1
|
Loivamaa I, Sillanpää A, Deptula P, Chamlagain B, Edelmann M, Auvinen P, Nyman TA, Savijoki K, Piironen V, Varmanen P. Aerobic adaptation and metabolic dynamics of Propionibacterium freudenreichii DSM 20271: insights from comparative transcriptomics and surfaceome analysis. mSystems 2024; 9:e0061524. [PMID: 39345151 PMCID: PMC11494915 DOI: 10.1128/msystems.00615-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/08/2024] [Indexed: 10/01/2024] Open
Abstract
Propionibacterium freudenreichii (PFR) DSM 20271T is a bacterium known for its ability to thrive in diverse environments and to produce vitamin B12. Despite its anaerobic preference, recent studies have elucidated its ability to prosper in the presence of oxygen, prompting a deeper exploration of its physiology under aerobic conditions. Here, we investigated the response of DSM 20271T to aerobic growth by employing comparative transcriptomic and surfaceome analyses alongside metabolite profiling. Cultivation under controlled partial pressure of oxygen (pO2) conditions revealed significant increases in biomass formation and altered metabolite production, notably of vitamin B12, pseudovitamin-B12, propionate, and acetate, under aerobic conditions. Transcriptomic analysis identified differential expression of genes involved in lactate metabolism, tricarboxylic acid cycle, and electron transport chain, suggesting metabolic adjustments to aerobic environments. Moreover, surfaceome analysis unveiled growth environment-dependent changes in surface protein abundance, with implications for adaptation to atmospheric conditions. Supplementation experiments with key compounds highlighted the potential for enhancing aerobic growth, emphasizing the importance of iron and α-ketoglutarate availability. Furthermore, in liquid culture, FeSO4 supplementation led to increased heme production and reduced vitamin B12 production, highlighting the impact of oxygen and iron availability on the metabolic pathways. These findings deepen our understanding of PFR's physiological responses to oxygen availability and offer insights for optimizing its growth in industrial applications. IMPORTANCE The study of the response of Propionibacterium freudenreichii to aerobic growth is crucial for understanding how this bacterium adapts to different environments and produces essential compounds like vitamin B12. By investigating its physiological changes under aerobic conditions, we can gain insights into its metabolic adjustments and potential for enhanced growth. These findings not only deepen our understanding of P. freudenreichii's responses to oxygen availability but also offer valuable information for optimizing its growth in industrial applications. This research sheds light on the adaptive mechanisms of this bacterium, providing a foundation for further exploration and potential applications in various fields.
Collapse
Affiliation(s)
- Iida Loivamaa
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Annika Sillanpää
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Paulina Deptula
- Department of Food Sciences, University of Copenhagen, Frederiksberg, Denmark
- Institute of Biotechnology, DNA Sequencing and Genomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Bhawani Chamlagain
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Minnamari Edelmann
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Petri Auvinen
- Institute of Biotechnology, DNA Sequencing and Genomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Tuula A. Nyman
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Kirsi Savijoki
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
- Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, Finland
| | - Vieno Piironen
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Pekka Varmanen
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Kwoji ID, Aiyegoro OA, Okpeku M, Adeleke MA. Elucidating the Mechanisms of Cell-to-Cell Crosstalk in Probiotics Co-culture: A Proteomics Study of Limosilactobacillus reuteri ZJ625 and Ligilactobacillus salivarius ZJ614. Probiotics Antimicrob Proteins 2024; 16:1817-1835. [PMID: 37581751 PMCID: PMC11445297 DOI: 10.1007/s12602-023-10133-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 08/16/2023]
Abstract
Limosilactobacillus reuteri ZJ625 and Ligilactobacillus salivarius ZJ614 are potential probiotic bacteria with improved benefits when administered to the host as a multi-strain preparation. To elucidate the mechanisms of cell-to-cell crosstalk between these two strains, we studied their intracellular and extracellular proteomes in co-culture by liquid-chromatography mass-spectrometry (LC-MS) using Dionex Nano-RSLC and fusion mass spectrometer. The experiment consisted of five biological replicates, and samples were collected during the mid-exponential growth phase. The quantitative proteomic profiles revealed several differentially expressed proteins (DEPs), which are down- or up-regulated between and within groups for both the intracellular and extracellular proteomes. These DEPs include proteins synthesising autoinducer-2, a sensor compound for cell-to-cell bacterial crosstalk during quorum sensing in mixed culture. Other important DEPs identified include enolase, phosphoglycerate kinase, and l-lactate dehydrogenase, which play roles in carbohydrate metabolism. Proteins associated with transcription, ATP production and transport across the membrane, DNA repair, and those with the potential to bind to the host epithelium were also identified. The post-translational modifications associated with the proteins include oxidation, deamidation, and ammonia loss. Importantly, this study revealed a significant expression of S-ribosylhomocysteine lyase (luxS) involved in synthesising autoinducer-2 that plays important roles in quorum sensing, aiding bacterial cell-to-cell crosstalk in co-cultures. The proteome of L. salivarius ZJ614 was most affected when co-cultured with L. reuteri ZJ625. In contrast, omitting some medium components from the defined medium exerted more effects on L. reuteri ZJ625 than L. salivarius ZJ614.
Collapse
Affiliation(s)
- Iliya Dauda Kwoji
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| | - Olayinka Ayobami Aiyegoro
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, Northwest, South Africa
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| | - Matthew Adekunle Adeleke
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa.
| |
Collapse
|
3
|
Quiroz-Castañeda RE, Aguilar-Díaz H, Coronado-Villanueva E, Catalán-Ochoa DI, Amaro-Estrada I. Molecular Identification and Bioinformatics Analysis of Anaplasma marginale Moonlighting Proteins as Possible Antigenic Targets. Pathogens 2024; 13:845. [PMID: 39452716 PMCID: PMC11510912 DOI: 10.3390/pathogens13100845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/13/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Diseases of veterinary importance, such as bovine Anaplasmosis, cause significant economic losses. Due to this, the study of various proteins of the causal agent Anaplasma marginale has focused on surface proteins. However, a vaccine for this disease is not yet available. To this end, in this work, moonlighting proteins (MLPs) are presented as an alternative approach for the design of immunogens against A. marginale. METHODS The proteins of the strain MEX-15-099-01 were analyzed, and its MLPs were identified. Subsequently, four virulence-associated MLP genes were selected and identified using PCR. The proteins were analyzed using a structural homology approach and the collection of B-cell epitopes was predicted for each MLP. Finally, a pair of AmEno peptides were synthesized and the antigenic potential was tested using an iELISA. RESULTS Our bioinformatics analysis revealed the potential of AmEno, AmGroEl, AmEF-Tu, and AmDnaK proteins as promising candidates for designing immunogens. The PCR allowed the gene sequence identification in the genome of the strain MEX-15-099-01. Notably, AmEno-derived synthetic peptides showed antigenicity in an ELISA. CONCLUSIONS Our study has shed light on the potential use of MLPs for immunogen design, demonstrating the antigenic potential of AmEno.
Collapse
|
4
|
Toci EM, Majumdar A, Meyers CLF. Aldehyde-based Activation of C2α-lactylthiamin Diphosphate Decarboxylation on Bacterial 1-deoxy-d-xylulose 5-phosphate Synthase. Chembiochem 2024:e202400558. [PMID: 39268973 DOI: 10.1002/cbic.202400558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
1-Deoxy-d-xylulose 5-phosphate synthase (DXPS) catalyzes the thiamin diphosphate (ThDP)-dependent formation of DXP from pyruvate (donor substrate) and d-glyceraldehyde 3-phosphate (d-GAP, acceptor substrate) in bacterial central metabolism. DXPS uses a ligand-gated mechanism in which binding of a small molecule "trigger" activates the first enzyme-bound intermediate, C2α-lactylThDP (LThDP), to form the reactive carbanion via LThDP decarboxylation. d-GAP is the natural acceptor substrate for DXPS and also serves a role as a trigger to induce LThDP decarboxylation in the gated step. Additionally, we have shown that O2 and d-glyceraldehyde (d-GA) can induce LThDP decarboxylation. We hypothesize this ligand-gated mechanism poises DXPS to sense and respond to cellular cues in metabolic remodeling during bacterial adaptation. Here we sought to characterize features of small molecule inducers of LThDP decarboxylation. Using a combination of CD, NMR and biochemical methods, we demonstrate that the α-hydroxy aldehyde moiety of d-GAP is sufficient to induce LThDP decarboxylation en route to DXP formation. A variety of aliphatic aldehydes also induce LThDP decarboxylation. The study highlights the capacity of DXPS to respond to different molecular cues, lending support to potential multifunctionality of DXPS and its metabolic regulation by this mechanism.
Collapse
Affiliation(s)
- Eucolona M Toci
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, United States
| | - Ananya Majumdar
- Biomolecular NMR Center, Johns Hopkins University, Baltimore, Maryland, 21218, United States
| | - Caren L Freel Meyers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, United States
| |
Collapse
|
5
|
Dhakephalkar T, Pisu V, Margale P, Chandras S, Shetty D, Wagh S, Dagar SS, Kapse N, Dhakephalkar PK. Strain-Dependent Adhesion Variations of Shouchella clausii Isolated from Healthy Human Volunteers: A Study on Cell Surface Properties and Potential Probiotic Benefits. Microorganisms 2024; 12:1771. [PMID: 39338446 PMCID: PMC11434523 DOI: 10.3390/microorganisms12091771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/30/2024] Open
Abstract
The probiotic potential of Shouchella clausii is widely recognized, but little is known about its adhesive properties. Hence, this study aims to investigate the adhesion potential and cell surface properties of four human-origin S. clausii strains (B619/R, B603/Nb, B106, and B637/Nm). We evaluated epithelial adhesion, Extracellular Matrix (ECM) binding, aggregation ability, and cell surface hydrophobicity and used genome analysis for validation. Our results demonstrate that adhesion capability is a strain-specific attribute, with significant variations observed among the four strains. B619/R, B603/Nb, and B106 displayed stronger adhesion properties than B637/Nm. Supplementary adhesion assays showed that B637/Nm displayed high hydrophobicity, significant auto-aggregation, and significant mucin-binding abilities. Conversely, B619/R, B603/Nb, and B106 had mildly hydrophobic surfaces and low aggregation abilities. Genome annotation revealed the presence of various adhesion proteins in four strains. Notably, the reduced adhesion potential of B637/Nm was supported by the absence of the cell wall surface anchor family protein (LPxTG motif), which is crucial for interactions with intestinal epithelial cells or mucus components. Further, docking studies provided insights into the interaction of adhesion proteins with gut mucins. These findings contribute to a better understanding of how S. clausii strains interact with the gut environment, facilitating the development of probiotic formulations tailored for improved gut health and well-being.
Collapse
Affiliation(s)
- Tanisha Dhakephalkar
- Hi Tech BioSciences India Ltd., Research & Development Centre, Plot No. 6 and 8, Ambadvet Industrial Estate, PO Paud, Pune 412108, Maharashtra, India
| | - Vaidehi Pisu
- Bioenergy Group, MACS-Agharkar Research Institute, G.G. Agarkar Road, Pune 411004, Maharashtra, India
- Department of Microbiology, Savitribai Phule Pune University, Ganeshkhind Rd., Aundh, Pune 411007, Maharashtra, India
| | - Prajakta Margale
- Bioenergy Group, MACS-Agharkar Research Institute, G.G. Agarkar Road, Pune 411004, Maharashtra, India
| | - Siddhi Chandras
- Bioenergy Group, MACS-Agharkar Research Institute, G.G. Agarkar Road, Pune 411004, Maharashtra, India
- Department of Microbiology, Savitribai Phule Pune University, Ganeshkhind Rd., Aundh, Pune 411007, Maharashtra, India
| | - Deepa Shetty
- Bioenergy Group, MACS-Agharkar Research Institute, G.G. Agarkar Road, Pune 411004, Maharashtra, India
| | - Shilpa Wagh
- Hi Tech BioSciences India Ltd., Research & Development Centre, Plot No. 6 and 8, Ambadvet Industrial Estate, PO Paud, Pune 412108, Maharashtra, India
| | - Sumit Singh Dagar
- Bioenergy Group, MACS-Agharkar Research Institute, G.G. Agarkar Road, Pune 411004, Maharashtra, India
- Department of Microbiology, Savitribai Phule Pune University, Ganeshkhind Rd., Aundh, Pune 411007, Maharashtra, India
| | - Neelam Kapse
- Bioenergy Group, MACS-Agharkar Research Institute, G.G. Agarkar Road, Pune 411004, Maharashtra, India
| | - Prashant K Dhakephalkar
- Bioenergy Group, MACS-Agharkar Research Institute, G.G. Agarkar Road, Pune 411004, Maharashtra, India
- Department of Microbiology, Savitribai Phule Pune University, Ganeshkhind Rd., Aundh, Pune 411007, Maharashtra, India
| |
Collapse
|
6
|
Liu D, Bhunia AK. Anchorless Bacterial Moonlighting Metabolic Enzymes Modulate the Immune System and Contribute to Pathogenesis. ACS Infect Dis 2024; 10:2551-2566. [PMID: 39066728 DOI: 10.1021/acsinfecdis.4c00323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Moonlighting proteins (MPs), characterized by their ability to perform multiple physiologically unrelated functions without alterations to their primary structures, represent a fascinating class of biomolecules with significant implications for host-pathogen interactions. This Review highlights the emerging importance of metabolic moonlighting proteins (MetMPs) in bacterial pathogenesis, focusing on their non-canonical secretion and unconventional surface anchoring mechanisms. Despite lacking typical signal peptides and anchoring motifs, MetMPs such as acetaldehyde alcohol dehydrogenase (AdhE) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) are secreted and localized to the bacterial surface under stress conditions, facilitating host colonization and immune evasion. The secretion of MetMPs, often observed during conditions such as resource scarcity or infection, suggests a complex regulation akin to the overexpression of heat shock proteins in response to environmental stresses. This Review proposes two potential pathways for MetMP secretion: membrane damage-induced permeability and co-transportation with traditionally secreted proteins, highlighting a remarkable bacterial adaptability. Biophysically, surface anchoring of MetMPs is driven by electrostatic interactions, bypassing the need for conventional anchoring sequences. This mechanism is exemplified by the interaction between the bifunctional enzyme AdhE (known as Listeria adhesion protein, LAP) and the internalin B (InlB) in Listeria monocytogenes, which is mediated by charged residues facilitating adhesion to host tissues. Furthermore, MetMPs play critical roles in iron homeostasis, immune modulation, and evasion, underscoring their multifaceted roles in bacterial pathogenicity. The intricate dynamics of MetMP secretion and anchoring underline the need for further research to unravel the molecular mechanisms underpinning these processes, offering potential new targets for therapeutic intervention against bacterial infections.
Collapse
Affiliation(s)
- Dongqi Liu
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| | - Arun K Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
7
|
Adeleye SA, Yadavalli SS. Queuosine biosynthetic enzyme, QueE moonlights as a cell division regulator. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.31.565030. [PMID: 37961685 PMCID: PMC10635034 DOI: 10.1101/2023.10.31.565030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In many organisms, stress responses to adverse environments can trigger secondary functions of certain proteins by altering protein levels, localization, activity, or interaction partners. Escherichia coli cells respond to the presence of specific cationic antimicrobial peptides by strongly activating the PhoQ/PhoP two-component signaling system, which regulates genes important for growth under this stress. As part of this pathway, a biosynthetic enzyme called QueE, which catalyzes a step in the formation of queuosine (Q) tRNA modification is upregulated. When cellular QueE levels are high, it co-localizes with the central cell division protein FtsZ at the septal site, blocking division and resulting in filamentous growth. Here we show that QueE affects cell size in a dose-dependent manner. Using alanine scanning mutagenesis of amino acids in the catalytic active site, we pinpoint particular residues in QueE that contribute distinctly to each of its functions - Q biosynthesis or regulation of cell division, establishing QueE as a moonlighting protein. We further show that QueE orthologs from enterobacteria like Salmonella typhimurium and Klebsiella pneumoniae also cause filamentation in these organisms, but the more distant counterparts from Pseudomonas aeruginosa and Bacillus subtilis lack this ability. By comparative analysis of E. coli QueE with distant orthologs, we elucidate a unique region in this protein that is responsible for QueEs secondary function as a cell division regulator. A dual-function protein like QueE is an exception to the conventional model of one gene, one enzyme, one function, which has divergent roles across a range of fundamental cellular processes including RNA modification and translation to cell division and stress response.
Collapse
|
8
|
Bhattacharjee A, Sahoo OS, Sarkar A, Bhattacharya S, Chowdhury R, Kar S, Mukherjee O. Infiltration to infection: key virulence players of Helicobacter pylori pathogenicity. Infection 2024; 52:345-384. [PMID: 38270780 DOI: 10.1007/s15010-023-02159-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024]
Abstract
PURPOSE This study aims to comprehensively review the multifaceted factors underlying the successful colonization and infection process of Helicobacter pylori (H. pylori), a prominent Gram-negative pathogen in humans. The focus is on elucidating the functions, mechanisms, genetic regulation, and potential cross-interactions of these elements. METHODS Employing a literature review approach, this study examines the intricate interactions between H. pylori and its host. It delves into virulence factors like VacA, CagA, DupA, Urease, along with phase variable genes, such as babA, babC, hopZ, etc., giving insights about the bacterial perspective of the infection The association of these factors with the infection has also been added in the form of statistical data via Funnel and Forest plots, citing the potential of the virulence and also adding an aspect of geographical biasness to the virulence factors. The biochemical characteristics and clinical relevance of these factors and their effects on host cells are individually examined, both comprehensively and statistically. RESULTS H. pylori is a Gram-negative, spiral bacterium that successfully colonises the stomach of more than half of the world's population, causing peptic ulcers, gastric cancer, MALT lymphoma, and other gastro-duodenal disorders. The clinical outcomes of H. pylori infection are influenced by a complex interplay between virulence factors and phase variable genes produced by the infecting strain and the host genetic background. A meta-analysis of the prevalence of all the major virulence factors has also been appended. CONCLUSION This study illuminates the diverse elements contributing to H. pylori's colonization and infection. The interplay between virulence factors, phase variable genes, and host genetics determines the outcome of the infection. Despite biochemical insights into many factors, their comprehensive regulation remains an understudied area. By offering a panoramic view of these factors and their functions, this study enhances understanding of the bacterium's perspective, i.e. H. pylori's journey from infiltration to successful establishment within the host's stomach.
Collapse
Affiliation(s)
- Arghyadeep Bhattacharjee
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, 713209, India
- Department of Microbiology, Kingston College of Science, Beruanpukuria, Barasat, West Bengal, 700219, India
| | - Om Saswat Sahoo
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, 713209, India
| | - Ahana Sarkar
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, 713209, India
| | - Saurabh Bhattacharya
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, P.O.B. 12272, 9112001, Jerusalem, Israel
| | - Rukhsana Chowdhury
- School of Biological Sciences, RKM Vivekananda Educational and Research Institute Narendrapur, Kolkata, India
| | - Samarjit Kar
- Department of Mathematics, National Institute of Technology Durgapur, Durgapur, West Bengal, 713209, India
| | - Oindrilla Mukherjee
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, 713209, India.
| |
Collapse
|
9
|
Kapse N, Pisu V, Dhakephalkar T, Margale P, Shetty D, Wagh S, Dagar S, Dhakephalkar PK. Unveiling the Probiotic Potential of Streptococcus thermophilus MCC0200: Insights from In Vitro Studies Corroborated with Genome Analysis. Microorganisms 2024; 12:347. [PMID: 38399752 PMCID: PMC10891967 DOI: 10.3390/microorganisms12020347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Streptococcus thermophilus is widely used as a starter culture in the dairy industry and has garnered attention as a beneficial bacterium owing to its health-promoting functionalities in humans. In this study, the probiotic potential of S. thermophilus MCC0200 isolated from a dairy product was investigated through a combinatorial approach of in vitro and in silico studies. MCC0200 demonstrated the ability to survive harsh gastrointestinal (GI) transit, adhere to intestinal mucosa and exert health-promoting traits in in vitro studies. These findings were corroborated with in silico evidence, wherein, MCC0200 genome harboured genes associated with tolerance to GI conditions, intestinal adhesion and colonization. Genome mapping also highlighted the ability of MCC0200 to produce compounds advantageous for the host (folate, bacteriocins), to release antioxidant enzymes that can quench the free radicals (superoxide dismutase, NADH peroxidase), and to metabolize food components that can be harmful to sensitive people (lactose). MCC0200 also demonstrated a positive effect on reducing cholesterol levels, proving to be a potential candidate for food and pharmaceutical applications. The absence of transmissible antibiotic resistance genes and virulence genes underscored the generally regarded as safe (GRAS) nature of MCC0200. This study explored the potential of Streptococcus thermophilus for its probable applications as a probiotic beyond the dairy industry.
Collapse
Affiliation(s)
- Neelam Kapse
- Bioenergy Group, MACS-Agharkar Research Institute, Gopal Ganesh Agarkar Road, Pune 411004, Maharashtra, India; (N.K.); (V.P.); (D.S.)
| | - Vaidehi Pisu
- Bioenergy Group, MACS-Agharkar Research Institute, Gopal Ganesh Agarkar Road, Pune 411004, Maharashtra, India; (N.K.); (V.P.); (D.S.)
- Department of Microbiology, Savitribai Phule Pune University, Ganeshkhind Rd., Aundh, Pune 411007, Maharashtra, India
| | - Tanisha Dhakephalkar
- Department of Microbiology, Savitribai Phule Pune University, Ganeshkhind Rd., Aundh, Pune 411007, Maharashtra, India
- Hi Tech BioSciences India Ltd., Research & Development Centre, Plot No. 6 & 8, Ambadvet Industrial Estate, PO Paud, Pune 412108, Maharashtra, India
| | - Prajakta Margale
- Bioenergy Group, MACS-Agharkar Research Institute, Gopal Ganesh Agarkar Road, Pune 411004, Maharashtra, India; (N.K.); (V.P.); (D.S.)
- Department of Microbiology, Savitribai Phule Pune University, Ganeshkhind Rd., Aundh, Pune 411007, Maharashtra, India
| | - Deepa Shetty
- Bioenergy Group, MACS-Agharkar Research Institute, Gopal Ganesh Agarkar Road, Pune 411004, Maharashtra, India; (N.K.); (V.P.); (D.S.)
| | - Shilpa Wagh
- Hi Tech BioSciences India Ltd., Research & Development Centre, Plot No. 6 & 8, Ambadvet Industrial Estate, PO Paud, Pune 412108, Maharashtra, India
| | - Sumit Dagar
- Bioenergy Group, MACS-Agharkar Research Institute, Gopal Ganesh Agarkar Road, Pune 411004, Maharashtra, India; (N.K.); (V.P.); (D.S.)
- Department of Microbiology, Savitribai Phule Pune University, Ganeshkhind Rd., Aundh, Pune 411007, Maharashtra, India
| | - Prashant K. Dhakephalkar
- Bioenergy Group, MACS-Agharkar Research Institute, Gopal Ganesh Agarkar Road, Pune 411004, Maharashtra, India; (N.K.); (V.P.); (D.S.)
- Department of Microbiology, Savitribai Phule Pune University, Ganeshkhind Rd., Aundh, Pune 411007, Maharashtra, India
| |
Collapse
|
10
|
Casas-Román A, Lorite MJ, Sanjuán J, Gallegos MT. Two glyceraldehyde-3-phosphate dehydrogenases with distinctive roles in Pseudomonas syringae pv. tomato DC3000. Microbiol Res 2024; 278:127530. [PMID: 37890268 DOI: 10.1016/j.micres.2023.127530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH or Gap) is a ubiquitously distributed enzyme that plays an essential role in the glycolytic and gluconeogenic pathways. However, additional roles have been described unrelated to its enzymatic function in diverse organisms, often linked to its presence in the cell surface or as a secreted protein. Despite being a paradigm among multifunctional/moonlighting proteins, little is known about its possible roles in phytopathogenic bacteria. In the present work we have studied three putative gap paralogous genes identified in the genome of Pseudomonas syringae pv. tomato (Pto) DC3000, an important model in molecular plant pathology, with the aim of determining their physiological and possible non-canonical roles in this bacterium and in the plant infection process. We have established that the Gap1 protein has a predominantly glycolytic activity, whereas the NADPH-dependent Gap2 main activity is gluconeogenic. The third paralogue lacks GAPDH activity in Pto but is indispensable for vitamin B6 metabolism and displays erythrose-4-phosphate dehydrogenase activity, thus referred as epd. Both Gap enzymes exhibit distinct functional characteristics depending on the bacterium physiological state, with Gap1 presenting a substantial role in motility, biosurfactant production and biofilm formation. On the other hand, solely Gap2 appears to be essential for growth on tomato plant. Furthermore, Gap1 and Gap2 present a distinctive transcriptional regulation and both have been identified exported outside the cells with different definite media compositions. This serves as compelling evidence of additional roles beyond their central metabolic functions.
Collapse
Affiliation(s)
- Ariana Casas-Román
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - María-José Lorite
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - Juan Sanjuán
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain.
| | - María-Trinidad Gallegos
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain.
| |
Collapse
|
11
|
Curtis NJ, Patel KJ, Rizwan A, Jeffery CJ. Moonlighting Proteins: Diverse Functions Found in Fungi. J Fungi (Basel) 2023; 9:1107. [PMID: 37998912 PMCID: PMC10672435 DOI: 10.3390/jof9111107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Moonlighting proteins combine multiple functions in one polypeptide chain. An increasing number of moonlighting proteins are being found in diverse fungal taxa that vary in morphology, life cycle, and ecological niche. In this mini-review we discuss examples of moonlighting proteins in fungi that illustrate their roles in transcription and DNA metabolism, translation and RNA metabolism, protein folding, and regulation of protein function, and their interaction with other cell types and host proteins.
Collapse
Affiliation(s)
- Nicole J. Curtis
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA; (N.J.C.); (K.J.P.)
| | - Krupa J. Patel
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA; (N.J.C.); (K.J.P.)
| | | | - Constance J. Jeffery
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA; (N.J.C.); (K.J.P.)
| |
Collapse
|
12
|
Osorio-Aguilar Y, Gonzalez-Vazquez MC, Lozano-Zarain P, Martinez-Laguna Y, Baylon-Pacheco L, Rosales-Encina JL, Carabarin-Lima A, Rocha-Gracia RDC. The Enolase of the Haemophilus influenzae Mediates Binding to Collagens: An Extracellular Matrix Component. Int J Mol Sci 2023; 24:15499. [PMID: 37958487 PMCID: PMC10650631 DOI: 10.3390/ijms242115499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 11/15/2023] Open
Abstract
Enolase proteins play a significant role as moonlighting proteins. In their role as surface-associated enolase, they have multiple functions as they interact with extracellular matrix proteins. Type I and III collagens are the major constituents of this extracellular matrix, and collagen is one of the targets of interaction with the enolase of many pathogens, thereby helping the colonization process and promoting the subsequent invasion of the host. This work aimed to determine the participation of non-typeable H. influenzae enolase as a collagen-binding protein. In this study, through the use of in vitro tests it was demonstrated that recombinant enolase of non-typeable H. influenzae (rNTHiENO) strongly binds to type I collagen. Using molecular docking, the residues that could take part in the interaction of non-typeable H. influenzae enolase-type I collagen (NTHiENO-Cln I) and non-typeable H. influenzae enolase-type III collagen (NTHiENO-Cln III) were identified. However, in vitro assays show that NTHiENO has a better affinity to interact with Cln I, concerning type Cln III. The interaction of NTHiENO with collagen could play a significant role in the colonization process; this would allow H. influenzae to increase its virulence factors and strengthen its pathogenesis.
Collapse
Affiliation(s)
- Yesenia Osorio-Aguilar
- Posgrado en Microbiología, Laboratorio de Microbiología Hospitalaria y de la Comunidad, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (Y.O.-A.); (P.L.-Z.); (Y.M.-L.)
| | - Maria Cristina Gonzalez-Vazquez
- Licenciatura en Biotecnología, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (M.C.G.-V.); (A.C.-L.)
| | - Patricia Lozano-Zarain
- Posgrado en Microbiología, Laboratorio de Microbiología Hospitalaria y de la Comunidad, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (Y.O.-A.); (P.L.-Z.); (Y.M.-L.)
| | - Ygnacio Martinez-Laguna
- Posgrado en Microbiología, Laboratorio de Microbiología Hospitalaria y de la Comunidad, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (Y.O.-A.); (P.L.-Z.); (Y.M.-L.)
| | - Lidia Baylon-Pacheco
- Departamento de Infectómica y Patogenesis Molecular, CINVESTAV-IPN, Avenida Instituto Politécnico Nacional No. 2508, Colonia San Pedro Zacatenco, Delegación Gustavo A. Madero, Mexico City 07360, Mexico; (L.B.-P.); (J.L.R.-E.)
| | - Jose Luis Rosales-Encina
- Departamento de Infectómica y Patogenesis Molecular, CINVESTAV-IPN, Avenida Instituto Politécnico Nacional No. 2508, Colonia San Pedro Zacatenco, Delegación Gustavo A. Madero, Mexico City 07360, Mexico; (L.B.-P.); (J.L.R.-E.)
| | - Alejandro Carabarin-Lima
- Licenciatura en Biotecnología, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (M.C.G.-V.); (A.C.-L.)
| | - Rosa del Carmen Rocha-Gracia
- Posgrado en Microbiología, Laboratorio de Microbiología Hospitalaria y de la Comunidad, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (Y.O.-A.); (P.L.-Z.); (Y.M.-L.)
| |
Collapse
|
13
|
Quiroz-Castañeda RE, Aguilar-Díaz H, Amaro-Estrada I. An alternative vaccine target for bovine Anaplasmosis based on enolase, a moonlighting protein. Front Vet Sci 2023; 10:1225873. [PMID: 37808115 PMCID: PMC10556744 DOI: 10.3389/fvets.2023.1225873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
The discovery of new targets for preventing bovine anaplasmosis has moved away from focusing on proteins that have already been extensively studied in Anaplasma marginale, including the Major Surface Proteins, Outer Membrane Proteins, and Type IV Secretion System proteins. An alternative is moonlighting or multifunctional proteins, capable of performing various biological functions within various cellular compartments. There are several reports on the role of moonlighting proteins as virulence factors in various microorganisms. Moreover, it is known that about 25% of all moonlighting is involved in the virulence of pathogens. In this work, for the first time, we present the identification of three enolase proteins (AmEno01, AmEno15, and AmEno31) in the genome of Mexican strains of A. marginale. Using bioinformatics tools, we predicted the catalytic domains, enolase signature, and amino acids binding magnesium ion of the catalytic domain and performed a phylogenetic reconstruction. In addition, by molecular docking analysis, we found that AmEno01 would bind to erythrocyte proteins spectrin, ankyrin, and stomatin. This adhesion function has been reported for enolases from other pathogens. It is considered a promising target since blocking this function would impede the fundamental adhesion process that facilitates the infection of erythrocytes. Additionally, molecular docking predicts that AmEno01 could bind to extracellular matrix protein fibronectin, which would be significant if we consider that some proteins with fibronectin domains are localized in tick gut cells and used as an adhesion strategy to gather bacteria before traveling to salivary glands. Derived from the molecular docking analysis of AmEno01, we hypothesized that enolases could be proteins driven by the pathogen and redirected at the expense of the pathogen's needs.
Collapse
|
14
|
Chen D, Chen C, Guo C, Zhang H, Liang Y, Cheng Y, Qu H, Wa Y, Zhang C, Guan C, Qian J, Gu R. The regulation of simulated artificial oro-gastrointestinal transit stress on the adhesion of Lactobacillus plantarum S7. Microb Cell Fact 2023; 22:170. [PMID: 37660047 PMCID: PMC10474686 DOI: 10.1186/s12934-023-02174-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 08/09/2023] [Indexed: 09/04/2023] Open
Abstract
BACKGROUND Oro-gastrointestinal stress in the digestive tract is the main stress to which orally administered probiotics are exposed. The regulation of oro-gastrointestinal transit (OGT) stress on the adhesion and survival of probiotics under continuous exposure to simulated salivary-gastric juice-intestinal juice was researched in this study. RESULTS Lactobacillus plantarum S7 had a higher survival rate after exposure to simulated OGT1 (containing 0.15% bile salt) stress and OGT2 (containing 0.30% bile salt) stress. The adhesion ability of L. plantarum S7 was significantly increased by OGT1 stress (P < 0.05) but was not changed significantly by OGT2 stress (P > 0.05), and this trend was also observed in terms of the thickness of the surface material of L. plantarum S7 cells. The expression of surface proteins of L. plantarum S7, such as the 30 S ribosomal proteins, mucus-binding protein and S-layer protein, was significantly downregulated by OGT stress (P < 0.05); meanwhile, the expression of moonlight proteins, such as glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglycorate kinase (PGK), beta-phosphoglucomutase (PGM1), GroEL and glucose-6-phosphate isomerase (PGI), was significantly upregulated (P < 0.05). However, the upregulation of GAPDH, PGK, PGM1 and PGI mediated by OGT1 stress was greater than those mediated by OGT2 stress. The quorum sensing pathway of L. plantarum S7 was changed significantly by OGT stress compared with no OGT stress cells (P < 0.05), and the expression of Luxs in the pathway was significantly upregulated by OGT1 stress (P < 0.05). The ABC transportation pathway was significantly altered by OGT1 stress (P < 0.05), of which the expression of the peptide ABC transporter substrate-binding protein and energy-coupling factor transporter ATP-binding protein EcfA was significantly upregulated by OGT stress (P < 0.05). The glycolide metabolism pathway was significantly altered by OGT1 stress compared with that in response to OGT2 stress (P < 0.05). CONCLUSION L. plantarum S7 had a strong ability to resist OGT stress, which was regulated by the proteins and pathways related to OGT stress. The adhesion ability of L. plantarum S7 was enhanced after continuous exposure to OGT1 stress, making it a potential probiotic with a promising future for application.
Collapse
Affiliation(s)
- Dawei Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, 225127, Jiangsu, China
- Jiangsu Yuhang Food Technology Co., Ltd, Yancheng, 224000, Jiangsu, China
| | - Chunmeng Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, 225127, Jiangsu, China
| | - Congcong Guo
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, 225127, Jiangsu, China
| | - Hui Zhang
- Yangzhou Hospital of Traditional Chinese Medicine, Yangzhou, 225127, Jiangsu, China
| | - Yating Liang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, 225127, Jiangsu, China
| | - Yue Cheng
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, 225127, Jiangsu, China
| | - Hengxian Qu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, 225127, Jiangsu, China
| | - Yunchao Wa
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, 225127, Jiangsu, China
| | - Chenchen Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, 225127, Jiangsu, China
| | - Chengran Guan
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, 225127, Jiangsu, China
| | - Jianya Qian
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, 225127, Jiangsu, China
| | - Ruixia Gu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China.
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, 225127, Jiangsu, China.
| |
Collapse
|
15
|
Hirayama S, Hiyoshi T, Yasui Y, Domon H, Terao Y. C-Terminal Lysine Residue of Pneumococcal Triosephosphate Isomerase Contributes to Its Binding to Host Plasminogen. Microorganisms 2023; 11:1198. [PMID: 37317172 DOI: 10.3390/microorganisms11051198] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/19/2023] [Accepted: 05/02/2023] [Indexed: 06/16/2023] Open
Abstract
The main causative agent of pneumonia, Streptococcus pneumoniae, is also responsible for invasive diseases. S. pneumoniae recruits human plasminogen for the invasion and colonization of host tissues. We previously discovered that S. pneumoniae triosephosphate isomerase (TpiA), an enzyme involved in intracellular metabolism that is essential for survival, is released extracellularly to bind human plasminogen and facilitate its activation. Epsilon-aminocaproic acid, a lysine analogue, inhibits this binding, suggesting that the lysine residues in TpiA are involved in plasminogen binding. In this study, we generated site-directed mutant recombinants in which the lysine residue in TpiA was replaced with alanine and analyzed their binding activities to human plasminogen. Results from blot analysis, enzyme-linked immunosorbent assay, and surface plasmon resonance assay revealed that the lysine residue at the C-terminus of TpiA is primarily involved in binding to human plasminogen. Furthermore, we found that TpiA binding to plasminogen through its C-terminal lysine residue was required for the promotion of plasmin activation by activating factors.
Collapse
Affiliation(s)
- Satoru Hirayama
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Takumi Hiyoshi
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
- Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Yoshihito Yasui
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Hisanori Domon
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
- Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
- Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| |
Collapse
|
16
|
Smiline Girija AS. Moonlighting proteins [ML proteins]: The pandora's box of insidious oro-dental diseases. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119435. [PMID: 36738892 DOI: 10.1016/j.bbamcr.2023.119435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
Oral pathogens survive in the harsh niche of the oral microbiome on account of a plethora of moonlighting [ML] proteins that can multitask in the oro-mucosal layers. ML proteins are considered as the complex protein hyperspace expressed in many oral bacterial pathogens and encompass many hypothetical and experimentally evidenced proteins that can efficiently assist in the initiation and progression of various oro-dental infections. With the propensity of multi-drug resistance and biofilm formation, unravelling the mysterious functions associated with the oral ML proteins could be essential in targeting the vital oral bacteria and their associated infections. This commentary thus throws insights onto the key clues on various ML proteins that can be considered for the development of therapeutic versatility to curtail the complications caused by various oral bacterial species.
Collapse
Affiliation(s)
- A S Smiline Girija
- Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences [SIMATS], Chennai 600077, Tamilnadu, India.
| |
Collapse
|
17
|
Nishiyama K, Yong CC, Moritoki N, Kitazawa H, Odamaki T, Xiao JZ, Mukai T. Sharing of Moonlighting Proteins Mediates the Symbiotic Relationship among Intestinal Commensals. Appl Environ Microbiol 2023; 89:e0219022. [PMID: 36847513 PMCID: PMC10053696 DOI: 10.1128/aem.02190-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/26/2023] [Indexed: 03/01/2023] Open
Abstract
The human gastrointestinal tract is inhabited by trillions of symbiotic bacteria that form a complex ecological community and influence human physiology. Symbiotic nutrient sharing and nutrient competition are the most studied relationships in gut commensals, whereas the interactions underlying homeostasis and community maintenance are not fully understood. Here, we provide insights into a new symbiotic relationship wherein the sharing of secreted cytoplasmic proteins, called "moonlighting proteins," between two heterologous bacterial strains (Bifidobacterium longum and Bacteroides thetaiotaomicron) was observed to affect the adhesion of bacteria to mucins. B. longum and B. thetaiotaomicron were cocultured using a membrane-filter system, and in this system the cocultured B. thetaiotaomicron cells showed greater adhesion to mucins compared to that shown by monoculture cells. Proteomic analysis showed the presence of 13 B. longum-derived cytoplasmic proteins on the surface of B. thetaiotaomicron. Moreover, incubation of B. thetaiotaomicron with the recombinant proteins GroEL and elongation factor Tu (EF-Tu)-two well-known mucin-adhesive moonlighting proteins of B. longum-led to an increase in the adhesion of B. thetaiotaomicron to mucins, a result attributed to the localization of these proteins on the B. thetaiotaomicron cell surface. Furthermore, the recombinant EF-Tu and GroEL proteins were observed to bind to the cell surface of several other bacterial species; however, the binding was species dependent. The present findings indicate a symbiotic relationship mediated by the sharing of moonlighting proteins among specific strains of B. longum and B. thetaiotaomicron. IMPORTANCE The adhesion of intestinal bacteria to the mucus layer is an important colonization strategy in the gut environment. Generally, the bacterial adhesion process is a characteristic feature of the individual cell surface-associated adhesion factors secreted by a particular bacterium. In this study, coculture experiments between Bifidobacterium and Bacteroides show that the secreted moonlighting proteins adhere to the cell surface of coexisting bacteria and alter the adhesiveness of the bacteria to mucins. This finding indicates that the moonlighting proteins act as adhesion factors for not only homologous strains but also for coexisting heterologous strains. The presence of a coexisting bacterium in the environment can significantly alter the mucin-adhesive properties of another bacterium. The findings from this study contribute to a better understanding of the colonization properties of gut bacteria through the discovery of a new symbiotic relationship between them.
Collapse
Affiliation(s)
- Keita Nishiyama
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Aobaku, Sendai, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Aobaku, Sendai, Japan
| | - Cheng-Chung Yong
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan
| | - Nobuko Moritoki
- Electron Microscope Laboratory, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Haruki Kitazawa
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Aobaku, Sendai, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Aobaku, Sendai, Japan
| | - Toshitaka Odamaki
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan
| | - Jin-Zhong Xiao
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan
| | - Takao Mukai
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| |
Collapse
|
18
|
Hirayama S, Yasui Y, Sasagawa K, Domon H, Terao Y. Pneumococcal proteins ClpC and UvrC as novel host plasminogen binding factors. Microbiol Immunol 2023; 67:99-104. [PMID: 36461153 DOI: 10.1111/1348-0421.13040] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/20/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
Two plasminogen binding proteins were identified from a mouse infected with Streptococcus pneumoniae. The pneumococcal proteins were annotated as ATP-dependent Clp protease ATP-binding subunit (ClpC) and excinuclease ABC subunit C (UvrC) using the isobaric tags for relative and absolute quantification (iTRAQ) method. Recombinants of both proteins showed significant binding to plasminogen and were found to promote plasminogen activation by tissue-type plasminogen activator. In addition, ClpC and UvrC were LytA-dependently released into the culture supernatant and bound to the bacterial surface. These results suggest that S. pneumoniae releases ClpC and UvrC by autolysis and recruits them to the bacterial surface, where they bind to plasminogen and promote its activation, contributing to extracellular matrix degradation and tissue invasion.
Collapse
Affiliation(s)
- Satoru Hirayama
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yoshihito Yasui
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Karin Sasagawa
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hisanori Domon
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
19
|
Hashim ZA, Maillard JY, Wilson MJ, Waddington RJ. Determining the potential use of biosurfactants in preventing endodontic infections. Eur J Oral Sci 2022; 130:e12900. [PMID: 36326688 PMCID: PMC10092775 DOI: 10.1111/eos.12900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
Microbial biofilms play a dominant role in the failure of endodontic therapies. Bacterial adhesion is the first step in the establishment of biofilms, activating the host immune response leading to tissue damage. Biosurfactants are microbe-derived tensioactive molecules with latent anti-adhesive and anti-microbial activity. This study reports the extraction and characterization of a biosurfactant from Lactobacillus (L.) plantarum (Lp-BS) and investigates its anti-microbial and anti-adhesive properties compared to rhamnolipid, a commercially available biosurfactant. Lp-BS, extracted from L. plantarum during the growth phase, was characterized as a glycoprotein, able to reduce surface tension and emulsify non-polar liquids. Proteomic analysis of Lp-BS identified three bacterial adhesin-like proteins, suggesting roles in hindering bacterial adhesion. Lp-BS did not show significant anti-microbial activity against endodontic pathogens from the Streptococcus (Strep.) anginosus group or Enterococcus (Ent.) faecalis at 50 mg/ml. However, anti-adhesive activity on abiotic surfaces was observed against both Strep. anginosus and Strep. intermedius. Rhamnolipid exhibited strong anti-microbial activity, with minimum inhibitory concentrations of 0.097 mg/ml against Strep. anginosus, and 0.048 mg/ml against Strep. constellatus and Strep. intermedius, in addition to a marked anti-adhesive activity. These findings offer preliminary evidence for the potential application of biosurfactants as an anti-microbial and/or anti-adhesive pharmacotherapy in endodontics.
Collapse
Affiliation(s)
- Zahraa Amer Hashim
- Department of Clinical Laboratory Science, College of Pharmacy, Mosul University, Nineveh, Iraq
| | - Jean-Yves Maillard
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, UK
| | | | | |
Collapse
|
20
|
Pang Y, Ermann Lundberg L, Mata Forsberg M, Ahl D, Bysell H, Pallin A, Sverremark-Ekström E, Karlsson R, Jonsson H, Roos S. Extracellular membrane vesicles from Limosilactobacillus reuteri strengthen the intestinal epithelial integrity, modulate cytokine responses and antagonize activation of TRPV1. Front Microbiol 2022; 13:1032202. [PMID: 36466671 PMCID: PMC9712456 DOI: 10.3389/fmicb.2022.1032202] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/24/2022] [Indexed: 09/05/2023] Open
Abstract
Bacterial extracellular membrane vesicles (MV) are potent mediators of microbe-host signals, and they are not only important in host-pathogen interactions but also for the interactions between mutualistic bacteria and their hosts. Studies of MV derived from probiotics could enhance the understanding of these universal signal entities, and here we have studied MV derived from Limosilactobacillus reuteri DSM 17938 and BG-R46. The production of MV increased with cultivation time and after oxygen stress. Mass spectrometry-based proteomics analyses revealed that the MV carried a large number of bacterial cell surface proteins, several predicted to be involved in host-bacteria interactions. A 5'-nucleotidase, which catalyze the conversion of AMP into the signal molecule adenosine, was one of these and analysis of enzymatic activity showed that L. reuteri BG-R46 derived MV exhibited the highest activity. We also detected the TLR2 activator lipoteichoic acid on the MV. In models for host interactions, we first observed that L. reuteri MV were internalized by Caco-2/HT29-MTX epithelial cells, and in a dose-dependent manner decreased the leakage caused by enterotoxigenic Escherichia coli by up to 65%. Furthermore, the MV upregulated IL-1β and IL-6 from peripheral blood mononuclear cells (PBMC), but also dampened IFN-γ and TNF-α responses in PBMC challenged with Staphylococcus aureus. Finally, we showed that MV from the L. reuteri strains have an antagonistic effect on the pain receptor transient receptor potential vanilloid 1 in a model with primary dorsal root ganglion cells from rats. In summary, we have shown that these mobile nanometer scale MV reproduce several biological effects of L. reuteri cells and that the production parameters and selection of strain have an impact on the activity of the MV. This could potentially provide key information for development of innovative and more efficient probiotic products.
Collapse
Affiliation(s)
- Yanhong Pang
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ludwig Ermann Lundberg
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
- BioGaia AB, Stockholm, Sweden
| | - Manuel Mata Forsberg
- The Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - David Ahl
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | - Anton Pallin
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Eva Sverremark-Ekström
- The Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Roger Karlsson
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Nanoxis Consulting AB, Gothenburg, Sweden
| | - Hans Jonsson
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Stefan Roos
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
- BioGaia AB, Stockholm, Sweden
| |
Collapse
|
21
|
Rumen Metaproteomics Highlight the Unique Contributions of Microbe-Derived Extracellular and Intracellular Proteins for In Vitro Ruminal Fermentation. FERMENTATION 2022. [DOI: 10.3390/fermentation8080394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Rumen microorganisms can be used in in vitro anaerobic fermentation to encourage the sustainable exploitation of agricultural wastes. However, the understanding of active microbiota under in vitro ruminal fermentation conditions is still insufficient. To investigate how rumen microbes actively participate in the fermentation process in vitro, we resolved the metaproteome generated from ruminal fermentation broth after seven days of in vitro incubation. Herein, the sample-specific database for metaproteomic analysis was constructed according to the metagenomic data of in vitro ruminal fermentation. Based on the sample-specific database, we found in the metaproteome that Bacteroidetes and Firmicutes_A were the most active in protein expression, and over 50% of these proteins were assigned to gene categories involved in energy conversion and basic structures. On the other hand, a variety of bacteria-derived extracellular proteins, which contained carbohydrate-active enzyme domains, were found in the extracellular proteome of fermentation broth. Additionally, the bacterial intracellular/surface moonlighting proteins (ISMPs) and proteins of outer membrane vesicles were detected in the extracellular proteome, and these ISMPs were involved in maintaining microbial population size through potential adherence to substrates. The metaproteomic characterizations of microbial intracellular/extracellular proteins provide new insights into the ability of the rumen microbiome to maintain in vitro ruminal fermentation.
Collapse
|
22
|
Genome-wide siRNA screening reveals several host receptors for the binding of human gut commensal Bifidobacterium bifidum. NPJ Biofilms Microbiomes 2022; 8:50. [PMID: 35768415 PMCID: PMC9243078 DOI: 10.1038/s41522-022-00312-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 05/31/2022] [Indexed: 11/08/2022] Open
Abstract
Bifidobacterium spp. are abundant gut commensals, especially in breast-fed infants. Bifidobacteria are associated with many health-promoting effects including maintenance of epithelial barrier and integrity as well as immunomodulation. However, the protective mechanisms of bifidobacteria on intestinal epithelium at molecular level are poorly understood. In this study, we developed a high-throughput in vitro screening assay to explore binding receptors of intestinal epithelial cells for Bifidobacterium bifidum. Short interfering RNAs (siRNA) were used to silence expression of each gene in the Caco-2 cell line one by one. The screen yielded four cell surface proteins, SERPINB3, LGICZ1, PKD1 and PAQR6, which were identified as potential receptors as the siRNA knock-down of their expression decreased adhesion of B. bifidum to the cell line repeatedly during the three rounds of siRNA screening. Furthermore, blocking of these host cell proteins by specific antibodies decreased the binding of B. bifidum significantly to Caco-2 and HT29 cell lines. All these molecules are located on the surface of epithelial cells and three out of four, SERPINB3, PKD1 and PAQR6, are involved in the regulation of cellular processes related to proliferation, differentiation and apoptosis as well as inflammation and immunity. Our results provide leads to the first steps in the mechanistic cascade of B. bifidum-host interactions leading to regulatory effects in the epithelium and may partly explain how this commensal bacterium is able to promote intestinal homeostasis.
Collapse
|
23
|
El-Chami C, Choudhury R, Mohammedsaeed W, McBain AJ, Kainulainen V, Lebeer S, Satokari R, O'Neill CA. Multiple Proteins of Lacticaseibacillus rhamnosus GG Are Involved in the Protection of Keratinocytes From the Toxic Effects of Staphylococcus aureus. Front Microbiol 2022; 13:875542. [PMID: 35633665 PMCID: PMC9134637 DOI: 10.3389/fmicb.2022.875542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/22/2022] [Indexed: 11/21/2022] Open
Abstract
We have previously shown that lysates of Lacticaseibacillus rhamnosus GG confer protection to human keratinocytes against Staphylococcus aureus. L. rhamnosus GG inhibits the growth of S. aureus as well as competitively excludes and displaces the pathogen from keratinocytes. In this study, we have specifically investigated the anti-adhesive action. We have tested the hypothesis that this activity is due to quenching of S. aureus binding sites on keratinocytes by molecules within the Lacticaseibacillus lysate. Trypsinisation or heat treatment removed the protective effect of the lysate suggesting the involvement of proteins as effector molecules. Column separation of the lysate and analysis of discrete fractions in adhesion assays identified a fraction of moderate hydrophobicity that possessed all anti-adhesive functions. Immunoblotting demonstrated that this fraction contained the pilus protein, SpaC. Recombinant SpaC inhibited staphylococcal adhesion to keratinocytes in a dose-dependent manner and improved keratinocyte viability following challenge with viable S. aureus. However, SpaC did not confer the full anti-adhesive effects of the LGG lysate and excluded but did not displace S. aureus from keratinocytes. Further purification produced four protein-containing peaks (F1–F4). Of these, F4, which had the greatest column retention time, was the most efficacious in anti-staphylococcal adhesion and keratinocyte viability assays. Identification of proteins by mass spectrometry showed F4 to contain several known “moonlighting proteins”—i.e., with additional activities to the canonical function, including enolase, Triosephosphate isomerase (TPI), Glyceraldehyde 3 phosphate dehydrogenase (G3P) and Elongation factor TU (EF-Tu). Of these, only enolase and TPI inhibited S. aureus adhesion and protected keratinocytes viability in a dose-dependent manner. These data suggest that inhibition of staphylococcal binding by the L. rhamnosus GG lysate is mediated by SpaC and specific moonlight proteins.
Collapse
Affiliation(s)
- Cecile El-Chami
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Rawshan Choudhury
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Walaa Mohammedsaeed
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Andrew J McBain
- Faculty of Biology, School of Health Sciences, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Veera Kainulainen
- Faculty of Medicine, Human Microbiome Research Program, University of Helsinki, Helsinki, Finland
| | - Sarah Lebeer
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Reetta Satokari
- Faculty of Medicine, Human Microbiome Research Program, University of Helsinki, Helsinki, Finland
| | - Catherine A O'Neill
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
24
|
Hirayama S, Domon H, Hiyoshi T, Isono T, Tamura H, Sasagawa K, Takizawa F, Terao Y. Triosephosphate isomerase of Streptococcus pneumoniae is released extracellularly by autolysis and binds to host plasminogen to promote its activation. FEBS Open Bio 2022; 12:1206-1219. [PMID: 35298875 PMCID: PMC9157410 DOI: 10.1002/2211-5463.13396] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 03/04/2022] [Accepted: 03/15/2022] [Indexed: 11/24/2022] Open
Abstract
Recruitment of plasminogen is an important infection strategy of the human pathogen Streptococcus pneumoniae to invade host tissues. In Streptococcus aureus, triosephosphate isomerase (TPI) has been reported to bind plasminogen. In this study, the TPI of S. pneumoniae (TpiA) was identified through proteomic analysis of bronchoalveolar lavage fluid from a murine pneumococcal pneumonia model. The binding kinetics of recombinant pneumococcal TpiA with plasminogen were characterized using surface plasmon resonance (SPR, Biacore), ligand blot analyses, and enzyme‐linked immunosorbent assay. Enhanced plasminogen activation and subsequent degradation by plasmin were also shown. Release of TpiA into the culture medium was observed to be dependent on autolysin. These findings suggest that S. pneumoniae releases TpiA via autolysis, which then binds to plasminogen and promotes its activation, thereby contributing to tissue invasion via degradation of the extracellular matrix.
Collapse
Affiliation(s)
- Satoru Hirayama
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hisanori Domon
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takumi Hiyoshi
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Toshihito Isono
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hikaru Tamura
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Karin Sasagawa
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Fumio Takizawa
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
25
|
Matos AL, Curto P, Simões I. Moonlighting in Rickettsiales: Expanding Virulence Landscape. Trop Med Infect Dis 2022; 7:32. [PMID: 35202227 PMCID: PMC8877226 DOI: 10.3390/tropicalmed7020032] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/05/2022] [Accepted: 02/17/2022] [Indexed: 12/22/2022] Open
Abstract
The order Rickettsiales includes species that cause a range of human diseases such as human granulocytic anaplasmosis (Anaplasma phagocytophilum), human monocytic ehrlichiosis (Ehrlichia chaffeensis), scrub typhus (Orientia tsutsugamushi), epidemic typhus (Rickettsia prowazekii), murine typhus (R. typhi), Mediterranean spotted fever (R. conorii), or Rocky Mountain spotted fever (R. rickettsii). These diseases are gaining a new momentum given their resurgence patterns and geographical expansion due to the overall rise in temperature and other human-induced pressure, thereby remaining a major public health concern. As obligate intracellular bacteria, Rickettsiales are characterized by their small genome sizes due to reductive evolution. Many pathogens employ moonlighting/multitasking proteins as virulence factors to interfere with multiple cellular processes, in different compartments, at different times during infection, augmenting their virulence. The utilization of this multitasking phenomenon by Rickettsiales as a strategy to maximize the use of their reduced protein repertoire is an emerging theme. Here, we provide an overview of the role of various moonlighting proteins in the pathogenicity of these species. Despite the challenges that lie ahead to determine the multiple potential faces of every single protein in Rickettsiales, the available examples anticipate this multifunctionality as an essential and intrinsic feature of these obligates and should be integrated into available moonlighting repositories.
Collapse
Affiliation(s)
- Ana Luísa Matos
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (A.L.M.); (P.C.)
| | - Pedro Curto
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (A.L.M.); (P.C.)
| | - Isaura Simões
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (A.L.M.); (P.C.)
- IIIUC—Institute of Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
26
|
Sbaoui Y, Nouadi B, Ezaouine A, Rida Salam M, Elmessal M, Bennis F, Chegdani F. Functional Prediction of Biological Profile During Eutrophication in Marine Environment. Bioinform Biol Insights 2022; 16:11779322211063993. [PMID: 35023908 PMCID: PMC8744080 DOI: 10.1177/11779322211063993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/13/2021] [Indexed: 11/17/2022] Open
Abstract
In the marine environment, coastal nutrient pollution and algal blooms are increasing in many coral reefs and surface waters around the world, leading to higher concentrations of dissolved organic carbon (DOC), nitrogen (N), phosphate (P), and sulfur (S) compounds. The adaptation of the marine microbiota to this stress involves evolutionary processes through mutations that can provide selective phenotypes. The aim of this in silico analysis is to elucidate the potential candidate hub proteins, biological processes, and key metabolic pathways involved in the pathogenicity of bacterioplankton during excess of nutrients. The analysis was carried out on the model organism Escherichia coli K-12, by adopting an analysis pipeline consisting of a set of packages from the Cystoscape platform. The results obtained show that the metabolism of carbon and sugars generally are the 2 driving mechanisms for the expression of virulence factors.
Collapse
Affiliation(s)
- Yousra Sbaoui
- Immunology and Biodiversity Laboratory, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Badreddine Nouadi
- Immunology and Biodiversity Laboratory, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Abdelkarim Ezaouine
- Immunology and Biodiversity Laboratory, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Mohamed Rida Salam
- Immunology and Biodiversity Laboratory, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Mariame Elmessal
- Immunology and Biodiversity Laboratory, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Faiza Bennis
- Immunology and Biodiversity Laboratory, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Fatima Chegdani
- Immunology and Biodiversity Laboratory, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca, Morocco
| |
Collapse
|
27
|
Osorio-Aguilar Y, Gonzalez-Vazquez MC, Hernandez-Ceron DE, Lozano-Zarain P, Martinez-Laguna Y, Gonzalez-Bonilla CR, Rocha-Gracia RDC, Carabarin-Lima A. Structural Characterization of Haemophilus influenzae Enolase and Its Interaction with Human Plasminogen by In Silico and In Vitro Assays. Pathogens 2021; 10:pathogens10121614. [PMID: 34959569 PMCID: PMC8707213 DOI: 10.3390/pathogens10121614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 12/02/2022] Open
Abstract
Haemophilus influenzae is the causal agent of invasive pediatric diseases, such as meningitis, epiglottitis, pneumonia, septic arthritis, pericarditis, cellulitis, and bacteremia (serotype b). Non-typeable H. influenzae (NTHi) strains are associated with localized infections, such as otitis media, conjunctivitis, sinusitis, bronchitis, and pneumonia, and can cause invasive diseases, such as as meningitis and sepsis in immunocompromised hosts. Enolase is a multifunctional protein and can act as a receptor for plasminogen, promoting its activation to plasmin, which leads to the degradation of components of the extracellular matrix, favoring host tissue invasion. In this study, using molecular docking, three important residues involved in plasminogen interaction through the plasminogen-binding motif (251EFYNKENGMYE262) were identified in non-typeable H. influenzae enolase (NTHiENO). Interaction with the human plasminogen kringle domains is conformationally stable due to the formation of four hydrogen bonds corresponding to enoTYR253-plgGLU1 (K2), enoTYR253-plgGLY310 (K3), and enoLYS255-plgARG471/enoGLU251-plgLYS468 (K5). On the other hand, in vitro assays, such as ELISA and far-western blot, showed that NTHiENO is a plasminogen-binding protein. The inhibition of this interaction using polyclonal anti-NTHiENO antibodies was significant. With these results, we can propose that NTHiENO–plasminogen interaction could be one of the mechanisms used by H. influenzae to adhere to and invade host cells.
Collapse
Affiliation(s)
- Yesenia Osorio-Aguilar
- Posgrado en Microbiología, Laboratorio de Microbiología Hospitalaria y de la Comunidad, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (Y.O.-A.); (M.C.G.-V.); (P.L.-Z.); (Y.M.-L.); (R.d.C.R.-G.)
| | - Maria Cristina Gonzalez-Vazquez
- Posgrado en Microbiología, Laboratorio de Microbiología Hospitalaria y de la Comunidad, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (Y.O.-A.); (M.C.G.-V.); (P.L.-Z.); (Y.M.-L.); (R.d.C.R.-G.)
| | | | - Patricia Lozano-Zarain
- Posgrado en Microbiología, Laboratorio de Microbiología Hospitalaria y de la Comunidad, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (Y.O.-A.); (M.C.G.-V.); (P.L.-Z.); (Y.M.-L.); (R.d.C.R.-G.)
| | - Ygnacio Martinez-Laguna
- Posgrado en Microbiología, Laboratorio de Microbiología Hospitalaria y de la Comunidad, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (Y.O.-A.); (M.C.G.-V.); (P.L.-Z.); (Y.M.-L.); (R.d.C.R.-G.)
| | | | - Rosa del Carmen Rocha-Gracia
- Posgrado en Microbiología, Laboratorio de Microbiología Hospitalaria y de la Comunidad, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (Y.O.-A.); (M.C.G.-V.); (P.L.-Z.); (Y.M.-L.); (R.d.C.R.-G.)
| | - Alejandro Carabarin-Lima
- Posgrado en Microbiología, Laboratorio de Microbiología Hospitalaria y de la Comunidad, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (Y.O.-A.); (M.C.G.-V.); (P.L.-Z.); (Y.M.-L.); (R.d.C.R.-G.)
- Licenciatura en Biotecnología, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico
- Correspondence: ; Tel.: +52-(222)-229-5500 (ext. 3965)
| |
Collapse
|
28
|
Nishiyama K, Yokoi T, Sugiyama M, Osawa R, Mukai T, Okada N. Roles of the Cell Surface Architecture of Bacteroides and Bifidobacterium in the Gut Colonization. Front Microbiol 2021; 12:754819. [PMID: 34721360 PMCID: PMC8551831 DOI: 10.3389/fmicb.2021.754819] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
There are numerous bacteria reside within the mammalian gastrointestinal tract. Among the intestinal bacteria, Akkermansia, Bacteroides, Bifidobacterium, and Ruminococcus closely interact with the intestinal mucus layer and are, therefore, known as mucosal bacteria. Mucosal bacteria use host or dietary glycans for colonization via adhesion, allowing access to the carbon source that the host’s nutrients provide. Cell wall or membrane proteins, polysaccharides, and extracellular vesicles facilitate these mucosal bacteria-host interactions. Recent studies revealed that the physiological properties of Bacteroides and Bifidobacterium significantly change in the presence of co-existing symbiotic bacteria or markedly differ with the spatial distribution in the mucosal niche. These recently discovered strategic colonization processes are important for understanding the survival of bacteria in the gut. In this review, first, we introduce the experimental models used to study host-bacteria interactions, and then, we highlight the latest discoveries on the colonization properties of mucosal bacteria, focusing on the roles of the cell surface architecture regarding Bacteroides and Bifidobacterium.
Collapse
Affiliation(s)
- Keita Nishiyama
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Tatsunari Yokoi
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Makoto Sugiyama
- Laboratory of Veterinary Anatomy, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Ro Osawa
- Research Center for Food Safety and Security, Kobe University, Kobe, Japan
| | - Takao Mukai
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Nobuhiko Okada
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| |
Collapse
|
29
|
Exoproteome Analysis of Antagonistic Interactions between the Probiotic Bacteria Limosilactobacillus reuteri LR1 and Lacticaseibacillus rhamnosus F and Multidrug Resistant Strain of Klebsiella pneumonia. Int J Mol Sci 2021; 22:ijms222010999. [PMID: 34681658 PMCID: PMC8537075 DOI: 10.3390/ijms222010999] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/21/2022] Open
Abstract
The expansion of multiple drug resistant (MDR) strains of Klebsiella pneumoniae presents an immense threat for public health. Annually, this microorganism causes thousands of lethal nosocomial infections worldwide. Currently, it has been shown that certain strains of lactic acid bacteria (LAB) can efficiently inhibit growth of K. pneumoniae and the formation of its biofilms; however, the active principle of such action remains unknown. In the current article, the growth inhibition of MDR K. pneumoniae by two LAB—Limosilactobacillus reuteri LR1 and Lacticaseibacillus rhamnosus F—is demonstrated, and the nature of this inhibition studied at the level of exoproteome. This article shows that the exoproteomes of studied LAB contains both classically and non-classically secreted proteins. While for L. reuteri LR1 the substantial portion of classically secreted proteins was presented by cell-wall-degrading enzymes, for L. rhamnosus F only one out of four classically secreted proteins was presented by cell-wall hydrolase. Non-classically secreted proteins of both LAB were primarily metabolic enzymes, for some of which a possible moonlighting functioning was proposed. These results contribute to knowledge regarding antagonistic interaction between LAB and pathogenic and opportunistic microorganisms and set new perspectives for the use of LAB to control the spread of these microorganisms.
Collapse
|
30
|
Recombinant protein secretion by Bacillus subtilis and Lactococcus lactis: pathways, applications, and innovation potential. Essays Biochem 2021; 65:187-195. [PMID: 33955475 PMCID: PMC8314018 DOI: 10.1042/ebc20200171] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 01/01/2023]
Abstract
Secreted recombinant proteins are of great significance for industry, healthcare and a sustainable bio-based economy. Consequently, there is an ever-increasing need for efficient production platforms to deliver such proteins in high amounts and high quality. Gram-positive bacteria, particularly bacilli such as Bacillus subtilis, are favored for the production of secreted industrial enzymes. Nevertheless, recombinant protein production in the B. subtilis cell factory can be very challenging due to bottlenecks in the general (Sec) secretion pathway as well as this bacterium’s intrinsic capability to secrete a cocktail of highly potent proteases. This has placed another Gram-positive bacterium, Lactococcus lactis, in the focus of attention as an alternative, non-proteolytic, cell factory for secreted proteins. Here we review our current understanding of the secretion pathways exploited in B. subtilis and L. lactis to deliver proteins from their site of synthesis, the cytoplasm, into the fermentation broth. An advantage of this cell factory comparison is that it identifies opportunities for protein secretion pathway engineering to remove or bypass current production bottlenecks. Noteworthy new developments in cell factory engineering are the mini-Bacillus concept, highlighting potential advantages of massive genome minimization, and the application of thus far untapped ‘non-classical’ protein secretion routes. Altogether, it is foreseen that engineered lactococci will find future applications in the production of high-quality proteins at the relatively small pilot scale, while engineered bacilli will remain a favored choice for protein production in bulk.
Collapse
|
31
|
Pompilio A, Scribano D, Sarshar M, Di Bonaventura G, Palamara AT, Ambrosi C. Gram-Negative Bacteria Holding Together in a Biofilm: The Acinetobacter baumannii Way. Microorganisms 2021; 9:1353. [PMID: 34206680 PMCID: PMC8304980 DOI: 10.3390/microorganisms9071353] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 12/24/2022] Open
Abstract
Bacterial biofilms are a serious public-health problem worldwide. In recent years, the rates of antibiotic-resistant Gram-negative bacteria associated with biofilm-forming activity have increased worrisomely, particularly among healthcare-associated pathogens. Acinetobacter baumannii is a critically opportunistic pathogen, due to the high rates of antibiotic resistant strains causing healthcare-acquired infections (HAIs). The clinical isolates of A. baumannii can form biofilms on both biotic and abiotic surfaces; hospital settings and medical devices are the ideal environments for A. baumannii biofilms, thereby representing the main source of patient infections. However, the paucity of therapeutic options poses major concerns for human health infections caused by A. baumannii strains. The increasing number of multidrug-resistant A. baumannii biofilm-forming isolates in association with the limited number of biofilm-eradicating treatments intensify the need for effective antibiofilm approaches. This review discusses the mechanisms used by this opportunistic pathogen to form biofilms, describes their clinical impact, and summarizes the current and emerging treatment options available, both to prevent their formation and to disrupt preformed A. baumannii biofilms.
Collapse
Affiliation(s)
- Arianna Pompilio
- Center for Advanced Studies and Technology (CAST), Department of Medical, Oral and Biotechnological Sciences, Service of Clinical Microbiology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.); (G.D.B.)
| | - Daniela Scribano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy;
- Dani Di Giò Foundation-Onlus, 00193 Rome, Italy
| | - Meysam Sarshar
- Research Laboratories, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy;
| | - Giovanni Di Bonaventura
- Center for Advanced Studies and Technology (CAST), Department of Medical, Oral and Biotechnological Sciences, Service of Clinical Microbiology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.); (G.D.B.)
| | - Anna Teresa Palamara
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy;
- Laboratory Affiliated to Institute Pasteur Italia-Cenci Bolognetti Foundation, Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Cecilia Ambrosi
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, IRCCS, 00166 Rome, Italy
| |
Collapse
|
32
|
Cloning and Characterization of Immunological Properties of Haemophilus influenzae Enolase. J Immunol Res 2021; 2021:6629824. [PMID: 34222496 PMCID: PMC8225457 DOI: 10.1155/2021/6629824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/19/2021] [Accepted: 06/04/2021] [Indexed: 11/18/2022] Open
Abstract
Haemophilus influenzae is a common organism of the human upper respiratory tract; this bacterium is responsible of a wide spectrum for respiratory infections and can generate invasive diseases such as meningitis and septicemia. These infections are associated with H. influenzae encapsulated serotype b. However, the incidence of invasive disease caused by nontypeable H. influenzae (NTHi) has increased in the post-H. influenzae serotype b (Hib) vaccine era. Currently, an effective vaccine against NTHi is not available; due to this, it is important to find an antigen capable to confer protection against NTHi infection. In this study, 10 linear B cell epitopes and 13 CTL epitopes and a putative plasminogen-binding motif (252FYNKENGMY260) and the presence of enolase on the surface of different strains of H. influenzae were identified in the enolase sequence of H. influenzae. Both in silico and experimental results showed that recombinant enolase from H. influenzae is immunogenic that could induce a humoral immune response; this was observed mediating the generation of specific polyclonal antibodies anti-rNTHiENO that recognize typeable and nontypeable H. influenzae strains. The immunogenic properties and the superficial localization of enolase in H. influenzae, important characteristics to be considered as a new candidate for the development of a vaccine, were demonstrated.
Collapse
|
33
|
Zhang H, Yang P, Wang Z, Li M, Zhang J, Liu D, Chen Y, Ying H. Clostridium acetobutylicum Biofilm: Advances in Understanding the Basis. Front Bioeng Biotechnol 2021; 9:658568. [PMID: 34150727 PMCID: PMC8209462 DOI: 10.3389/fbioe.2021.658568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Clostridium acetobutylicum is an important industrial platform capable of producing a variety of biofuels and bulk chemicals. Biofilm of C. acetobutylicum renders many production advantages and has been long and extensively applied in fermentation. However, molecular and genetic mechanisms underlying the biofilm have been much less studied and remain largely unknown. Here, we review studies to date focusing on C. acetobutylicum biofilms, especially on its physiological and molecular aspects, summarizing the production advantages, cell physiological changes, extracellular matrix components and regulatory genes of the biofilm. This represents the first review dedicated to the biofilm of C. acetobutylicum. Hopefully, it will deepen our understanding toward C. acetobutylicum biofilm and inspire more research to learn and develop more efficient biofilm processes in this industrially important bacterium.
Collapse
Affiliation(s)
- Huifang Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Pengpeng Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Zhenyu Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Mengting Li
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, China
| | - Jie Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Dong Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, China
| | - Yong Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Hanjie Ying
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
34
|
Braschi G, D’Alessandro M, Gottardi D, Siroli L, Patrignani F, Lanciotti R. Effects of Sub-Lethal High Pressure Homogenization Treatment on the Adhesion Mechanisms and Stress Response Genes in Lactobacillus acidophilus 08. Front Microbiol 2021; 12:651711. [PMID: 34122365 PMCID: PMC8193580 DOI: 10.3389/fmicb.2021.651711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/22/2021] [Indexed: 11/20/2022] Open
Abstract
Cell surface hydrophobicity (CSH) and adhesion are very important phenotypical traits for probiotics that confer them a competitive advantage for the resilience in the human gastrointestinal tract. This study was aimed to understand the effects over time of a 50 MPa hyperbaric treatment on the surface properties of Lactobacillus acidophilus 08 including CSH, autoaggregation, and in vitro adhesion (mucin layer and Caco-2 cells). Moreover, a link between the hurdle applied and the expression of genes involved in the general stress response (groEL and clpP) and adhesion processes (efTu and slpA) was evaluated. High pressure homogenization (HPH) at 50 MPa significantly increased the CSH percentage (H%), autoaggregation and in vitro adhesion on mucin of L. acidophilus 08 cells compared with the untreated cells. Moreover, the hyperbaric hurdle induced an upregulation of the stress response genes groEL and ef-TU together with a down regulation of the clpP and S-layer slpA genes. Looking at the protein profile, HPH-treatment showed an increase in the number or intensity of protein bands at high and low molecular weights.
Collapse
Affiliation(s)
- Giacomo Braschi
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
| | | | - Davide Gottardi
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
| | - Lorenzo Siroli
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Cesena, Italy
| | - Francesca Patrignani
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Cesena, Italy
| | - Rosalba Lanciotti
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Cesena, Italy
| |
Collapse
|
35
|
Moonlighting in Bacillus subtilis: The Small Proteins SR1P and SR7P Regulate the Moonlighting Activity of Glyceraldehyde 3-Phosphate Dehydrogenase A (GapA) and Enolase in RNA Degradation. Microorganisms 2021; 9:microorganisms9051046. [PMID: 34066298 PMCID: PMC8152036 DOI: 10.3390/microorganisms9051046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/21/2022] Open
Abstract
Moonlighting proteins are proteins with more than one function. During the past 25 years, they have been found to be rather widespread in bacteria. In Bacillus subtilis, moonlighting has been disclosed to occur via DNA, protein or RNA binding or protein phosphorylation. In addition, two metabolic enzymes, enolase and phosphofructokinase, were localized in the degradosome-like network (DLN) where they were thought to be scaffolding components. The DLN comprises the major endoribonuclease RNase Y, 3'-5' exoribonuclease PnpA, endo/5'-3' exoribonucleases J1/J2 and helicase CshA. We have ascertained that the metabolic enzyme GapA is an additional component of the DLN. In addition, we identified two small proteins that bind scaffolding components of the degradosome: SR1P encoded by the dual-function sRNA SR1 binds GapA, promotes the GapA-RNase J1 interaction and increases the RNase J1 activity. SR7P encoded by the dual-function antisense RNA SR7 binds to enolase thereby enhancing the enzymatic activity of enolase bound RNase Y. We discuss the role of small proteins in modulating the activity of two moonlighting proteins.
Collapse
|
36
|
Augustyniak D, Kramarska E, Mackiewicz P, Orczyk-Pawiłowicz M, Lundy FT. Mammalian Neuropeptides as Modulators of Microbial Infections: Their Dual Role in Defense versus Virulence and Pathogenesis. Int J Mol Sci 2021; 22:ijms22073658. [PMID: 33915818 PMCID: PMC8036953 DOI: 10.3390/ijms22073658] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
The regulation of infection and inflammation by a variety of host peptides may represent an evolutionary failsafe in terms of functional degeneracy and it emphasizes the significance of host defense in survival. Neuropeptides have been demonstrated to have similar antimicrobial activities to conventional antimicrobial peptides with broad-spectrum action against a variety of microorganisms. Neuropeptides display indirect anti-infective capacity via enhancement of the host’s innate and adaptive immune defense mechanisms. However, more recently concerns have been raised that some neuropeptides may have the potential to augment microbial virulence. In this review we discuss the dual role of neuropeptides, perceived as a double-edged sword, with antimicrobial activity against bacteria, fungi, and protozoa but also capable of enhancing virulence and pathogenicity. We review the different ways by which neuropeptides modulate crucial stages of microbial pathogenesis such as adhesion, biofilm formation, invasion, intracellular lifestyle, dissemination, etc., including their anti-infective properties but also detrimental effects. Finally, we provide an overview of the efficacy and therapeutic potential of neuropeptides in murine models of infectious diseases and outline the intrinsic host factors as well as factors related to pathogen adaptation that may influence efficacy.
Collapse
Affiliation(s)
- Daria Augustyniak
- Department of Pathogen Biology and Immunology, Faculty of Biology, University of Wroclaw, 51-148 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-71-375-6296
| | - Eliza Kramarska
- Department of Pathogen Biology and Immunology, Faculty of Biology, University of Wroclaw, 51-148 Wroclaw, Poland;
- Institute of Biostructures and Bioimaging, Consiglio Nazionale delle Ricerche, 80134 Napoli, Italy
| | - Paweł Mackiewicz
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland;
| | | | - Fionnuala T. Lundy
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK;
| |
Collapse
|
37
|
Ho JD, Takara LEM, Monaris D, Gonçalves AP, Souza-Filho AF, de Souza GO, Heinemann MB, Ho PL, Abreu PAE. GroEL protein of the Leptospira spp. interacts with host proteins and induces cytokines secretion on macrophages. BMC Microbiol 2021; 21:99. [PMID: 33789603 PMCID: PMC8011160 DOI: 10.1186/s12866-021-02162-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 03/22/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Leptospirosis is a zoonotic disease caused by infection with spirochetes from Leptospira genus. It has been classified into at least 17 pathogenic species, with more than 250 serologic variants. This wide distribution may be a result of leptospiral ability to colonize the renal tubules of mammalian hosts, including humans, wildlife, and many domesticated animals. Previous studies showed that the expression of proteins belonging to the microbial heat shock protein (HSP) family is upregulated during infection and also during various stress stimuli. Several proteins of this family are known to have important roles in the infectious processes in other bacteria, but the role of HSPs in Leptospira spp. is poorly understood. In this study, we have evaluated the capacity of the protein GroEL, a member of HSP family, of interacting with host proteins and of stimulating the production of cytokines by macrophages. RESULTS The binding experiments demonstrated that the recombinant GroEL protein showed interaction with several host components in a dose-dependent manner. It was also observed that GroEL is a surface protein, and it is secreted extracellularly. Moreover, two cytokines (tumor necrosis factor-α and interleukin-6) were produced when macrophages cells were stimulated with this protein. CONCLUSIONS Our findings showed that GroEL protein may contribute to the adhesion of leptospires to host tissues and stimulate the production of proinflammatory cytokines during infection. These features might indicate an important role of GroEL in the pathogen-host interaction in the leptospirosis.
Collapse
Affiliation(s)
- Joana Dias Ho
- Laboratory of Bacteriology, Butantan Institute, São Paulo, Brazil.,Laboratory of Bacterial Zoonosis, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | | | - Denize Monaris
- Laboratory of Bacteriology, Butantan Institute, São Paulo, Brazil
| | | | - Antonio Francisco Souza-Filho
- Laboratory of Bacterial Zoonosis, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Gisele Oliveira de Souza
- Laboratory of Bacterial Zoonosis, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Marcos Bryan Heinemann
- Laboratory of Bacterial Zoonosis, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Paulo Lee Ho
- Bioindustrial Division, Butantan Institute, São Paulo, Brazil
| | | |
Collapse
|
38
|
Bagon BB, Valeriano VDV, Oh JK, Pajarillo EAB, Lee JY, Kang DK. Exoproteome Perspective on the Bile Stress Response of Lactobacillus johnsonii. Proteomes 2021; 9:proteomes9010010. [PMID: 33578796 PMCID: PMC7931105 DOI: 10.3390/proteomes9010010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/19/2022] Open
Abstract
Probiotics must not only exert a health-promoting effect but also be capable of adapting to the harsh environment of the gastrointestinal (GI) tract. Probiotics in the GI tract must survive the cell wall-disrupting effect of bile acids. We investigated the exoproteome of Lactobacillus johnsonii PF01 and C1-10 under bile stress. A comparative analysis revealed the similarities between the two L. johnsonii exoproteomes, as well as their different responses to bile. The large number of metabolic proteins in L. johnsonii revealed its metabolic adaptation to meet protein synthesis requirements under bile stress. In addition, cell wall modifications occurred in response to bile. Furthermore, some extracellular proteins of L. johnsonii may have moonlighting function in the presence of bile. Enolase, L-lactate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, triosephosphate isomerase, 50s ribosomal protein L7/L12, and cellobiose-specific phosphotransferase system (PTS) sugar transporter were significantly upregulated under bile stress, suggesting a leading role in the collective bile stress response of L. johnsonii from its exoproteome perspective.
Collapse
Affiliation(s)
- Bernadette B. Bagon
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea; (B.B.B.); (V.D.V.V.); (J.K.O.); (E.A.B.P.)
| | - Valerie Diane V. Valeriano
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea; (B.B.B.); (V.D.V.V.); (J.K.O.); (E.A.B.P.)
| | - Ju Kyoung Oh
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea; (B.B.B.); (V.D.V.V.); (J.K.O.); (E.A.B.P.)
| | - Edward Alain B. Pajarillo
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea; (B.B.B.); (V.D.V.V.); (J.K.O.); (E.A.B.P.)
| | - Ji Yoon Lee
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea;
| | - Dae-Kyung Kang
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea; (B.B.B.); (V.D.V.V.); (J.K.O.); (E.A.B.P.)
- Correspondence:
| |
Collapse
|
39
|
Taniguchi M, Nambu M, Katakura Y, Yamasaki-Yashiki S. Adhesion mechanisms of Bifidobacterium animalis subsp. lactis JCM 10602 to dietary fiber. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2021; 40:59-64. [PMID: 33520570 PMCID: PMC7817516 DOI: 10.12938/bmfh.2020-003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022]
Abstract
Adherence of probiotics to dietary fibers present in the intestinal tract may affect
adhesion to intestinal epithelial cells. The properties of the adhesion of bifidobacteria
to mucin or epithelial cells have been well studied; however, adhesion of bifidobacteria
to dietary fiber has not been investigated. The adhesion ratio of six
Bifidobacterium strains to cellulose and chitin was examined; among the
strains, Bifidobacterium animalis subsp. lactis JCM
10602 showed high adherence to both cellulose and chitin, and two strains showed high
adherence to only chitin. The ratios of adhesion of B. animalis to
cellulose and chitin were positively and negatively correlated with ionic strength,
respectively. These data suggest that hydrophobic and electrostatic interactions are
involved in the adhesion to cellulose and chitin, respectively. The adhesion ratios of the
cells in the late logarithmic phase to cellulose and chitin decreased by approximately 40%
and 70% of the cells in the early logarithmic phase, respectively. Furthermore, the
adhesion ratio to cellulose decreased with increasing bile concentration regardless of the
culture phase of the cells. On the other hand, the adhesion ratio to chitin of cells in
the early logarithmic phase decreased with increasing bile concentration; however, that of
cells in the late logarithmic phase increased slightly, suggesting that adhesins differ
depending on the culture phase. Our results indicated the importance of considering
adhesion to both dietary fibers and the intestinal mucosa when using bifidobacteria as
probiotics.
Collapse
Affiliation(s)
- Maria Taniguchi
- Chemistry, Materials and Bioengineering Major, Graduate School of Science and Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Minori Nambu
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Yoshio Katakura
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Shino Yamasaki-Yashiki
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| |
Collapse
|
40
|
Pessione E. The Russian Doll Model: How Bacteria Shape Successful and Sustainable Inter-Kingdom Relationships. Front Microbiol 2020; 11:573759. [PMID: 33193180 PMCID: PMC7606975 DOI: 10.3389/fmicb.2020.573759] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/31/2020] [Indexed: 12/20/2022] Open
Abstract
Successful inter-kingdom relationships are based upon a dynamic balance between defense and cooperation. A certain degree of competition is necessary to guarantee life spread and development. On the other hand, cooperation is a powerful tool to ensure a long lasting adaptation to changing environmental conditions and to support evolution to a higher level of complexity. Bacteria can interact with their (true or potential) parasites (i.e., phages) and with their multicellular hosts. In these model interactions, bacteria learnt how to cope with their inner and outer host, transforming dangerous signals into opportunities and modulating responses in order to achieve an agreement that is beneficial for the overall participants, thus giving rise to a more complex "organism" or ecosystem. In this review, particular attention will be addressed to underline the minimal energy expenditure required for these successful interactions [e.g., moonlighting proteins, post-translational modifications (PTMs), and multitasking signals] and the systemic vision of these processes and ways of life in which the system proves to be more than the sum of the single components. Using an inside-out perspective, I will examine the possibility of multilevel interactions, in which viruses help bacteria to cope with the animal host and bacteria support the human immune system to counteract viral infection in a circular vision. In this sophisticated network, bacteria represent the precious link that insures system stability with relative low energy expenditure.
Collapse
Affiliation(s)
- Enrica Pessione
- Department of Life Sciences and Systems Biology, School of Nature Sciences, Università degli Studi di Torino, Turin, Italy
| |
Collapse
|
41
|
Suzuki I, Shimizu T, Senpuku H. Short chain fatty acids induced the type 1 and type 2 fimbrillin-dependent and fimbrillin-independent initial attachment and colonization of Actinomyces oris monoculture but not coculture with streptococci. BMC Microbiol 2020; 20:329. [PMID: 33129273 PMCID: PMC7603776 DOI: 10.1186/s12866-020-01976-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/15/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Actinomyces oris is an early colonizer and has two types of fimbriae on its cell surface, type 1 fimbriae (FimP and FimQ) and type 2 fimbriae (FimA and FimB), which contribute to the attachment and coaggregation with other bacteria and the formation of biofilm on the tooth surface, respectively. Short-chain fatty acids (SCFAs) are metabolic products of oral bacteria including A. oris and regulate pH in dental plaques. To clarify the relationship between SCFAs and fimbrillins, effects of SCFAs on the initial attachment and colonization (INAC) assay using A. oris wild type and fimbriae mutants was investigated. INAC assays using A. oris MG1 strain cells were performed with SCFAs (acetic, butyric, propionic, valeric and lactic acids) or a mixture of them on human saliva-coated 6-well plates incubated in TSB with 0.25% sucrose for 1 h. The INAC was assessed by staining live and dead cells that were visualized with a confocal microscope. RESULTS Among the SCFAs, acetic, butyric and propionic acids and a mixture of acetic, butyric and propionic acids induced the type 1 and type 2 fimbriae-dependent and independent INAC by live A. oris, but these cells did not interact with streptococci. The main effects might be dependent on the levels of the non-ionized acid forms of the SCFAs in acidic stress conditions. GroEL was also found to be a contributor to the FimA-independent INAC by live A. oris cells stimulated with non-ionized acid. CONCLUSION SCFAs affect the INAC-associated activities of the A. oris fimbrillins and non-fimbrillins during ionized and non-ionized acid formations in the form of co-culturing with other bacteria in the dental plaque but not impact the interaction of A. oris with streptococci.
Collapse
Affiliation(s)
- Itaru Suzuki
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.,Department of Pediatric Dentistry, Nihon University Graduate School of Dentistry at Matsudo, Chiba, Japan
| | - Takehiko Shimizu
- Department of Pediatric Dentistry, Nihon University Graduate School of Dentistry at Matsudo, Chiba, Japan
| | - Hidenobu Senpuku
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.
| |
Collapse
|
42
|
Teame T, Wang A, Xie M, Zhang Z, Yang Y, Ding Q, Gao C, Olsen RE, Ran C, Zhou Z. Paraprobiotics and Postbiotics of Probiotic Lactobacilli, Their Positive Effects on the Host and Action Mechanisms: A Review. Front Nutr 2020; 7:570344. [PMID: 33195367 PMCID: PMC7642493 DOI: 10.3389/fnut.2020.570344] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022] Open
Abstract
Lactobacilli comprise an important group of probiotics for both human and animals. The emerging concern regarding safety problems associated with live microbial cells is enhancing the interest in using cell components and metabolites derived from probiotic strains. Here, we define cell structural components and metabolites of probiotic bacteria as paraprobiotics and postbiotics, respectively. Paraprobiotics and postbiotics produced from Lactobacilli consist of a wide range of molecules including peptidoglycans, surface proteins, cell wall polysaccharides, secreted proteins, bacteriocins, and organic acids, which mediate positive effect on the host, such as immunomodulatory, anti-tumor, antimicrobial, and barrier-preservation effects. In this review, we systematically summarize the paraprobiotics and postbiotics derived from Lactobacilli and their beneficial functions. We also discuss the mechanisms underlying their beneficial effects on the host, and their interaction with the host cells. This review may boost our understanding on the benefits and molecular mechanisms associated with paraprobiotics and probiotics from Lactobacilli, which may promote their applications in humans and animals.
Collapse
Affiliation(s)
- Tsegay Teame
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Tigray Agricultural Research Institute, Mekelle, Ethiopia
| | - Anran Wang
- AgricultureIsLife/EnvironmentIsLife and Precision Livestock and Nutrition Unit, AgroBioChem/TERRA, Gembloux Agro-Bio Tech, University of Liege, Passage des Deportes, Gembloux, Belgium
| | - Mingxu Xie
- Norway-China Fish Gastrointestinal Microbiota Joint Lab, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Zhen Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yalin Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qianwen Ding
- Norway-China Fish Gastrointestinal Microbiota Joint Lab, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Chenchen Gao
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rolf Erik Olsen
- Norway-China Fish Gastrointestinal Microbiota Joint Lab, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhigang Zhou
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
43
|
Kumar S, Koehn JT, Gonzalez-Juarrero M, Crans DC, Crick DC. Mycobacterium tuberculosis Survival in J774A.1 Cells Is Dependent on MenJ Moonlighting Activity, Not Its Enzymatic Activity. ACS Infect Dis 2020; 6:2661-2671. [PMID: 32866371 DOI: 10.1021/acsinfecdis.0c00312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
MenJ, a flavoprotein oxidoreductase, is responsible for the saturation of the β-isoprene unit of mycobacterial menaquinone, resulting in the conversion of menaquinone with nine isoprene units (MK-9) to menaquinone with nine isoprene units where the double bond in the second unit is reduced [MK-9(II-H2)]. The hydrogenation of MK-9 increases the efficiency of the mycobacterial electron transport system, whereas the deletion of MenJ results in decreased survival of the bacteria inside J774A.1 macrophage-like cells but is not required for growth in culture. Thus, it was suggested that MenJ may represent a contextual drug target in M. tuberculosis, that is, a drug target that is valid only in the context of an infected macrophage. However, it was unclear if the conversion of MK-9 to MK-9(II-H2) or the MenJ protein itself was responsible for bacterial survival. In order to resolve this issue, a plasmid expressing folded, full-length, inactive MenJ was engineered. Primary sequence analysis data revealed that MenJ shares conserved FAD binding, NADH binding, and catalytic and C-terminal motifs with archaeal geranylgeranyl reductases. A MenJ mutant deficient in any one of these motifs is devoid of reductase activity. Therefore, point mutations of highly conserved amino acids in the conserved motifs were generated and the recombinant proteins were monitored for conformational changes by circular dichroism and oxidoreductase activity. The mutational analysis indicates that amino acids tryptophan 215 (W215) and cysteine 46 (C46) of M. tuberculosis MenJ, conserved in known archaeal geranylgeranyl reductases and putative menaquinone saturases, are essential to the hydrogenation of MK-9. The mutation of either C46 to serine (C46S) or W215 to leucine (W215L) in MenJ completely abolishes the catalytic activity in vitro, and menJ knockout strains of M. tuberculosis expressing either the C46S or W215L mutant protein are unable to convert MK-9 to MK-9(II-H2) but survive inside the J774A.1 cells. Thus, surprisingly, the survival of M. tuberculosis in J774A.1 cells is dependent on the expression of MenJ rather than its oxidoreductase activity, the conversion of MK-9 to MK-9(II-H2) as previously hypothesized. Overall, the current data suggest that MenJ is a moonlighting protein.
Collapse
|
44
|
Extracellular Vesicles Produced by Bifidobacterium longum Export Mucin-Binding Proteins. Appl Environ Microbiol 2020; 86:AEM.01464-20. [PMID: 32737132 DOI: 10.1128/aem.01464-20] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/29/2020] [Indexed: 01/21/2023] Open
Abstract
Extracellular proteins are important factors in host-microbe interactions; however, the specific factors that enable bifidobacterial adhesion and survival in the gastrointestinal (GI) tract are not fully characterized. Here, we discovered that Bifidobacterium longum NCC2705 cultured in bacterium-free supernatants of human fecal fermentation broth released a myriad of particles into the extracellular environment. The aim of this study was to characterize the physiological properties of these extracellular particles. The particles, approximately 50 to 80 nm in diameter, had high protein and double-stranded DNA contents, suggesting that they were extracellular vesicles (EVs). A proteomic analysis showed that the EVs primarily consisted of cytoplasmic proteins with crucial functions in essential cellular processes. We identified several mucin-binding proteins by performing a biomolecular interaction analysis of phosphoketolase, GroEL, elongation factor Tu (EF-Tu), phosphoglycerate kinase, transaldolase (Tal), and heat shock protein 20 (Hsp20). The recombinant GroEL and Tal proteins showed high binding affinities to mucin. Furthermore, the immobilization of these proteins on microbeads affected the permanence of the microbeads in the murine GI tract. These results suggest that bifidobacterial exposure conditions that mimic the intestine stimulate B. longum EV production. The resulting EVs exported several cytoplasmic proteins that may have promoted B. longum adhesion. This study improved our understanding of the Bifidobacterium colonization strategy in the intestinal microbiome.IMPORTANCE Bifidobacterium is a natural inhabitant of the human gastrointestinal (GI) tract. Morphological observations revealed that extracellular appendages of bifidobacteria in complex microbial communities are important for understanding its adaptations to the GI tract environment. We identified dynamic extracellular vesicle (EV) production by Bifidobacterium longum in bacterium-free fecal fermentation broth that was strongly suggestive of differing bifidobacterial extracellular appendages in the GI tract. In addition, export of the adhesive moonlighting proteins mediated by EVs may promote bifidobacterial colonization. This study provides new insight into the roles of EVs in bifidobacterial colonization processes as these bacteria adapt to the GI environment.
Collapse
|
45
|
Deciphering Additional Roles for the EF-Tu, l-Asparaginase II and OmpT Proteins of Shiga Toxin-Producing Escherichia coli. Microorganisms 2020; 8:microorganisms8081184. [PMID: 32759661 PMCID: PMC7464798 DOI: 10.3390/microorganisms8081184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 12/14/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) causes outbreaks and sporadic cases of gastroenteritis. STEC O157:H7 is the most clinically relevant serotype in the world. The major virulence determinants of STEC O157:H7 are the Shiga toxins and the locus of enterocyte effacement. However, several accessory virulence factors, mainly outer membrane proteins (OMPs) that interact with the host cells may contribute to the virulence of this pathogen. Previously, the elongation factor thermo unstable (EF-Tu), l-asparaginase II and OmpT proteins were identified as antigens in OMP extracts of STEC. The known subcellular location of EF-Tu and l-asparaginase II are the cytoplasm and periplasm, respectively. Therefore, we investigate whether these two proteins may localize on the surface of STEC and, if so, what roles they have at this site. On the other hand, the OmpT protein, a well characterized protease, has been described as participating in the adhesion of extraintestinal pathogenic E. coli strains. Thus, we investigate whether OmpT has this role in STEC. Our results show that the EF-Tu and l-asparaginase II are secreted by O157:H7 and may also localize on the surface of this bacterium. EF-Tu was identified in outer membrane vesicles (OMVs), suggesting it as a possible export mechanism for this protein. Notably, we found that l-asparaginase II secreted by O157:H7 inhibits T-lymphocyte proliferation, but the role of EF-Tu at the surface of this bacterium remains to be elucidated. In the case of OmpT, we show its participation in the adhesion of O157:H7 to human epithelial cells. Thus, this study extends the knowledge of the pathogenic mechanisms of STEC.
Collapse
|
46
|
Liu H, Jeffery CJ. Moonlighting Proteins in the Fuzzy Logic of Cellular Metabolism. Molecules 2020; 25:molecules25153440. [PMID: 32751110 PMCID: PMC7435893 DOI: 10.3390/molecules25153440] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/09/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
The numerous interconnected biochemical pathways that make up the metabolism of a living cell comprise a fuzzy logic system because of its high level of complexity and our inability to fully understand, predict, and model the many activities, how they interact, and their regulation. Each cell contains thousands of proteins with changing levels of expression, levels of activity, and patterns of interactions. Adding more layers of complexity is the number of proteins that have multiple functions. Moonlighting proteins include a wide variety of proteins where two or more functions are performed by one polypeptide chain. In this article, we discuss examples of proteins with variable functions that contribute to the fuzziness of cellular metabolism.
Collapse
Affiliation(s)
- Haipeng Liu
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, IL 60607, USA;
| | - Constance J. Jeffery
- Department of Biological Sciences, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, IL 60607, USA
- Correspondence: ; Tel.: +1-312-996-3168
| |
Collapse
|
47
|
Jamshidi E, Murolo S, Salehi M, Romanazzi G. Sequence Analysis of New Tuf Molecular Types of ' Candidatus Phytoplasma Solani' in Iranian Vineyards. Pathogens 2020; 9:pathogens9060508. [PMID: 32599831 PMCID: PMC7350298 DOI: 10.3390/pathogens9060508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 12/26/2022] Open
Abstract
Grapevine Bois noir (BN) is caused by ‘Candidatus Phytoplasma solani’ (‘Ca. P. solani’) and is one of the most important phytoplasma diseases in the Euro-Mediterranean viticultural areas. The epidemiology of BN can include grapevine as a plant host and is usually transmitted via sap-sucking insects that inhabit herbaceous host plants. Tracking the spread of ‘Ca. P. solani’ strains is of great help for the identification of plant reservoirs and insect vectors involved in local BN outbreaks. The molecular epidemiology of ‘Ca. P. solani’ is primarily based on sequence analysis of the tuf housekeeping gene (which encodes elongation factor Tu). In this study, molecular typing of tuf, through restriction fragment length polymorphism and sequencing, was carried out on grapevine samples from Iranian vineyards. According to the molecular characterization, three molecular types—tuf b1, tuf b5 and tuf b6—were found, with tuf b1 being the most prominent. These data provide further knowledge of tuf gene diversity and question the ecological role of such “minor” tuf types in Iranian vineyards, which have been detected only in grapevines.
Collapse
Affiliation(s)
- Elham Jamshidi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (E.J.); (S.M.)
| | - Sergio Murolo
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (E.J.); (S.M.)
| | - Mohammad Salehi
- Plant Protection Research Department, Fars Agricultural and Natural Resources Research and Education Centre, AREEO, Zarghan 617-71555, Iran;
| | - Gianfranco Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (E.J.); (S.M.)
- Correspondence: ; Tel.: +39-071-220-4336
| |
Collapse
|
48
|
Porphyromonas gingivalis HmuY and Streptococcus gordonii GAPDH-Novel Heme Acquisition Strategy in the Oral Microbiome. Int J Mol Sci 2020; 21:ijms21114150. [PMID: 32532033 PMCID: PMC7312356 DOI: 10.3390/ijms21114150] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/02/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022] Open
Abstract
The oral cavity of healthy individuals is inhabited by commensals, with species of Streptococcus being the most abundant and prevalent in sites not affected by periodontal diseases. The development of chronic periodontitis is linked with the environmental shift in the oral microbiome, leading to the domination of periodontopathogens. Structure-function studies showed that Streptococcus gordonii employs a "moonlighting" protein glyceraldehyde-3-phosphate dehydrogenase (SgGAPDH) to bind heme, thus forming a heme reservoir for exchange with other proteins. Secreted or surface-associated SgGAPDH coordinates Fe(III)heme using His43. Hemophore-like heme-binding proteins of Porphyromonas gingivalis (HmuY), Prevotella intermedia (PinO) and Tannerella forsythia (Tfo) sequester heme complexed to SgGAPDH. Co-culturing of P. gingivalis with S. gordonii results in increased hmuY gene expression, indicating that HmuY might be required for efficient inter-bacterial interactions. In contrast to the DhmuY mutant strain, the wild type strain acquires heme and forms deeper biofilm structures on blood agar plates pre-grown with S. gordonii. Therefore, our novel paradigm of heme acquisition used by P. gingivalis appears to extend to co-infections with other oral bacteria and offers a mechanism for the ability of periodontopathogens to obtain sufficient heme in the host environment. Importantly, P. gingivalis is advantaged in terms of acquiring heme, which is vital for its growth survival and virulence.
Collapse
|
49
|
Dudík B, Kiňová Sepová H, Bilka F, Pašková Ľ, Bilková A. Mucin pre-cultivated Lactobacillus reuteri E shows enhanced adhesion and increases mucin expression in HT-29 cells. Antonie van Leeuwenhoek 2020; 113:1191-1200. [DOI: 10.1007/s10482-020-01426-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/06/2020] [Indexed: 12/23/2022]
|
50
|
Wolden R, Pain M, Karlsson R, Karlsson A, Aarag Fredheim EG, Cavanagh JP. Identification of surface proteins in a clinical Staphylococcus haemolyticus isolate by bacterial surface shaving. BMC Microbiol 2020; 20:80. [PMID: 32264835 PMCID: PMC7137321 DOI: 10.1186/s12866-020-01778-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/31/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The skin commensal Staphylococcus haemolyticus is an emerging nosocomial pathogen. Despite its clinical relevance, published information about S. haemolyticus virulence factors is scarce. In this study, the adhesive and biofilm forming properties of ten clinical and ten commensal S. haemolyticus strains were examined using standard adhesion and biofilm assays. One of the clinical strains was used to identify expressed surface proteins using bacterial surface shaving. Protein abundance was examined by a comparative analysis between bacterial protein expression after human keratinocyte (HaCaT) colonization and growth in cell culture media supplemented with serum. Relative protein quantification was performed by labeling peptides with tandem mass tags (TMT) prior to Mass Spectrometry analysis. Surface proteins can be used as novel targets for antimicrobial treatment and in diagnostics. RESULTS Adherence to fibronectin, collagen and plastic was low in all tested strains, but with significantly higher adhesion to fibronectin (p = 0.041) and collagen (p = 0.001) in the commensal strains. There was a trend towards higher degree of biofilm formation in the clinical strains (p = 0.059). By using surface shaving, 325 proteins were detected, of which 65 were classified as surface proteins. Analyses showed that the abundance of nineteen (5.8%) proteins were significantly changed following HaCaT colonization. The bacterial Toll/interleukin-1 like (TIRs) domain containing protein (p = 0.04), the transglycosylase SceD (p = 0.01), and the bifunctional autolysin Atl (p = 0.04) showed a 1.4, 1.6- and 1.5-fold increased abundance. The staphylococcal secretory antigen (SsaA) (p = 0.04) was significantly downregulated (- 1.5 fold change) following HaCaT colonization. Among the 65 surface proteins the elastin binding protein (Ebps), LPXAG and LPXSG domain containing proteins and five LPXTG domain containing proteins were identified; three Sdr-like proteins, the extracellular matrix binding protein Embp and a SasH-like protein. CONCLUSIONS This study has provided novel knowledge about expression of S. haemolyticus surface proteins after direct contact with eukaryotic cells and in media supplemented with serum. We have identified surface proteins and immune evasive proteins previously only functionally described in other staphylococcal species. The identification of expressed proteins after host-microbe interaction offers a tool for the discovery and design of novel targets for antimicrobial treatment.
Collapse
Affiliation(s)
- Runa Wolden
- Pediatric Research group, Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Maria Pain
- Pediatric Research group, Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Roger Karlsson
- Nanoxis Consulting AB, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, SE-413 46, Gothenburg, Region Västra Götaland, Sweden
| | | | - Elizabeth G Aarag Fredheim
- Microbial Pharmacology and Population Biology, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Jorunn Pauline Cavanagh
- Pediatric Research group, Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway.
- Department of Pediatrics, The University Hospital of North Norway, Tromsø, Norway.
| |
Collapse
|