1
|
Li R, Tan B, Jiang Q, Chen F, Liu K, Liao P. Eucommia ulmoides flavonoids alleviate intestinal oxidative stress damage in weaned piglets by regulating the Nrf2/Keap1 signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117373. [PMID: 39571260 DOI: 10.1016/j.ecoenv.2024.117373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/17/2024] [Accepted: 11/17/2024] [Indexed: 12/09/2024]
Abstract
This study examined how Eucommia ulmoides flavonoids (EUF) protect against intestinal oxidative stress induced by deoxynivalenol (DON) in weaned piglets. Forty weaned piglets were randomly assigned to four dietary groups for a period of 14 days. The piglets were fed a control diet (Control) or the Control diet supplemented with 100 mg EUF/kg (EUF group), 4 mg DON/kg diet (DON group) or both (EUF+DON group) in a 2×2 factorial design. DON-challenged piglets on the EUF-supplemented diet showed significant improvements in growth performance. They also had notably lower serum levels of alkaline phosphatase (ALP), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH) compared to those not receiving supplementation (P<0.05). In the EUF group, the relative weights of the liver, spleen, and kidneys were significantly lower than those in the control group (P<0.05). However, there were no significant differences in the relative heart weights among the four groups (P>0.05). Piglets challenged with DON and fed a diet supplemented with EUF showed significantly lower levels of interleukin-8 (IL-8) and interferon-γ (IFN-γ) mRNA and protein expression in serum and intestinal tissues compared to those in the DON group (P < 0.05). The EUF+DON group significantly increased the serum levels of glutathione peroxidase (GSH-Px), reactive oxygen species (ROS), and total antioxidative capability enzymes compared to the DON group (P<0.05). The EUF and DON group had significantly higher villus height, crypt depth, and villus height to crypt depth ratio in the small intestine compared to the supplemented DON-challenged piglets (P<0.05). Moreover, compared to the DON group, EUF can significantly enhance the expression of nuclear factor erythroid 2-related factor 2(Nfr2)/Kelch-like ECH-associating protein 1(Keap1) and antioxidant genes (i.e., HO-1, GCLC, GCLM), as well as their proteins in the DON-induced small intestines of piglets (P<0.05). In conclusion, EUF helps protect piglets from intestinal oxidative stress caused by DON by influencing the Nrf2/Keap1 signaling pathway, thereby supporting their intestinal health.
Collapse
Affiliation(s)
- Rui Li
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Qian Jiang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Fengming Chen
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, Hunan 410219, China
| | - Kai Liu
- Department of Infectious Diseases and Public Health, City University of Hong Kong, 999077, Hong Kong Special Administrative Region
| | - Peng Liao
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China.
| |
Collapse
|
2
|
Niu C, Zhang J, Okolo PI. Therapeutic potential of plant polyphenols in acute pancreatitis. Inflammopharmacology 2024:10.1007/s10787-024-01584-y. [PMID: 39497005 DOI: 10.1007/s10787-024-01584-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 11/06/2024]
Abstract
Acute pancreatitis is a potentially life-threatening inflammatory disorder of the exocrine pancreas characterized by early activation of pancreatic enzymes followed by macrophage-driven inflammation, and pancreatic acinar cell death. The most common causes are gallstones and excessive alcohol consumption. Inflammation and oxidative stress play critical roles in its pathogenesis. Despite increasing incidence, currently, no specific drug therapy is available to treat or prevent acute pancreatitis, in particular severe acute pancreatitis. New therapeutic agents are very much needed. Plant polyphenols have attracted extensive attention in the field of acute pancreatitis due to their diverse pharmacological properties. In this review, we discuss the potential of plant polyphenols in inhibiting the occurrence and development of acute pancreatitis via modulation of inflammation, oxidative stress, calcium overload, autophagy, and apoptosis, based on the currently available in vitro, in vivo animal and very few clinical human studies. We also outline the opportunities and challenges in the clinical translation of plant polyphenols for the treatment of the disease. We concluded that plant polyphenols have a potential therapeutic effect in the management and treatment of acute pancreatitis. Knowledge gained from this review will hopefully inspire new research ideas and directions for the development and application of plant polyphenols for treating this disease.
Collapse
Affiliation(s)
- Chengu Niu
- Internal Medicine Residency Program, Rochester General Hospital, 1425 Portland Avenue, Rochester, NY, 14621, USA.
| | - Jing Zhang
- Rainier Springs Behavioral Health Hospital, 2805 NE 129th St, Vancouver, WA, 98686, USA
| | - Patrick I Okolo
- Division of Gastroenterology, Carillion Clinic, Roanoke, VA, 24014, USA
| |
Collapse
|
3
|
Yang Q, Yue C, Huang X, Wang Z, Li Z, Hu W, Lu H. Functional mechanism of baicalein in alleviating severe acute pancreatitis-acute lung injury by blocking the TLR4/MyD88/TRIF signaling pathway. Histol Histopathol 2024; 39:1381-1394. [PMID: 38557861 DOI: 10.14670/hh-18-733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Severe acute pancreatitis-acute lung injury (SAP-ALI) is a disease with high mortality. This study aims to explore the mechanism of baicalein on SAP-ALI in rats by blocking toll-like receptor-4 (TLR4)/myeloid differentiation primary response gene 88 (MyD88)/TIR-domain-containing adapter-inducing interferon-β (TRIF) signal pathway. The SAP-ALI rat model was established by intraperitoneal injection of 3% pentobarbital sodium (30 mg/kg), with pancreas and intestines turned over, injected with 3.5% sodium taurocholate backward into the bile-pancreatic duct at 0.1 mL/100 g for 12h, and treated with baicalein, lipopolysaccharide (LPS), miR-182 agomir, or miR-182 antagomir. The TLR4/MyD88/TRIF pathway was activated using LPS in SAP-ALI rats after baicalein treatment. Baicalein attenuated inflammatory cell infiltration, alveolar wall edema, decreased W/D ratio and levels of TLR4, MyD88, and TRIF in the lung tissues, reduced levels of inflammatory factors in pancreatic and lung tissues and BALF, diminished ROS, and elevated GSH, SOD and CAT in pancreatic and lung tissues of SAP-ALI rats. Activation of the TLR4/MyD88/TRIF pathway partly abrogated baicalein-mediated improvements in inflammation and oxidative stress in SAP-ALI rats. miR-182 targeted TLR4. miR-182 suppressed inflammation and oxidative stress in SAP-ALI rats by targeting TLR4. Inhibition of miR-182 partly nullified baicalein-mediated attenuation on inflammation and oxidative stress in SAP-ALI rats. In conclusion, baicalein can inhibit the TLR4/MyD88/TRIF pathway and alleviate inflammatory response and oxidative stress in SAP-ALI rats by upregulating miR-182 and suppressing TLR4, thus ameliorating SAP-ALI.
Collapse
Affiliation(s)
- Qingjing Yang
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Chao Yue
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Xing Huang
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Zihe Wang
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Zhenlu Li
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Weiming Hu
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Huimin Lu
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China.
| |
Collapse
|
4
|
Marino Y, Inferrera F, D'Amico R, Impellizzeri D, Cordaro M, Siracusa R, Gugliandolo E, Fusco R, Cuzzocrea S, Di Paola R. Role of mitochondrial dysfunction and biogenesis in fibromyalgia syndrome: Molecular mechanism in central nervous system. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167301. [PMID: 38878832 DOI: 10.1016/j.bbadis.2024.167301] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/22/2024] [Accepted: 06/07/2024] [Indexed: 08/18/2024]
Abstract
A critical role for mitochondrial dysfunction has been shown in the pathogenesis of fibromyalgia. It is a chronic pain syndrome characterized by neuroinflammation and impaired oxidative balance in the central nervous system. Boswellia serrata (BS), a natural polyphenol, is a well-known able to influence the mitochondrial metabolism. The objective of this study was to evaluate the mitochondrial dysfunction and biogenesis in fibromyalgia and their modulation by BS. To induce the model reserpine (1 mg/Kg) was subcutaneously administered for three consecutive days and BS (100 mg/Kg) was given orally for twenty-one days. BS reduced pain like behaviors in reserpine-injected rats and the astrocytes activation in the dorsal horn of the spinal cord and prefrontal cortex that are recognized as key regions associated with the neuropathic pain. Vulnerability to neuroinflammation and impaired neuronal plasticity have been described as consequences of mitochondrial dysfunction. BS administration increased PGC-1α expression in the nucleus of spinal cord and brain tissues, promoting the expression of regulatory genes for mitochondrial biogenesis (NRF-1, Tfam and UCP2) and cellular antioxidant defence mechanisms (catalase, SOD2 and Prdx 3). According with these data BS reduced lipid peroxidation and the GSSG/GSH ratio and increased SOD activity in the same tissues. Our results also showed that BS administration mitigates cytochrome-c leakage by promoting mitochondrial function and supported the movement of PGC-1α protein into the nucleus restoring the quality control of mitochondria. Additionally, BS reduced Drp1 and Fis1, preventing both mitochondrial fission and cell death, and increased the expression of Mfn2 protein, facilitating mitochondrial fusion. Overall, our results showed important mitochondrial dysfunction in central nervous system in fibromyalgia syndrome and the role of BS in restoring mitochondrial dynamics.
Collapse
Affiliation(s)
- Ylenia Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Francesca Inferrera
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Ramona D'Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, 98125 Messina, Italy.
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy.
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Rosanna Di Paola
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy.
| |
Collapse
|
5
|
Inferrera F, Marino Y, D'Amico R, Impellizzeri D, Cordaro M, Siracusa R, Gugliandolo E, Fusco R, Cuzzocrea S, Di Paola R. Impaired mitochondrial quality control in fibromyalgia: Mechanisms involved in skeletal muscle alteration. Arch Biochem Biophys 2024; 758:110083. [PMID: 38969196 DOI: 10.1016/j.abb.2024.110083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/04/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Fibromyalgia (FMS) is a persistent syndrome marked by widespread musculoskeletal pain and behavioural symptoms. Given the hypothesis linking FMS aetiology to mitochondrial dysfunction and oxidative stress, we examined the biochemical correlation among these factors by studying specific proteins associated with mitochondrial homeostasis in muscle. Additionally, this study investigated the role of Boswellia serrata gum resin extract (BS), known for its various functions, including the potent induction of antioxidant enzymes, in determining protective or reparative mechanisms in the muscle cells. Sprague-Dawley rats were injected with reserpine to induce FMS. These animals exhibited moderate changes in hind limb skeletal muscles, experiencing mobility difficulties. Additionally, there were noteworthy morphological and ultrastructural alterations, along with the expression of myogenin, mitochondrial enzymes and oxidative stress markers in the gastrocnemius muscle. Interestingly, BS demonstrated a reduction in spontaneous motor activity difficulties. Moreover, BS showed a positive impact on musculoskeletal morphostructural aspects, as well as a decrease in oxidative stress and mitochondrial alterations. In particular, BS restored the mRNA expression of citrate synthase and cytochrome-c oxidase subunit II and the activity of electron transfer chain complexes. BS also influenced mitochondrial biogenesis, upregulating PGC-1α expression and the related transcription factors (Nrf1, Tfam, Nrf2, FOXO3a, SIRT3, GCLC, NQO1, SOD2 and GPx4), oxidative stress (lipid peroxidation, GSH levels and GSH-Px activity) and mitochondrial dynamics and function (Mnf2 expression and CoQ10 levels). Overall, this study underlined the key role of the mitochondrial alteration in FMS and that BS had a very high antioxidant effect in these organelles and also in the cells.
Collapse
Affiliation(s)
- Francesca Inferrera
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy.
| | - Ylenia Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy.
| | - Ramona D'Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy.
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy.
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, 98125, Messina, Italy.
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy.
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98168, Messina, Italy.
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy.
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy.
| | - Rosanna Di Paola
- Department of Veterinary Science, University of Messina, 98168, Messina, Italy.
| |
Collapse
|
6
|
Fareed SA, Yousef EM, Abd El-Moneam SM. Effects of prolonged hydroxychloroquine use on the pancreatic tissue and expected ameliorative effect of lactoferrin in rats (biochemical, histological, and morphometric study). Tissue Cell 2024; 89:102439. [PMID: 38889555 DOI: 10.1016/j.tice.2024.102439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
Hydroxychloroquine (HCQ), an antimalarial drug widely used in treating rheumatoid disorders. Many side effects have been reported with HCQ administration indicating its hazardous effects on various organs. No previous studies reported the effect of long-term administration of oral HCQ on pancreatic tissue. Our study assessed pancreatic tissues functional and histopathological alterations following prolonged oral administration of HCQ. We also investigated the possible ameliorative effects of the lactoferrin (LF) coadministration with HCQ in adult male albino rats. Forty adult male Wister albino rats were divided into: negative control, LF positive control (2 g/kg), HCQ-treated (200 mg/kg), and HCQ+LF treated. Biochemical, histological, immunohistochemical, and morphometric analyses of the pancreatic tissues were conducted. Our findings revealed that prolonged oral administration of HCQ induced significant disruption of the pancreatic acinar architecture, enlarged congested islets of Langerhans, and elevated plasma insulin, amylase, and lipase levels. Interestingly, LF administration ameliorated the deleterious effects of prolonged HCQ administration on pancreatic tissue of adult male albino rats. In conclusion, prolonged oral administration of HCQ induced pancreatic tissue damage in rats, while LF attenuates HCQ-induced pancreatic injury. Our results emphasized the necessity of prescribing HCQ with caution, considering both dosage and treatment duration.
Collapse
Affiliation(s)
- Shimaa Antar Fareed
- Department of Human Anatomy & Embryology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| | - Einas Mohamed Yousef
- Department of Histology and Cell Biology, Faculty of Medicine, Menoufia University, Menoufia, Egypt.
| | - Samar M Abd El-Moneam
- Department of Human Anatomy & Embryology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| |
Collapse
|
7
|
Di Paola R, Siracusa R, Fusco R, Ontario M, Cammilleri G, Pantano L, Scuto M, Tomasello M, Spanò S, Salinaro AT, Abdelhameed AS, Ferrantelli V, Arcidiacono A, Fritsch T, Lupo G, Signorile A, Maiolino L, Cuzzocrea S, Calabrese V. Redox Modulation of Meniere Disease by Coriolus versicolor Treatment, a Nutritional Mushroom Approach with Neuroprotective Potential. Curr Neuropharmacol 2024; 22:2079-2098. [PMID: 38073105 PMCID: PMC11333795 DOI: 10.2174/1570159x22666231206153936] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Meniere's disease (MD) is a cochlear neurodegenerative disease. Hearing loss appears to be triggered by oxidative stress in the ganglion neurons of the inner ear. OBJECTIVE Here, we confirm the variation of markers of oxidative stress and inflammation in patients with Meniere and hypothesize that chronic treatment with Coriolus mushroom helps in the response to oxidative stress and acts on α-synuclein and on NF-kB-mediated inflammatory processes Methods: Markers of oxidative stress and inflammation were evaluated in MD patients with or without Coriolus treatment for 3 or 6 months. RESULTS MD patients had a small increase in Nrf2, HO-1, γ-GC, Hsp70, Trx and sirtuin-1, which were further increased by Coriolus treatment, especially after 6 months. Increased markers of oxidative damage, such as protein carbonyls, HNE, and ultraweak chemiluminescence, associated with a decrease in plasma GSH/GSSG ratio, were also observed in lymphocytes from MD patients. These parameters were restored to values similar to the baseline in patients treated with Coriolus for both 3 and 6 months. Furthermore, treated MD subjects showed decreased expression of α-synuclein, GFAP and Iba-1 proteins and modulation of the NF-kB pathway, which were impaired in MD patients. These changes were greatest in subjects taking supplements for 6 months. CONCLUSION Our study suggests MD as a model of cochlear neurodegenerative disease for the identification of potent inducers of the Nrf2-vitagene pathway, able to reduce the deleterious consequences associated with neurodegenerative damage, probably by indirectly acting on a-synuclein expression and on inflammatory processes NF-kB-mediated.
Collapse
Affiliation(s)
- Rosanna Di Paola
- Department of Veterinary Science, University of Messina, 98168, Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Marialaura Ontario
- Department of Biomedical and Biotechnological Sciences; Department of Medical, Surgical Advanced Technologies “G.F. Ingrassia”, University of Catania, Italy
| | - Gaetano Cammilleri
- Food Department, Istituto Zooprofilattico Sperimentale della Sicilia, via Gino Marinuzzi 390129 Palermo, Italy
| | - Licia Pantano
- Food Department, Istituto Zooprofilattico Sperimentale della Sicilia, via Gino Marinuzzi 390129 Palermo, Italy
| | - Maria Scuto
- Department of Biomedical and Biotechnological Sciences; Department of Medical, Surgical Advanced Technologies “G.F. Ingrassia”, University of Catania, Italy
| | - Mario Tomasello
- Department of Biomedical and Biotechnological Sciences; Department of Medical, Surgical Advanced Technologies “G.F. Ingrassia”, University of Catania, Italy
| | - Sestina Spanò
- Department of Biomedical and Biotechnological Sciences; Department of Medical, Surgical Advanced Technologies “G.F. Ingrassia”, University of Catania, Italy
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences; Department of Medical, Surgical Advanced Technologies “G.F. Ingrassia”, University of Catania, Italy
| | - Ali S. Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Vincenzo Ferrantelli
- Food Department, Istituto Zooprofilattico Sperimentale della Sicilia, via Gino Marinuzzi 390129 Palermo, Italy
| | - Antonio Arcidiacono
- Department of Biomedical and Biotechnological Sciences; Department of Medical, Surgical Advanced Technologies “G.F. Ingrassia”, University of Catania, Italy
| | | | - Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences; Department of Medical, Surgical Advanced Technologies “G.F. Ingrassia”, University of Catania, Italy
| | - Anna Signorile
- Department of Translational Biomedicine and Neuroscience, University of Bari, Aldo Moro, 70124, Bari, Italy
| | - Luigi Maiolino
- Department of Biomedical and Biotechnological Sciences; Department of Medical, Surgical Advanced Technologies “G.F. Ingrassia”, University of Catania, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences; Department of Medical, Surgical Advanced Technologies “G.F. Ingrassia”, University of Catania, Italy
| |
Collapse
|
8
|
Liu X, Yuan L, Tang Y, Wu Y, Kong J, Zhou B, Wang X, Lin M, Li Y, Xu G, Wang Y, Xu T, He C, Fang S, Zhu S. Da-Cheng-Qi decoction improves severe acute pancreatitis-associated acute lung injury by interfering with intestinal lymphatic pathway and reducing HMGB1-induced inflammatory response in rats. PHARMACEUTICAL BIOLOGY 2023; 61:144-154. [PMID: 36620997 PMCID: PMC9833414 DOI: 10.1080/13880209.2022.2160768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 11/28/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
CONTEXT Da-Cheng-Qi Decoction (DCQD) has a significant effect on Severe Acute Pancreatitis-Associated Acute Lung Injury (SAP-ALI). OBJECTIVE To explore the mechanism of DCQD in the treatment of SAP-ALI based on intestinal barrier function and intestinal lymphatic pathway. MATERIALS AND METHODS Forty-five Sprague-Dawley rats were divided into three groups: sham operation, model, and DCQD. The SAP model was induced by a retrograde infusion of 5.0% sodium taurocholate solution (1 mg/kg) at a constant rate of 12 mL/h using an infusion pump into the bile-pancreatic duct. Sham operation and model group were given 0.9% normal saline, while DCQD group was given DCQD (5.99 g/kg/d) by gavage 1 h before operation and 1, 11 and 23 h after operation. The levels of HMGB1, RAGE, TNF-α, IL-6, ICAM-1, d-LA, DAO in blood and MPO in lung were detected using ELISA. The expression of HMGB1, RAGE, NF-κB p65 in mesenteric lymph nodes and lung were determined. RESULTS Compared with SAP group, DCQD significantly reduced the histopathological scoring of pancreatic tissue (SAP, 2.80 ± 0.42; DCQD, 2.58 ± 0.52), intestine (SAP, 3.30 ± 0.68; DCQD, 2.50 ± 0.80) and lung (SAP, 3.30 ± 0.68; DCQD, 2.42 ± 0.52). DCQD reduced serum HMGB1 level (SAP, 134.09 ± 19.79; DCQD, 88.05 ± 9.19), RAGE level (SAP, 5.05 ± 1.44; DCQD, 2.13 ± 0.54). WB and RT-PCR showed HMGB1-RAGE pathway was inhibited by DCQD (p < 0.01). DISCUSSION AND CONCLUSIONS DCQD improves SAP-ALI in rats by interfering with intestinal lymphatic pathway and reducing HMGB1-induced inflammatory response.
Collapse
Affiliation(s)
- Xiaowen Liu
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lin Yuan
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yishuang Tang
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Wu
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Kong
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bingduo Zhou
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaosu Wang
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Lin
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yading Li
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gaofan Xu
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Wang
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tingting Xu
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cong He
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengquan Fang
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengliang Zhu
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
9
|
Ewees MGED, Orfali R, Rateb EE, Hassan HM, Hozzein WN, Alkhalfah DHM, Sree HTA, Abdel Rahman FEZS, Rateb ME, Mahmoud NI. Modulation of mi-RNA25/Ox-LDL/NOX4 signaling pathway by polyphenolic compound Hydroxytyrosol as a new avenue to alleviate cisplatin-induced acute kidney injury, a mechanistic study in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 103:104262. [PMID: 37699441 DOI: 10.1016/j.etap.2023.104262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/16/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023]
Abstract
Acute kidney injury (AKI) caused by Cis is considered one of the most severe adverse effects, which restricts its use and efficacy. This study seeks to examine the potential reno-protective impact of phenolic compound Hydroxytyrosol (HT) against Cis-induced AKI and the possible involvement of the mi-RNA25/Ox-LDL/NOX4 pathway elucidating the probable implicated molecular mechanisms. Forty rats were placed into 5 groups. Group I received saline only. Group II received Cis only. Group III, IV, and V received 20, 50, and 100 mg/kg b.w, of HT, respectively, with Cis delivery. NOX4, Ox-LDL, and gene expression of mi-RNA 25, TNF-α, and HO-1 in renal tissue were detected. HT showed reno-protective effect and significantly upregulated mi-RNA 25 and HO-1 as well as decreased the expression of NOX4, Ox-LDL, and TNF-α. In conclusion, HT may be promising in the fight against Cis-induced AKI through modulation of mi-RNA25/Ox-LDL/NOX4 pathway.
Collapse
Affiliation(s)
- Mohamed Gamal El-Din Ewees
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef 11787, Egypt.
| | - Raha Orfali
- Department of Pharmacognosy, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia.
| | - Enas Ezzat Rateb
- Department of Physiology, Faculty of Medicine, Beni-Suef University, Beni-Suef 62521, Egypt.
| | - Hossam M Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 11787, Egypt.
| | - Wael N Hozzein
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
| | - Dalal Hussien M Alkhalfah
- Department of Biology. College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia.
| | - Haidy Tamer Abo Sree
- Department of Basic Sciences Department, Biochemistry, Faculty of Oral and Dental Medicine, Nahda University, Beni-Suef 11787, Egypt.
| | - Fatema El-Zahraa S Abdel Rahman
- Department of Basic Sciences Department, Physiology, Faculty of Oral and Dental Medicine, Nahda University, Beni-Suef 11787, Egypt.
| | - Mostafa E Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK.
| | - Nesreen Ishak Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef 11787, Egypt.
| |
Collapse
|
10
|
Impellizzeri D, Siracusa R, D'Amico R, Fusco R, Cordaro M, Cuzzocrea S, Di Paola R. Açaí berry ameliorates cognitive impairment by inhibiting NLRP3/ASC/CASP axis in STZ-induced diabetic neuropathy in mice. J Neurophysiol 2023; 130:671-683. [PMID: 37584088 DOI: 10.1152/jn.00239.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023] Open
Abstract
Diabetes complications such as diabetic peripheral neuropathy (DPN) are linked to morbidity and mortality. Peripheral nerve damages in DPN are accompanied by discomfort, weakness, and sensory loss. Some drugs may demonstrate their therapeutic promise by reducing neuroinflammation, but they have side effects. Based on these considerations, the objective of this study was to examine the beneficial properties of açaí berry in a mouse model of DPN generated by injection of streptozotocin (STZ). Açaí berry was given orally to diabetic and control mice every day beginning 2 wk after STZ injection. The animals were euthanized after 16 wk, and tissues from the spinal cord and sciatic nerve and urine were taken. Our findings showed that daily treatment of açaí berry at a dose of 500 mg/kg was able to prevent behavioral changes as well as mast cell activation and nerve deterioration via NOD-like receptor family pyrin-domain-containing-3 (NLRP3)/apoptosis-associated speck-like protein containing a card (ASC)/caspase (CASP) regulation after diabetes induction.NEW & NOTEWORTHY Our research shows that açaí berry reduces mast cells degranulation and histological damage in diabetic neuropathy, improves physiological defense against reactive oxygen species, modulates the NLRP3/ASC/CASP axis, and ameliorates inflammation and oxidative stress. Diet could help treatment for diabetic peripheral neuropathy.
Collapse
Affiliation(s)
- Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Ramona D'Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Marika Cordaro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| |
Collapse
|
11
|
Interdonato L, Marino Y, D'Amico R, Cordaro M, Siracusa R, Impellizzeri D, Macrì F, Fusco R, Cuzzocrea S, Di Paola R. Modulation of the Proliferative Pathway, Neuroinflammation and Pain in Endometriosis. Int J Mol Sci 2023; 24:11741. [PMID: 37511500 PMCID: PMC10380329 DOI: 10.3390/ijms241411741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Endometriosis is a chronic disease characterized by pelvic inflammation. This study aimed at investigating the molecular mechanisms underlying the pathology and how they can be modulated by the administration of a natural compound, Actaea racemosa (AR). We employed an in vivo model of endometriosis in which rats were intraperitoneally injected with uterine fragments from donor animals. During the experiment, rats were monitored by abdominal high-frequency ultrasound analysis. AR was able to reduce the lesion's size and histological morphology. From a molecular point of view, AR reduced hyperproliferation, as shown by Ki-67 and PCNA expression and MAPK phosphorylation. The impaired apoptosis pathway was also restored, as shown by the TUNEL assay and RT-PCR for Bax, Bcl-2, and Caspase levels. AR also has important antioxidant (reduced Nox expression, restored SOD activity and GSH levels, and reduced MPO activity and MDA levels) and anti-inflammatory (reduced cytokine levels) properties. Moreover, AR demonstrated its ability to reduce the pain-like behaviors associated with the pathology, the neuro-sensitizing mediators (c-FOS and NGF) expression, and the related central astrogliosis (GFAP expression in the spinal cord, brain cortex, and hippocampus). Overall, our data showed that AR was able to manage several pathways involved in endometriosis suppression.
Collapse
Affiliation(s)
- Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Ylenia Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Ramona D'Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Consolare Valeria, 98100 Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Francesco Macrì
- Department of Veterinary Sciences, University of Messina, Viale Anunziata, 98168 Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, Viale Anunziata, 98168 Messina, Italy
| |
Collapse
|
12
|
Interdonato L, Ferrario G, Cordaro M, D'Amico R, Siracusa R, Fusco R, Impellizzeri D, Cuzzocrea S, Aldini G, Di Paola R. Targeting Nrf2 and NF-κB Signaling Pathways in Inflammatory Pain: The Role of Polyphenols from Thinned Apples. Molecules 2023; 28:5376. [PMID: 37513248 PMCID: PMC10385557 DOI: 10.3390/molecules28145376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Diet can modulate the different stages of inflammation due to the presence of bioactive compounds such as polyphenols. Apples are a great source of phenolic compounds that show anti-inflammatory and antioxidant properties, and these might be used as a dietary supplement and/or functional element in the treatment of chronic inflammatory illnesses. The aim of our study was to evaluate the anti-inflammatory and antioxidant actions of thinned apple polyphenol (TAP) extracts in a model of paw edema. The experimental model was induced in rats via subplantar injections of 1% λ-Carrageenan (CAR) in the right hind leg, and TAP extract was administered via oral gavage 30 min before and 1 h after the CAR injection at doses of 5 mg/kg and 10 mg/kg, respectively. The inflammatory response is usually quantified by the increase in the size of the paw (edema), which is maximal about 5 h after the injection of CAR. CAR-induced inflammation generates the release of pro-inflammatory mediators and reactive oxygen species (ROS). Furthermore, the inflammatory state induces the pain that involves the peripheral nociceptors, but above all it acts centrally at the level of the spinal cord. Our results showed that the TAP extracts reduced paw histological changes, neutrophil infiltration, mast cell degranulation, and oxidative stress. Additionally, the oral administration of TAP extracts decreased thermal and mechanical hyperalgesia, along with a reduction in spinal microglia and the markers of nociception. In conclusion, we demonstrate that TAP extract is able to modulate inflammatory, oxidative, and painful processes, and is also useful in the treatment of the symptoms associated with paw edema.
Collapse
Affiliation(s)
- Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Giulio Ferrario
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Ramona D'Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| |
Collapse
|
13
|
Conti Bellocchi MC, Crinò SF, De Marchi G, De Pretis N, Ofosu A, Caldart F, Ciccocioppo R, Frulloni L. A Clinical and Pathophysiological Overview of Intestinal and Systemic Diseases Associated with Pancreatic Disorders: Causality or Casualty? Biomedicines 2023; 11:biomedicines11051393. [PMID: 37239064 DOI: 10.3390/biomedicines11051393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The relationship between chronic intestinal disease, including inflammatory bowel disease (IBD) and celiac disease (CelD), and pancreatic disorders has been little investigated. Although an increased risk of acute pancreatitis (AP), exocrine pancreatic insufficiency with or without chronic pancreatitis, and chronic asymptomatic pancreatic hyperenzymemia have been described in these patients, the pathogenetic link remains unclear. It may potentially involve drugs, altered microcirculation, gut permeability/motility with disruption of enteric-mediated hormone secretion, bacterial translocation, and activation of the gut-associated lymphoid tissue related to chronic inflammation. In addition, the risk of pancreatic cancer seems to be increased in both IBD and CelD patients with unknown pathogenesis. Finally, other systemic conditions (e.g., IgG4-related disease, sarcoidosis, vasculitides) might affect pancreatic gland and the intestinal tract with various clinical manifestations. This review includes the current understandings of this enigmatic association, reporting a clinical and pathophysiological overview about this topic.
Collapse
Affiliation(s)
| | - Stefano Francesco Crinò
- Diagnostic and Interventional Endoscopy of Pancreas, Pancreas Institute, University of Verona, 37134 Verona, Italy
| | - Giulia De Marchi
- Gastroenterology Unit, Department of Medicine, Pancreas Institute, University of Verona, 37134 Verona, Italy
| | - Nicolò De Pretis
- Gastroenterology Unit, Department of Medicine, Pancreas Institute, University of Verona, 37134 Verona, Italy
| | - Andrew Ofosu
- Division of Gastroenterology and Hepatology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Federico Caldart
- Gastroenterology Unit, Department of Medicine, Pancreas Institute, University of Verona, 37134 Verona, Italy
| | - Rachele Ciccocioppo
- Gastroenterology Unit, Department of Medicine, Pancreas Institute, University of Verona, 37134 Verona, Italy
| | - Luca Frulloni
- Gastroenterology Unit, Department of Medicine, Pancreas Institute, University of Verona, 37134 Verona, Italy
| |
Collapse
|
14
|
Impellizzeri D, Tomasello M, Cordaro M, D'Amico R, Fusco R, Abdelhameed AS, Wenzel U, Siracusa R, Calabrese V, Cuzzocrea S, Di Paola R. Memophenol TM Prevents Amyloid-β Deposition and Attenuates Inflammation and Oxidative Stress in the Brain of an Alzheimer's Disease Rat. Int J Mol Sci 2023; 24:ijms24086938. [PMID: 37108102 PMCID: PMC10138369 DOI: 10.3390/ijms24086938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, and its prevalence rises with age. Inflammation and altered antioxidant systems play essential roles in the genesis of neurodegenerative diseases. In this work, we looked at the effects of MemophenolTM, a compound rich in polyphenols derived from French grape (Vitis vinifera L.) and wild North American blueberry (Vaccinium angustifolium A.) extracts, in a rat model of AD. Methods: For 60 days, the animals were administered with AlCl3 (100 mg/kg, orally) and D-galactose (60 mg/kg, intraperitoneally), while from day 30, MemophenolTM (15 mg/kg) was supplied orally for 30 consecutive days. AlCl3 accumulates mainly in the hippocampus, the main part of the brain involved in memory and learning. Behavioral tests were performed the day before the sacrifice when brains were collected for analysis. Results: MemophenolTM decreased behavioral alterations and hippocampus neuronal degeneration. It also lowered phosphorylated Tau (p-Tau) levels, amyloid precursor protein (APP) overexpression, and β-amyloid (Aβ) buildup. Furthermore, MemophenolTM reduced the pro-oxidative and pro-inflammatory hippocampus changes caused by AD. Our finding, relevant to AD pathogenesis and therapeutics, suggests that MemophenolTM, by modulating oxidative and inflammatory pathways and by regulating cellular brain stress response mechanisms, protects against the behavioral and histopathological changes associated with AD.
Collapse
Affiliation(s)
- Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Mario Tomasello
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Ramona D'Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Ali S Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Uwe Wenzel
- Institut für Ernährungswissenschaft, Justus Liebig Universitat Giessen, 35390 Giessen, Germany
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, Viale SS Annunziata, 98168 Messina, Italy
| |
Collapse
|
15
|
Gut Microbiota Dysbiosis Ameliorates in LNK-Deficient Mouse Models with Obesity-Induced Insulin Resistance Improvement. J Clin Med 2023; 12:jcm12051767. [PMID: 36902554 PMCID: PMC10002478 DOI: 10.3390/jcm12051767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
PURPOSE To investigate the potential role of gut microbiota in obesity-induced insulin resistance (IR). METHODS Four-week-old male C57BL/6 wild-type mice (n = 6) and whole-body SH2 domain-containing adaptor protein (LNK)-deficient in C57BL/6 genetic backgrounds mice (n = 7) were fed with a high-fat diet (HFD, 60% calories from fat) for 16 weeks. The gut microbiota of 13 mice feces samples was analyzed by using a 16 s rRNA sequencing analysis. RESULTS The structure and composition of the gut microbiota community of WT mice were significantly different from those in the LNK-/- group. The abundance of the lipopolysaccharide (LPS)-producing genus Proteobacteria was increased in WT mice, while some short-chain fatty acid (SCFA)-producing genera in WT groups were significantly lower than in LNK-/- groups (p < 0.05). CONCLUSIONS The structure and composition of the intestinal microbiota community of obese WT mice were significantly different from those in the LNK-/- group. The abnormality of the gut microbial structure and composition might interfere with glucolipid metabolism and exacerbate obesity-induced IR by increasing LPS-producing genera while reducing SCFA-producing probiotics.
Collapse
|
16
|
Arangia A, Marino Y, Impellizzeri D, D’Amico R, Cuzzocrea S, Di Paola R. Hydroxytyrosol and Its Potential Uses on Intestinal and Gastrointestinal Disease. Int J Mol Sci 2023; 24:ijms24043111. [PMID: 36834520 PMCID: PMC9964144 DOI: 10.3390/ijms24043111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
In recent years, the phytoconstituents of foods in the Mediterranean diet (MD) have been the subject of several studies for their beneficial effects on human health. The traditional MD is described as a diet heavy in vegetable oils, fruits, nuts, and fish. The most studied element of MD is undoubtedly olive oil due precisely to its beneficial properties that make it an object of interest. Several studies have attributed these protective effects to hydroxytyrosol (HT), the main polyphenol contained in olive oil and leaves. HT has been shown to be able to modulate the oxidative and inflammatory process in numerous chronic disorders, including intestinal and gastrointestinal pathologies. To date, there is no paper that summarizes the role of HT in these disorders. This review provides an overview of the anti-inflammatory and antioxidant proprieties of HT against intestinal and gastrointestinal diseases.
Collapse
Affiliation(s)
- Alessia Arangia
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Ylenia Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
- Correspondence: (D.I.); (R.D.); Tel.: +39-090-676-5208 (D.I. & R.D.)
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
- Correspondence: (D.I.); (R.D.); Tel.: +39-090-676-5208 (D.I. & R.D.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| |
Collapse
|
17
|
Antioxidant and DNA-Protective Activity of an Extract Originated from Kalamon Olives Debittering. Antioxidants (Basel) 2023; 12:antiox12020333. [PMID: 36829892 PMCID: PMC9952268 DOI: 10.3390/antiox12020333] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Table olives are a major component of the Mediterranean diet and are associated with many beneficial biological activities, which are mainly related to their phenolic compounds. Olive fruit debittering process defines the quantitative and qualitative composition of table olives in biophenols. The aim of the present study was to evaluate the in vitro antioxidant capacity and DNA-protective activity of an extract originated from brine samples, according to the Greek style debbitering process of Kalamon olive fruits. The main phenolic components determined in the brine extract were hydroxytyrosol (HT), verbascoside (VERB) and tyrosol (T). The in vitro cell-free assays showed strong radical scavenging capacity from the extract, therefore antioxidant potential. At cellular level, human endothelial cells (EA.hy296) and murine myoblasts (C2C12) were treated with non-cytotoxic concentrations of the brine extract and the redox status was assessed by measuring glutathione (GSH), reactive oxygen species (ROS) and lipid peroxidation levels (TBARS). Our results show cell type specific response, exerting a hormetic reflection at endothelial cells. Finally, in both cell lines, pre-treatment with brine extract protected from H2O2-induced DNA damage. In conclusion, this is the first holistic approach highlighted table olive wastewaters from Kalamon- Greek style debittering process, as valuable source of bioactive compounds, which could have interesting implications for the development of new products in food or other industries.
Collapse
|
18
|
Interdonato L, Marino Y, Franco GA, Arangia A, D’Amico R, Siracusa R, Cordaro M, Impellizzeri D, Fusco R, Cuzzocrea S, Paola RD. Açai Berry Administration Promotes Wound Healing through Wnt/β-Catenin Pathway. Int J Mol Sci 2023; 24:ijms24010834. [PMID: 36614291 PMCID: PMC9821151 DOI: 10.3390/ijms24010834] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 01/05/2023] Open
Abstract
Recently, wound healing has received increased attention from both a scientific and clinical point of view. It is characterized by an organized series of processes: angiogenesis, cell migration and proliferation, extracellular matrix production, and remodeling. Many of these processes are controlled by the Wnt pathway, which activates them. The aim of the study was to evaluate the molecular mechanism of açai berry administration in a mouse model of wound healing. CD1 male mice were used in this research. Two full-thickness excisional wounds (5 mm) were performed with a sterile biopsy punch on the dorsum to create two circular, full-thickness skin wounds on either side of the median line on the dorsum. Açai berry was administered by oral administration (500 mg/kg dissolved in saline) for 6 days after induction of the wound. Our study demonstrated that açai berry can modulate the Wnt pathway, reducing the expression of Wnt3a, the cysteine-rich domain of frizzled (FZ)8, and the accumulation of cytosolic and nuclear β-catenin. Moreover, açai berry reduced the levels of TNF-α and IL-18, which are target genes strictly downstream of the Wnt/β-catenin pathway. It also showed important anti-inflammatory activities by reducing the activation of the NF-κB pathway. Furthermore, Wnt can modulate the activity of growth factors, such as TGF-β, and VEGF, which are the basis of the wound-healing process. In conclusion, we can confirm that açai berry can modulate the activity of the Wnt/β-catenin pathway, as it is involved in the inflammatory process and in the activity of the growth factor implicated in wound healing.
Collapse
Affiliation(s)
- Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Ylenia Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Gianluca Antonio Franco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Alessia Arangia
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
- Correspondence:
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| |
Collapse
|
19
|
Actaea racemosa L. Rhizome Protect against MPTP-Induced Neurotoxicity in Mice by Modulating Oxidative Stress and Neuroinflammation. Antioxidants (Basel) 2022; 12:antiox12010040. [PMID: 36670902 PMCID: PMC9854773 DOI: 10.3390/antiox12010040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/09/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Parkinson's disease (PD) is a dopaminergic neuron-related neurodegenerative illness. Treatments exist that alleviate symptoms but have a variety of negative effects. Recent research has revealed that oxidative stress, along with neuroinflammation, is a major factor in the course of this disease. Therefore, the aim of our study was to observe for the first time the effects of a natural compound such as Actaea racemosa L. rhizome in an in vivo model of PD induced by neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). For the study, mice received four injections of MPTP (20 mg/kg) for the induction of PD. Starting 24 h after the first administration of MPTP we treated mice with Actaea racemosa L. rhizome (100 mg/kg) daily for seven days. Our findings clearly demonstrated that Actaea racemosa L. rhizome treatment decreases oxidative stress by activating redox balance enzymes such as Nrf2/HO-1. We also demonstrated that Actaea racemosa L. rhizome is capable of modulating inflammatory indicators involved in PD, such as IκB-α, NF-κB, GFAP and Iba1, thus reducing the degeneration of dopaminergic neurons and motor and non-motor alterations. To summarize, Actaea racemosa L. rhizome, which is subject to fewer regulations than traditional medications, could be used as a dietary supplement to improve patients' brain health and could be a promising nutraceutical choice to slow the course and symptoms of PD.
Collapse
|
20
|
D’Amico R, Impellizzeri D, Cordaro M, Siracusa R, Interdonato L, Marino Y, Crupi R, Gugliandolo E, Macrì F, Di Paola D, Peritore AF, Fusco R, Cuzzocrea S, Di Paola R. Complex Interplay between Autophagy and Oxidative Stress in the Development of Endometriosis. Antioxidants (Basel) 2022; 11:antiox11122484. [PMID: 36552692 PMCID: PMC9774576 DOI: 10.3390/antiox11122484] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Endometriosis (Endo) is a chronic gynecological disease. This paper aimed to evaluate the modulation of autophagy, oxidative stress and apoptosis with Açai Berries in a rat model of endometriosis. Endometriosis was induced with an intraperitoneal injection of minced uterus tissue from a donor rat into a recipient one. The abdominal high-frequency ultrasound (hfUS) analysis was performed at 7 and 14 days from the endometriosis induction to evaluate the growth of the lesion during the experiment. Seven days from the induction, once the lesions were implanted, an Açai Berry was administered daily by gavage for the next seven days. At the end of the experiment, the hfUS analysis showed a reduced lesion diameter in animals given the Açai Berry. A macroscopical and histological analysis confirmed this result. From the molecular point of view, Western blot analyses were conducted to evaluate the autophagy induction. Samples collected from the Endo group showed impaired autophagy, while the Açai Berry administration inhibited PI3K and AKT and ERK1/2 phosphorylation and promoted autophagy by inactivating mTOR. Additionally, Açai Berry administration dephosphorylated ATG1, promoting the activity of the ATG1/ULK1 complex that recruited Ambra1/Beclin1 and Atg9 to promote autophagosome nucleation and LC3II expression. Açai Berry administration also restored mitophagy, which increased Parkin cytosolic expression. The Açai Berry increased the expression of NRF2 in the nucleus and the expression of its downstream antioxidant proteins as NQO-1 and HO-1, thereby restoring the oxidative imbalance. It also restored the impaired apoptotic pathway by reducing BCL-2 and increasing BAX expression. This result was also confirmed by the TUNEL assay. Overall, our results displayed that Açai Berry administration was able to modulate autophagy, oxidative stress and apoptosis during endometriosis.
Collapse
Affiliation(s)
- Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Ylenia Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Rosalia Crupi
- Department of Veterinary Sciences, University of Messina, Viale Annunzita, 98168 Messina, Italy
| | - Enrico Gugliandolo
- Department of Veterinary Sciences, University of Messina, Viale Annunzita, 98168 Messina, Italy
| | - Francesco Macrì
- Department of Veterinary Sciences, University of Messina, Viale Annunzita, 98168 Messina, Italy
| | - Davide Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
- Correspondence:
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, Viale Annunzita, 98168 Messina, Italy
| |
Collapse
|
21
|
D’Amico R, Impellizzeri D, Cordaro M, Siracusa R, Interdonato L, Crupi R, Gugliandolo E, Macrì F, Di Paola D, Peritore AF, Fusco R, Cuzzocrea S, Di Paola R. Regulation of Apoptosis and Oxidative Stress by Oral Boswellia Serrata Gum Resin Extract in a Rat Model of Endometriosis. Int J Mol Sci 2022; 23:ijms232315348. [PMID: 36499679 PMCID: PMC9736785 DOI: 10.3390/ijms232315348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/09/2022] Open
Abstract
Endometriosis (EMS) is a gynecological disease characterized by inflammation, oxidative stress, and apoptosis dysregulation. This study aims to evaluate the effect of Boswellia serrata gum resin extract (BS) on the endometriotic lesions in a rat model of endometriosis. We divided female rats into three groups, including Sham, EMS, EMS + BS. In the EMS and EMS + BS groups, pathology was induced and after 7 days by the abdominal high-frequency ultrasound (hfUS) analysis the presence of the endometriotic lesions was confirmed. Subsequently, the EMS + BS group was administered with BS (100 mg/Kg) daily for another 7 days. At the end of the experiment, the hfUS analysis was repeated and the animals were sacrificed to evaluate the size and histoarchitecture of the endometriotic implants. Pelvic ultrasound showed increased size of the endometriotic lesions in the Endo group, while BS administration reduced the lesion size. The macroscopic analysis confirmed the reduced area and volume of the endometriotic lesions of the EMS + BS group. The histological analysis showed reduced characteristic of ectopic stroma and glands in the animals treated with BS. Western blot analyses were conducted to evaluate the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. BS increases the expression of Nfr2 in the nucleus and the expression of its downstream antioxidant proteins NQO-1 and HO-1. Moreover, it reduced lipid peroxidation and increased glutathione (GSH) levels, and glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities. BS administration also restored the impaired apoptotic pathway in the lesions by reducing Bcl-2 expression and increasing Bax and cleaved caspase 9 levels. The BS apoptotic effect was also confirmed by the cleavage of PARP, another specific marker of apoptosis, and by the TUNEL assay. Our results show that BS administration resulted in an effective and coordinated suppression of Endo owing to its antioxidant and antiapoptotic activities.
Collapse
Affiliation(s)
- Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Rosalia Crupi
- Department of Veterinary Sciences, University of Messina, Viale Annunzita, 98168 Messina, Italy
| | - Enrico Gugliandolo
- Department of Veterinary Sciences, University of Messina, Viale Annunzita, 98168 Messina, Italy
| | - Francesco Macrì
- Department of Veterinary Sciences, University of Messina, Viale Annunzita, 98168 Messina, Italy
| | - Davide Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
- Correspondence:
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, Viale Annunzita, 98168 Messina, Italy
| |
Collapse
|
22
|
Siracusa R, D’Amico R, Fusco R, Impellizzeri D, Peritore AF, Gugliandolo E, Crupi R, Interdonato L, Cordaro M, Cuzzocrea S, Di Paola R. Açai Berry Attenuates Cyclophosphamide-Induced Damage in Genitourinary Axis-Modulating Nrf-2/HO-1 Pathways. Antioxidants (Basel) 2022; 11:antiox11122355. [PMID: 36552563 PMCID: PMC9774754 DOI: 10.3390/antiox11122355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Cyclophosphamide (CYP) is used to treat different malignancies and autoimmune disorders in men. This chemotherapy frequently reduces tumors, which is beneficial, but also causes infertility because of severe oxidative stress, inflammation, and apoptosis in the bladder and testes brought on by its metabolite, acrolein. The goal of this study was to assess the efficacy of a novel food, açai berry, in preventing CYP-induced damage in the bladder and testes. METHODS CYP was administered intraperitoneally once during the experiment at a dose of 200 mg/kg body weight diluted in 10 mL/kg b.w. of water. Açai berry was administered orally at a dose of 500 mg/kg. RESULTS The administration of açai berry was able to reduce inflammation, oxidative stress, lipid peroxidation, apoptosis, and histological changes in the bladder and testes after CYP injection. CONCLUSIONS Our findings show for the first time that açai berry modulates physiological antioxidant defenses to protect the bladder and testes against CYP-induced changes.
Collapse
Affiliation(s)
- Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Enrico Gugliandolo
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Rosalia Crupi
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Marika Cordaro
- Department of Biomedical Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
- Correspondence:
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| |
Collapse
|
23
|
Chronic Exposure to Endocrine Disruptor Vinclozolin Leads to Lung Damage Via Nrf2–Nf-kb Pathway Alterations. Int J Mol Sci 2022; 23:ijms231911320. [PMID: 36232623 PMCID: PMC9569619 DOI: 10.3390/ijms231911320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
Abstract
Endocrine-disrupting substances (EDS) are common and pervasive in our environment and pose a serious risk to both human and animal health. Endocrine-disrupting compounds (EDCs) have been associated with a variety of detrimental human health effects, including respiratory issues, as a result of their ability to disrupt cell physiology. Vinclozolin ((RS)-3-(3,5-Dichlorophenyl)-5-methyl-5-vinyloxazolidine-2,4-dione) is a common dicarboximide fungicide used to treat plant diseases. Several studies have analyzed the effects of vinclozolin exposure on the reproductive system, but less is known about its effect on other organs such as the lung. Mice were exposed for 28 days to orally administered vinclozolin at a dose of 100 mg/kg. Vinclozolin exposure induced histological alterations and collagen depositions in the lung. Additionally, vinclozolin induced inflammation and oxidative stress that led to lung apoptosis. Our study demonstrates for the first time that the toxicological effects of vinclozolin are not limited to the reproductive system but also involve other organs such as the lung.
Collapse
|
24
|
Impellizzeri D, D’Amico R, Fusco R, Genovese T, Peritore AF, Gugliandolo E, Crupi R, Interdonato L, Di Paola D, Di Paola R, Cuzzocrea S, Siracusa R, Cordaro M. Açai Berry Mitigates Vascular Dementia-Induced Neuropathological Alterations Modulating Nrf-2/Beclin1 Pathways. Cells 2022; 11:cells11162616. [PMID: 36010690 PMCID: PMC9406985 DOI: 10.3390/cells11162616] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 12/14/2022] Open
Abstract
The second-most common cause of dementia is vascular dementia (VaD). The majority of VaD patients experience cognitive impairment, which is brought on by oxidative stress and changes in autophagic function, which ultimately result in neuronal impairment and death. In this study, we examine a novel method for reversing VaD-induced changes brought on by açai berry supplementation in a VaD mouse model. The purpose of this study was to examine the impact of açai berries on the molecular mechanisms underlying VaD in a mouse model of the disease that was created by repeated ischemia-reperfusion (IR) of the whole bilateral carotid artery. Here, we found that açai berry was able to reduce VaD-induced behavioral alteration, as well as hippocampal death, in CA1 and CA3 regions. These effects are probably due to the modulation of nuclear factor erythroid 2-related factor 2 (Nrf-2) and Beclin-1, suggesting a possible crosstalk between these molecular pathways. In conclusion, the protective effects of açai berry could be a good supplementation in the future for the management of vascular dementia.
Collapse
Affiliation(s)
- Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Enrico Gugliandolo
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Rosalia Crupi
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Davide Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
- Correspondence: (R.D.P.); (S.C.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
- Correspondence: (R.D.P.); (S.C.)
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| |
Collapse
|
25
|
Study on the Mechanism of Mesaconitine-Induced Hepatotoxicity in Rats Based on Metabonomics and Toxicology Network. Toxins (Basel) 2022; 14:toxins14070486. [PMID: 35878224 PMCID: PMC9322933 DOI: 10.3390/toxins14070486] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 02/05/2023] Open
Abstract
Mesaconitine (MA), one of the main diterpenoid alkaloids in Aconitum, has a variety of pharmacological effects, such as analgesia, anti-inflammation and relaxation of rat aorta. However, MA is a highly toxic ingredient. At present, studies on its toxicity are mainly focused on the heart and central nervous system, and there are few reports on the hepatotoxic mechanism of MA. Therefore, we evaluated the effects of MA administration on liver. SD rats were randomly divided into a normal saline (NS) group, a low-dose MA group (0.8 mg/kg/day) and a high-dose MA group (1.2 mg/kg/day). After 6 days of administration, the toxicity of MA on the liver was observed. Metabolomic and network toxicology methods were combined to explore the effect of MA on the liver of SD rats and the mechanism of hepatotoxicity in this study. Through metabonomics study, the differential metabolites of MA, such as L-phenylalanine, retinyl ester, L-proline and 5-hydroxyindole acetaldehyde, were obtained, which involved amino acid metabolism, vitamin metabolism, glucose metabolism and lipid metabolism. Based on network toxicological analysis, MA can affect HIF-1 signal pathway, MAPK signal pathway, PI3K-Akt signal pathway and FoxO signal pathway by regulating ALB, AKT1, CASP3, IL2 and other targets. Western blot results showed that protein expression of HMOX1, IL2 and caspase-3 in liver significantly increased after MA administration (p < 0.05). Combined with the results of metabonomics and network toxicology, it is suggested that MA may induce hepatotoxicity by activating oxidative stress, initiating inflammatory reaction and inducing apoptosis.
Collapse
|
26
|
Environmental Impact of Pharmaceutical Pollutants: Synergistic Toxicity of Ivermectin and Cypermethrin. TOXICS 2022; 10:toxics10070388. [PMID: 35878293 PMCID: PMC9325130 DOI: 10.3390/toxics10070388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 02/05/2023]
Abstract
Veterinary antiparasitic pharmaceuticals as well as pesticides have been detected in surface waters, and they may cause several toxic effects in this environmental compartment. In the present study, we evaluated the toxicity after exposure of different concentration of ivermectin (IVM; 50, 100, and 200 μg L−1) and cypermethrin (CYP; 5, 10, and 25 μg L−1) and the combination of these two compounds at non-toxic concentration (IVM 100 + CYP 5 μg L−1) in zebrafish embryos. Combination of IVM at 100 μg L−1 with CYP at 5 μg L−1 exposure induced hatching delay and malformations at 96 hpf in zebrafish larvae as well as significant induction of cell death in zebrafish larvae. At the same time, the two single concentrations of IVM and CYP did not show a toxic effect on zebrafish development. In conclusion, our study suggests that IVM and CYP show a synergistic effect at common, ineffective concentrations, promoting malformation and cell death in fish development.
Collapse
|
27
|
Alsuliam SM, Albadr NA, Almaiman SA, Al-Khalifah AS, Alkhaldy NS, Alshammari GM. Fenugreek Seed Galactomannan Aqueous and Extract Protects against Diabetic Nephropathy and Liver Damage by Targeting NF-κB and Keap1/Nrf2 Axis. TOXICS 2022; 10:toxics10070362. [PMID: 35878267 PMCID: PMC9319613 DOI: 10.3390/toxics10070362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023]
Abstract
This investigation was conducted to test the potential of the galactomannan (F-GAL) and aqueous extract (FS-AE) of the Fenugreek seed aqueous to prevent liver and kidney damage extracts in streptozotocin (STZ)-induced T1DM in rats. Non-diabetic and diabetic rats received the normal saline as a vehicle or were treated with FS-EA or F-GAL at a final concentration of 500 mg/kg/each. Treatments with both drugs reduced fasting hyperglycemia and improved serum and hepatic lipid profiles in the control and diabetic rats. Additionally, F-GAL and FS-AE attenuated the associated reduction in the mass and structure of the islets of Langerhans in diabetic rats and improved the structure of the kidneys and livers. In association, they also reduced the generation of reactive oxygen species (ROS), lipid peroxides, factor (TNF-α), interleukin-6 (IL-6), and nuclear levels of NF-κB p65, and improved serum levels of ALT, AST, albumin, and creatinine. However, both treatments increased hepatic and renal superoxide dismutase (SOD) in the livers and kidneys of both the control and diabetic-treated rats, which coincided with a significant increase in transcription, translation, and nuclear localization of Nrf2. In conclusion, FS-AE and F-GAL are effective therapeutic options that may afford a possible treatment for T1DM by attenuating pancreatic damage, hyperglycemia, hyperlipidemia, and hepatic and renal damage.
Collapse
Affiliation(s)
- Sarah M. Alsuliam
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.M.A.); (S.A.A.); (A.S.A.-K.); (G.M.A.)
| | - Nawal A. Albadr
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.M.A.); (S.A.A.); (A.S.A.-K.); (G.M.A.)
- Correspondence:
| | - Salah A. Almaiman
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.M.A.); (S.A.A.); (A.S.A.-K.); (G.M.A.)
| | - Abdullrahman S. Al-Khalifah
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.M.A.); (S.A.A.); (A.S.A.-K.); (G.M.A.)
| | - Noorah S. Alkhaldy
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Ghedeir M. Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.M.A.); (S.A.A.); (A.S.A.-K.); (G.M.A.)
| |
Collapse
|
28
|
Cordaro M, Siracusa R, D’Amico R, Genovese T, Franco G, Marino Y, Di Paola D, Cuzzocrea S, Impellizzeri D, Di Paola R, Fusco R. Role of Etanercept and Infliximab on Nociceptive Changes Induced by the Experimental Model of Fibromyalgia. Int J Mol Sci 2022; 23:ijms23116139. [PMID: 35682817 PMCID: PMC9181785 DOI: 10.3390/ijms23116139] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/22/2022] Open
Abstract
Background: Fibromyalgia is a clinical condition that affects 1% to 5% of the population. No proper therapy has been currently found. It has been described that inflammation plays a central role in the nerve sensitizations that characterize the pathology. Methods: This paper aimed to evaluate the efficacy of etanercept and infliximab in the management of pain sensitization. Fibromyalgia was induced by three injections once a day of reserpine at the dose of 1 mg/kg. Etanercept (3 mg/kg) and infliximab (10 mg/kg) were administered the day after the last reserpine injection and then 5 days after that. Behavioral analyses were conducted once a week, and molecular investigations were performed at the end of the experiment. Results: Our data confirmed the major effect of infliximab administration as compared to etanercept: infliximab administration strongly reduced pain sensitization in thermal hyperalgesia and mechanical allodynia. From the molecular point of view, infliximab reduced the activation of microglia and astrocytes and the expression of the purinergic P2X7 receptor ubiquitously expressed on glia and neurons. Downstream of the P2X7 receptor, infliximab also reduced p38-MAPK overexpression induced by the reserpine administration. Conclusion: Etanercept and infliximab treatment caused a significant reduction in pain. In particular, rats that received infliximab showed less pain sensitization. Moreover, infliximab reduced the activation of microglia and astrocytes, reducing the expression of the purinergic receptor P2X7 and p38-MAPK pathway.
Collapse
Affiliation(s)
- Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.S.); (R.D.); (T.G.); (G.F.); (Y.M.); (D.D.P.)
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.S.); (R.D.); (T.G.); (G.F.); (Y.M.); (D.D.P.)
| | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.S.); (R.D.); (T.G.); (G.F.); (Y.M.); (D.D.P.)
| | - Gianluca Franco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.S.); (R.D.); (T.G.); (G.F.); (Y.M.); (D.D.P.)
| | - Ylenia Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.S.); (R.D.); (T.G.); (G.F.); (Y.M.); (D.D.P.)
| | - Davide Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.S.); (R.D.); (T.G.); (G.F.); (Y.M.); (D.D.P.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.S.); (R.D.); (T.G.); (G.F.); (Y.M.); (D.D.P.)
- Correspondence: (S.C.); (D.I.)
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.S.); (R.D.); (T.G.); (G.F.); (Y.M.); (D.D.P.)
- Correspondence: (S.C.); (D.I.)
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy;
| | - Roberta Fusco
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| |
Collapse
|
29
|
Zhao D, Yu W, Xie W, Ma Z, Hu Z, Song Z. Bone marrow-derived mesenchymal stem cells ameliorate severe acute pancreatitis by inhibiting oxidative stress in rats. Mol Cell Biochem 2022; 477:2761-2771. [PMID: 35622186 DOI: 10.1007/s11010-022-04476-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/06/2022] [Indexed: 12/17/2022]
Abstract
To investigate whether bone marrow mesenchymal stem cells (BMSCs) attenuate pancreatic injury via mediating oxidative stress in severe acute pancreatitis (SAP). The SAP model was established in rats. Phosphate buffered saline (PBS) or BMSCs were injected into the rats by tail veins. ML385 was used to down-regulate Nrf2 expression in rats. Pancreatic pathological score was used to evaluated pancreatic injury. Inflammatory-associated cytokines, serum lipase and amylase, levels of myeloperoxidase, malondialdehyde, reactive oxygen species and superoxide dismutase, as well as catalase activity were measured for injury severity evaluation. ML385 aggravates oxidative stress in SAP + ML385 group, compared with SAP + PBS group. BMSCs transplantation alleviated pancreatic injury and enhance antioxidant tolerance in SAP + BMSCs group, while ML385 administration weakened this efficacy in SAP + BMSCs + ML385 group. In addition, BMSCs promoted Nrf2 nuclear translocation via PI3K/AKT signaling pathway. Besides, BMSCs reduced inflammatory response by inhibiting NF-κB signaling pathway in SAP. BMSCs can inhibit oxidative stress and reduce pancreatic injury via inducing Nrf2 nuclear translocation in SAP.
Collapse
Affiliation(s)
- Dongbo Zhao
- Department of General Surgery, Shanghai Tenth People's Hospital, Clinical College of Nanjing Medical University, 301 Yanchang Middle Road, Shanghai, 200072, People's Republic of China
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| | - Weidi Yu
- Department of General Surgery, Shanghai Tenth People's Hospital, Clinical College of Nanjing Medical University, 301 Yanchang Middle Road, Shanghai, 200072, People's Republic of China
| | - Wangcheng Xie
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| | - Zhilong Ma
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| | - Zhengyu Hu
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| | - Zhenshun Song
- Department of General Surgery, Shanghai Tenth People's Hospital, Clinical College of Nanjing Medical University, 301 Yanchang Middle Road, Shanghai, 200072, People's Republic of China.
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China.
| |
Collapse
|
30
|
Genovese T, Cordaro M, Siracusa R, Impellizzeri D, Caudullo S, Raffone E, Macrí F, Interdonato L, Gugliandolo E, Interlandi C, Crupi R, D’Amico R, Fusco R, Cuzzocrea S, Di Paola R. Molecular and Biochemical Mechanism of Cannabidiol in the Management of the Inflammatory and Oxidative Processes Associated with Endometriosis. Int J Mol Sci 2022; 23:5427. [PMID: 35628240 PMCID: PMC9141153 DOI: 10.3390/ijms23105427] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
Endometriosis is usually associated with inflammation and chronic pelvic pain. This paper focuses the attention on the anti-inflammatory, anti-oxidant and analgesic effects of cannabidiol (CBD) and on its potential role in endometriosis. We employed an in vivo model of endometriosis and administered CBD daily by gavage. CBD administration strongly reduced lesions diameter, volume and area. In particular, it was able to modify lesion morphology, reducing epithelial glands and stroma. CBD showed anti-oxidant effects reducing lipid peroxidation, the expression of Nox-1 and Nox-4 enzymes. CBD restored the oxidative equilibrium of the endogenous cellular defense as showed by the SOD activity and the GSH levels in the lesions. CBD also showed important antifibrotic effects as showed by the Masson trichrome staining and by downregulated expression of MMP-9, iNOS and TGF-β. CBD was able to reduce inflammation both in the harvested lesions, as showed by the increased Ikb-α and reduced COX2 cytosolic expressions and reduced NFkB nuclear localization, and in the peritoneal fluids as showed by the decreased TNF-α, PGE2 and IL-1α levels. CBD has important analgesic effects as showed by the reduced mast cells recruitment in the spinal cord and the reduced release of neuro-sensitizing and pro-inflammatory mediators. In conclusion, the collected data showed that CBD has an effective and coordinated effects in endometriosis suppression.
Collapse
Affiliation(s)
- Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (T.G.); (R.S.); (D.I.); (L.I.); (S.C.)
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (T.G.); (R.S.); (D.I.); (L.I.); (S.C.)
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (T.G.); (R.S.); (D.I.); (L.I.); (S.C.)
| | | | - Emanuela Raffone
- Multi-Specialist Istitute Rizzo, Torregrotta, 98043 Messina, Italy;
| | - Francesco Macrí
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (F.M.); (E.G.); (C.I.); (R.C.); (R.D.P.)
| | - Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (T.G.); (R.S.); (D.I.); (L.I.); (S.C.)
| | - Enrico Gugliandolo
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (F.M.); (E.G.); (C.I.); (R.C.); (R.D.P.)
| | - Claudia Interlandi
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (F.M.); (E.G.); (C.I.); (R.C.); (R.D.P.)
| | - Rosalia Crupi
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (F.M.); (E.G.); (C.I.); (R.C.); (R.D.P.)
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (T.G.); (R.S.); (D.I.); (L.I.); (S.C.)
| | - Roberta Fusco
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (T.G.); (R.S.); (D.I.); (L.I.); (S.C.)
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (F.M.); (E.G.); (C.I.); (R.C.); (R.D.P.)
| |
Collapse
|
31
|
D’Amico R, Gugliandolo E, Siracusa R, Cordaro M, Genovese T, Peritore AF, Crupi R, Interdonato L, Di Paola D, Cuzzocrea S, Fusco R, Impellizzeri D, Di Paola R. Toxic Exposure to Endocrine Disruptors Worsens Parkinson's Disease Progression through NRF2/HO-1 Alteration. Biomedicines 2022; 10:1073. [PMID: 35625810 PMCID: PMC9138892 DOI: 10.3390/biomedicines10051073] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/22/2022] [Accepted: 04/29/2022] [Indexed: 12/18/2022] Open
Abstract
Human exposure to endocrine disruptors (EDs) has attracted considerable attention in recent years. Different studies showed that ED exposure may exacerbate the deterioration of the nervous system's dopaminergic capacity and cerebral inflammation, suggesting a promotion of neurodegeneration. In that regard, the aim of this research was to investigate the impact of ED exposure on the neuroinflammation and oxidative stress in an experimental model of Parkinson's disease (PD). PD was induced by intraperitoneally injections of MPTP for a total dose of 80 mg/kg for each mouse. Mice were orally exposed to EDs, starting 24 h after the first MPTP administration and continuing through seven additional days. Our results showed that ED exposure raised the loss of TH and DAT induced by the administration of MPTP, as well as increased aggregation of α-synuclein, a key marker of PD. Additionally, oral exposure to EDs induced astrocytes and microglia activation that, in turn, exacerbates oxidative stress, perturbs the Nrf2 signaling pathway and activates the cascade of MAPKs. Finally, we performed behavioral tests to demonstrate that the alterations in the dopaminergic system also reflected behavioral and cognitive alterations. Importantly, these changes are more significant after exposure to atrazine compared to other EDs. The results from our study provide evidence that exposure to EDs may play a role in the development of PD; therefore, exposure to EDs should be limited.
Collapse
Affiliation(s)
- Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.S.); (T.G.); (A.F.P.); (L.I.); (D.D.P.); (D.I.)
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy; (E.G.); (R.C.); (R.D.P.)
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.S.); (T.G.); (A.F.P.); (L.I.); (D.D.P.); (D.I.)
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, 98125 Messina, Italy;
| | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.S.); (T.G.); (A.F.P.); (L.I.); (D.D.P.); (D.I.)
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.S.); (T.G.); (A.F.P.); (L.I.); (D.D.P.); (D.I.)
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy; (E.G.); (R.C.); (R.D.P.)
| | - Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.S.); (T.G.); (A.F.P.); (L.I.); (D.D.P.); (D.I.)
| | - Davide Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.S.); (T.G.); (A.F.P.); (L.I.); (D.D.P.); (D.I.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.S.); (T.G.); (A.F.P.); (L.I.); (D.D.P.); (D.I.)
| | - Roberta Fusco
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.S.); (T.G.); (A.F.P.); (L.I.); (D.D.P.); (D.I.)
| | - Rosanna Di Paola
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy; (E.G.); (R.C.); (R.D.P.)
| |
Collapse
|
32
|
Di Paola R, Modafferi S, Siracusa R, Cordaro M, D’Amico R, Ontario ML, Interdonato L, Salinaro AT, Fusco R, Impellizzeri D, Calabrese V, Cuzzocrea S. S-Acetyl-Glutathione Attenuates Carbon Tetrachloride-Induced Liver Injury by Modulating Oxidative Imbalance and Inflammation. Int J Mol Sci 2022; 23:ijms23084429. [PMID: 35457246 PMCID: PMC9024626 DOI: 10.3390/ijms23084429] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 01/14/2023] Open
Abstract
Liver fibrosis, depending on the stage of the disease, could lead to organ dysfunction and cirrhosis, and no effective treatment is actually available. Emergent proof supports a link between oxidative stress, liver fibrogenesis and mitochondrial dysfunction as molecular bases of the pathology. A valid approach to protect against the disease would be to replenish the endogenous antioxidants; thus, we investigated the protective mechanisms of the S-acetyl-glutathione (SAG), a glutathione (GSH) prodrug. Preliminary in vitro analyses were conducted on primary hepatic cells. SAG pre-treatment significantly protected against cytotoxicity induced by CCl4. Additionally, CCl4 induced a marked increase in AST and ALT levels, whereas SAG significantly reduced these levels, reaching values found in the control group. For the in vivo analyses, mice were administered twice a week with eight consecutive intraperitoneal injections of 1 mL/kg CCl4 (diluted at 1:10 in olive oil) to induce oxidative imbalance and liver inflammation. SAG (30 mg/kg) was administered orally for 8 weeks. SAG significantly restored SOD activity, GSH levels and GPx activity, while it strongly reduced GSSG levels, lipid peroxidation and H2O2 and ROS levels in the liver. Additionally, CCl4 induced a decrease in anti-oxidants, including Nrf2, HO-1 and NQO-1, which were restored by treatment with SAG. The increased oxidative stress characteristic on liver disfunction causes the impairment of mitophagy and accumulation of dysfunctional and damaged mitochondria. Our results showed the protective effect of SAG administration in restoring mitophagy, as shown by the increased PINK1 and Parkin expressions in livers exposed to CCl4 intoxication. Thus, the SAG administration showed anti-inflammatory effects decreasing pro-inflammatory cytokines TNF-α, IL-6, MCP-1 and IL-1β in both serum and liver, and suppressing the TLR4/NFkB pathway. SAG attenuated reduced fibrosis, collagen deposition, hepatocellular damage and organ dysfunction. In conclusion, our results suggest that SAG administration protects the liver from CCl4 intoxication by restoring the oxidative balance, ameliorating the impairment of mitophagy and leading to reduced inflammation.
Collapse
Affiliation(s)
- Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy;
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy; (S.M.); (M.L.O.); (V.C.)
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.S.); (R.D.); (L.I.); (D.I.); (S.C.)
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.S.); (R.D.); (L.I.); (D.I.); (S.C.)
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy; (S.M.); (M.L.O.); (V.C.)
| | - Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.S.); (R.D.); (L.I.); (D.I.); (S.C.)
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy; (S.M.); (M.L.O.); (V.C.)
- Correspondence: (A.T.S.); (R.F.)
| | - Roberta Fusco
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
- Correspondence: (A.T.S.); (R.F.)
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.S.); (R.D.); (L.I.); (D.I.); (S.C.)
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy; (S.M.); (M.L.O.); (V.C.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.S.); (R.D.); (L.I.); (D.I.); (S.C.)
| |
Collapse
|
33
|
Resveratrol Inhibition of the WNT/β-Catenin Pathway following Discogenic Low Back Pain. Int J Mol Sci 2022; 23:ijms23084092. [PMID: 35456908 PMCID: PMC9024678 DOI: 10.3390/ijms23084092] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 12/26/2022] Open
Abstract
Low back pain (LBP) management is an important clinical issue. Inadequate LBP control has consequences on the mental and physical health of patients. Thus, acquiring new information on LBP mechanism would increase the available therapeutic tools. Resveratrol is a natural compound with many beneficial effects. In this study, we investigated the role of resveratrol on behavioral changes, inflammation and oxidative stress induced by LBP. Ten microliters of Complete Freund’s adjuvant (CFA) was injected in the lumbar intervertebral disk of Sprague Dawley rats to induce degeneration, and resveratrol was administered daily. Behavioral analyses were performed on day zero, three, five and seven, and the animals were sacrificed to evaluate the molecular pathways involved. Resveratrol administration alleviated hyperalgesia, motor disfunction and allodynia. Resveratrol administration significantly reduced the loss of notochordal cells and degenerative changes in the intervertebral disk. From the molecular point of view, resveratrol reduced the 5th/6th lumbar (L5–6) spinal activation of the WNT pathway, reducing the expression of WNT3a and cysteine-rich domain frizzled (FZ)8 and the accumulation of cytosolic and nuclear β-catenin. Moreover, resveratrol reduced the levels of TNF-α and IL-18 that are target genes strictly downstream of the WNT/β-catenin pathway. It also showed important anti-inflammatory activities by reducing the activation of the NFkB pathway, the expression of iNOS and COX-2, and the levels of PGE2 in the lumbar spinal cord. Moreover, resveratrol reduced the oxidative stress associated with inflammation and pain, as shown by the observed reduced lipid peroxidation and increased GSH, SOD, and CAT activities. Therefore, resveratrol administration controlled the WNT/β-catenin pathway and the related inflammatory and oxidative alterations, thus alleviating the behavioral changes induced by LBP.
Collapse
|
34
|
Coriolus Versicolor Downregulates TLR4/NF-κB Signaling Cascade in Dinitrobenzenesulfonic Acid-Treated Mice: A Possible Mechanism for the Anti-Colitis Effect. Antioxidants (Basel) 2022; 11:antiox11020406. [PMID: 35204289 PMCID: PMC8869697 DOI: 10.3390/antiox11020406] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 02/01/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) are disorders characterized by chronic inflammation of the intestinal tract. The focus of the present study was to examine the effect of the fungus Coriolus versicolor (CV), underlining its correlation with Toll-like receptors 4 (TLR4) and nuclear factor erythroid 2-related factor 2 (Nrf2); we aim to evaluate its anti-inflammatory and antioxidant effect in mice exposed to experimental colitis. The model was induced in mice by colon instillation of dinitrobenzenesulfonic acid (DNBS), CV was administered orally (200 mg per kg) daily for 4 days. On day 4, the animals were killed, and the tissues collected for histological, biochemical, and molecular analyses. Four days after DNBS administration, CC motif chemokine ligand 2 (CCL2), prostaglandin E2 (PGE2), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) production increased in association with damage to the colon. Neutrophil infiltration, as assessed by myeloperoxidase (MPO) activity, in the mucosa was associated with overexpression of P-selectin and intercellular adhesion molecule 1 (ICAM1). Immunohistochemistry for nitrotyrosine and poly-(ADP-Ribose)-polymerase (PARP) showed evident stain in the inflamed colon. Treatment with CV significantly reduced the appearance of colon changes and weight loss. These effects were associated with a remarkable ability of CV to reduce the expression of TLR4 and modulate the pathway of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB). This improved the colon architecture, reduced MPO activity, the release of proinflammatory cytokines, the presence of nitrotyrosine, and the hyperactivation of PARP, as well as the up-regulation of P-selectin and ICAM1. Furthermore, we studied the action of CV on the Nrf2/HO-1 pathway, which is important for maintaining redox balance, demonstrating that CV by significantly increasing both enzymes is able to counteract the oxidative stress induced by DNBS. Taken together, our results clearly show that this natural compound can be considered as a possible dietary supplement against colitis.
Collapse
|
35
|
Aescin Protects against Experimental Benign Prostatic Hyperplasia and Preserves Prostate Histomorphology in Rats via Suppression of Inflammatory Cytokines and COX-2. Pharmaceuticals (Basel) 2022; 15:ph15020130. [PMID: 35215244 PMCID: PMC8880638 DOI: 10.3390/ph15020130] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023] Open
Abstract
Background: Benign prostatic hyperplasia (BPH) is the most common urogenital condition in aging males, while inflammation and tissue proliferation constitute the main pathophysiological factors. The adverse effects of currently available BPH medications limit patient compliance. We tested the protective effect of aescin against the development of BPH in rats. Methods: A total of 18 male Wistar rats were divided into 3 groups: control (sesame oil 1 mL/kg, s.c.); BPH (testosterone oenanthate 3 mg/kg, s.c., in sesame oil), and BPH-aescin rats (testosterone oenanthate 3 mg/kg, s.c. + aescin 10 mg/kg/day, p.o.). All treatments continued for 4 weeks. Serum and prostatic samples were harvested for biochemical and histopathological examination. Results: Induction of BPH by testosterone increased the prostate weight and prostate weight index, serum testosterone, prostate expression of inflammatory (IL-1β, TNF-α, and COX-2), and proliferative markers (PCNA and TGF-β1). Concurrent treatment with aescin decreased the testosterone-induced increase in prostatic IL-1β, TNF-α, and COX-2 expression by 47.9%, 71.2%, and 64.4%, respectively. Moreover, aescin reduced the prostatic proliferation markers TGF-β1 and PCNA by 58.3% and 71.9%, respectively, and normalized the prostate weight. Conclusion: The results of this study showed, for the first time, that aescin protected against the development of experimental BPH in rats via its anti-inflammatory and antiproliferative effects. These findings warrant further studies to clinically repurpose aescin in the management of BPH.
Collapse
|
36
|
Di Paola D, Natale S, Gugliandolo E, Cordaro M, Crupi R, Siracusa R, D’Amico R, Fusco R, Impellizzeri D, Cuzzocrea S, Spanò N, Marino F, Peritore AF. Assessment of 2-Pentadecyl-2-oxazoline Role on Lipopolysaccharide-Induced Inflammation on Early Stage Development of Zebrafish ( Danio rerio). Life (Basel) 2022; 12:128. [PMID: 35054521 PMCID: PMC8781862 DOI: 10.3390/life12010128] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 02/06/2023] Open
Abstract
Lipopolysaccharide (LPS), or bacterial endotoxin, is an important virulence factor in several human and animal pathologies. Oxazoline of Palmitoylethanolamide (PEAOXA) has shown strong anti-inflammatory activity in several animal models. LPS was applied for 24 h to zebrafish embryos to induce inflammation, and then the anti-inflammatory action of PEAOXA was evaluated for the first time in the zebrafish model (Danio rerio). Different concentrations of PEAOXA were tested for toxicity on zebrafish embryonic development; only the highest concentration of 30 mg/L showed toxic effects. Quantitative RT-PCR was applied to detect Tumor necrosis factor-α, Interleukin 1β, 6, and 8, and members of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB). Exposure to LPS induced an increase in pro-inflammatory cytokines (tumor necrosis factor and interleukin 1, 6, and 8) in both gene and protein expression, as well as an increase of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) and the nuclear factor kappa light polypeptide enhancer in B-cells inhibitor (IκBα) gene expression. Furthermore, acute LPS exposure also induced an increase in tryptase release, related to mast cell activity, and in the production of apoptosis-related proteins (caspase 3, bax, and bcl-2). Treatment with PEAOXA 10 mg/L significantly counteracts LPS-induced inflammation in terms of cytokine expression and decreases tryptase release and the apoptosis pathway.
Collapse
Affiliation(s)
- Davide Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (S.N.); (R.S.); (R.D.); (R.F.); (D.I.); (F.M.); (A.F.P.)
| | - Sabrina Natale
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (S.N.); (R.S.); (R.D.); (R.F.); (D.I.); (F.M.); (A.F.P.)
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (E.G.); (R.C.)
| | - Marika Cordaro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98166 Messina, Italy;
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (E.G.); (R.C.)
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (S.N.); (R.S.); (R.D.); (R.F.); (D.I.); (F.M.); (A.F.P.)
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (S.N.); (R.S.); (R.D.); (R.F.); (D.I.); (F.M.); (A.F.P.)
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (S.N.); (R.S.); (R.D.); (R.F.); (D.I.); (F.M.); (A.F.P.)
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (S.N.); (R.S.); (R.D.); (R.F.); (D.I.); (F.M.); (A.F.P.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (S.N.); (R.S.); (R.D.); (R.F.); (D.I.); (F.M.); (A.F.P.)
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, Saint Louis, MO 63103, USA
| | - Nunziacarla Spanò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98166 Messina, Italy;
| | - Fabio Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (S.N.); (R.S.); (R.D.); (R.F.); (D.I.); (F.M.); (A.F.P.)
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (S.N.); (R.S.); (R.D.); (R.F.); (D.I.); (F.M.); (A.F.P.)
| |
Collapse
|
37
|
Yang J, Tang X, Wu Q, Ren P, Yan Y. A Severe Acute Pancreatitis Mouse Model Transited from Mild Symptoms Induced by a “Two-Hit” Strategy with L-Arginine. Life (Basel) 2022; 12:life12010126. [PMID: 35054519 PMCID: PMC8779052 DOI: 10.3390/life12010126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 01/17/2023] Open
Abstract
To develop a severe acute pancreatitis (SAP) model transited from mild symptoms, we investigated a “two-hit” strategy with L-arginine in mice. The mice were intraperitoneally injected with ice-cold L-arginine (4 g/kg) twice at an interval of 1 h on the first day and subjected to the repeated operation 72 h afterwards. The results showed the “two-hit” strategy resulted in the destructive damage and extensive necrosis of acinar cells in the pancreas compared with the “one-hit” model. Meanwhile, excessive levels of pro-inflammatory mediators, namely IL-6 and TNF-α, were released in the serum. Remarkably, additional deleterious effects on multiple organs were observed, including high intestinal permeability, kidney injury, and severe acute lung injury. Therefore, we confirmed that the SAP animal model triggered by a “two-hit” strategy with L-arginine was successfully established, providing a solid foundation for a deeper understanding of SAP initiation and therapy research to prevent worsening of the disease.
Collapse
|
38
|
Wnt/β-Catenin Pathway in Experimental Model of Fibromyalgia: Role of Hidrox ®. Biomedicines 2021; 9:biomedicines9111683. [PMID: 34829912 PMCID: PMC8615925 DOI: 10.3390/biomedicines9111683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 01/13/2023] Open
Abstract
Fibromyalgia (FM) is a chronic condition characterized by persistent widespread pain that negatively affects the quality of life of patients. The WNT/β-catenin signaling pathway seems to be involved in central sensitization and different pain states. The objective of this study was to investigate the beneficial effects of a new compound called Hidrox® (HD), containing 40-50% hydroxytyrosol, in counteracting the pain associated with FM. An FM-like model was induced in rats by subcutaneous injections of reserpine (1 mg/kg) for three consecutive days. Later, HD (10 mg/kg) was administered orally to the animals for seven days. Reserpine injections induced WNT/β-catenin pathway activation, release of pro-inflammatory mediators as well as a significant increase in oxidative stress. Daily treatment with HD was able to modulate the WNT/β-catenin and Nrf2 pathways and consequently attenuate the behavioral deficits and microglia activation induced by reserpine injection. These results indicate that nutritional consumption of HD can be considered as a new therapeutic approach for human FM.
Collapse
|
39
|
Key Mechanisms and Potential Implications of Hericium erinaceus in NLRP3 Inflammasome Activation by Reactive Oxygen Species during Alzheimer's Disease. Antioxidants (Basel) 2021; 10:antiox10111664. [PMID: 34829535 PMCID: PMC8615045 DOI: 10.3390/antiox10111664] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is the principal cause of dementia, and its incidence increases with age. Altered antioxidant systems and inflammation have an important role in the etiology of neurodegenerative disorders. In this study, we evaluated the effects of Hericium erinaceus, a nutritional mushroom with important antioxidant effects, in a rat model of AD. Animals were injected with 70 mg/Kg of AlCl3 daily for 6 weeks, and Hericium erinaceus was administered daily by gavage. Before the experiment’s end date, behavioral test training was performed. At the end of the study, behavioral changes were assessed, and the animals were euthanized. Brain tissues were harvested for further analysis. AlCl3 mainly accumulates in the hippocampus, the principal region of the brain involved in memory functions and learning. Hericium erinaceus administration reduced behavioral changes and hippocampal neuronal degeneration. Additionally, it reduced phosphorylated Tau levels, aberrant APP overexpression, and β-amyloid accumulation. Moreover, Hericium erinaceus decreased the pro-oxidative and pro-inflammatory hippocampal alterations induced by AD. In particular, it reduced the activation of the NLRP3 inflammasome components, usually activated by increased oxidative stress during AD. Collectively, our results showed that Hericium erinaceus has protective effects on behavioral alteration and histological modification associated with AD due to the modulation of the oxidative and inflammatory pathways, as well as regulating cellular brain stress.
Collapse
|
40
|
D’Amico R, Monaco F, Siracusa R, Cordaro M, Fusco R, Peritore AF, Gugliandolo E, Crupi R, Cuzzocrea S, Di Paola R, Impellizzeri D, Genovese T. Ultramicronized Palmitoylethanolamide in the Management of Sepsis-Induced Coagulopathy and Disseminated Intravascular Coagulation. Int J Mol Sci 2021; 22:ijms222111388. [PMID: 34768820 PMCID: PMC8583705 DOI: 10.3390/ijms222111388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022] Open
Abstract
Disseminated intravascular coagulation (DIC) is a severe condition characterized by the systemic formation of microthrombi complicated with bleeding tendency and organ dysfunction. In the last years, it represents one of the most frequent consequences of coronavirus disease 2019 (COVID-19). The pathogenesis of DIC is complex, with cross-talk between the coagulant and inflammatory pathways. The objective of this study is to investigate the anti-inflammatory action of ultramicronized palmitoylethanolamide (um-PEA) in a lipopolysaccharide (LPS)-induced DIC model in rats. Experimental DIC was induced by continual infusion of LPS (30 mg/kg) for 4 h through the tail vein. Um-PEA (30 mg/kg) was given orally 30 min before and 1 h after the start of intravenous infusion of LPS. Results showed that um-PEA reduced alteration of coagulation markers, as well as proinflammatory cytokine release in plasma and lung samples, induced by LPS infusion. Furthermore, um-PEA also has the effect of preventing the formation of fibrin deposition and lung damage. Moreover, um-PEA was able to reduce the number of mast cells (MCs) and the release of its serine proteases, which are also necessary for SARS-CoV-2 infection. These results suggest that um-PEA could be considered as a potential therapeutic approach in the management of DIC and in clinical implications associated to coagulopathy and lung dysfunction, such as COVID-19.
Collapse
Affiliation(s)
- Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (R.D.); (R.S.); (R.F.); (A.F.P.); (D.I.); (T.G.)
| | - Francesco Monaco
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98166 Messina, Italy; (F.M.); (M.C.)
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (R.D.); (R.S.); (R.F.); (A.F.P.); (D.I.); (T.G.)
| | - Marika Cordaro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98166 Messina, Italy; (F.M.); (M.C.)
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (R.D.); (R.S.); (R.F.); (A.F.P.); (D.I.); (T.G.)
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (R.D.); (R.S.); (R.F.); (A.F.P.); (D.I.); (T.G.)
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (E.G.); (R.C.)
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (E.G.); (R.C.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (R.D.); (R.S.); (R.F.); (A.F.P.); (D.I.); (T.G.)
- Correspondence: (S.C.); (R.D.P.); Tel.: +39-090-676-5208 (S.C. & R.D.P.)
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (R.D.); (R.S.); (R.F.); (A.F.P.); (D.I.); (T.G.)
- Correspondence: (S.C.); (R.D.P.); Tel.: +39-090-676-5208 (S.C. & R.D.P.)
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (R.D.); (R.S.); (R.F.); (A.F.P.); (D.I.); (T.G.)
| | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (R.D.); (R.S.); (R.F.); (A.F.P.); (D.I.); (T.G.)
| |
Collapse
|
41
|
Aflatoxin B1 Toxicity in Zebrafish Larva ( Danio rerio): Protective Role of Hericium erinaceus. Toxins (Basel) 2021; 13:toxins13100710. [PMID: 34679002 PMCID: PMC8541241 DOI: 10.3390/toxins13100710] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Aflatoxin B1 (AFB1), a secondary metabolite produced by fungi of the genus Aspergillus, has been found among various foods as well as in fish feed. However, the effects of AFB1 on fish development and its associated toxic mechanism are still unclear. In the present study, we confirmed the morphological alterations in zebrafish embryos and larvae after exposure to different AFB1 doses as well as the oxidative stress pathway that is involved. Furthermore, we evaluated the potentially protective effect of Hericium erinaceus extract, one of the most characterized fungal extracts, with a focus on the nervous system. Treating the embryos 6 h post fertilization (hpf) with AFB1 at 50 and 100 ng/mL significantly increased oxidative stress and induced malformations in six-day post-fertilization (dpf) zebrafish larvae. The evaluation of lethal and developmental endpoints such as hatching, edema, malformations, abnormal heart rate, and survival rate were evaluated after 96 h of exposure. Hericium inhibited the morphological alterations of the larvae as well as the increase in oxidative stress and lipid peroxidation. In conclusion: our study suggests that a natural extract such as Hericium may play a partial role in promoting antioxidant defense systems and may contrast lipid peroxidation in fish development by counteracting the AFB1 toxicity mechanism.
Collapse
|
42
|
Chen CS, Pan BY, Tsai PH, Chen FY, Yang WC, Shen MY. Kansuinine A Ameliorates Atherosclerosis and Human Aortic Endothelial Cell Apoptosis by Inhibiting Reactive Oxygen Species Production and Suppressing IKKβ/IκBα/NF-κB Signaling. Int J Mol Sci 2021; 22:ijms221910309. [PMID: 34638650 PMCID: PMC8508741 DOI: 10.3390/ijms221910309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species (ROS)-induced vascular endothelial cell apoptosis is strongly associated with atherosclerosis progression. Herein, we aimed to examine whether Kansuinine A (KA), extracted from Euphorbia kansui L., prevents atherosclerosis development in a mouse model and inhibits cell apoptosis through oxidative stress reduction. Atherosclerosis development was analyzed in apolipoprotein E-deficient (ApoE-/-) mice fed a high-fat diet (HFD) using Oil Red O staining and H&E staining. Human aortic endothelial cells (HAECs) were treated with KA, followed by hydrogen peroxide (H2O2), to investigate the KA-mediated inhibition of ROS-induced oxidative stress and cell apoptosis. Oil Red O staining and H&E staining showed that atherosclerotic lesion size was significantly smaller in the aortic arch of ApoE-/- mice in the HFD+KA group than that in the aortic arch of those in the HFD group. Further, KA (0.1-1.0 μM) blocked the H2O2-induced death of HAECs and ROS generation. The H2O2-mediated upregulation of phosphorylated IKKβ, phosphorylated IκBα, and phosphorylated NF-κB was suppressed by KA. KA also reduced the Bax/Bcl-2 ratio and cleaved caspase-3 expression, preventing H2O2-induced vascular endothelial cell apoptosis. Our results indicate that KA may protect against ROS-induced endothelial cell apoptosis and has considerable clinical potential in the prevention of atherosclerosis and cardiovascular diseases.
Collapse
Affiliation(s)
- Chen-Sheng Chen
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, 91, Hsueh-Shih Rd., Taichung 40402, Taiwan;
| | - Bo-Yi Pan
- Graduate Institute of Biomedical Sciences, China Medical University, 91, Hsueh-Shih Rd., Taichung 40402, Taiwan; (B.-Y.P.); (P.-H.T.); (F.-Y.C.)
| | - Ping-Hsuan Tsai
- Graduate Institute of Biomedical Sciences, China Medical University, 91, Hsueh-Shih Rd., Taichung 40402, Taiwan; (B.-Y.P.); (P.-H.T.); (F.-Y.C.)
| | - Fang-Yu Chen
- Graduate Institute of Biomedical Sciences, China Medical University, 91, Hsueh-Shih Rd., Taichung 40402, Taiwan; (B.-Y.P.); (P.-H.T.); (F.-Y.C.)
| | - Wen-Chin Yang
- Agricultural Biotechnology Research Center, Academia Sinica, 128, Sec. 2, Academia Rd., Nankang, Taipei 11529, Taiwan;
| | - Ming-Yi Shen
- Graduate Institute of Biomedical Sciences, China Medical University, 91, Hsueh-Shih Rd., Taichung 40402, Taiwan; (B.-Y.P.); (P.-H.T.); (F.-Y.C.)
- Department of Medical Research, China Medical University Hospital, 91, Hsueh-Shih Rd., Taichung 40402, Taiwan
- Department of Nursing, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan
- Correspondence: ; Tel.: +886-4-2205-3366
| |
Collapse
|
43
|
Assessment of Oxidative Stress Markers in Hypothermic Preservation of Transplanted Kidneys. Antioxidants (Basel) 2021; 10:antiox10081263. [PMID: 34439511 PMCID: PMC8389232 DOI: 10.3390/antiox10081263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) after renal transplantation is a complex biochemical process. The first component is an ischemic phase during kidney storage. The second is reperfusion, the main source of oxidative stress. This study aimed to analyze the activity of enzymes and concentrations of non-enzymatic compounds involved in the antioxidant defense mechanisms: glutathione (GSH), glutathione peroxidase (GPX), catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), glutathione transferase (GST), thiobarbituric acid reactive substances (TBARS), malondialdehyde (MDA), measured in preservation fluid before transplantation of human kidneys (KTx) grafted from brain dead donors. The study group (N = 66) was divided according to the method of kidney storage: Group 1—hypothermic machine perfusion (HMP) in LifePort perfusion pump, n1 = 26, and Group 2—static cold storage (SCS), n2 = 40. The measurements of kidney function parameters, blood count, and adverse events were performed at constant time points during 7-day hospitalization and 3-month follow-up. Kidney perfusate in Group 2 was characterized by significantly more acidic pH (p < 0.0001), higher activity of GPX [U/mgHb] (p < 0.05) and higher concentration of MDA [μmol/L] (p < 0.05). There was a statistically significant improvement of kidney function and specific blood count alterations concerning storage method in repeated measures. There were aggregations of significant correlations (p < 0.05) between kidney function parameters after KTx and oxidative stress markers: diuresis & CAT, Na+ & CAT, K+ & GPX, urea & GR. There were aggregations of significant correlations (p < 0.05) between recipient blood count and oxidative stress markers: CAT & MON, SOD & WBC, SOD & MON. Study groups demonstrated differences concerning the method of kidney storage. A significant role of recipient’s gender, gender matching, preservation solution, and perfusate pH was not confirmed, however, basing on analyzed data, the well-established long-term beneficial impact of HMP on the outcome of transplanted kidneys might partially depend on the intensity of IRI ischemic phase and oxidative stress, reflected by the examined biomarkers.
Collapse
|
44
|
Chen C, Ai Q, Wei Y. Hydroxytyrosol protects against cisplatin-induced nephrotoxicity via attenuating CKLF1 mediated inflammation, and inhibiting oxidative stress and apoptosis. Int Immunopharmacol 2021; 96:107805. [PMID: 34162164 DOI: 10.1016/j.intimp.2021.107805] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022]
Abstract
Cisplatin (CDDP) is widely used as a broad-spectrum anticancer chemotherapeutic drug, often giving rise to nephrotoxicity due to the enhancement of inflammation, oxidative stress, and apoptosis. Hydroxytyrosol (HT), a representative and effective polyphenol component of Fructus Ligustri lucidi, has been known to have anti-inflammatory and anti-oxidative effects. Chemokine-like factor 1 (CKLF1) is a novel chemokine participates in inflammation and related to various inflammatory diseases. The present study is to investigate the protective effects and mechanism of HT on CDDP injured HK-2 cells and kidneys of mice. HT protected HK-2 cells against CDDP toxicity, and improved CDDP-induced histopathalogical damage and renal dysfunction in mice. HT suppressed the increased expression of CKLF1 and NF-κB activation caused by CDDP, attenuating followed inflammatory response manifested by declined levels of TNF-α and IL-1β. The protective effects of HT against CDDP-induced injury were partly reversed on CKLF1 overexpressed HK-2 cells, which shown by decreased cell viability and increased activation of NF-κB. HT also up-regulated the activities of GSH and SOD decreased by CDDP, and inhibited the increased production of MDA and NO induced by CDDP. Moreover, HT also inhibited CDDP-induced apoptosis in kidneys of mice. Our results demonstrated that HT protected CDDP-induced renal injury through inhibiting CKLF1 mediated inflammatory pathway, and also by anti-oxidative stress and anti-apoptosis. HT may be an effective therapeutic agent in CDDP-induced nephrotoxicity.
Collapse
Affiliation(s)
- Chen Chen
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China.
| | - Qidi Ai
- Hunan University of Traditional Chinese Medicine, Changsha 410208, China
| | - Yuhui Wei
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
45
|
D’Amico R, Genovese T, Cordaro M, Siracusa R, Gugliandolo E, Peritore AF, Interdonato L, Crupi R, Cuzzocrea S, Di Paola R, Fusco R, Impellizzeri D. Palmitoylethanolamide/Baicalein Regulates the Androgen Receptor Signaling and NF-κB/Nrf2 Pathways in Benign Prostatic Hyperplasia. Antioxidants (Basel) 2021; 10:antiox10071014. [PMID: 34202665 PMCID: PMC8300753 DOI: 10.3390/antiox10071014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 12/16/2022] Open
Abstract
Benign prostatic hyperplasia (BPH) is the most common benign tumor in males. Androgen/androgen receptor (AR) signaling plays a key role in the development of BPH; its alterations cause an imbalance between prostate cell growth and apoptosis. Furthermore, chronic inflammation and oxidative stress, which are common conditions in BPH, contribute to disrupting the homeostasis between cell proliferation and cell death. With this background in mind, we investigated the effect of ultramicronized palmitoylethanolamide (um-PEA), baicalein (Baic) and co-ultramicronized um-PEA/Baic in a fixed ratio of 10:1 in an experimental model of BPH. BPH was induced in rats by daily administration of testosterone propionate (3 mg/kg) for 14 days. Baic (1 mg/kg), um-PEA (9 mg/kg) and um-PEA/Baic (10 mg/kg) were administered orally every day for 14 days. This protocol led to alterations in prostate morphology and increased levels of dihydrotestosterone (DHT) and of androgen receptor and 5α-reductase expression. Moreover, testosterone injections induced a significant increase in markers of inflammation, apoptosis and oxidative stress. Our results show that um-PEA/Baic is capable of decreasing prostate weight and DHT production in BPH-induced rats, as well as being able to modulate apoptotic and inflammatory pathways and oxidative stress. These effects were most likely related to the synergy between the anti-inflammatory properties of um-PEA and the antioxidant effects of Baic. These results support the view that um-PEA/Baic should be further studied as a potent candidate for the management of BPH.
Collapse
Affiliation(s)
- Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (R.D.); (T.G.); (R.S.); (A.F.P.); (L.I.); (R.F.); (D.I.)
| | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (R.D.); (T.G.); (R.S.); (A.F.P.); (L.I.); (R.F.); (D.I.)
| | - Marika Cordaro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98166 Messina, Italy;
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (R.D.); (T.G.); (R.S.); (A.F.P.); (L.I.); (R.F.); (D.I.)
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (E.G.); (R.C.)
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (R.D.); (T.G.); (R.S.); (A.F.P.); (L.I.); (R.F.); (D.I.)
| | - Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (R.D.); (T.G.); (R.S.); (A.F.P.); (L.I.); (R.F.); (D.I.)
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (E.G.); (R.C.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (R.D.); (T.G.); (R.S.); (A.F.P.); (L.I.); (R.F.); (D.I.)
- Correspondence: (S.C.); (R.D.P.); Tel.: +39-090-676-5208 (S.C. & R.D.P.)
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (R.D.); (T.G.); (R.S.); (A.F.P.); (L.I.); (R.F.); (D.I.)
- Correspondence: (S.C.); (R.D.P.); Tel.: +39-090-676-5208 (S.C. & R.D.P.)
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (R.D.); (T.G.); (R.S.); (A.F.P.); (L.I.); (R.F.); (D.I.)
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (R.D.); (T.G.); (R.S.); (A.F.P.); (L.I.); (R.F.); (D.I.)
| |
Collapse
|
46
|
D’Amico R, Fusco R, Siracusa R, Impellizzeri D, Peritore AF, Gugliandolo E, Interdonato L, Sforza AM, Crupi R, Cuzzocrea S, Genovese T, Cordaro M, Di Paola R. Inhibition of P2X7 Purinergic Receptor Ameliorates Fibromyalgia Syndrome by Suppressing NLRP3 Pathway. Int J Mol Sci 2021; 22:ijms22126471. [PMID: 34208781 PMCID: PMC8234677 DOI: 10.3390/ijms22126471] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
Fibromyalgia is a chronic condition characterized by persistent widespread pain that significantly reduces quality of life in patients. The purinergic P2X7 receptor (P2X7R) seems to be involved in different pain states and neuroinflammation. The purpose of this study is to investigate the positive effects of P2X7R inhibition by the antagonist Brilliant Blue G (BBG) in a rat model of reserpine-induced fibromyalgia. Sprague-Dawley male rats were injected with 1 mg/kg of reserpine for three consecutive days. Later, animals were administered BBG (50 mg/kg) intraperitoneally for seven days. Reserpine injections induced a significant increase in pain pro-inflammatory mediators as well as a significant increase in neuroinflammation. Chronic pain, in turn, led to depressive-like symptoms and reduced neurogenesis. Blockage of P2X7R by BBG administrations is able to attenuate the behavioral deficits, pain mediators and microglial activation induced by reserpine injection. Additionally, BBG prevents NLRP3 inflammasome activation and consequently the release of active interleukin (IL)-1 and IL-18, involved in the activation of nociceptors. In conclusion, these results suggest that inhibition of P2X7R should be further investigated to develop a potential approach for the management of fibromyalgia.
Collapse
Affiliation(s)
- Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.F.); (R.S.); (D.I.); (A.F.P.); (L.I.); or (A.M.S.); (R.D.P.)
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.F.); (R.S.); (D.I.); (A.F.P.); (L.I.); or (A.M.S.); (R.D.P.)
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.F.); (R.S.); (D.I.); (A.F.P.); (L.I.); or (A.M.S.); (R.D.P.)
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.F.); (R.S.); (D.I.); (A.F.P.); (L.I.); or (A.M.S.); (R.D.P.)
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.F.); (R.S.); (D.I.); (A.F.P.); (L.I.); or (A.M.S.); (R.D.P.)
| | - Enrico Gugliandolo
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (E.G.); (R.C.)
| | - Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.F.); (R.S.); (D.I.); (A.F.P.); (L.I.); or (A.M.S.); (R.D.P.)
| | - Andrea Maria Sforza
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.F.); (R.S.); (D.I.); (A.F.P.); (L.I.); or (A.M.S.); (R.D.P.)
| | - Rosalia Crupi
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (E.G.); (R.C.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.F.); (R.S.); (D.I.); (A.F.P.); (L.I.); or (A.M.S.); (R.D.P.)
- Correspondence: (S.C.); (T.G.); Tel.: +39-090-676-5208 (S.C. & T.G.)
| | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.F.); (R.S.); (D.I.); (A.F.P.); (L.I.); or (A.M.S.); (R.D.P.)
- Correspondence: (S.C.); (T.G.); Tel.: +39-090-676-5208 (S.C. & T.G.)
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, via Consolare Valeria, 98125 Messina, Italy;
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.F.); (R.S.); (D.I.); (A.F.P.); (L.I.); or (A.M.S.); (R.D.P.)
| |
Collapse
|
47
|
Hidrox ® Roles in Neuroprotection: Biochemical Links between Traumatic Brain Injury and Alzheimer's Disease. Antioxidants (Basel) 2021; 10:antiox10050818. [PMID: 34065584 PMCID: PMC8161307 DOI: 10.3390/antiox10050818] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 12/22/2022] Open
Abstract
Traumatic brain injuries (TBI) are a serious public-health problem. Furthermore, subsequent TBI events can compromise TBI patients’ quality of life. TBI is linked to a number of long- and short-term complications such as cerebral atrophy and risk of developing dementia and Alzheimer’s Disease (AD). Following direct TBI damage, oxidative stress and the inflammatory response lead to tissue injury-associated neurodegenerative processes that are characteristic of TBI-induced secondary damage. Hidrox® showed positive effects in preclinical models of toxic oxidative stress and neuroinflammation; thus, the aim of this study was to evaluate the effect of Hidrox® administration on TBI-induced secondary injury and on the propagation of the AD-like neuropathology. Hidrox® treatment reduced histological damage after controlled cortical impact. Form a molecular point of view, hydroxytyrosol is able to preserve the cellular redox balance and protein homeostasis by activating the Nrf2 pathway and increasing the expression of phase II detoxifying enzymes such as HO-1, SOD, Catalase, and GSH, thus counteracting the neurodegenerative damage. Additionally, Hidrox® showed anti-inflammatory effects by reducing the activation of the NFkB pathway and related cytokines overexpression. From a behavioral point of view, Hidrox® treatment ameliorated the cognitive dysfunction and memory impairment induced by TBI. Additionally, Hidrox® was associated with a significant increased number of hippocampal neurons in the CA3 region, which were reduced post-TBI. In particular, Hidrox® decreased AD-like phenotypic markers such as ß-amyloid accumulation and APP and p-Tau overexpression. These findings indicate that Hidrox® could be a valuable treatment for TBI-induced secondary injury and AD-like pathological features.
Collapse
|
48
|
Cordaro M, Trovato Salinaro A, Siracusa R, D’Amico R, Impellizzeri D, Scuto M, Ontario ML, Interdonato L, Crea R, Fusco R, Cuzzocrea S, Di Paola R, Calabrese V. Hidrox ® and Endometriosis: Biochemical Evaluation of Oxidative Stress and Pain. Antioxidants (Basel) 2021; 10:720. [PMID: 34064310 PMCID: PMC8147870 DOI: 10.3390/antiox10050720] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 12/26/2022] Open
Abstract
Endometriosis is a gynecological and painful condition affecting women of reproductive age. It is characterized by dysfunctional endometrium-like implants outside of the uterine cavity. The purpose of this study was to evaluate the effects of Hidrox®, an aqueous extract of olive pulp containing hydroxytyrosol, on endometriotic lesions associated with pro-oxidative alterations and pain-like behaviors. Endometriosis was induced by intraperitoneal injection of uterine fragments, and Hidrox® was administered daily. At the end of the 14-day treatment, behavioral alterations were assessed and hippocampal tissues were collected. Laparotomy was performed, and the endometrial implants were harvested for histological and biochemical analysis. Hidrox® treatment reduced endometriotic implant area, diameter and volumes. Vehicle-treated rats showed lesional fibrosis, epithelial-mesenchymal transition and fibroblast-myofibroblast transdifferentiation, angiogenesis and pro-oxidative alterations in the peritoneal cavity. Hidrox® treatment reduced the aniline blue-stained area, α-smooth muscle actin (α-sma) and CD34 positive expressions. Moreover, it reduced mast cell recruitment into the lesions, myeloperoxidase activity and lipid peroxidation and increased superoxide dismutase (SOD) activity and glutathione levels in the endometrial explants. In the peritoneal fluid, Hidrox® treatment reduced interleukin (IL)-1β, IL2, IL6, tumor necrosis factor-α (TNF-α) and vascular endothelial grow factor (VEGF) levels increased by the disease. Hidrox® administration also reduced peripheral and visceral sensibility as shown by the behavioral tests (open field test, hot plate test, elevated plus maze test and acetic-acid-induced abdominal contractions). Animals treated with Hidrox® also showed reduced blood-brain barrier permeability and mast cell infiltration in the hippocampus, as well as astrocyte and microglia activation and brain oxidative status restoring brain-derived neurotrophic factor (BDNF) protein expression and increasing Nuclear factor erythroid 2-related factor 2 (Nfr2) nuclear translocation. In conclusion, Hidrox® displayed potential ameliorative effects on endometriotic implants and related pain-induced behaviors due to its potent antioxidative properties.
Collapse
Affiliation(s)
- Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (M.C.); (R.D.P.); (V.C.)
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy; (A.T.S.); (M.S.); (M.L.O.)
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.S.); (R.D.); (D.I.); (L.I.)
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.S.); (R.D.); (D.I.); (L.I.)
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.S.); (R.D.); (D.I.); (L.I.)
| | - Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy; (A.T.S.); (M.S.); (M.L.O.)
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy; (A.T.S.); (M.S.); (M.L.O.)
| | - Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.S.); (R.D.); (D.I.); (L.I.)
| | - Roberto Crea
- Oliphenol LLC., 26225 Eden Landing Road, Unit C, Hayward, CA 94545, USA;
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.S.); (R.D.); (D.I.); (L.I.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.S.); (R.D.); (D.I.); (L.I.)
| | - Rosanna Di Paola
- Department of Biomedical, Dental and Morphological and Functional Imaging University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (M.C.); (R.D.P.); (V.C.)
| | - Vittorio Calabrese
- Department of Biomedical, Dental and Morphological and Functional Imaging University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (M.C.); (R.D.P.); (V.C.)
| |
Collapse
|
49
|
Jabłońska B, Mrowiec S. Nutritional Support in Patients with Severe Acute Pancreatitis-Current Standards. Nutrients 2021; 13:1498. [PMID: 33925138 PMCID: PMC8145288 DOI: 10.3390/nu13051498] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/20/2021] [Accepted: 04/25/2021] [Indexed: 12/14/2022] Open
Abstract
Severe acute pancreatitis (SAP) leads to numerous inflammatory and nutritional disturbances. All SAP patients are at a high nutritional risk. It has been proven that proper nutrition significantly reduces mortality rate and the incidence of the infectious complications in SAP patients. According to the literature, early (started within 24-48 h) enteral nutrition (EN) is optimal in most patients. EN protects gut barrier function because it decreases gastrointestinal dysmotility secondary to pancreatic inflammation. Currently, the role of parenteral nutrition (PN) in SAP patients is limited to patients in whom EN is not possible or contraindicated. Early versus delayed EN, nasogastric versus nasojejunal tube for EN, EN versus PN in SAP patients and the role of immunonutrition (IN) in SAP patients are discussed in this review.
Collapse
Affiliation(s)
- Beata Jabłońska
- Department of Digestive Tract Surgery, Medical University of Silesia, Medyków 14 St., 40752 Katowice, Poland;
| | | |
Collapse
|
50
|
Swentek L, Chung D, Ichii H. Antioxidant Therapy in Pancreatitis. Antioxidants (Basel) 2021; 10:657. [PMID: 33922756 PMCID: PMC8144986 DOI: 10.3390/antiox10050657] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatitis is pathologic inflammation of the pancreas characterized by acinar cell destruction and oxidative stress. Repeated pancreatic insults can result in the development of chronic pancreatitis, characterized by irreversible fibrosis of the pancreas and many secondary sequelae, ultimately leading to the loss of this important organ. We review acute pancreatitis, chronic pancreatitis, and pancreatitis-related complications. We take a close look at the pathophysiology with a focus on oxidative stress and how it contributes to the complications of the disease. We also take a deep dive into the evolution and current status of advanced therapies for management including dietary modification, antioxidant supplementation, and nuclear factor erythroid-2-related factor 2-Kelch-like ECH-associated protein 1(Nrf2-keap1) pathway activation. In addition, we discuss the surgeries aimed at managing pain and preventing further endocrine dysfunction, such as total pancreatectomy with islet auto-transplantation.
Collapse
Affiliation(s)
| | | | - Hirohito Ichii
- Department of Surgery, University of California, Irvine, CA 92868, USA; (L.S.); (D.C.)
| |
Collapse
|