.3390/pr9111953] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Seaweeds are gaining momentum as novel and functional food and feed products. From whole consumption to small bioactive compounds, seaweeds have remarkable flexibility in their applicability, ranging from food production to fertilizers or usages in chemical industries. Regarding food production, there is an increasing interest in the development of novel foods that, at the same time, present high nutritious content and are sustainably developed. Seaweeds, because they require no arable land, no usage of fresh water, and they have high nutritious and bioactive content, can be further explored for the development of newer and functional food products. Fermentation, especially performed by lactic acid bacteria, is a method used to produce functional foods. However, fermentation of seaweed biomass remains an underdeveloped topic that nevertheless demonstrates high potential for the production of new alimentary products that hold and further improve the organoleptic and beneficial properties that these organisms are characterized for. Although further research has to be deployed in this field, the prebiotic and probiotic potential demonstrated by fermented seaweed can boost the development of new functional foods.
Collapse
|
17
|
Elschner T, Brendler E, Fischer S. Highly Selective Mitsunobu Esterification of Cellulose with Hydroxycinnamic Acids. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Thomas Elschner
- Institute of Plant and Wood Chemistry Technische Universität Dresden Pienner Str. 19 Tharandt 01737 Germany
| | - Erica Brendler
- Institute of Analytical Chemistry TU Bergakademie Freiberg Leipziger Str. 29 Freiberg 09599 Germany
| | - Steffen Fischer
- Institute of Plant and Wood Chemistry Technische Universität Dresden Pienner Str. 19 Tharandt 01737 Germany
| |
Collapse
|
18
|
Hong W, Liu CC, Zhang H, Chen Z, Xiao M, Xu L. Cancer Cell Preferential Penetration and pH-Responsive Drug Delivery of Oligorutin. Biomacromolecules 2021; 22:3679-3691. [PMID: 34383480 DOI: 10.1021/acs.biomac.1c00268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We report herein a novel delivery system, derived from the facile enzymatic synthesis of oligorutin (OR), for cancer cell targeting and pH-responsive drug delivery. In this study, we demonstrate that OR could preferentially penetrate cancer cells via the lipid raft-mediated endocytosis pathway, and cell membrane cholesterol was critical to the internalization of OR. The accumulation of OR in the tumor region was further confirmed by an in vivo biodistribution study. Considering the tumor-targeting property of OR, a pH-responsive drug delivery system (OR-BTZ) was developed by covalent conjugation of the catechol groups on OR with antitumor drug bortezomib (BTZ) through a pH-sensitive borate ester bond. OR-BTZ exerted cytotoxicity as well as inhibition of the migration and invasion to hepatoma carcinoma cells and showed no apparent cytotoxicity with liver normal cells. The OR-BTZs also presented significant therapeutic efficacy and low systematic toxicity in the murine hepatocellular carcinoma model. To our knowledge, this study presents the first attempt to exploit the potential of oligoflavonoids for cancer cell-targeted drug delivery and will motivate the development of flavonoids and their derivatives as a new type of biomaterials for tumor-targeted therapy.
Collapse
Affiliation(s)
- Weiying Hong
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
| | - Chang-Cheng Liu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
| | - Henan Zhang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
| | - Zhiyong Chen
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, Jinan University, Jinan 250022, China
| | - Min Xiao
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, and State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Li Xu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
| |
Collapse
|
19
|
Upadhyay R, Singh D, Maurya SK. Highly efficient heterogeneous V
2
O
5
@TiO
2
catalyzed the rapid transformation of boronic acids to phenols. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Rahul Upadhyay
- Chemical Technology Division CSIR-Institute of Himalayan Bioresource Technology Palampur Himachal Pradesh 176 061 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - Deepak Singh
- Chemical Technology Division CSIR-Institute of Himalayan Bioresource Technology Palampur Himachal Pradesh 176 061 India
| | - Sushil K. Maurya
- Chemical Technology Division CSIR-Institute of Himalayan Bioresource Technology Palampur Himachal Pradesh 176 061 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| |
Collapse
|
20
|
Lomartire S, Marques JC, Gonçalves AMM. An Overview to the Health Benefits of Seaweeds Consumption. Mar Drugs 2021; 19:341. [PMID: 34203804 PMCID: PMC8232781 DOI: 10.3390/md19060341] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 12/22/2022] Open
Abstract
Currently, seaweeds are gaining major attention due to the benefits they give to our health. Recent studies demonstrate the high nutritional value of seaweeds and the powerful properties that seaweeds' bioactive compounds provide. Species of class Phaeophyceae, phylum Rhodophyta and Chlorophyta possess unique compounds with several properties that are potential allies of our health, which make them valuable compounds to be involved in biotechnological applications. In this review, the health benefits given by consumption of seaweeds as whole food or by assumption of bioactive compounds trough natural drugs are highlighted. The use of seaweeds in agriculture is also highlighted, as they assure soils and crops free from chemicals; thus, it is advantageous for our health. The addition of seaweed extracts in food, nutraceutical, pharmaceutical and industrial companies will enhance the production and consumption/usage of seaweed-based products. Therefore, there is the need to implement the research on seaweeds, with the aim to identify more bioactive compounds, which may assure benefits to human and animal health.
Collapse
Affiliation(s)
- Silvia Lomartire
- University of Coimbra, MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (S.L.); (J.C.M.)
| | - João Carlos Marques
- University of Coimbra, MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (S.L.); (J.C.M.)
| | - Ana M. M. Gonçalves
- University of Coimbra, MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (S.L.); (J.C.M.)
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
21
|
Salma A, Djelal H, Abdallah R, Fourcade F, Amrane A. Platform molecule from sustainable raw materials; case study succinic acid. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1007/s43153-021-00103-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
22
|
Lomartire S, Cotas J, Pacheco D, Marques JC, Pereira L, Gonçalves AMM. Environmental Impact on Seaweed Phenolic Production and Activity: An Important Step for Compound Exploitation. Mar Drugs 2021; 19:245. [PMID: 33926129 PMCID: PMC8146014 DOI: 10.3390/md19050245] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/24/2021] [Accepted: 04/25/2021] [Indexed: 02/06/2023] Open
Abstract
Seaweeds are a potential source of bioactive compounds that are useful for biotechnological applications and can be employed in different industrial areas in order to replace synthetic compounds with components of natural origin. Diverse studies demonstrate that there is a solid ground for the exploitation of seaweed bioactive compounds in order to prevent illness and to ensure a better and healthier lifestyle. Among the bioactive algal molecules, phenolic compounds are produced as secondary metabolites with beneficial effects on plants, and also on human beings and animals, due to their inherent bioactive properties, which exert antioxidant, antiviral, and antimicrobial activities. The use of phenolic compounds in pharmaceutical, nutraceutical, cosmetics, and food industries may provide outcomes that could enhance human health. Through the production of healthy foods and natural drugs, bioactive compounds from seaweeds can help with the treatment of human diseases. This review aims to highlight the importance of phenolic compounds from seaweeds, the scope of their production in nature and the impact that these compounds can have on human and animal health through nutraceutical and pharmaceutical products.
Collapse
Affiliation(s)
- Silvia Lomartire
- University of Coimbra, MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (S.L.); (J.C.); (D.P.); (J.C.M.); (L.P.)
| | - João Cotas
- University of Coimbra, MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (S.L.); (J.C.); (D.P.); (J.C.M.); (L.P.)
| | - Diana Pacheco
- University of Coimbra, MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (S.L.); (J.C.); (D.P.); (J.C.M.); (L.P.)
| | - João Carlos Marques
- University of Coimbra, MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (S.L.); (J.C.); (D.P.); (J.C.M.); (L.P.)
| | - Leonel Pereira
- University of Coimbra, MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (S.L.); (J.C.); (D.P.); (J.C.M.); (L.P.)
| | - Ana M. M. Gonçalves
- University of Coimbra, MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (S.L.); (J.C.); (D.P.); (J.C.M.); (L.P.)
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
23
|
Torlopov MA, Shevchenko OG, Chukicheva IY, Udoratina EV. Effective, low cytotoxic cell membranes protector based on amphiphilic conjugate of cellulose sulfate with isobornylphenol. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Alfieri ML, Moccia F, D’Errico G, Panzella L, d’Ischia M, Napolitano A. Acid Treatment Enhances the Antioxidant Activity of Enzymatically Synthesized Phenolic Polymers. Polymers (Basel) 2020; 12:E2544. [PMID: 33143251 PMCID: PMC7692195 DOI: 10.3390/polym12112544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 12/20/2022] Open
Abstract
Phenolic polymers produced by enzymatic oxidation under biomimetic and eco-friendly reaction conditions are usually endowed with potent antioxidant properties. These properties, coupled with the higher biocompatibility, stability and processability compared to low-molecular weight phenolic compounds, open important perspectives for various applications. Herein, we report the marked boosting effect of acid treatment on the antioxidant properties of a series of polymers obtained by peroxidase-catalyzed oxidation of natural phenolic compounds. Both 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing/antioxidant power (FRAP) assays indicated a remarkable increase in the antioxidant properties for most phenolic polymers further to the acid treatment. In particular, up to a ca. 60% decrease in the EC50 value in the DPPH assay and a 5-fold increase in the Trolox equivalents were observed. Nitric oxide- and superoxide-scavenging assays also indicated highly specific boosting effects of the acid treatment. Spectroscopic evidence suggested, in most cases, that the occurrence of structural modifications induced by the acid treatment led to more extended π-electron-conjugated species endowed with more efficient electron transfer properties. These results open new perspectives toward the design of new bioinspired antioxidants for application in food, biomedicine and material sciences.
Collapse
Affiliation(s)
| | | | | | - Lucia Panzella
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, I-80126 Naples, Italy; (M.L.A.); (F.M.); (G.D.); (M.d.); (A.N.)
| | | | | |
Collapse
|
25
|
Laguna O, Durand E, Baréa B, Dauguet S, Fine F, Villeneuve P, Lecomte J. Synthesis and Evaluation of Antioxidant Activities of Novel Hydroxyalkyl Esters and Bis-Aryl Esters Based on Sinapic and Caffeic Acids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9308-9318. [PMID: 32786829 DOI: 10.1021/acs.jafc.0c03711] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Novel hydroxyalkyl esters and bis-aryl esters were synthesized from sinapic and caffeic acids and aliphatic α,ω-diols of increasing chain lengths from 2 to 12 carbon atoms. Then, their antiradical reactivity (DPPH assay) and their antioxidant activity in a model oil-in-water emulsion (CAT assay) were evaluated. All the esters showed lower antiradical activities compared to their corresponding phenolic acid. This decrease was associated with the steric hindrance in hydroxyalkyl esters, and intramolecular interactions in bis-aryl esters. Regarding the two bis-aryl esters series in emulsion, the antioxidant capacity was improved with alkyl chain lengthening up to four carbons, after which it decreased for longer chains. This "cutoff" effect was not observed for both hydroxyalkyl esters series for which the alkyl chain lengthening results in a decrease of the antioxidant activity.
Collapse
Affiliation(s)
- Oscar Laguna
- CIRAD, UMR IATE, F-34398 Montpellier, France
- IATE, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Erwann Durand
- CIRAD, UMR IATE, F-34398 Montpellier, France
- IATE, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Bruno Baréa
- CIRAD, UMR IATE, F-34398 Montpellier, France
- IATE, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Sylvie Dauguet
- TERRES INOVIA, Parc Industriel-11 Rue Monge, 33600 Pessac, France
| | - Frédéric Fine
- TERRES INOVIA, Parc Industriel-11 Rue Monge, 33600 Pessac, France
| | - Pierre Villeneuve
- CIRAD, UMR IATE, F-34398 Montpellier, France
- IATE, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Jérôme Lecomte
- CIRAD, UMR IATE, F-34398 Montpellier, France
- IATE, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
26
|
Francolini I, Piozzi A. Role of Antioxidant Molecules and Polymers in Prevention of Bacterial Growth and Biofilm Formation. Curr Med Chem 2020; 27:4882-4904. [DOI: 10.2174/0929867326666190409120409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/27/2019] [Accepted: 04/04/2019] [Indexed: 01/22/2023]
Abstract
Background:
Antioxidants are multifaceted molecules playing a crucial role in several
cellular functions. There is by now a well-established knowledge about their involvement in numerous
processes associated with aging, including vascular damage, neurodegenerative diseases and
cancer. An emerging area of application has been lately identified for these compounds in relation to
the recent findings indicating their ability to affect biofilm formation by some microbial pathogens,
including Staphylococcus aureus, Streptococcus mutans, and Pseudomonas aeruginosa.
Methods:
A structured search of bibliographic databases for peer-reviewed research literature was
performed using a focused review question. The quality of retrieved papers was appraised using
standard tools.
Results:
One hundred sixty-five papers extracted from pubmed database and published in the last
fifteen years were included in this review focused on the assessment of the antimicrobial and antibiofilm
activity of antioxidant compounds, including vitamins, flavonoids, non-flavonoid polyphenols,
and antioxidant polymers. Mechanisms of action of some important antioxidant compounds,
especially for vitamin C and phenolic acids, were identified.
Conclusion:
The findings of this review confirm the potential benefits of the use of natural antioxidants
as antimicrobial/antibiofilm compounds. Generally, gram-positive bacteria were found to be
more sensitive to antioxidants than gram-negatives. Antioxidant polymeric systems have also been
developed mainly derived from functionalization of polysaccharides with antioxidant molecules.
The application of such systems in clinics may permit to overcome some issues related to the systemic
delivery of antioxidants, such as poor absorption, loss of bioactivity, and limited half-life.
However, investigations focused on the study of antibiofilm activity of antioxidant polymers are still
very limited in number and therefore they are strongly encouraged in order to lay the foundations for
application of antioxidant polymers in treatment of biofilm-based infections.
Collapse
Affiliation(s)
- Iolanda Francolini
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro, 5 - 00185, Rome, Italy
| | - Antonella Piozzi
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro, 5 - 00185, Rome, Italy
| |
Collapse
|
27
|
Hydrolyzable vs. Condensed Wood Tannins for Bio-based Antioxidant Coatings: Superior Properties of Quebracho Tannins. Antioxidants (Basel) 2020; 9:antiox9090804. [PMID: 32878314 PMCID: PMC7556001 DOI: 10.3390/antiox9090804] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/17/2020] [Accepted: 08/28/2020] [Indexed: 12/25/2022] Open
Abstract
Tannins have always been the subject of great interest for their countless properties, first of all their ability to produce functional coatings on a variety of materials. We report herein a comparative evaluation of the antioxidant properties of wood tannin-based coated substrates. In particular, nylon membrane filters were functionalized with chestnut (hydrolyzable) or quebracho (condensed) tannins by dip coating under different conditions. The efficiency of functionalization was evaluated by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing/antioxidant power (FRAP) assays, which invariably highlighted the superior ability of condensed tannins to induce the formation of a functional and robust coating. The results of the antioxidant assays revealed also the deleterious effects of aerial or enzymatic oxidation conditions on substrate functionalization, being more significant in the case of hydrolyzable tannins. On the other hand, the use of oxidizing conditions allowed to obtain more stable coatings, still exhibiting good antioxidant properties, in the case of condensed tannins. The presence of iron ions did not lead to a significant improvement of the coating efficiency for either tannins. The systematic approach used in this work provides novel and useful information for the optimal exploitation of tannins in antioxidant functional coatings.
Collapse
|
28
|
Leandro A, Pacheco D, Cotas J, Marques JC, Pereira L, Gonçalves AMM. Seaweed's Bioactive Candidate Compounds to Food Industry and Global Food Security. Life (Basel) 2020; 10:E140. [PMID: 32781632 PMCID: PMC7459772 DOI: 10.3390/life10080140] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022] Open
Abstract
The world population is continuously growing, so it is important to keep producing food in a sustainable way, especially in a way that is nutritious and in a sufficient quantity to overcome global needs. Seaweed grows, and can be cultivated, in seawater and generally does not compete for arable land and freshwater. Thus, the coastal areas of the planet are the most suitable for seaweed production, which can be an alternative to traditional agriculture and can thus contribute to a reduced carbon footprint. There are evolving studies that characterize seaweed's nutritional value and policies that recognize them as food, and identify the potential benefits and negative factors that may be produced or accumulated by seaweed, which are, or can be, dangerous for human health. Seaweeds have a high nutritional value along with a low caloric input and with the presence of fibers, proteins, omega 3 and 6 unsaturated fatty acids, vitamins, and minerals. Moreover, several seaweed sub-products have interesting features to the food industry. Therefore, the focus of this review is in the performance of seaweed as a potential alternative and as a safe food source. Here described is the nutritional value and concerns relating to seaweed consumption, and also how seaweed-derived compounds are already commercially explored and available in the food industry and the usage restrictions to safeguard them as safe food additives for human consumption.
Collapse
Affiliation(s)
- Adriana Leandro
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (A.L.); (D.P.); (J.C.); (J.C.M.); (L.P.)
| | - Diana Pacheco
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (A.L.); (D.P.); (J.C.); (J.C.M.); (L.P.)
| | - João Cotas
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (A.L.); (D.P.); (J.C.); (J.C.M.); (L.P.)
| | - João C. Marques
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (A.L.); (D.P.); (J.C.); (J.C.M.); (L.P.)
| | - Leonel Pereira
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (A.L.); (D.P.); (J.C.); (J.C.M.); (L.P.)
| | - Ana M. M. Gonçalves
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (A.L.); (D.P.); (J.C.); (J.C.M.); (L.P.)
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
29
|
Li MN, Wang HY, Wang R, Li CR, Shen BQ, Gao W, Li P, Yang H. A modified data filtering strategy for targeted characterization of polymers in complex matrixes using drift tube ion mobility-mass spectrometry: Application to analysis of procyanidins in the grape seed extracts. Food Chem 2020; 321:126693. [DOI: 10.1016/j.foodchem.2020.126693] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 12/25/2022]
|
30
|
Cotas J, Leandro A, Monteiro P, Pacheco D, Figueirinha A, Gonçalves AMM, da Silva GJ, Pereira L. Seaweed Phenolics: From Extraction to Applications. Mar Drugs 2020; 18:E384. [PMID: 32722220 PMCID: PMC7460554 DOI: 10.3390/md18080384] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
Seaweeds have attracted high interest in recent years due to their chemical and bioactive properties to find new molecules with valuable applications for humankind. Phenolic compounds are the group of metabolites with the most structural variation and the highest content in seaweeds. The most researched seaweed polyphenol class is the phlorotannins, which are specifically synthesized by brown seaweeds, but there are other polyphenolic compounds, such as bromophenols, flavonoids, phenolic terpenoids, and mycosporine-like amino acids. The compounds already discovered and characterized demonstrate a full range of bioactivities and potential future applications in various industrial sectors. This review focuses on the extraction, purification, and future applications of seaweed phenolic compounds based on the bioactive properties described in the literature. It also intends to provide a comprehensive insight into the phenolic compounds in seaweed.
Collapse
Affiliation(s)
- João Cotas
- MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
| | - Adriana Leandro
- MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
| | - Pedro Monteiro
- Faculty of Pharmacy and Center for Neurosciences and Cell Biology, Health Sciences Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (P.M.); (G.J.d.S.)
| | - Diana Pacheco
- MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
| | - Artur Figueirinha
- LAQV, REQUIMTE, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- Faculty of Pharmacy of University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana M. M. Gonçalves
- MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Gabriela Jorge da Silva
- Faculty of Pharmacy and Center for Neurosciences and Cell Biology, Health Sciences Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (P.M.); (G.J.d.S.)
| | - Leonel Pereira
- MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
| |
Collapse
|
31
|
Ferri M, Vannini M, Ehrnell M, Eliasson L, Xanthakis E, Monari S, Sisti L, Marchese P, Celli A, Tassoni A. From winery waste to bioactive compounds and new polymeric biocomposites: A contribution to the circular economy concept. J Adv Res 2020; 24:1-11. [PMID: 32181012 PMCID: PMC7063095 DOI: 10.1016/j.jare.2020.02.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/31/2022] Open
Abstract
The paper aims at optimising and validating possible routes toward the full valorisation of grape agrowaste to produce bioactive molecules and new materials. Starting from Merlot red pomace, phenol complex mixtures were successfully extracted by using two different approaches. Extracts obtained by solvent-based (SE) technique contained up to 46.9 gGAeq/kgDW of total phenols. Depending on the used solvent, the prevalence of compounds belonging to different phenol families was achieved. Pressurized liquid extraction (PLE) gave higher total phenol yields (up to 79 gGAeq/kgDW) but a lower range of extracted compounds. All liquid extracts exerted strong antioxidant properties. Moreover, both SE and PLE extraction solid residues were directly exploited (between 5 and 20% w/w) to prepare biocomposite materials by direct mixing via an eco-friendly approach with PHBV polymer. The final composites showed mechanical characteristics similar to PHVB matrix. The use of pomace residues in biocomposites could therefore bring both to the reduction of the cost of the final material, as a lower amount of costly PHBV is used. The present research demonstrated the full valorisation of grape pomace, an agrowaste produced every year in large amounts and having a significant environmental impact.
Collapse
Affiliation(s)
- Maura Ferri
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, via Terracini 28, 40131 Bologna, Italy
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via Irnerio 42, 40126 Bologna, Italy
| | - Micaela Vannini
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, via Terracini 28, 40131 Bologna, Italy
| | - Maria Ehrnell
- RISE – Research Institutes of Sweden, Unit of Agrifood & Bioscience, Frans Perssons Väg 6, 41276 Gothenburg, Sweden
| | - Lovisa Eliasson
- RISE – Research Institutes of Sweden, Unit of Agrifood & Bioscience, Frans Perssons Väg 6, 41276 Gothenburg, Sweden
| | - Epameinondas Xanthakis
- RISE – Research Institutes of Sweden, Unit of Agrifood & Bioscience, Frans Perssons Väg 6, 41276 Gothenburg, Sweden
| | - Stefania Monari
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via Irnerio 42, 40126 Bologna, Italy
| | - Laura Sisti
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, via Terracini 28, 40131 Bologna, Italy
| | - Paola Marchese
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, via Terracini 28, 40131 Bologna, Italy
| | - Annamaria Celli
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, via Terracini 28, 40131 Bologna, Italy
| | - Annalisa Tassoni
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via Irnerio 42, 40126 Bologna, Italy
| |
Collapse
|
32
|
Soares S, Brandão E, Guerreiro C, Soares S, Mateus N, de Freitas V. Tannins in Food: Insights into the Molecular Perception of Astringency and Bitter Taste. Molecules 2020; 25:E2590. [PMID: 32498458 PMCID: PMC7321337 DOI: 10.3390/molecules25112590] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
Astringency and bitterness are organoleptic properties widely linked to tannin compounds. Due to their significance to food chemistry, the food industry, and to human nutrition and health, these tannins' taste properties have been a line of worldwide research. In recent years, significant advances have been made in understanding the molecular perception of astringency pointing to the contribution of different oral key players. Regarding bitterness, several polyphenols have been identified has new agonists of these receptors. This review summarizes the last data about the knowledge of these taste properties perceived by tannins. Ultimately, tannins' astringency and bitterness are hand-in-hand taste properties, and future studies should be adapted to understand how the proper perception of one taste could affect the perception of the other one.
Collapse
Affiliation(s)
- Susana Soares
- REQUIMTE/LAQV, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 689, 4169-007 Porto, Portugal; (E.B.); (C.G.); (S.S.); (N.M.)
| | | | | | | | | | - Victor de Freitas
- REQUIMTE/LAQV, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 689, 4169-007 Porto, Portugal; (E.B.); (C.G.); (S.S.); (N.M.)
| |
Collapse
|
33
|
Moccia F, Agustin-Salazar S, Verotta L, Caneva E, Giovando S, D’Errico G, Panzella L, d’Ischia M, Napolitano A. Antioxidant Properties of Agri-food Byproducts |and Specific Boosting Effects of Hydrolytic Treatments. Antioxidants (Basel) 2020; 9:E438. [PMID: 32443466 PMCID: PMC7278820 DOI: 10.3390/antiox9050438] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 02/08/2023] Open
Abstract
Largely produced agri-food byproducts represent a sustainable and easily available source of phenolic compounds, such as lignins and tannins, endowed with potent antioxidant properties. We report herein the characterization of the antioxidant properties of nine plant-derived byproducts. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing/antioxidant power (FRAP) assays indicated the superior activity of pomegranate peels and seeds, grape pomace and pecan nut shell. An increase in the antioxidant potency was observed for most of the waste materials following a hydrolytic treatment, with the exception of the condensed tannin-rich pecan nut shell and grape pomace. UV-Vis and HPLC investigation of the soluble fractions coupled with the results from IR analysis and chemical degradation approaches on the whole materials allowed to conclude that the improvement of the antioxidant properties was due not only to removal of non-active components (mainly carbohydrates), but also to structural modifications of the phenolic compounds. Parallel experiments run on natural and bioinspired model phenolic polymers suggested that these structural modifications positively impacted on the antioxidant properties of lignins and hydrolyzable tannins, whereas significant degradation of condensed tannin moieties occurred, likely responsible for the lowering of the reducing power observed for grape pomace and pecan nut shell. These results open new perspectives toward the exploitation and manipulation of agri-food byproducts for application as antioxidant additives in functional materials.
Collapse
Affiliation(s)
- Federica Moccia
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, I-80126 Naples, Italy; (F.M.); (G.D.); (M.d.); (A.N.)
| | - Sarai Agustin-Salazar
- Departamento de Ingeniería Química y Metalurgía, Universidad de Sonora, Del Conocimiento, Centro, 83000 Hermosillo, Mexico;
| | - Luisella Verotta
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Via G. Celoria 2, I-20133 Milan, Italy;
| | - Enrico Caneva
- Unitech COSPECT, Direzione servizi per la Ricerca, Università degli Studi di Milano, Via C. Golgi 33, I-20133 Milan, Italy;
| | - Samuele Giovando
- Centro Ricerche per la Chimica Fine Srl for Silvateam Spa, Via Torre 7, I-12080 San Michele Mondovì, CN, Italy;
| | - Gerardino D’Errico
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, I-80126 Naples, Italy; (F.M.); (G.D.); (M.d.); (A.N.)
- CSGI—Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy
| | - Lucia Panzella
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, I-80126 Naples, Italy; (F.M.); (G.D.); (M.d.); (A.N.)
| | - Marco d’Ischia
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, I-80126 Naples, Italy; (F.M.); (G.D.); (M.d.); (A.N.)
| | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, I-80126 Naples, Italy; (F.M.); (G.D.); (M.d.); (A.N.)
| |
Collapse
|
34
|
Panzella L. Natural Phenolic Compounds for Health, Food and Cosmetic Applications. Antioxidants (Basel) 2020; 9:E427. [PMID: 32429080 PMCID: PMC7278880 DOI: 10.3390/antiox9050427] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/23/2022] Open
Abstract
Based on their potent antioxidant properties, natural phenolic compounds have gained more and more attention for their possible exploitation as food supplements, as well as functional ingredients in food and in the cosmetic industry [...].
Collapse
Affiliation(s)
- Lucia Panzella
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 4, I-80126 Naples, Italy
| |
Collapse
|
35
|
Panzella L, Moccia F, Nasti R, Marzorati S, Verotta L, Napolitano A. Bioactive Phenolic Compounds From Agri-Food Wastes: An Update on Green and Sustainable Extraction Methodologies. Front Nutr 2020; 7:60. [PMID: 32457916 PMCID: PMC7221145 DOI: 10.3389/fnut.2020.00060] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
Phenolic compounds are broadly represented in plant kingdom, and their occurrence in easily accessible low-cost sources like wastes from agri-food processing have led in the last decade to an increase of interest in their recovery and further exploitation. Indeed, most of these compounds are endowed with beneficial properties to human health (e.g., in the prevention of cancer and cardiovascular diseases), that may be largely ascribed to their potent antioxidant and scavenging activity against reactive oxygen species generated in settings of oxidative stress and responsible for the onset of several inflammatory and degenerative diseases. Apart from their use as food supplements or as additives in functional foods, natural phenolic compounds have become increasingly attractive also from a technological point of view, due to their possible exploitation in materials science. Several extraction methodologies have been reported for the recovery of phenolic compounds from agri-food wastes mostly based on the use of organic solvents such as methanol, ethanol, or acetone. However, there is an increasing need for green and sustainable approaches leading to phenolic-rich extracts with low environmental impact. This review addresses the most promising and innovative methodologies for the recovery of functional phenolic compounds from waste materials that have appeared in the recent literature. In particular, extraction procedures based on the use of green technologies (supercritical fluid, microwaves, ultrasounds) as well as of green solvents such as deep eutectic solvents (DES) are surveyed.
Collapse
Affiliation(s)
- Lucia Panzella
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Federica Moccia
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Rita Nasti
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - Stefania Marzorati
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - Luisella Verotta
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | | |
Collapse
|
36
|
Moccia F, Agustin-Salazar S, Berg AL, Setaro B, Micillo R, Pizzo E, Weber F, Gamez-Meza N, Schieber A, Cerruti P, Panzella L, Napolitano A. Pecan ( Carya illinoinensis (Wagenh.) K. Koch) Nut Shell as an Accessible Polyphenol Source for Active Packaging and Food Colorant Stabilization. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2020; 8:6700-6712. [PMID: 33828928 PMCID: PMC8016391 DOI: 10.1021/acssuschemeng.0c00356] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/03/2020] [Indexed: 05/02/2023]
Abstract
Herein, the antioxidant and food stabilizing properties of a pecan nut shell (PNS) hydroalcoholic extract (PNSE) are reported. Chemical degradation of PNSE demonstrated the presence of condensed tannins as the main phenolic components. PNSE showed remarkable antioxidant properties in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay (EC50 = 0.004 mg/mL). PNSE was initially tested as an inhibitor of mushroom tyrosinase, exhibiting a quite low IC50 value (0.055 mg/mL) against the enzyme diphenolase activity, suggesting its use in enzymatic browning inhibition. The anthocyanin stabilization properties were evaluated under accelerated aging conditions of both pure pigments and commercial fruit juices, and PNSE was found to be effective at concentrations (0.05 mg/mL) at which well-known stabilizers such as chlorogenic and ferulic acids proved to fail. PNSE also performed well in the stabilization of spray-dried anthocyanins for use as a food colorant, increasing the half-life of blackberry anthocyanins up to 20%. In order to explore the possibility of using PNSE as a functional additive for active packaging, polylactic acid (PLA) films containing PNSE were prepared by solvent casting, and no substantial alteration of the mechanical properties was found on addition of the extract up to 10% w/w. The films showed remarkable antioxidant properties (DDPH reduction >60% with a 3% w/w loading, at a dose of 1 mg/mL in the DPPH solution) and delayed the onset of browning of apple smoothies (ca. 30% inhibition with a 10% w/w loading). These results highlight the exploitation of PNS as a low-cost polyphenol source for food industry applications.
Collapse
Affiliation(s)
- Federica Moccia
- Department
of Chemical Sciences, University of Naples
“Federico II”, Via Cintia 4, I-80126 Naples, Italy
| | - Sarai Agustin-Salazar
- Institute
for Polymers, Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, I-80078 Pozzuoli, Italy
| | - Anna-Lisa Berg
- Institute
of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Endenicher Allee 19b, D-53115 Bonn, Germany
| | - Brunella Setaro
- Department
of Chemical Sciences, University of Naples
“Federico II”, Via Cintia 4, I-80126 Naples, Italy
| | - Raffaella Micillo
- Department
of Chemical Sciences, University of Naples
“Federico II”, Via Cintia 4, I-80126 Naples, Italy
| | - Elio Pizzo
- Department
of Biology, University of Naples “Federico
II”, 80126 Naples, Italy
| | - Fabian Weber
- Institute
of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Endenicher Allee 19b, D-53115 Bonn, Germany
| | - Nohemi Gamez-Meza
- Departamento
de Investigaciones Científicas y Tecnológicas de la
Universidad de Sonora, Rosales y Blvd. Luis Encinas, C.P. 83000 Hermosillo, Sonora, México
| | - Andreas Schieber
- Institute
of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Endenicher Allee 19b, D-53115 Bonn, Germany
| | - Pierfrancesco Cerruti
- Institute
for Polymers, Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, I-80078 Pozzuoli, Italy
- Institute
for Polymers, Composites and Biomaterials (IPCB-CNR), Via Previati 1/E, I-23900 Lecco, Italy
- . Phone: +390818675214 (P.C.)
| | - Lucia Panzella
- Department
of Chemical Sciences, University of Naples
“Federico II”, Via Cintia 4, I-80126 Naples, Italy
- . Phone: +39081674131 (L.P.)
| | - Alessandra Napolitano
- Department
of Chemical Sciences, University of Naples
“Federico II”, Via Cintia 4, I-80126 Naples, Italy
| |
Collapse
|
37
|
Molino S, Casanova NA, Rufián Henares JÁ, Fernandez Miyakawa ME. Natural Tannin Wood Extracts as a Potential Food Ingredient in the Food Industry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2836-2848. [PMID: 31117489 DOI: 10.1021/acs.jafc.9b00590] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Wood extracts are one of the most important natural sources of industrially obtained tannins. Their use in the food industry could be one of the biggest (most important) recent innovations in food science as a result of their multiple (many) possible applications. The use of tannin wood extracts (TWEs) as additives directly added in foods or in their packaging meets an ever-increasing consumer demand for innovative approaches to sustainability. The latest research is focusing on new ways to include them directly in food, to take advantage of their specific actions to prevent individual pathological conditions. The present review begins with the biology of TWEs and then explores their chemistry, specific sensorial properties, and current application in food production. Moreover, this review is intended to cover recent studies dealing with the potential use of TWEs as a starting point for novel food ingredients.
Collapse
Affiliation(s)
- Silvia Molino
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, 18071 Granada, Spain
| | - Natalia Andrea Casanova
- Instituto de Patobiología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria, Buenos Aires C1033AAE, Argentina
| | - José Ángel Rufián Henares
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Universidad de Granada, 18071 Granada, Spain
| | - Mariano Enrique Fernandez Miyakawa
- Instituto de Patobiología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria, Buenos Aires C1033AAE, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1425FQB, Argentina
| |
Collapse
|
38
|
Technological Application of Tannin-Based Extracts. Molecules 2020; 25:molecules25030614. [PMID: 32019231 PMCID: PMC7037717 DOI: 10.3390/molecules25030614] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
Tannins are polyphenolic compounds naturally found in vegetables. Their presence in nature has prompted their historical use in many different ways. The revision of their traditional utilization has allowed their further modification aiming for an industrial application. Sometimes these modifications have implied the addition of harmful substances such as formaldehyde, classified as a carcinogen of category B1. In other cases, these natural tannins have been replaced by synthetic compounds that threaten human and animal health and damage the environment. Therefore, currently, both academy and industry are searching for the substitution of these unsafe complexes by the increasing inclusion of tannins, natural molecules that can be obtained from several and diverse renewable resources, modified using harmless additives. To achieve promising results, cost-efficient and eco-friendly extraction methods have been designed. Once these green alternatives have been isolated, they have been successfully applied to many fields with very assorted aims of utilization such as coagulants, adhesives, floatation agents, tannings, dyes, additives, or biomolecules. Therefore, this review offers a global vision of the full process that involves the tannin’s technological application including an overview of the most relevant tannin sources, effective extraction methods, and their utilization in very diverse fields.
Collapse
|
39
|
Analysis of the Application Potential of Coffee Oil as an Ilmenite Flotation Collector. MINERALS 2019. [DOI: 10.3390/min9090505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Coffee grounds are the most significant production waste in the coffee industry and contain about 15% coffee oil. Coffee oil is rich in fatty acids and polyphenols, which have great application potential in the flotation of oxidized minerals. In this study, coffee oil as a green flotation collector for ilmenite was investigated by micro-flotation, zeta potential measurement, and foam stability analysis. The results of zeta potential reveal that both coffee oil and MOH can be adsorbed on the ilmenite surface at pH 6.7, and the chemical adsorption mode is dominant. However, when the pH is 2.8, the adsorption capacity of coffee oil on the ilmenite surface is much larger than that of MOH. The pH value of the pulp has little effect on the foam properties in the coffee oil solution and has a great influence on the foaming performance and foam stability of the MOH solution. When coffee oil is used as a collector, the grade of TiO2 in ilmenite concentrate is increased from 21.68% to 46.83%, and the recovery is 90.22%, indicating that the potential of coffee oil in the application of ilmenite flotation is large.
Collapse
|
40
|
Panzella L, Moccia F, Toscanesi M, Trifuoggi M, Giovando S, Napolitano A. Exhausted Woods from Tannin Extraction as an Unexplored Waste Biomass: Evaluation of the Antioxidant and Pollutant Adsorption Properties and Activating Effects of Hydrolytic Treatments. Antioxidants (Basel) 2019; 8:antiox8040084. [PMID: 30939823 PMCID: PMC6523223 DOI: 10.3390/antiox8040084] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 02/07/2023] Open
Abstract
Exhausted woods represent a byproduct of tannin industrial production processes and their possible exploitation as a source of antioxidant compounds has remained virtually unexplored. We herein report the characterization of the antioxidant and other properties of practical interest of exhausted chestnut wood and quebracho wood, together with those of a chestnut wood fiber, produced from steamed exhausted chestnut wood. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing/antioxidant power (FRAP) assays indicated good antioxidant properties for all the materials investigated, with exhausted chestnut wood, and, even more, chestnut wood fiber exhibiting the highest activity. High efficiency was observed also in the superoxide scavenging assay. An increase of the antioxidant potency was observed for both exhausted woods and chestnut wood fiber following activation by hydrolytic treatment, with an up to three-fold lowering of the EC50 values in the DPPH assay. On the other hand, exhausted quebracho wood was particularly effective as a nitrogen oxides (NOx) scavenger. The three materials proved able to adsorb methylene blue chosen as a model of organic pollutant and to remove highly toxic heavy metal ions like cadmium from aqueous solutions, with increase of the activity following the hydrolytic activation. These results open new perspectives toward the exploitation of exhausted woods as antioxidants, e.g., for active packaging, or as components of filtering membranes for remediation of polluted waters.
Collapse
Affiliation(s)
- Lucia Panzella
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 4, I-80126 Naples, Italy.
| | - Federica Moccia
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 4, I-80126 Naples, Italy.
| | - Maria Toscanesi
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 4, I-80126 Naples, Italy.
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 4, I-80126 Naples, Italy.
| | - Samuele Giovando
- Centro Ricerche per la Chimica Fine Srl for Silvateam Spa, Via Torre 7, 12080, San Michele Mondovì, CN, Italy.
| | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 4, I-80126 Naples, Italy.
| |
Collapse
|
41
|
Soares S, Silva MS, García-Estevez I, Groβmann P, Brás N, Brandão E, Mateus N, de Freitas V, Behrens M, Meyerhof W. Human Bitter Taste Receptors Are Activated by Different Classes of Polyphenols. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8814-8823. [PMID: 30056706 DOI: 10.1021/acs.jafc.8b03569] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Polyphenols may contribute directly to plant-based foodstuffs flavor, in particular to astringency and bitterness. In this work, the bitterness of a small library of polyphenols from different classes [procyanidin dimers type B, ellagitannins (punicalagin, castalagin, and vescalagin) and phenolic acid ethyl esters (protocatechuic, ferulic, and vanillic acid ethyl esters] was studied by a cell-based assay. The bitter taste receptors (TAS2Rs) activated by these polyphenols and the half-maximum effective concentrations (EC50) of each agonist-TAS2Rs pair were determined. Computational methodologies were used to understand the polyphenol molecular region responsible for receptor activation and to get insights into the type of bonds established in the agonist-TAS2Rs pairs. The results show the combinatorial pattern of TAS2Rs activation. TAS2R5 seems to be the only receptor exhibiting a bias toward the activation by condensed tannins, while TAS2R7 seems more tuned for hydrolyzable (ellagi)tannins. Additionally, at the concentrations usually found for these compounds in foodstuffs, they can actively contribute to bitter taste, especially ellagitannins.
Collapse
Affiliation(s)
- Susana Soares
- REQUIMTE, LAQV , Department of Chemistry and Biochemistry, Faculty of Sciences , University of Porto, Rua do Campo Alegre, s/n , 4169-007 Porto , Portugal
| | - Mafalda Santos Silva
- REQUIMTE, LAQV , Department of Chemistry and Biochemistry, Faculty of Sciences , University of Porto, Rua do Campo Alegre, s/n , 4169-007 Porto , Portugal
| | - Ignacio García-Estevez
- REQUIMTE, LAQV , Department of Chemistry and Biochemistry, Faculty of Sciences , University of Porto, Rua do Campo Alegre, s/n , 4169-007 Porto , Portugal
- Grupo de Investigación en Polifenoles (GIP). Facultad de Farmacia , University of Salamanca , E37007 , Salamanca , Spain
| | - Peggy Groβmann
- DIFE - German Institute of Human Nutrition , Department of Molecular Genetics , Arthur-Scheunert-Allee 114-116 , 14558 Potsdam Rehbrücke , Germany
| | - Natércia Brás
- REQUIMTE, UCIBIO , Department of Chemistry and Biochemistry, Faculty of Sciences , University of Porto, Rua do Campo Alegre, s/n , 4169-007 Porto , Portugal
| | - Elsa Brandão
- REQUIMTE, LAQV , Department of Chemistry and Biochemistry, Faculty of Sciences , University of Porto, Rua do Campo Alegre, s/n , 4169-007 Porto , Portugal
| | - Nuno Mateus
- REQUIMTE, LAQV , Department of Chemistry and Biochemistry, Faculty of Sciences , University of Porto, Rua do Campo Alegre, s/n , 4169-007 Porto , Portugal
| | - Victor de Freitas
- REQUIMTE, LAQV , Department of Chemistry and Biochemistry, Faculty of Sciences , University of Porto, Rua do Campo Alegre, s/n , 4169-007 Porto , Portugal
| | - Maik Behrens
- DIFE - German Institute of Human Nutrition , Department of Molecular Genetics , Arthur-Scheunert-Allee 114-116 , 14558 Potsdam Rehbrücke , Germany
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich , Lise-Meitner-Strasse 34 , 85354 Freising , Germany
| | - Wolfgang Meyerhof
- DIFE - German Institute of Human Nutrition , Department of Molecular Genetics , Arthur-Scheunert-Allee 114-116 , 14558 Potsdam Rehbrücke , Germany
- Center for Integrative Physiology and Molecular Medicine (CIPMM) , Saarland University Kirrbergerstrasse , Bldg. 48 , 66421 Homburg , Germany
| |
Collapse
|
42
|
Panzella L, D'Errico G, Vitiello G, Perfetti M, Alfieri ML, Napolitano A, d'Ischia M. Disentangling structure-dependent antioxidant mechanisms in phenolic polymers by multiparametric EPR analysis. Chem Commun (Camb) 2018; 54:9426-9429. [PMID: 30079414 DOI: 10.1039/c8cc05989f] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Excellent and selective correlations between the electron-transfer (ET) or hydrogen atom transfer (HAT) capacity (DPPH and lipid peroxidation inhibition assays) and EPR indices of π-electron spin delocalization delineate specific structural determinants of antioxidant activity in biomimetic phenolic polymers.
Collapse
Affiliation(s)
- Lucia Panzella
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 4, Naples, I-80126, Italy.
| | | | | | | | | | | | | |
Collapse
|
43
|
Fermoso FG, Serrano A, Alonso-Fariñas B, Fernández-Bolaños J, Borja R, Rodríguez-Gutiérrez G. Valuable Compound Extraction, Anaerobic Digestion, and Composting: A Leading Biorefinery Approach for Agricultural Wastes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8451-8468. [PMID: 30010339 DOI: 10.1021/acs.jafc.8b02667] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In a society where the environmental conscience is gaining attention, it is necessary to evaluate the potential valorization options for agricultural biomass to create a change in the perception of the waste agricultural biomass from waste to resource. In that sense, the biorefinery approach has been proposed as the roadway to increase profit of the agricultural sector and, at the same time, ensure environmental sustainability. The biorefinery approach integrates biomass conversion processes to produce fuels, power, and chemicals from biomass. The present review is focused on the extraction of value-added compounds, anaerobic digestion, and composting of agricultural waste as the biorefinery approach. This biorefinery approach is, nevertheless, seen as a less innovative configuration compared to other biorefinery configurations, such as bioethanol production or white biotechnology. However, any of these processes has been widely proposed as a single operation unit for agricultural waste valorization, and a thoughtful review on possible single or joint application has not been available in the literature up to now. The aim is to review the previous and current literature about the potential valorization of agricultural waste biomass, focusing on valuable compound extraction, anaerobic digestion, and composting of agricultural waste, whether they are not, partially, or fully integrated.
Collapse
Affiliation(s)
- Fernando G Fermoso
- Instituto de Grasa , Spanish National Research Council (CSIC) , Campus Universitario Pablo de Olavide, Edificio 46, Carretera de Utrera, km. 1 , 41013 Seville , Spain
| | - Antonio Serrano
- Instituto de Grasa , Spanish National Research Council (CSIC) , Campus Universitario Pablo de Olavide, Edificio 46, Carretera de Utrera, km. 1 , 41013 Seville , Spain
- School of Civil Engineering , The University of Queensland , Advanced Engineering Building 49, St Lucia , Queensland 4072 , Australia
| | - Bernabé Alonso-Fariñas
- Department of Chemical and Environmental Engineering, Higher Technical School of Engineering , University of Seville , Camino de los Descubrimientos, s/n , 41092 Seville , Spain
| | - Juan Fernández-Bolaños
- Instituto de Grasa , Spanish National Research Council (CSIC) , Campus Universitario Pablo de Olavide, Edificio 46, Carretera de Utrera, km. 1 , 41013 Seville , Spain
| | - Rafael Borja
- Instituto de Grasa , Spanish National Research Council (CSIC) , Campus Universitario Pablo de Olavide, Edificio 46, Carretera de Utrera, km. 1 , 41013 Seville , Spain
| | - Guillermo Rodríguez-Gutiérrez
- Instituto de Grasa , Spanish National Research Council (CSIC) , Campus Universitario Pablo de Olavide, Edificio 46, Carretera de Utrera, km. 1 , 41013 Seville , Spain
| |
Collapse
|
44
|
Hatami E, Nagesh PKB, Chowdhury P, Chauhan SC, Jaggi M, Samarasinghe AE, Yallapu MM. Tannic Acid-Lung Fluid Assemblies Promote Interaction and Delivery of Drugs to Lung Cancer Cells. Pharmaceutics 2018; 10:E111. [PMID: 30071698 PMCID: PMC6161105 DOI: 10.3390/pharmaceutics10030111] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/21/2018] [Accepted: 07/27/2018] [Indexed: 02/07/2023] Open
Abstract
Lung cancer (LC) is one of the leading causes of death in both men and women in the United States. Tannic acid (TA), a water-soluble polyphenol, exhibits a wide range of biological activities. TA has received much attention as a promising compound in the biomaterial and drug delivery fields. Lung fluid (LF) is a major barrier for distribution of drugs to the lungs. Therefore, the purpose of this study was to examine TA interaction with LF for effective delivery of anti-cancer drug molecules via pulmonary delivery. The extent of adsorption of LF proteins by TA was revealed by fluorescence quenching in fluorescence spectroscopy. The presence of LF in TA-LF complexes was noticed by the presence of protein peaks at 1653 cm-1. Both protein dot and SDS-PAGE analysis confirmed LF protein complexation at all TA concentrations employed. A stable particle TA-LF complex formation was observed through transmission electron microscopy (TEM) analysis. The complexation pattern measured by dynamic light scattering (DLS) indicated that it varies depending on the pH of the solutions. The degree of LF presence in TA-LF complexes signifies its interactive behavior in LC cell lines. Such superior interaction offered an enhanced anti-cancer activity of drugs encapsulated in TA-LF complex nanoformulations. Our results indicate that TA binds to LF and forms self-assemblies, which profoundly enhance interaction with LC cells. This study demonstrated that TA is a novel carrier for pharmaceutical drugs such as gemcitabine, carboplatin, and irinotecan.
Collapse
Affiliation(s)
- Elham Hatami
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38103, USA.
| | - Prashanth K B Nagesh
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38103, USA.
| | - Pallabita Chowdhury
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38103, USA.
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38103, USA.
| | - Meena Jaggi
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38103, USA.
| | - Amali E Samarasinghe
- Department of Paediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA.
| | - Murali M Yallapu
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38103, USA.
| |
Collapse
|
45
|
Inhibition of Protein Aggregation by Several Antioxidants. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8613209. [PMID: 29765505 PMCID: PMC5889867 DOI: 10.1155/2018/8613209] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 12/31/2017] [Accepted: 01/09/2018] [Indexed: 01/27/2023]
Abstract
Amyloid fibril formation is a shared property of all proteins; therefore, model proteins can be used to study this process. We measured protein aggregation of the model amyloid-forming protein stefin B in the presence and absence of several antioxidants. Amyloid fibril formation by stefin B was routinely induced at pH 5 and 10% TFE, at room temperature. The effects of antioxidants NAC, vitamin C, vitamin E, and the three polyphenols resveratrol, quercetin, and curcumin on the kinetics of fibril formation were followed using ThT fluorescence. Concomitantly, the morphology and amount of the aggregates and fibrils were checked by transmission electron microscopy (TEM). The concentration of the antioxidants was varied, and it was observed that different modes of action apply at low or high concentrations relative to the binding constant. In order to obtain more insight into the possible mode of binding, docking of NAC, vitamin C, and all three polyphenols was done to the monomeric form of stefin B.
Collapse
|
46
|
Panzella L, Eidenberger T, Napolitano A. Anti-Amyloid Aggregation Activity of Black Sesame Pigment: Toward a Novel Alzheimer's Disease Preventive Agent. Molecules 2018; 23:E676. [PMID: 29547584 PMCID: PMC6017763 DOI: 10.3390/molecules23030676] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 12/18/2022] Open
Abstract
Black sesame pigment (BSP) represents a low cost, easily accessible material of plant origin exhibiting marked antioxidant and heavy metal-binding properties with potential as a food supplement. We report herein the inhibitory properties of the potentially bioaccessible fraction of BSP following simulated gastrointestinal digestion against key enzymes involved in Alzheimer's disease (AD). HPLC analysis indicated that BSP is transformed under the pH conditions mimicking the intestinal environment and the most abundant of the released compounds was identified as vanillic acid. More than 80% inhibition of acetylcholinesterase-induced aggregation of the β-amyloid Aβ1-40 was observed in the presence of the potentially bioaccessible fraction of BSP, which also efficiently inhibited self-induced Aβ1-42 aggregation and β-secretase (BACE-1) activity, even at high dilution. These properties open new perspectives toward the use of BSP as an ingredient of functional food or as a food supplement for the prevention of AD.
Collapse
Affiliation(s)
- Lucia Panzella
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 4, I-80126 Naples, Italy.
| | - Thomas Eidenberger
- School of Engineering and Environmental Sciences, Upper Austria University of Applied Sciences, Stelzhamerstraße 23, 4600 Wels, Austria.
| | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 4, I-80126 Naples, Italy.
| |
Collapse
|
47
|
Saveleva MS, Ivanov AN, Kurtukova MO, Atkin VS, Ivanova AG, Lyubun GP, Martyukova AV, Cherevko EI, Sargsyan AK, Fedonnikov AS, Norkin IA, Skirtach AG, Gorin DA, Parakhonskiy BV. Hybrid PCL/CaCO 3 scaffolds with capabilities of carrying biologically active molecules: Synthesis, loading and in vivo applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 85:57-67. [PMID: 29407157 DOI: 10.1016/j.msec.2017.12.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/05/2017] [Accepted: 12/13/2017] [Indexed: 12/16/2022]
Abstract
Designing advanced biomaterials for tissue regeneration with drug delivery and release functionalities remains a challenge in regenerative medicine. In this research, we have developed novel composite scaffolds based on polymeric polycaprolactone fibers coated with porous calcium carbonate structures (PCL/CaCO3) for tissue engineering and have shown their drug delivery and release in rats. In vivo biocompatibility tests of PCL/CaCO3 scaffolds were complemented with in vivo drug release study, where tannic acid (TA) was used as a model drug. Release of TA from the scaffolds was realized by recrystallization of the porous vaterite phase of calcium carbonate into the crystalline calcite. Cell colonization and tissue vascularization as well as transplantability of developed PCL/CaCO3+TA scaffolds were observed. Detailed study of scaffold transformations during 21-day implantation period was followed by scanning electron microscopy and X-ray diffraction studies before and after in vivo implantation. The presented results demonstrate that PCL/CaCO3 scaffolds are attractive candidates for implants in bone regeneration and tissue engineering with a possibility of loading biologically active molecules and controlled release.
Collapse
Affiliation(s)
- M S Saveleva
- Educational Research Institute of Nanostructures and Biosystems, Saratov State University, Astrakhanskaya 83, Saratov 410012, Russia; Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent 9000, Belgium.
| | - A N Ivanov
- Research Institute of Traumatology, Orthopaedics and Neurosurgery, Saratov State Medical University, Chernyshevskogo 148, Saratov 410002, Russia; Department of Histology, Saratov State Medical University, B. Kazachya 112, Saratov 410012, Russia
| | - M O Kurtukova
- Department of Histology, Saratov State Medical University, B. Kazachya 112, Saratov 410012, Russia
| | - V S Atkin
- Educational Research Institute of Nanostructures and Biosystems, Saratov State University, Astrakhanskaya 83, Saratov 410012, Russia
| | - A G Ivanova
- FSRC Crystallography and Photonics RAS, Leninskiy prospect 59, Moscow 119333, Russia
| | - G P Lyubun
- Educational Research Institute of Nanostructures and Biosystems, Saratov State University, Astrakhanskaya 83, Saratov 410012, Russia
| | - A V Martyukova
- Department of Histology, Saratov State Medical University, B. Kazachya 112, Saratov 410012, Russia
| | - E I Cherevko
- Department of Histology, Saratov State Medical University, B. Kazachya 112, Saratov 410012, Russia
| | - A K Sargsyan
- Department of Histology, Saratov State Medical University, B. Kazachya 112, Saratov 410012, Russia
| | - A S Fedonnikov
- Research Institute of Traumatology, Orthopaedics and Neurosurgery, Saratov State Medical University, Chernyshevskogo 148, Saratov 410002, Russia
| | - I A Norkin
- Research Institute of Traumatology, Orthopaedics and Neurosurgery, Saratov State Medical University, Chernyshevskogo 148, Saratov 410002, Russia
| | - A G Skirtach
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - D A Gorin
- Skoltech center of Photonics & Quantum Materials, Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Building 3, Moscow 143026, Russia; Educational Research Institute of Nanostructures and Biosystems, Saratov State University, Astrakhanskaya 83, Saratov 410012, Russia
| | - B V Parakhonskiy
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent 9000, Belgium; FSRC Crystallography and Photonics RAS, Leninskiy prospect 59, Moscow 119333, Russia.
| |
Collapse
|