1
|
Hachicha R, Elleuch J, Dubessay P, Hachicha R, Abdelkafi S, Michaud P, Fendri I. Integrated processes for olive mill wastewater treatment and its revalorization for microalgae culture. Int Microbiol 2024:10.1007/s10123-024-00600-z. [PMID: 39358585 DOI: 10.1007/s10123-024-00600-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
The olive oil industry generates 30 million cubic meters of olive mill wastewaters (OMWWs) annually. OMWWs are a major environmental concern in the Mediterranean region due to their high organic matter content, suspended solids, unpleasant odor, and dark color. The application of primary treatments such as coagulation-flocculation, adsorption, and hybrid systems combining coagulation-flocculation with adsorption has enabled to remove part of the organic matter, color, turbidity, and growth-inhibiting compounds from OMWWs. Among these methods, the hybrid system combining activated carbon and chitosan has proven to be the best removal efficiency. Subsequently, secondary treatment involving the cultivation of Chlorella sp. on OMWWs pretreated with chitosan achieved the highest maximal specific growth rate (0.513 ± 0.022 day⁻1) and biomass productivity (0.621 ± 0.021 g/L/day). Notably, the fatty acids (FA) profile produced by Chlorella sp. cells grown under these conditions differed, underscoring the potential of OMWWs as a microalgal growth medium. This innovative approach not only addresses environmental issues but also opens new avenues for sustainable bioproducts.
Collapse
Affiliation(s)
- Rihab Hachicha
- Clermont Auvergne University, Clermont Auvergne INP, CNRS, Institut Pascal, 63000, Clermont-Ferrand, France
- Laboratory of Plant Biotechnologies Applied to Crop Improvement, Faculty of Sciences of Sfax, University of Sfax, 3038, Sfax, Tunisia
| | - Jihen Elleuch
- Laboratory of Enzymatic Engineering and Microbiology, Algae Biotechnology Team, National School of Engineers of Sfax, University of Sfax, 3038, Sfax, Tunisia
| | - Pascal Dubessay
- Clermont Auvergne University, Clermont Auvergne INP, CNRS, Institut Pascal, 63000, Clermont-Ferrand, France
| | - Ridha Hachicha
- Laboratory of Enzymatic Engineering and Microbiology, Algae Biotechnology Team, National School of Engineers of Sfax, University of Sfax, 3038, Sfax, Tunisia
| | - Slim Abdelkafi
- Laboratory of Enzymatic Engineering and Microbiology, Algae Biotechnology Team, National School of Engineers of Sfax, University of Sfax, 3038, Sfax, Tunisia
| | - Philippe Michaud
- Clermont Auvergne University, Clermont Auvergne INP, CNRS, Institut Pascal, 63000, Clermont-Ferrand, France.
| | - Imen Fendri
- Laboratory of Plant Biotechnologies Applied to Crop Improvement, Faculty of Sciences of Sfax, University of Sfax, 3038, Sfax, Tunisia
| |
Collapse
|
2
|
Wei G, Tang Y, Dai L, An T, Li Y, Wang Y, Wang L, Wang X, Zhang J. Identification and functional prediction of miRNAs that regulate ROS levels in dielectric barrier discharge plasma-treated boar spermatozoa. Theriogenology 2024; 226:308-318. [PMID: 38959841 DOI: 10.1016/j.theriogenology.2024.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Dielectric barrier discharge (DBD) plasma regulates the levels of reactive oxygen species (ROS), which are critical for sperm quality. MicroRNAs (miRNAs) are non-coding single-stranded RNA molecules encoded by endogenous genes, which regulate post-transcriptional gene expression in animals. At present, it is unknown whether DBD plasma can regulate sperm ROS levels through miRNAs. To further understand the regulatory mechanism of DBD plasma on sperm ROS levels, miRNAs in fresh boar spermatozoa were detected using Illumina deep sequencing technology. We found that 25 known miRNAs and 50 novel miRNAs were significantly upregulated, and 14 known miRNAs and 74 novel miRNAs were significantly downregulated in DBD plasma-treated spermatozoa. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that target genes of differentially expressed miRNAs were involved in many activities and pathways associated with antioxidants. We verified that DBD plasma significantly increased boar sperm quality and reduced ROS levels. These results suggest that DBD plasma can improve sperm quality by regulating ROS levels via miRNAs. Our findings provide a potential strategy to improve sperm quality through miRNA-targeted regulation of ROS, which helps to increase male reproduction and protect cryopreserved semen in clinical practice.
Collapse
Affiliation(s)
- Gege Wei
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, China
| | - Yunping Tang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, China
| | - Li Dai
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, China
| | - Tianyi An
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, China
| | - Yaqi Li
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, China; Jianyang Municipal People's Government Shiqiao Street Office Comprehensive Convenience Service Center, Jianyang, Sichuan, 641400, China
| | - Yusha Wang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, China
| | - Lijuan Wang
- Sichuan Animal Husbandry Station, Chengdu, 610041, China
| | - Xianzhong Wang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, China
| | - Jiaojiao Zhang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, China.
| |
Collapse
|
3
|
Chen M, Liu Y, Li Y, Liu X. Tumor-targeted nano-assemblies for energy-blocking cocktail therapy in cancer. Acta Biomater 2024; 184:368-382. [PMID: 38908417 DOI: 10.1016/j.actbio.2024.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/26/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024]
Abstract
Starvation therapy aims to "starve" tumor cells by cutting off their nutritional supply. However, due to the complex and varied energy metabolism of tumors, targeting a single nutrient supply often fails to yield significant therapeutic benefits. This study proposes a tumor energy cocktail therapy that combines metformin, an oxidative phosphorylation inhibitor, with 2-deoxy-d-glucose (2-DG), a glycolysis inhibitor, to target tumor cells. To minimize the dosage of both drugs, we have developed a drug delivery strategy that prepared metformin as a nanoderivative, denoted as MA-dots. These MA-dots not only preserve the antitumor properties of metformin but also serve as a targeted delivery platform for 2-DG, ensuring its direct reach to the tumor site. Upon reaching the acidic tumor environment, the composite disintegrates, releasing 2-DG to inhibit glycolysis by targeting hexokinase 2 (HK2), the key enzyme in glycolysis, while MA-dots inhibit mitochondrial OXPHOS. This dual action significantly reduces ATP production in tumor cells, leading to apoptosis. In human lung tumor cells, the half-maximal inhibitory concentration (IC50) of 2-DG@MA-dots was significantly lower than that of either metformin or 2-DG alone, showing a nearly 100-fold and 30-fold reduction in IC50 values to 11.78 µg mL-1, from 1159 µg mL-1 and 351.20 µg mL-1, respectively. In studies with A549 tumor-bearing mice, the combination of low-dose 2-DG and metformin did not impede tumor growth, whereas 2-DG@MA-dots markedly decreased tumor volume, with the mean final tumor volume in the combination treatment group being approximately 89 times greater than that in the 2-DG@MA-dot group. STATEMENT OF SIGNIFICANCE: Metformin is a promising antitumor agent capable of modulating mitochondrial oxidative phosphorylation to inhibit cancer growth. However, its antitumor efficacy is limited when used alone due to compensatory energy mechanisms. Hence, we introduced glycolysis inhibitor 2-deoxy-d-glucose (2-DG) to inhibit an alternative tumor energy pathway. In our study, we developed a drug delivery strategy using metformin-derived nanomedicine (MA-dots) to load 2-DG. This approach enables the co-delivery of both drugs and their synergistic effect at the tumor site, disrupting both energy pathways and introducing an innovative "energy cocktail therapy".
Collapse
Affiliation(s)
- Manling Chen
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, Liaoning, PR China
| | - Yidu Liu
- Department of Cell Biology, Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang 110122, Liaoning, PR China
| | - Yang Li
- Department of Cell Biology, Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang 110122, Liaoning, PR China.
| | - Xue Liu
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, Liaoning, PR China; School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, PR Singapore.
| |
Collapse
|
4
|
Abo El-Ela FI, Gamal A, El-Banna HA, Ibrahim MA, El-Banna AH, Abdel-Razik ARH, Abdel-Wahab A, Hassan WH, Abdelghany AK. Repro-protective activity of amygdalin and spirulina platensis in niosomes and conventional forms against aluminum chloride-induced testicular challenge in adult rats: role of CYP11A1, StAR, and HSD-3B expressions. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3211-3226. [PMID: 37910183 PMCID: PMC11074051 DOI: 10.1007/s00210-023-02788-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023]
Abstract
The male reproductive system is negatively influenced by Al exposure. Al represented a considerable hazard to men's reproduction capabilities. Amygdalin (AMG) and spirulina platensis (SP) have been considered to have a strong antioxidant and repro-protective activity; also, targeted drug delivery systems called niosomes improve the distribution of water-soluble medications like amygdalin and spirulina. Current study targeted to determine the effectiveness of AMG and SP against negative reproductive impact resulted by aluminum chloride (AlCl3) toxicity. Sixty adult male albino rats were separated into 6 groups, including the control group, which received distilled water; AlCl3 group, which received AlCl3; AMG+AlCl3 group, which received AlCl3+AMG; AMGLN+AlCl3 group, which received AlCl3+amygdalin-loaded niosomes; SP+AlCl3 group, which received AlCl3+SP; and SPLN+AlCl3 group, which received AlCl3+spirulina-loaded niosomes. All treatments were orally gavaged daily for 5 weeks, and rats were weighed weekly. At the termination of the experiment, some males (three from each group) were used for fertility traits via mating thirty virgin rat females (in a ratio of 1:2 and 2:3 male:female, respectively) followed by recording of birth weights and litter size (number of pups per each female) at birth to assess males' reproductive capability. Other males were euthanized for collection of serum, epididymal semen samples, and tissue samples for biochemical, sperm evaluation, gene expression, and histopathological measurements. There are a considerable number of negative impacts of AlCl3 on male fertility clarified by declined serum testosterone levels; an increased oxidative stress (MDA, TAC); deteriorated semen quality; down-regulation of CYP11A1, StAR, and HSD-3b gene expressions; and testicular tissue degenerative changes. In addition, litter size (number of pups per each female) and birth weights of pups obtained from mated females were affected. AMG and SP treatments, either in niosomal or conventional form, alleviated the AlCl3 negative effects by reducing oxidative stress; increasing testosterone levels; improving semen quality; upregulating of CYP11A1, StAR, and HSD-3b gene expressions; and reducing degenerative changes of testicular tissue. Besides, negative reproductive effect was diminished as observed by changes in the litter size (number of pups per each female) and birth weights of pups obtained from mated females. AMG and SP treatments (either in niosomal or conventional form), ameliorated the AlCl3 negative effects as they possess powerful antioxidant activity, as well as they have the ability to improve the reproductive activity of affected males.
Collapse
Affiliation(s)
- Fatma I Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Amr Gamal
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | | | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ahmed H El-Banna
- Michael Sayegh Faculty of Pharmacy, Aqaba University of Technology, Aqaba, Jordan
| | - Abdel-Razik H Abdel-Razik
- Department of Histology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Ahmed Abdel-Wahab
- Department of Physiology, Faculty of Veterinary Medicine, Minia University, El-Minia, Egypt
| | - Walid Hamdy Hassan
- Department of Microbiology Mycology and Immunology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Asmaa K Abdelghany
- Animal and Poultry Management and Wealth Development Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| |
Collapse
|
5
|
Al-Nakhle H, El-Tokhy A, Eltahir H, Almuayrifi M, Abouzied M, Abdelaal K, Albadrani M. Assessing the toxicity of pesticides exposure on hepatic miRNA-target gene alterations in rat liver tissues via molecular and integrated network bioinformatics analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116211. [PMID: 38479317 DOI: 10.1016/j.ecoenv.2024.116211] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 09/19/2024]
Abstract
The prevalent use of pesticides, including pirimiphos-methyl (PPM) and bifenthrin (BF), poses a serious health risk, particularly to workers who encounter these chemicals daily. Despite the recognized hepatotoxic effects, the specific molecular mechanisms, especially those involving miRNAs in liver damage caused by PPM and BF, are not fully elucidated. Prior studies have not exhaustively analyzed the hepatic miRNA-target gene dynamics following exposure to these pesticides; thus, this research aims to fill that gap through an extensive miRNA analysis to discern their regulation in PPM or BF-induced hepatic toxicity. In this study, male Sprague-Dawley rats were exposed to BF or PPM for 28 days through oral gavage, simulating the chronic exposure faced by humans. We conducted a thorough assessment of the hepatotoxicity induced by PPM and BF, employing multiple evaluation levels, including histological analysis, liver enzyme measurements, and real-time PCR to detect changes in hepatic miRNA-target gene expressions. Additionally, we utilized DIANA-miRPath prediction tools to delineate the functional implications of these hepatic miRNA target genes. Our findings reveal a significant modulation in the expression of rno-miR-155-5p and rno-miR-122-5p, along with their target genes, following PPM and BF treatment. In contrast, rno-miR-21-5p levels remained unaltered. These observations suggest potential utility of these specific hepatic miRNAs as biomarkers for liver injury resulting from pesticide exposure. Subsequent GO enrichment analysis linked target genes to functions like molecular activity, protein binding, and cellular processes. Additionally, KEGG pathway analysis showed these genes, influenced by varied miRNA expressions, play significant roles in metabolic and signaling pathways In conclusion, this study enhances our comprehension of the biological roles of miRNAs in hepatic toxicity induced by PPM and BF. The insights gained here not only shed light on molecular mechanisms but also open avenues for considering these miRNAs as potential diagnostic biomarkers in conditions of pesticide-induced hepatotoxicity, thereby guiding future therapeutic strategies.
Collapse
Affiliation(s)
- Hakeemah Al-Nakhle
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Al-Madinah Al-Munawaroh 42353, Saudi Arabia.
| | - Ahmed El-Tokhy
- Plant Protection Department, Faculty of Agriculture, New Valley University, El-Kharga, Egypt.
| | - Heba Eltahir
- Department of Pharmacology and Toxicology, division of biochemistry, Taibah University, Al-Madinah Al-Munawara, Saudi Arabia
| | - Mohammed Almuayrifi
- Al Madinah Regional Municipality, Environmental public health department, Al-Madinah Al-Munawara, Saudi Arabia
| | - Mekky Abouzied
- Department of Pharmacology and Toxicology, division of biochemistry, Taibah University, Al-Madinah Al-Munawara, Saudi Arabia; Department of biochemistry, faculty of pharmacy, Minia University, Minia, Egypt
| | - Khaled Abdelaal
- Excellence Center (EPCRS), Plant Pathology and Biotechnology Laboratory, Faculty of Agriculture, Kafrelsheikh University, Kafr Elsheikh 33516, Egypt
| | - Muayad Albadrani
- Department of Family and Community Medicine, College of Medicine, Taibah University, Al-Madinah Al-Munawara, Saudi Arabia.
| |
Collapse
|
6
|
Bae JW, Hwang JM, Yoon M, Kwon WS. Bifenthrin Diminishes Male Fertility Potential by Inducing Protein Defects in Mouse Sperm. TOXICS 2024; 12:53. [PMID: 38251009 PMCID: PMC10821346 DOI: 10.3390/toxics12010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
A synthetic pyrethroid pesticide, bifenthrin, has been commonly used as an effective exterminator, although the rise in its usage has raised concerns regarding its effects on the environment and public health, including reproduction, globally. The current study investigated the function-related molecular disparities and mechanisms in bifenthrin-exposed sperm cells and the underlying mechanism. Therefore, epididymal spermatozoa were released, and various concentrations of bifenthrin were treated (0.1, 1, 10, and 100 μM) to evaluate their effects on sperm. The findings showed that although bifenthrin had no effect on sperm viability, various other sperm functions (e.g., motility, spontaneous acrosome reaction, and capacitation) related to male fertility were decreased, commencing at a 1 µM treatment. Molecular studies revealed nine differentially expressed sperm proteins that were implicated in motile cilium assembly, sperm structure, and metabolic processes. Furthermore, bifenthrin affected sperm functions through abnormal diminution of the expression of specific sperm proteins. Collectively, these findings provide greater insights into how bifenthrin affects male fertility at the molecular level.
Collapse
Affiliation(s)
- Jeong-Won Bae
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Gyeongsangbuk-do, Republic of Korea; (J.-W.B.); (J.-M.H.); (M.Y.)
| | - Ju-Mi Hwang
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Gyeongsangbuk-do, Republic of Korea; (J.-W.B.); (J.-M.H.); (M.Y.)
| | - Minjung Yoon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Gyeongsangbuk-do, Republic of Korea; (J.-W.B.); (J.-M.H.); (M.Y.)
- Research Institute for Innovative Animal Science, Kyungpook National University, Sangju 37224, Gyeongsangbuk-do, Republic of Korea
| | - Woo-Sung Kwon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Gyeongsangbuk-do, Republic of Korea; (J.-W.B.); (J.-M.H.); (M.Y.)
- Research Institute for Innovative Animal Science, Kyungpook National University, Sangju 37224, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
7
|
Boukari O, Khemissi W, Ghodhbane S, Lahbib A, Tebourbi O, Rhouma KB, Sakly M, Hallegue D. Effects of testosterone replacement on lipid profile, hepatotoxicity, oxidative stress, and cognitive performance in castrated wistar rats. Arch Ital Urol Androl 2023; 95:11593. [PMID: 38193231 DOI: 10.4081/aiua.2023.11593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 07/30/2023] [Indexed: 01/10/2024] Open
Abstract
OBJECTIVE Androgen deficiency is associated with multiple biochemical and behavioral disorders. This study investigated the effects of testosterone replacement and Spirulina Platensis association on testosterone deficiency-induced metabolic disorders and memory impairment. METHODS Adult male rats were randomly and equally divided into four groups and received the following treatments for 20 consecutive days. CONTROL GROUP non-castrated rats received distilled water. Castrated group received distilled water. Testosterone treated group: castrated rats received 0.20 mg of testosterone dissolved in corn oil by subcutaneous injection (i.p.). Spirulina co-treated group: castrated rats received 0.20 mg of testosterone (i.p.) dissolved in corn oil followed by 1000 mg/kg of Spirulina per os. RESULTS Data showed that castration induced an increase in plasma ALT, AST, alkaline phosphatase (PAL), cholesterol, and triglycerides level. Castrated rats showed a great elevation in SOD and CAT activities and MDA and H2O2 levels in the prostate, seminal vesicles, and brain. Testosterone deficiency was also associated with alteration of the spatial memory and exploratory behaviour. Testosterone replacement either alone or with Spirulina combination efficiently improved most of these biochemical parameters and ameliorated cognitive abilities in castrated rats. CONCLUSIONS Testosterone replacement either alone or in combination with Spirulina improved castration-induced metabolic, oxidative, and cognitive alterations.
Collapse
Affiliation(s)
- Oumayma Boukari
- Laboratory of Integrated Physiology, Department Life Sciences, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna 7021, Bizerte.
| | - Wahid Khemissi
- Laboratory of Integrated Physiology, Department Life Sciences, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna 7021, Bizerte.
| | - Soumaya Ghodhbane
- Laboratory of Integrated Physiology, Department Life Sciences, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna 7021, Bizerte.
| | - Aida Lahbib
- Laboratory of Integrated Physiology, Department Life Sciences, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna 7021, Bizerte.
| | - Olfa Tebourbi
- Laboratory of Integrated Physiology, Department Life Sciences, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna 7021, Bizerte.
| | - Khemais Ben Rhouma
- Laboratory of Integrated Physiology, Department Life Sciences, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna 7021, Bizerte.
| | - Mohsen Sakly
- Laboratory of Integrated Physiology, Department Life Sciences, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna 7021, Bizerte.
| | - Dorsaf Hallegue
- Laboratory of Integrated Physiology, Department Life Sciences, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna 7021, Bizerte.
| |
Collapse
|
8
|
Ghamry HI, Shukry M, Kassab MA, Farrag FA, El-Shafai NM, Elgendy E, Ibrahim AN, Elgendy SA, Behairy A, Ibrahim SF, Imbrea F, Florin C, Abdo M, Ahmed IA, Muhammad MH, Anwer H, Abdeen A. Arthrospira platensis Nanoparticles Mitigate Aging-Related Oxidative Injured Brain Induced by D-galactose in Rats Through Antioxidants, Anti-Inflammatory, and MAPK Pathways. Int J Nanomedicine 2023; 18:5591-5606. [PMID: 37808455 PMCID: PMC10558002 DOI: 10.2147/ijn.s416202] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023] Open
Abstract
Background Loss of normal function is an inevitable effect of aging. Several factors contribute to the aging process, including cellular senescence and oxidative stress. Methods We investigate how Arthrospira platensis Nanoparticles (NSP) protect against aging injury induced by d-galactose (D-gal) in the rat. So, we subcutaneously (S/C) injected D-gal at 200 mg/kg BW to see if Arthrospira platensis Nanoparticles (NSP) might protect against the oxidative changes generated by D-gal. NSP (0.5 mg/kg body weight once daily by gastric gavage) was given to all groups apart from the control and D-gal groups. The d-gal + NSP group was supplemented with 200 mg of D-gal per kg BW once a day and NSP 0.5 mg/kg BW given orally for 45 days. Biochemical, mRNA expression, and histological investigations of brain tissues were used to evaluate the oxidative alterations caused by d-gal and the protective role of NSP. Results Our data demonstrated that d-gal was causing significant reductions in relative brain and body weight with increased malondialdehyde (MDA) and redox oxygen species (ROS) levels and increases in serum creatine phosphokinase (CPK) and creatine phosphokinase isoenzyme BB (CPK-BB) with marked decreases in the level of antioxidant enzyme activity in the brain and acetylcholinesterase activity augmented with a phosphorylated H2A histone family member X (γ-H2AX) level increased. The D-gal group had considerably higher phosphorylated p38 mitogen-activated protein kinases (P38MAPK) and C-Jun N-terminal (JNK) kinases. The d-gal administration stimulates the apoptotic gene expression by downregulating the brain superoxide dismutase (SOD), catalase (CAT), and nuclear factor erythroid 2-related factor 2 (Nrf2). The NSP administration saved these parameters in the direction of the control. The brain histopathologic and immunohistochemistry analysis findings support our findings on NSP's protective role. Conclusion The NSP may be a promising natural protective compound that can prevent aging and preserve health.
Collapse
Affiliation(s)
- Heba I Ghamry
- Nutrition and Food Science, Department of Home Economics, Faculty of Home Economics, King Khalid University, Abha, 61421, Saudi Arabia
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mohamed A Kassab
- Department of Histology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Foad A Farrag
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Nagi M El-Shafai
- Nanotechnology Center, Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Enas Elgendy
- Histology and Cell Biology Department, Faculty of Medicine, Benha University, Benha, Egypt
| | - Amany N Ibrahim
- Department of Pharmacology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Salwa A Elgendy
- Department of Pharmacology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Ali Behairy
- Department of Pharmacology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Samah F Ibrahim
- Department of Clinical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Florin Imbrea
- Department of Biology and Plant Protection, Faculty of Agriculture, University of Life Sciences “King Michael I” from Timișoara, Timisoara, 300645, Romania
| | - Crista Florin
- Department of Soil Science, Faculty of Agriculture, University of Life Sciences “King Michael I” from Timișoara, Timisoara, 300645, Romania
| | - Mohamed Abdo
- Department of Animal Histology and anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Egypt
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Inas A Ahmed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Marwa H Muhammad
- Department of Physiology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Hala Anwer
- Department of Physiology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| |
Collapse
|
9
|
El-Magid ADA, AbdEl-Hamid OM, Younes MA. The Biochemical Effects of Silver Nanoparticles and Spirulina Extract on Experimentally Induced Prostatic Cancer in Rats. Biol Trace Elem Res 2023; 201:1935-1945. [PMID: 35689758 PMCID: PMC9931816 DOI: 10.1007/s12011-022-03298-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/23/2022] [Indexed: 11/02/2022]
Abstract
Prostate cancer (PCa) is the most diagnosed cancer in 112 countries and the second leading cause of death in men in 48 countries. We studied the outstanding agents silver nanoparticles (AgNPs) and Spirulina algae (Sp) for the management of PCa once as monotherapy or last as a combination. PCa in rats was induced using bicalutamide (Casodex®) and testosterone, followed by (7, 12-dimethylbenz[a]anthracene). Then, testosterone was injected s.c. for 3 months. Rats were divided into six groups, with 12 rats in each group. Group I was assigned as the control (co), group II as the PCa model, group III treated with AgNPs, group IV treated with Spirulina extract, group V treated with a combination of AgNPs plus Spirulina, and group VI treated with bicalutamide. The results show that AgNPs could normalize IL-6 levels and could overcome the hormonal disturbance induced in PCa rats along the hypothalamic-pituitary-testis axis. Spirulina revealed a significant reduction in the level of total and free prostatic specific antigen (PSA) to the same level as bicalutamide treatment, which was the same as the control group. Histopathological study revealed regression (75%) of the histological pattern of high-grade prostatic intraepithelial neoplasia (HGPIN) for Spirulina alone, and (50%) for bicalutamide. The best effect on IL-6 decline was reached with the AgNPs/Spirulina combination as well as bicalutamide treatment compared with the PCa group. Bicalutamide treatment significantly decreased the PSA concentration relative to the PCa group and reached the normal level. Adding Spirulina to AgNPs as a combination enhanced its effect on all mentioned drawbacks associated with PCa except hormonal imbalance that needs more adjustments.
Collapse
Affiliation(s)
- Afaf D Abd El-Magid
- Department of Biochemistry, Faculty of Veterinary Medicine, Benha University, Mushtuhur, Touch, Al Qalyubia Governorate, Benha, Egypt
| | - Omnia M AbdEl-Hamid
- Department of Biochemistry, Faculty of Veterinary Medicine, Benha University, Mushtuhur, Touch, Al Qalyubia Governorate, Benha, Egypt
| | - M A Younes
- Department of Biochemistry, Faculty of Veterinary Medicine, Benha University, Mushtuhur, Touch, Al Qalyubia Governorate, Benha, Egypt.
| |
Collapse
|
10
|
Olvera-Roldán EO, Cristóbal-Luna JM, García-Martínez Y, Mojica-Villegas MA, Pérez-Pastén-Borja R, Gutiérrez-Salmeán G, Pérez-Gutiérrez S, García-Rodríguez RV, Madrigal-Santillán E, Morales-González JA, Chamorro-Cevallos G. Effects of Spirulina maxima on a Model of Sexual Dysfunction in Streptozotocin-Induced Diabetic Male Rats. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12040722. [PMID: 36840070 PMCID: PMC9959000 DOI: 10.3390/plants12040722] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 05/30/2023]
Abstract
Arthrospira (Spirulina) maxima (SM) is a cyanobacterium that has a long history of being used as human food. In recent years, several investigations have shown its beneficial biological effects, among which its antioxidant capacity has been highlighted. The purpose of this study was to evaluate the effects of SM on body weight, glycemia, sexual behavior, sperm quality, testosterone levels, sex organ weights, and the activity of antioxidant enzymes in diabetic male rats (a disease characterized by an increase in reactive oxygen species). The experiment consisted of six groups of sexually expert adult males (n = 6): (1) control (vehicle); (2) streptozotocin (STZ)-65 mg/kg; (3) SM-400 mg/kg; (4) STZ + SM-100 mg/kg; (5) STZ + SM-200 mg/kg; and (6) STZ + SM-400 mg/kg. Sexual behavior tests were performed during the first 3 h of the dark period under dim red illumination. Our results showed that SM significantly improved sexual behavior and sperm quality vs. diabetic animals. Likewise, while the enzymatic activities of SOD and GPx increased, TBARS lipoperoxidation decreased and testosterone levels increased. In view of the findings, it is suggested that SM may potentially be used as a nutraceutical for the treatment of diabetic male sexual dysfunction due to its antioxidant property.
Collapse
Affiliation(s)
- Eduardo Osel Olvera-Roldán
- Laboratorio de Toxicología Preclínica, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City C.P. 07738, Mexico
| | - José Melesio Cristóbal-Luna
- Laboratorio de Toxicología Preclínica, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City C.P. 07738, Mexico
| | - Yuliana García-Martínez
- Laboratorio de Toxicología Preclínica, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City C.P. 07738, Mexico
| | - María Angélica Mojica-Villegas
- Laboratorio de Toxicología Preclínica, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City C.P. 07738, Mexico
| | - Ricardo Pérez-Pastén-Borja
- Laboratorio de Toxicología Preclínica, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City C.P. 07738, Mexico
| | - Gabriela Gutiérrez-Salmeán
- Facultad de Ciencias de la Salud/Centro de Investigaciones en Ciencias de la Salud (CICSA), Universidad Anáhuac, Mexico City C.P. 52786, Mexico
| | - Salud Pérez-Gutiérrez
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Mexico City C.P. 04960, Mexico
| | | | - Eduardo Madrigal-Santillán
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City C.P. 11340, Mexico
| | - José A. Morales-González
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City C.P. 11340, Mexico
| | - Germán Chamorro-Cevallos
- Laboratorio de Toxicología Preclínica, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City C.P. 07738, Mexico
| |
Collapse
|
11
|
Dammak M, Ben Hlima H, Smaoui S, Fendri I, Michaud P, Ayadi MA, Abdelkafi S. Conception of an environmental friendly O/W cosmetic emulsion from microalgae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:73896-73909. [PMID: 35622292 DOI: 10.1007/s11356-022-20824-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
The development of eco-friendly cosmetic such as those from microalgae for skin regeneration and collagen synthesis has gained a great interest worldwide. Accordingly, the potential of microalgae biomass as source of anti-aging cosmetic cream with high antioxidant activity has been investigated. Stabilities and sensory characteristics of cosmetic creams supplemented with Spirulina, Tetraselmis sp. and Dunaliella sp. at 0.5, 1.5 and 2.5%, respectively, revealed a conservation of physico-chemical and preliminary stability properties of formulations. To analyze physico-chemical and textural parameters, accelerated stability study was evaluated under two thermal conditions (25 and 40 °C) during 90 days. Results showed that pH values of all formulations were within the limits of normal skin pH range under storage time at 25 and 40 °C. During this period, the colored creams showed a significant changes of a* and b* indices, reflecting the instability of microalgae colors. Microalgae modified the textural characteristics of emulsions. The Tetraselmis sp. containing-cream had the lowest (P < 0.05) values of hardness, springiness, and cohesiveness. The 0.5% Spirulina containing-cream had the best stable consistency and adhesiveness under time and temperature variations. It exhibited the best properties to be used for skin care products. Thanks to their high content in bioactive macromolecules, microalgae considerably improved the antioxidant activity of the new formulated skin creams.
Collapse
Affiliation(s)
- Mouna Dammak
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, University of Sfax, 3038, Sfax, Tunisia
| | - Hajer Ben Hlima
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, University of Sfax, 3038, Sfax, Tunisia
| | - Slim Smaoui
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax, Road of Sidi Mansour Km 6, P. O. Box 1177, 3018, Sfax, Tunisia
| | - Imen Fendri
- Laboratoire de Biotechnologies Végétales Appliquées à l'Amélioration des Cultures, Faculté des Sciences de Sfax, University of Sfax, 3038, Sfax, Tunisia
| | - Philippe Michaud
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63000, Clermont-Ferrand, France
| | - Mohamed Ali Ayadi
- Laboratory of Analysis Valorization and Food Safety, National Engineering School of Sfax, University of Sfax, 3038, Sfax, Tunisia
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, University of Sfax, 3038, Sfax, Tunisia.
| |
Collapse
|
12
|
Tounsi L, Hentati F, Ben Hlima H, Barkallah M, Smaoui S, Fendri I, Michaud P, Abdelkafi S. Microalgae as feedstock for bioactive polysaccharides. Int J Biol Macromol 2022; 221:1238-1250. [PMID: 36067848 DOI: 10.1016/j.ijbiomac.2022.08.206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022]
Abstract
Due to the increase in industrial demand for new biosourced molecules (notably bioactive exopolysaccharides (EPS)), microalgae are gaining popularity because of their nutraceutical potential and benefits health. Such health effects are delivered by specific secondary metabolites, e.g., pigments, exopolysaccharides, polyunsaturated fatty acids, proteins, and glycolipids. These are suitable for the subsequent uses in cosmetic, nutraceutical, pharmaceutical, biofuels, biological waste treatment, animal feed and food fields. In this regard, a special focus has been given in this review to describe the various methods used for extraction and purification of polysaccharides. The second part of the review provides an up-to-date and comprehensive summary of parameters affecting the microalgae growth and insights to maximize the metabolic output by understanding the intricacies of algal development and polysaccharides production. In the ultimate part, the health and nutraceutical claims associated with marine algal bioactive polysaccharides, explaining their noticeable potential for biotechnological applications, are summarized and comprehensively discussed.
Collapse
Affiliation(s)
- Latifa Tounsi
- Laboratoire de Génie Enzymatique et Microbiologie, Équipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038 Sfax, Tunisia; Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Faiez Hentati
- Université de Lorraine, INRAE, Unité de Recherche Animal et Fonctionnalités des Produits Animaux (UR AFPA), USC 340, Nancy F-54000, France
| | - Hajer Ben Hlima
- Laboratoire de Génie Enzymatique et Microbiologie, Équipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038 Sfax, Tunisia
| | - Mohamed Barkallah
- Laboratoire de Génie Enzymatique et Microbiologie, Équipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038 Sfax, Tunisia
| | - Slim Smaoui
- Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax, Route Sidi Mansour Km 6 B.P. 117, 3018 Sfax, Tunisia
| | - Imen Fendri
- Laboratoire de Biotechnologie des Plantes Appliquée à l'Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, 3038 Sfax, Tunisia
| | - Philippe Michaud
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Équipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038 Sfax, Tunisia.
| |
Collapse
|
13
|
Shaman AA, Zidan NS, Atteia HH, Alalawy AI, Alzahrani S, AlBishi LA, Helal AI, Braiji SH, Farrag F, Shukry M, Sakran MI. Arthrospira platensis nanoparticles defeat against diabetes-induced testicular injury in rat targeting, oxidative, apoptotic, and steroidogenesis pathways. Andrologia 2022; 54:e14456. [PMID: 35560246 DOI: 10.1111/and.14456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/12/2022] [Accepted: 04/10/2022] [Indexed: 11/29/2022] Open
Abstract
Varieties of studies have been used to investigate the health benefits of Spirulina (Arthrospira platensis); however, more research is needed to examine if its nano form may be utilized to treat or prevent several chronic diseases. So, we designed this study to explore the effect and the cellular intracellular mechanisms by which Arthrospira platensis Nanoparticles (NSP) alleviates the testicular injury induced by diabetes in male Wistar rats. Eighty Wistar male rats (n = 80) were randomly allocated into eight groups. Group 1 is untreated rats (control), Group 2 including STZ-induced diabetic rats with 65 mg/kg body weight STZ (STZ-diabetic), Group 3-5: including diabetic rats treated with NSP1, NSP2, and NSP3 at 0.25, 0.5, and 1 mg/kg body weight, respectively, once daily orally by the aid of gastric gavage for 12 consecutive weeks and groups 6-8 include normal rats received NSP (0.25, 0.5, and 1 mg/kg body weight once daily orally. The identical volume of normal saline was injected into both control and diabetic rats. After 12 weeks of diabetes induction, the rats were killed. According to our findings, NSP administration to diabetic rats enhances the total body weight and the weight of testes and accessory glands; in addition, NSP significantly reduced nitric oxide and malondialdehyde in testicular tissue improved sperm parameters. Intriguingly, it raises testicular GSH and SOD activity by a significant amount (p < 0.05). As well, Oral administration of NSP to diabetic rats resulted in a decrease in the blood glucose levels, HA1C, induced in the diabetic group, which overcame the diabetic complications NSP caused down-regulation of apoptotic genes with upregulation of BCL-2 mRNA expression (p < 0.05) and prominent up-regulation of steroidogenesis genes expression level in testes in comparison to the diabetic rats which resulted in improving the decreased levels of testosterone hormone, FSH, and LH induced by diabetes. In the same way, our histopathological findings support our biochemical and molecular findings; in conclusion, NSP exerted a protective effect against reproductive dysfunction induced by diabetes not only through its high antioxidant and hypoglycemic action but also through its down-regulation of Apoptotic genes and up-regulation of steroidogenesis regulatory genes expression level in diabetic testes.
Collapse
Affiliation(s)
- Amani Ali Shaman
- Faculty of Medicine, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Nahla S Zidan
- Faculty of Home Economics, University of Tabuk, Tabuk, Saudi Arabia
- Department of nutrition and food science Faculty of Specific Education, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Hebatallah H Atteia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Adel I Alalawy
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Sharifa Alzahrani
- Pharmacilogy Department, Faculty of Pharmacy, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Laila A AlBishi
- Pediatric Department, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Azza I Helal
- Faculty of Medicine, Histology and Cell Biology Department, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | | | - Foad Farrag
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Mohamed I Sakran
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Biochemistry Section, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
14
|
Priyanka PP, Ravula AR, Yenugu S. A mixture of pyrethroids induces reduced fecundity and increased testicular genotoxicity in rats. Andrologia 2022; 54:e14567. [DOI: 10.1111/and.14567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/07/2022] [Accepted: 08/09/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
| | - Anandha Rao Ravula
- Department of Animal Biology School of Life Sciences, University of Hyderabad Hyderabad India
| | - Suresh Yenugu
- Department of Animal Biology School of Life Sciences, University of Hyderabad Hyderabad India
| |
Collapse
|
15
|
Ravula AR, Yenugu S. Effect of a mixture of pyrethroids at doses similar to human exposure through food in the Indian context. J Biochem Mol Toxicol 2022; 36:e23132. [PMID: 35678313 DOI: 10.1002/jbt.23132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/10/2022] [Accepted: 05/30/2022] [Indexed: 11/11/2022]
Abstract
Residual amounts of pyrethroids were detected in rice and vegetables of the Indian market. Thus, consumers are exposed to a mixture of pyrethroids on a daily basis through food. Though a large number of studies reported the toxic effects of pyrethroids, there are no reports that used doses equivalent to human consumption. In this study, male Wistar rats were exposed daily to a mixture of pyrethroids for 1-15 months which is equivalent to the amount present in rice and vegetables consumed by an average Indian each day. The oxidant-antioxidant status (lipid peroxidation, nitric oxide; activities of catalase, glutathione peroxidase, glutathione S transferase, and superoxide dismutase) and anatomical changes in the general organs (liver, lung, and kidney) and male reproductive tract tissues (caput, cauda, testis, and prostate) were evaluated. Further, liver and kidney function tests, lipid profile, and complete blood picture were analyzed. Increased oxidative stress, perturbations in the antioxidant enzyme activities, and damage to the anatomical architecture were observed. Disturbances in the liver function and lipid profile were significant. Results of our study demonstrate that exposure to a mixture of pyrethroids at a dose that is equivalent to human consumption can cause systemic and reproductive toxicity, which may ultimately result in the development of lifestyle diseases. This first line of evidence will fuel further studies to determine the impact of food-based pyrethroid exposure on the long-term health of humans and to envisage policies to reduce pesticide content in food products.
Collapse
Affiliation(s)
- Anandha R Ravula
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Suresh Yenugu
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
16
|
Ravula AR, Yenugu S. Transgenerational effects on the fecundity and sperm proteome in rats exposed to a mixture of pyrethroids at doses similar to human consumption. CHEMOSPHERE 2022; 290:133242. [PMID: 34896426 DOI: 10.1016/j.chemosphere.2021.133242] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Pyrethroid based pesticide usage for crop protection resulted in percolation of these compounds into the food chain. Toxicological studies that reflect exposure to pyrethroids through food in the human settings are rare. We conducted animal experimentations using a mixture of pyrethroids that is equivalent to the amount consumed by average individual through rice and vegetables in the Indian context. Male rats treated with a mixture of pyrethroids for 1-12 months displayed decreased transgenerational fecundity, sperm count, activities of 3β- and 17β-HSD and perturbed hormonal profile. At the transcriptome level, the expression of genes involved in spermatogenesis, steroidogenesis, germ cell epigenetic modulators and germ cell apoptosis were altered in the testis. In the sperm lysates of control rats, 506 proteins identified by mass spectrometry. The differential expression of these proteins (treated/control ratio) in the pyrethroid exposed rats was analyzed. Among the 506 proteins, 153 had a ratio of 0; 41 had a ratio ranging from >0 to <0.5; and 10 had a ratio >2.0. Interestingly, the differential expression was transgenerational. 26 proteins that were differentially expressed in the sperm of F0 treated rats continued to remain the same in the F1, F2 and F3 generations, while the differential expression was maintained up to F2 and F1 generations for 46 and 2 proteins respectively. Some of the proteins that continued to be differentially expressed in the later generations are reported to have critical roles in male reproduction. These results indicate that the reduced fecundity observed in the later generations could be due to the continued differential expression that was initiated by pyrethroid treatment in the F0 rats. Results of our study, for the first time, provide evidence that long-term exposure to pyrethroids affects transgenerational fecundity manifested by changes in sperm proteome.
Collapse
Affiliation(s)
- Anandha Rao Ravula
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Suresh Yenugu
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
17
|
Khair A, Awal MA, Hoque MN, Talukder AK, Das ZC, Rao DR, Shamsuddin M. Spirulina ameliorates arsenic induced reproductive toxicity in male rats. Anim Reprod 2021; 18:e20210035. [PMID: 34868368 PMCID: PMC8628875 DOI: 10.1590/1984-3143-ar2021-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 10/06/2021] [Indexed: 11/22/2022] Open
Abstract
Spirulina (Spirulina platensis), has numerous health benefits including antioxidant, immunomodulatory, and anti-inflammatory activities, works against heavy metal toxicity, and is often used as a food supplement in human, animals, birds and fishes. This study aimed to evaluate the protective ability of the dietary spirulina against the toxic effects of inorganic arsenic (iAs) on male reproductive parameters in rats. Seventy-two mature Long-Evans male rats, dividing into six groups (T0, T1, T2, T3, T4 and T5) (12 rats/group) were included in this study. The T3, T4 and T5 group rats were treated with three consecutive doses (1.0 g, 1.5 g and 2.0 g/kg feed) of spirulina in feed along with 3.0 mg NaAsO2/kg body weight (BW) in drinking water (DW) daily for 90 days. Each rat of group T1 received NaAsO2 (3.0 mg/kg BW) in DW, and those of T2 group were fed with spirulina (2.0 g/kg feed) daily for 90 days. The rats of group T0 served as the control with normal feed and water. Total arsenic (tAs) contents, reproductive parameters (testicular weight, sperm motility and morphology), and histological changes in the testicles were evaluated in these rats. Arsenic dosing significantly (p=0.003, Kruskal-Wallis test) increased the tAs contents in the testicles, decreased testes weight, sperm morphology and motility compared to the controls. The effect of arsenic dosing was also evidenced by the histological changes like decreased germinal layers in the seminiferous tubules of the treated rats. Moreover, dietary spirulina (2.0 g/kg feed) supplementation significantly (p=0.011, Kruskal-Wallis test) lowered tAs contents in testicles and increases testes weights, sperm motility and morphology. Therefore, spirulina can be used as an effective dietary supplement to ameliorate the adverse effects of arsenic induced reproductive toxicities. However, further study is required to elucidate the underlying molecular mechanisms of reduction of arsenic induced reproductive toxicity by spirulina.
Collapse
Affiliation(s)
- Abul Khair
- Quality Control Laboratory, Department of Livestock Services, Savar, Dhaka, Bangladesh.,Department of Pharmacology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammed Abdul Awal
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammed Nazmul Hoque
- Department of Gynecology, Obstetrics & Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Anup Kumar Talukder
- Department of Gynecology, Obstetrics & Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Ziban Chandra Das
- Department of Gynecology, Obstetrics & Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | | | - Mohammed Shamsuddin
- Livestock Officer, Food and Agriculture Organization of the United Nations, Rome, Italy
| |
Collapse
|
18
|
Smaoui S, Barkallah M, Ben Hlima H, Fendri I, Mousavi Khaneghah A, Michaud P, Abdelkafi S. Microalgae Xanthophylls: From Biosynthesis Pathway and Production Techniques to Encapsulation Development. Foods 2021; 10:2835. [PMID: 34829118 PMCID: PMC8623138 DOI: 10.3390/foods10112835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/01/2021] [Accepted: 11/10/2021] [Indexed: 12/28/2022] Open
Abstract
In the last 20 years, xanthophylls from microalgae have gained increased scientific and industrial interests. This review highlights the essential issues that concern this class of high value compounds. Firstly, their chemical diversity as the producer microorganisms was detailed. Then, the use of conventional and innovative extraction techniques was discussed. Upgraded knowledge on the biosynthetic pathway of the main xanthophylls produced by photosynthetic microorganisms was reviewed in depth, providing new insightful ideas, clarifying the function of these active biomolecules. In addition, the recent advances in encapsulation techniques of astaxanthin and fucoxanthin, such as spray and freeze drying, gelation, emulsification and coacervation were updated. Providing information about these topics and their applications and advances could be a help to students and young researchers who are interested in chemical and metabolic engineering, chemistry and natural products communities to approach the complex thematic of xanthophylls.
Collapse
Affiliation(s)
- Slim Smaoui
- Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax, Route Sidi Mansour Km 6 B.P. 117, Sfax 3018, Tunisia;
| | - Mohamed Barkallah
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia; (M.B.); (H.B.H.)
| | - Hajer Ben Hlima
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia; (M.B.); (H.B.H.)
| | - Imen Fendri
- Laboratoire de Biotechnologie Végétale Appliquée à l’Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax 3038, Tunisia;
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil;
| | - Philippe Michaud
- Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, F-63000 Clermont-Ferrand, France
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia; (M.B.); (H.B.H.)
| |
Collapse
|
19
|
Park W, Park S, Lim W, Song G. Bifenthrin reduces pregnancy potential via induction of oxidative stress in porcine trophectoderm and uterine luminal epithelial cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147143. [PMID: 33901951 DOI: 10.1016/j.scitotenv.2021.147143] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/24/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Exposure to pesticides has become a serious concern for the environment and human health. Bifenthrin, a synthetic pyrethroid pesticide, is one of the most frequently used pesticides worldwide. Despite the toxic potential of bifenthrin, no studies have elucidated the cytotoxic response of bifenthrin in maternal and fetal cells that are involved in the implantation process. In this study, the cytotoxic effect of bifenthrin was investigated using porcine trophectoderm (pTr) and uterine luminal epithelial (pLE) cells. The results showed that bifenthrin suppressed cell proliferation and viability in pTr and pLE cells. In particular, bifenthrin induced cell cycle arrest, resulting in apoptosis in both cell lines. We found that bifenthrin damaged the mitochondria and induced the production of reactive oxygen species, causing endoplasmic reticulum stress and calcium dysregulation in pTr and pLE cells. Finally, bifenthrin altered the MAPK/PI3K signaling pathway and pregnancy-related gene expression. Collectively, our results suggest that bifenthrin reduces the implantation potential of embryos and may help elucidate the mechanisms underlying toxin-derived cytotoxicity in maternal and fetal cells.
Collapse
Affiliation(s)
- Wonhyoung Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sunwoo Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul 02707, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
20
|
Modified Spirulina maxima Pectin Nanoparticles Improve the Developmental Competence of In Vitro Matured Porcine Oocytes. Animals (Basel) 2021; 11:ani11092483. [PMID: 34573449 PMCID: PMC8469918 DOI: 10.3390/ani11092483] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Poor in vitro embryo development is a major obstacle in porcine assisted reproduction. In the current study, we utilized modified Spirulina maxima pectin nanoparticles as a supplement to improve porcine in vitro maturation medium. Results showed that modified Spirulina maxima pectin nanoparticles at 2.5 µg/mL improved oocyte maturation in form of first polar body extrusion, reduced oxidative stress, and increased the developmental competence of the oocytes after parthenogenetic activation and somatic cell nuclear transfer. Moreover, the relative transcripts quantification showed significant increase in the pluripotency-associated transcripts in the resultant cloned embryos after modified Spirulina maxima pectin nanoparticles supplementation. Therefore, we provide an optimum in vitro maturation condition to improve the in vitro embryo production in porcine. Abstract Molecular approaches have been used to determine metabolic substrates involved in the early embryonic processes to provide adequate culture conditions. To investigate the effect of modified Spirulina maxima pectin nanoparticles (MSmPNPs) on oocyte developmental competence, cumulus–oocyte complexes (COCs) retrieved from pig slaughterhouse ovaries were subjected to various concentrations of MSmPNPs (0, 2.5, 5.0, and 10 µg/mL) during in vitro maturation (IVM). In comparison to the control, MSmPNPs-5.0, and MSmPNPs-10 groups, oocytes treated with 2.5 µg/mL MSmPNPs had significantly increased glutathione (GSH) levels and lower levels of reactive oxygen species (ROS). Following parthenogenetic activation, the MSmPNPs-2.5 group had a considerably higher maturation and cleavage rates, blastocyst development, total cell number, and ratio of inner cell mass/trophectoderm (ICM:TE) cells, when compared with those in the control and all other treated groups. Furthermore, similar findings were reported for the developmental competence of somatic cell nuclear transfer (SCNT)-derived embryos. Additionally, the relative quantification of POU5F1, DPPA2, and NDP52 mRNA transcript levels were significantly higher in the MSmPNPs-2.5 group than in the control and other treated groups. Taken together, the current findings suggest that MSmPNP treatment alleviates oxidative stress and enhances the developmental competence of porcine in vitro matured oocytes after parthenogenetic activation and SCNT.
Collapse
|
21
|
Ibrahim IA, Shalaby AA, Abd Elaziz RT, Bahr HI. Chlorella vulgaris or Spirulina platensis mitigate lead acetate-induced testicular oxidative stress and apoptosis with regard to androgen receptor expression in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:39126-39138. [PMID: 33754266 DOI: 10.1007/s11356-021-13411-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
The current research was constructed to throw the light on the protective possibility of Chlorella vulgaris (C. vulgaris) and Spirulina platensis (S. platensis) against lead acetate-promoted testicular dysfunction in male rats. Forty rats were classified into four groups: (i) control, (ii) rats received lead acetate (30 mg/kg bw), (iii) rats concomitantly received lead acetate and C. vulgaris (300 mg/kg bw), (vi) rats were simultaneously treated with lead acetate and S. platensis (300 mg/kg bw) via oral gavage for 8 weeks. Lead acetate promoted testicular injury as expressed with fall in reproductive organ weights and gonadosomatic index (GSI). Lead acetate disrupted spermatogenesis as indicated by sperm cell count reduction and increased sperm malformation percentage. Lead acetate-deteriorated steroidogenesis is evoked by minimized serum testosterone along with maximized follicle-stimulating hormone (FSH) and luteinizing hormone (LH) levels. Testicular oxidative, inflammatory, and apoptotic cascades are revealed by elevated acid phosphatase (ACP) and sorbitol dehydrogenase (SDH) serum leakage, declined testicular total antioxidative capacity (TAC) with elevated total oxidative capacity (TOC), tumor necrosis factor alpha (TNF-α), caspase-3 levels, lessened androgen receptor (AR) expression, and histopathological lesions against control. Our research highlights that C. vulgaris or S. platensis therapy can modulate lead acetate-promoted testicular dysfunction via their antioxidant activity as expressed by elevated TAC and reduced TOC, immunomodulatory effect as indicated by lessened TNF-α level, and anti-apoptotic potential that was revealed by minimized caspase-3 levels. As well as restoration of testicular histoarchitecture, androgen receptor, steroidogenesis, and spermatogenesis were detected with better impacts to S. platensis comparing with C. vulgaris. Therefore, further clinical trials are needed to test S. platensis and C. vulgaris as a promising candidate in treating male infertility.
Collapse
Affiliation(s)
- Ibrahim A Ibrahim
- Department of Biochemistry, Faculty of Vet. Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Abeir A Shalaby
- Department of Biochemistry, Faculty of Vet. Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Raghda T Abd Elaziz
- Department of Biochemistry, Faculty of Vet. Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Hoda I Bahr
- Department of Biochemistry, Faculty of Vet. Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
22
|
Zhang X, Zhang T, Ren X, Chen X, Wang S, Qin C. Pyrethroids Toxicity to Male Reproductive System and Offspring as a Function of Oxidative Stress Induction: Rodent Studies. Front Endocrinol (Lausanne) 2021; 12:656106. [PMID: 34122335 PMCID: PMC8190395 DOI: 10.3389/fendo.2021.656106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/14/2021] [Indexed: 11/30/2022] Open
Abstract
Pyrethroids may be related to male reproductive system damage. However, the results of many previous studies are contradictory and uncertain. Therefore, a systematic review and a meta-analysis were performed to assess the relationship between pyrethroid exposure and male reproductive system damage. A total of 72 articles were identified, among which 57 were selected for meta-analysis, and 15 were selected for qualitative analysis. Pyrethroid exposure affected sperm count (SMD= -2.0424; 95% CI, -2.4699 to -1.6149), sperm motility (SMD=-3.606; 95% CI, -4.5172 to -2.6948), sperm morphology (SMD=2.686; 95% CI, 1.9744 to 3.3976), testis weight (SMD=-1.1591; 95% CI, -1.6145 to -0.7038), epididymal weight (SMD=-1.1576; 95% CI, -1.7455 to -0.5697), and serum testosterone level (SMD=-1.9194; 95% CI, -2.4589 to -1.3798) in the studies of rats. We found that gestational and lactational exposure to pyrethroids can reduce sperm count (SMD=1.8469; 95% CI, -2.9010 to -0.7927), sperm motility (SMD=-2.7151; 95% CI, -3.9574 to -1.4728), testis weight (SMD=-1.4361; 95% CI, -1.8873 to -0.9848), and epididymal weight (SMD=-0.6639; 95% CI, -0.9544 to -0.3733) of F1 offspring. Exposure to pyrethroids can increase malondialdehyde (SMD=3.3451; 95% CI 1.9914 to 4.6988) oxide in testes and can reduce the activities of glutathione (SMD=-2.075; 95% CI -3.0651 to -1.0848), superoxide dismutase (SMD=-2.4856; 95% CI -3.9612 to -1.0100), and catalase (SMD=-2.7564; 95% CI -3.9788 to -1.5340). Pyrethroid exposure and oxidative stress could damage male sperm quality. Gestational and lactational pyrethroid exposure affects the reproductive system of F1 offspring.
Collapse
Affiliation(s)
| | | | | | | | | | - Chao Qin
- *Correspondence: Chao Qin, ; ShangQian Wang,
| |
Collapse
|
23
|
Elleuch J, Hadj Kacem F, Ben Amor F, Hadrich B, Michaud P, Fendri I, Abdelkafi S. Extracellular neutral protease from Arthrospira platensis: Production, optimization and partial characterization. Int J Biol Macromol 2020; 167:1491-1498. [PMID: 33202265 DOI: 10.1016/j.ijbiomac.2020.11.102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/30/2022]
Abstract
Proteases are industrially important catalysts. They belong to a complex family of enzymes that perform highly focused proteolysis functions. Given their potential use, there has been renewed interest in the discovery of proteases with novel properties and a constant thrust to optimize the enzyme production. In the present study, a novel extracellular neutral protease produced from Arthrospira platensis was detected and characterized. Its proteolytic activity was strongly activated by β-mercaptoethanol, 5,5-dithio-bis-(2-nitrobenzoic acid) and highly inhibited by Hg2+ and Zn2+ metal ions which support the fact that the studied protease belongs to the cysteine protease family. Using statistical modelling methodology, the logistic model has been selected to predict A. platensis growth-kinetic values. The optimal culture conditions for neutral protease production were found using Box-Behnken Design. The maximum experimental protease activities (159.79 U/mL) was achieved after 13 days of culture in an optimized Zarrouk medium containing 0.625 g/L NaCl, 0.625 g/L K2HPO4 and set on 9.5 initial pH. The extracellular protease of A. platensis can easily be used in the food industry for its important activity at neutral pH and its low production cost since it is a valuation of the residual culture medium after biomass recovery.
Collapse
Affiliation(s)
- Jihen Elleuch
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Farah Hadj Kacem
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Faten Ben Amor
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Bilel Hadrich
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Philippe Michaud
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Imen Fendri
- Laboratoroire de Biotechnologies Végétales Appliquées à l'Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia.
| |
Collapse
|
24
|
Barkallah M, Elleuch J, Smith KF, Chaari S, Ben Neila I, Fendri I, Michaud P, Abdelkafi S. Development and application of a real-time PCR assay for the sensitive detection of diarrheic toxin producer Prorocentrum lima. J Microbiol Methods 2020; 178:106081. [PMID: 33035573 DOI: 10.1016/j.mimet.2020.106081] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 12/17/2022]
Abstract
Prorocentrum lima (P. lima) is a widely spread dinoflagellate in the Mediterranean Sea and it has become increasingly involved in harmful algal blooms. The purpose of this study is to develop a probe-based real-time polymerase chain reaction (PCR) targeting the ITS1-5.8S-ITS2 region for the detection and absolute quantification of P. lima based on linear and circular DNA standards. The results have shown that the quantitative PCR (q-PCR), using circular plasmid as a template, gave a threshold cycle number 1.79-5.6 greater than equimolar linear standards. When microalgae, commonly found in aquatic samples were tested, no cross-amplification was observed. The q-PCR brought about a good intra and inter-run reproducibility and a detection limit of 5 copies of linear plasmid per reaction. A quantitative relationship between the cell numbers and their corresponding plasmid copy numbers was attained. Afterwards, the effectiveness of the developed protocol was tested with 130 aquatic samples taken from 19 Tunisian sampling sites. The developed q-PCR had a detection sensitivity of up to 1 cell. All the positive samples were taken from three sampling sites of Medenine Governorate with cell abundances that ranged from 22 to 156,000 cells L-1 of seawater. The q-PCR assay revealed a high sensitivity in monitoring the aquatic samples in which the low concentrations of P. lima were not accurately detected by light microscopy. Indeed, this approach is at the same time rapid, specific and sensitive than the traditional microscopy techniques and it represents a great potential for the monitoring of P. lima blooms.
Collapse
Affiliation(s)
- Mohamed Barkallah
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, University of Sfax, 3038 Sfax, Tunisia
| | - Jihen Elleuch
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, University of Sfax, 3038 Sfax, Tunisia
| | - Kirsty F Smith
- Cawthron Institute, 98 Halifax Street East, Private Bag 2, Nelson 7042, New Zealand
| | - Siwar Chaari
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, University of Sfax, 3038 Sfax, Tunisia
| | | | - Imen Fendri
- Laboratory of Plant Biotechnology Applied to the improvement of Cultures, Faculty of Sciences of Sfax, B.P. 1171, 3000, University of Sfax, 3029 Sfax, Tunisia
| | - Philippe Michaud
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, University of Sfax, 3038 Sfax, Tunisia.
| |
Collapse
|