1
|
Jiang L, Li J, Luo M, Yang Z, Wu L, Liu B, Su S, Zhong X, Huang X, Wang Q, Li S, Kreher D, Schmalz G, Fan W, Huang S. Analysis of factors associated with tooth loss in older adults from 1995 to 2015: a population-based cross-sectional survey in Guangdong, China. Clin Oral Investig 2024; 28:601. [PMID: 39419851 DOI: 10.1007/s00784-024-06001-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/13/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVES The aim of this study was to detect trends and related factors in the functional dentition (FD) in 65- to 74-year-olds in Guangdong, China, while also assessing trends in education and income inequality factors. MATERIALS AND METHODS Three large-scale cross-sectional National Oral Health Surveys (NOHS), specifically NOHS II in 1995, NOHS III in 2005, and NOHS IV in 2015, were included. Post hoc stratification was weighted for 1038 participants aged 65 to 74years. Retaining teeth ≥ 20 teeth and retaining < 20 teeth was defined as functional dentition (FD) and nonfunctional dentition (NFD), respectively. Logistic regression models were established to assess related factors. Slope index of inequality (SII) and relative index of inequality (RII) were used to analyze inequality. RESULTS From NOHS II to IV, the FD proportion increased from 42.8 to 71.9%. Years of NOH, with caries, with periodontal pocket, high educational level, high income level, female, and those who had dental visits were associated with FD preservation. The education-related SII decreased from 0.44 to 0.20, and the income-related SII increased from 0.13 to 0.16. CONCLUSIONS The FD proportion among 65- to 74-year-olds improved from 1995 to 2015. Years of NOHS, with caries, with periodontal pocket, high education level, and high income level were associated with higher FD proportion. Female and those who had dental visits were associated lower FD proportion. Social inequalities in FD persisted, especially economic-related inequalities. Public health policy support and respective interventions should be applied to increase FD retention.
Collapse
Affiliation(s)
- Linxin Jiang
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, Liebigstr. 12, 04103, Leipzig, Germany
| | - Jianbo Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Meng Luo
- Department of Anesthesiology, Sichuan Province Orthopedic Hospital, Chengdu, Sichuan, China
| | - Zijing Yang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Linmei Wu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Bincheng Liu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Shijie Su
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiong Zhong
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoyan Huang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiong Wang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Simin Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Deborah Kreher
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, Liebigstr. 12, 04103, Leipzig, Germany
| | - Gerhard Schmalz
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, Liebigstr. 12, 04103, Leipzig, Germany.
- Department of Conservative Dentistry and Periodontology, Medizinische Hochschule Brandenburg, Brandenburg an der Havel, Germany.
| | - Weihua Fan
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Shaohong Huang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Yang K, He H, Dong W. Gut Microbiota and Neonatal Acute Kidney Injury. Am J Perinatol 2024; 41:1887-1894. [PMID: 38301724 DOI: 10.1055/a-2259-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
OBJECTIVE To characterize the relationship between gut microbiota and neonatal acute kidney injury biomarkers based on the gut-kidney axis. STUDY DESIGN The Pubmed database was primarily searched to include relevant literature on gut microbiota and neonatal acute kidney injury biomarkers, which was subsequently organized and analyzed and a manuscript was written. RESULTS Gut microbiota was associated with neonatal acute kidney injury biomarkers. These biomarkers included TIMP-2, IGFBP-7, VEGF, calbindin, GST, B2MG, ghrelin, and clusterin. CONCLUSION The gut microbiota is strongly associated with neonatal acute kidney injury biomarkers, and controlling the gut microbiota may be a potential target for ameliorating neonatal acute kidney injury. KEY POINTS · There is a bidirectional association between gut microbiota and AKI.. · Gut microbiota is closely associated with biomarkers of nAKI.. · Manipulation of gut microbiota may improve nAKI..
Collapse
Affiliation(s)
- Kun Yang
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, China
| | - Hongxia He
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, China
| | - Wenbin Dong
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, China
| |
Collapse
|
3
|
Bologna-Molina R, Schuch L, Niklander SE. Comprehensive insights into the understanding of hypoxia in ameloblastoma. Histol Histopathol 2024; 39:983-989. [PMID: 38362601 DOI: 10.14670/hh-18-718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Hypoxia is characterized by a disparity between supply and demand of oxygen. The association between hypoxia and head and neck tumors is a topic of significant interest. Tumors frequently encounter areas with inadequate oxygen supply, resulting in a hypoxic microenvironment. Ameloblastoma is one of the most common benign odontogenic tumors of the maxillofacial region. It is a slow-growing but locally invasive tumor with a high recurrence rate. The literature has demonstrated the correlation between hypoxia and ameloblastoma, revealing a discernible link between the heightened expression of hypoxic markers in low oxygen conditions. This association is intricately tied to the tumoral potential for invasion, progression, and malignant transformation. Hypoxia profoundly influences the molecular and cellular landscape within ameloblastic lesions. The present review sheds light on the mechanisms, implications, and emerging perspectives in understanding this intriguing association to clarify the dynamic relationship between hypoxia and ameloblastoma.
Collapse
Affiliation(s)
- Ronell Bologna-Molina
- Diagnostic in Oral Pathology and Oral Medicine Department, Faculty of Dentistry, Universidad de la República, Uruguay.
- Research Department, School of Dentistry, Universidad Juarez del Estado de Durango, Mexico
| | - Lauren Schuch
- Diagnostic in Oral Pathology and Oral Medicine Department, Faculty of Dentistry, Universidad de la República, Uruguay
| | - Sven Eric Niklander
- Unit of Oral Pathology and Oral Medicine, Faculty of Dentistry, Universidad Andres Bello, Viña del Mar, Chile
| |
Collapse
|
4
|
Aswathy M, Parama D, Hegde M, Dr S, Lankalapalli RS, Radhakrishnan KV, Kunnumakkara AB. Natural Prenylflavones from the Stem Bark of Artocarpus altilis: Promising Anticancer Agents for Oral Squamous Cell Carcinoma Targeting the Akt/mTOR/STAT-3 Signaling Pathway. ACS OMEGA 2024; 9:24252-24267. [PMID: 38882137 PMCID: PMC11170706 DOI: 10.1021/acsomega.3c08376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 06/18/2024]
Abstract
Artonin E (AA2) and artobiloxanthone (AA3) were extracted and purified from the acetone extract of the stem bark of Artocarpus altilis (Parkinson) Fosberg. Preliminary investigations of both candidates revealed promising cytotoxic effects in oral cancer cells. Moreover, these candidates modulated the expression of pivotal proteins linked to oral cancer progression, eliciting apoptosis through caspase-3 and caspase-9 activation. Additionally, our results showed that AA2 and AA3 suppressed several proteins linked with oral cancer, such as Bcl-2, COX-2, VEGF, and MMP-9, and modulated the cell signaling pathways, such as Akt/mTOR and STAT-3, offering valuable insights into the underlying mechanism of action of these compounds. These findings were robustly validated in silico using molecular docking and molecular dynamic simulations. To our knowledge, these findings have not been previously reported, and the continued exploration and development of these natural products may offer a potential avenue for the effective management of this malignancy.
Collapse
Affiliation(s)
- Maniyamma Aswathy
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Dey Parama
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati 781039, Assam, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati 781039, Assam, India
| | - Sherin Dr
- Kerala University of Digital Sciences, Innovation and Technology (Digital University Kerala), Thiruvananthapuram 695317, Kerala, India
| | - Ravi S Lankalapalli
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Kokkuvayil Vasu Radhakrishnan
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati 781039, Assam, India
| |
Collapse
|
5
|
Malheiro F, Ângelo-Dias M, Lopes T, Martins CG, Borrego LM. Cytokine Dynamics in Acute Pancreatitis: The Quest for Biomarkers from Acute Disease to Disease Resolution. J Clin Med 2024; 13:2287. [PMID: 38673560 PMCID: PMC11051017 DOI: 10.3390/jcm13082287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Background: Acute pancreatitis (AP) is an inflammatory disease of the pancreas with incompletely known pathogenic mechanisms. This study aimed to explore the temporal changes in serum cytokines in patients with AP and to assess the association of these changes with disease severity. Methods: Fifty patients hospitalized with AP were enrolled, and their serum cytokine levels were analyzed at four different time points. A healthy control (HC) group of 30 outpatients was included. Results: AP patients showed increased levels of interleukin (IL)-6, IL-8, IL-10, vascular endothelial growth factor (VEGF), tumor necrosis factor (TNF)-alpha, and monocyte chemoattractant protein (MCP)-1 at admission when compared with HC. IL-6, VEGF, and EGF remained elevated 1 month after hospitalization and 6 months after discharge. Conclusions the Bedside Index of Severity in Acute Pancreatitis (BISAP) and severity classification of the revised Atlanta classification system, IL-6 and VEGF, determined 48 h after hospitalization, were the two cytokines consistently elevated in the most severe patients. Increased levels of IL-4, IL-6, IL-10, and TNF-alpha at admission and MCP-1 48 h after admission are also related to the length of hospital stay. Conclusions: Our study highlights the role cytokines play in the pathogenesis of AP and can be useful in the development of future drug trials for AP.
Collapse
Affiliation(s)
- Filipa Malheiro
- Internal Medicine Department, LUZ SAÚDE, Hospital da Luz Lisboa, 1500-650 Lisboa, Portugal
- CHRC, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.Â.-D.); (T.L.); (C.G.M.); (L.M.B.)
| | - Miguel Ângelo-Dias
- CHRC, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.Â.-D.); (T.L.); (C.G.M.); (L.M.B.)
- Immunology Department, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Teresa Lopes
- CHRC, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.Â.-D.); (T.L.); (C.G.M.); (L.M.B.)
- Immunology Department, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Catarina Gregório Martins
- CHRC, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.Â.-D.); (T.L.); (C.G.M.); (L.M.B.)
- Immunology Department, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Luis Miguel Borrego
- CHRC, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.Â.-D.); (T.L.); (C.G.M.); (L.M.B.)
- Immunology Department, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- Immunoallergy Department, LUZ SAÚDE, Hospital da Luz Lisboa, 1500-650 Lisboa, Portugal
| |
Collapse
|
6
|
Guan X, Shi C, Wang Y, He Y, Li Y, Yang Y, Mu W, Li W, Hou T. The possible role of Gremlin1 in inflammatory apical periodontitis. Arch Oral Biol 2024; 157:105848. [PMID: 37977053 DOI: 10.1016/j.archoralbio.2023.105848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/04/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
OBJECTIVE In this study, we investigated the involvement of Gremlin1 on the pathological process of apical periodontitis and detect the underlying mechanisms preliminarily. METHODS Clinical healthy and inflamed periapical specimens were collected. Then, apical periodontitis (AP) animal models were established by consistent pulp exposure. In addition, AAV-shGremlin1 was injected into inflamed periapical lesions to inhibit the expression of Gremlin1. Alveolar bone loss was measured by Micro-CT. Furthermore, immunohistochemical or immunofluorescence staining of Gremlin1, phosphorylated-CREB, ICAM-1, VCAM-1, IL-1β were performed. RESULTS The expression of Gremlin1 is markedly increased in periapical lesions not only in clinic samples but also in animal models. Moreover, in rats' AP model, we uncovered that the Gremlin1 protein expression levels in apical lesions is positively correlated with those of IL-1β. Besides, the blockade of Gremlin1 in periapical lesions could substantially suppress the alveolar bone loss and restrains the inflammatory status by impacting the activation levels of phosphorylated-CREB, ICAM-1, VCAM-1, IL-1β. CONCLUSIONS Taken together, these results illustrated that Gremlin1 acts as a crucial mediator and possibly serves as a potential diagnostic marker for periapical periodontitis. Discovery of new factors involved in the pathophysiology of periapical periodontitis could contribute to the development of novel therapeutic treatment for the disease.
Collapse
Affiliation(s)
- Xiaoyue Guan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China; Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chen Shi
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China; Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Sichuan Hospital of Stomatology, Chengdu, Sichuan, China
| | - Yuting Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China; Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yani He
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China; Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yingxue Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China; Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yao Yang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China; Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wenli Mu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China; Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wenlan Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China; Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Tiezhou Hou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China; Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
7
|
Tamane P, Mahadik K, Pokharkar V. Buccal spray of standardized Berberis aristata extract causes tumour regression, chemoprotection and downregulation of inflammatory mediators in oral cancer hamster model. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116732. [PMID: 37315644 DOI: 10.1016/j.jep.2023.116732] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/21/2023] [Accepted: 06/02/2023] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Berberis aristata (BA) has been described in Ayurveda in formulations for treating conditions related to the buccal cavity, including tumours and inflammation. Oral cancer (OC) is a major global health problem with high rates of recurrence and metastasis. Natural product based therapies are being explored as safer therapeutic strategies for OC. AIM OF THE STUDY Evaluating the potential of standardized BA extract loaded buccal spray formulation in OC. MATERIAL AND METHODS BA stem bark extract was prepared using sonication and standardized with respect to Berberine. The standardized extract was characterized and formulated as a buccal spray (SBAE-BS) using hydroxyl propyl methyl cellulose K15M, polyethylglycol 400, Miglyol®812N and ethanol. The SBAE-BS was characterized and evaluated in vitro in KB cell line and in vivo in OC hamster model. RESULTS The SBAE-BS had pH, viscosity, mucoadhesive strength and BBR content corresponding to 6.8, 25.9 cP, 345 dyne/cm2 and 0.6 mg/mL respectively. In vitro cytotoxicity of SBAE-BS was comparable to 5 fluorouracil (5FU). In hamsters, SBAE-BS treatment lead to tumour regression (p = 0.0345), improved body weights (p < 0.0001), no organ toxicity, downregulation of inflammatory mediators and improved survival outcomes as compared to standard systemic 5FU. CONCLUSION Thus, SBAE-BS showed cytotoxic and chemo-protective effects in the OC hamster model, evidencing its ethnopharmacological use and demonstrating translational potential to be developed as therapy for OC.
Collapse
Affiliation(s)
- Preeti Tamane
- Bharati Vidyapeeth (Deemed to be University), Poona College of Pharmacy, Erandwane, Pune, 411 038, Maharashtra, India.
| | - Kakasaheb Mahadik
- Bharati Vidyapeeth (Deemed to be University), Poona College of Pharmacy, Erandwane, Pune, 411 038, Maharashtra, India.
| | - Varsha Pokharkar
- Bharati Vidyapeeth (Deemed to be University), Poona College of Pharmacy, Erandwane, Pune, 411 038, Maharashtra, India.
| |
Collapse
|
8
|
Shan C, Xia Y, Wu Z, Zhao J. HIF-1α and periodontitis: Novel insights linking host-environment interplay to periodontal phenotypes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 184:50-78. [PMID: 37769974 DOI: 10.1016/j.pbiomolbio.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/27/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
Periodontitis, the sixth most prevalent epidemic disease globally, profoundly impacts oral aesthetics and masticatory functionality. Hypoxia-inducible factor-1α (HIF-1α), an oxygen-dependent transcriptional activator, has emerged as a pivotal regulator in periodontal tissue and alveolar bone metabolism, exerts critical functions in angiogenesis, erythropoiesis, energy metabolism, and cell fate determination. Numerous essential phenotypes regulated by HIF are intricately associated with bone metabolism in periodontal tissues. Extensive investigations have highlighted the central role of HIF and its downstream target genes and pathways in the coupling of angiogenesis and osteogenesis. Within this concise perspective, we comprehensively review the cellular phenotypic alterations and microenvironmental dynamics linking HIF to periodontitis. We analyze current research on the HIF pathway, elucidating its impact on bone repair and regeneration, while unraveling the involved cellular and molecular mechanisms. Furthermore, we briefly discuss the potential application of targeted interventions aimed at HIF in the field of bone tissue regeneration engineering. This review expands our biological understanding of the intricate relationship between the HIF gene and bone angiogenesis in periodontitis and offers valuable insights for the development of innovative therapies to expedite bone repair and regeneration.
Collapse
Affiliation(s)
- Chao Shan
- Department of Dentistry, Xinjiang Medical University, Ürümqi, China; The First Affiliated Hospital of Xinjiang Medical University (Affiliated Stomatology Hospital), Ürümqi, China
| | - YuNing Xia
- Department of Dentistry, Xinjiang Medical University, Ürümqi, China; The First Affiliated Hospital of Xinjiang Medical University (Affiliated Stomatology Hospital), Ürümqi, China
| | - Zeyu Wu
- Department of Dentistry, Xinjiang Medical University, Ürümqi, China; The First Affiliated Hospital of Xinjiang Medical University (Affiliated Stomatology Hospital), Ürümqi, China
| | - Jin Zhao
- Department of Dentistry, Xinjiang Medical University, Ürümqi, China; The First Affiliated Hospital of Xinjiang Medical University (Affiliated Stomatology Hospital), Ürümqi, China; Xinjiang Uygur Autonomous Region Institute of Stomatology, Ürümqi, China.
| |
Collapse
|
9
|
Fernández A, Herrera D, Hoare A, Hernández M, Torres VA. Lipopolysaccharides from Porphyromonas endodontalis and Porphyromonas gingivalis promote angiogenesis via Toll-like-receptors 2 and 4 pathways in vitro. Int Endod J 2023; 56:1270-1283. [PMID: 37461231 DOI: 10.1111/iej.13957] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023]
Abstract
AIM Angiogenesis contributes to the development of apical periodontitis, periodontitis, and other oral pathologies; however, it remains unclear how this process is triggered. The aim was to evaluate whether lipopolysaccharide (LPS) from Porphyromonas endodontalis and Porphyromonas gingivalis induced angiogenesis-related effects in vitro via TLR2 and TLR4. METHODOLOGY Porphyromonas endodontalis LPS (ATCC 35406 and clinical isolate) was purified with TRIzol, whereas P. gingivalis LPS was obtained commercially. The effects of the different LPS (24 h) in endothelial cell migration were analysed by Transwell assays, following quantification in an optical microscope (40×). The effects of LPS on FAK Y397 phosphorylation were assessed by Western blotting. Angiogenesis in vitro was determined in an endothelial tube formation assay (14 h) in Matrigel in the absence or presence of either LPS. IL-6 and VEGF-A levels were determined in cell supernatants, following 24 h treatment with LPS, and measured in multiplex bead immunoassay. The involvement of TLR2 and TLR4 was assessed with blocking antibodies. The statistical analysis was performed using STATA 12® (StataCorp LP). RESULTS The results revealed that P. endodontalis LPS, but not P. gingivalis LPS, stimulated endothelial cell migration. Pre-treatment with anti-TLR2 and anti-TLR4 antibodies prevented P. endodontalis LPS-induced cell migration. P. endodontalis LPS promoted FAK phosphorylation on Y397, as observed by an increased p-FAK/FAK ratio. Both P. gingivalis and P. endodontalis LPS (ATCC 35406) induced endothelial tube formation in a TLR-2 and -4-dependent manner, as shown by using blocking antibodies, however, only TLR2 blocking decreased tube formation induced by P. endodontalis (clinical isolate). Moreover, all LPS induced IL-6 and VEGF-A synthesis in endothelial cells. TLR2 and TLR4 were required for IL-6 induction by P. endodontalis LPS (ATCC 35406), while only TLR4 was involved in IL-6 secretion by the other LPS. Finally, VEGF-A synthesis did not require TLR signalling. CONCLUSION Porphyromonas endodontalis and P. gingivalis LPS induced angiogenesis via TLR2 and TLR4. Collectively, these data contribute to understanding the role of LPS from Porphyromonas spp. in angiogenesis and TLR involvement.
Collapse
Affiliation(s)
- Alejandra Fernández
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Faculty of Dentistry, Universidad Andres Bello, Santiago, Chile
| | - Daniela Herrera
- Faculty of Dentistry, Institute for Research in Dental Sciences, Universidad de Chile, Santiago, Chile
| | - Anilei Hoare
- Department of Pathology and Oral Medicine, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Laboratory of Oral Microbiology and Immunology, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Marcela Hernández
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Department of Pathology and Oral Medicine, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Vicente A Torres
- Faculty of Dentistry, Institute for Research in Dental Sciences, Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
| |
Collapse
|
10
|
Kaur A, Sharma Y, Singh G, Kumar A, Kaushik N, Khan AA, Bala K. Novel biogenic silver nanoconjugates of Abrus precatorius seed extracts and their antiproliferative and antiangiogenic efficacies. Sci Rep 2023; 13:13514. [PMID: 37598190 PMCID: PMC10439965 DOI: 10.1038/s41598-023-40079-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 08/04/2023] [Indexed: 08/21/2023] Open
Abstract
Biogenic silver nanoconjugates (AgNCs), derived from medicinal plants, have been widely explored in the field of biomedicines. AgNCs for the first-time were synthesized using ethyl acetate seed extracts of Abrus precatorius and their antiproliferative and antiangiogenic efficacies were evaluated against cervical and oral carcinoma. Ultraviolet-Visible spectrophotometry, dynamic light Scattering (DLS), and scanning electron microscopy (SEM) were used for characterization of AgNCs. Antiproliferative activity was investigated using MTT, DNA fragmentation and in-vitro antioxidant enzyme activity assays. In-vivo chick chorioallantoic membrane (CAM) model was used to evaluate antiangiogenic activity. A total of 11 compounds were identified in both the extracts in GCMS analysis. The synthesized AgNCs were spherical shaped with an average size of 97.4 nm for AgAPE (Sox) and 64.3 nm for AgAPE (Mac). AgNCs possessed effective inhibition against Hep2C and KB cells. In Hep2C cells, AgAPE (Mac) revealed the highest SOD, catalase, GST activity and lower MDA content, whereas AgAPE (Sox) showed the highest GSH content. On the other hand, in KB cells, AgAPE (Sox) exhibited the higher SOD, GST activity, GSH content, and least MDA content, while AgAPE (Mac) displayed the highest levels of catalase activity. Docking analysis revealed maximum binding affinity of safrole and linoleic acid with selected targets. AgAPE (Sox), AgAPE (Mac) treatment profoundly reduced the thickness, branching, and sprouting of blood vessels in the chick embryos. This study indicates that A. precatorius-derived AgNCs have enhanced efficacies against cervical and oral carcinoma as well as against angiogenesis, potentially limiting tumour growth.
Collapse
Affiliation(s)
- Amritpal Kaur
- Therapeutics and Molecular Diagnostic Lab, Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Sector 125, Noida, Uttar Pradesh, 201313, India
| | - Yash Sharma
- Therapeutics and Molecular Diagnostic Lab, Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Sector 125, Noida, Uttar Pradesh, 201313, India
| | - Gagandeep Singh
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, Hauz Khas, India
- Section of Microbiology, Central Ayurveda Research Institute, Jhansi, CCRAS, Ministry of Ayush, Govt. of India, Jhansi, India
| | - Anoop Kumar
- National Institute of Biologicals, Noida, Uttar Pradesh, India
| | - Nutan Kaushik
- Amity Food and Agriculture Foundation, Amity University, Noida, Uttar Pradesh, India
| | - Asim Ali Khan
- Central Council for Research in Unani Medicine (CCRUM), Ministry of Ayush, Janakpuri, New Delhi, India
| | - Kumud Bala
- Therapeutics and Molecular Diagnostic Lab, Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Sector 125, Noida, Uttar Pradesh, 201313, India.
| |
Collapse
|
11
|
Meza-Alvarado JC, Page RA, Mallard B, Bromhead C, Palmer BR. VEGF-A related SNPs: a cardiovascular context. Front Cardiovasc Med 2023; 10:1190513. [PMID: 37288254 PMCID: PMC10242119 DOI: 10.3389/fcvm.2023.1190513] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/27/2023] [Indexed: 06/09/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide. Currently, cardiovascular disease risk algorithms play a role in primary prevention. However, this is complicated by a lack of powerfully predictive biomarkers that could be observed in individuals before the onset of overt symptoms. A key potential biomarker for heart disease is the vascular endothelial growth factor (VEGF-A), a molecule that plays a pivotal role in blood vessel formation. This molecule has a complex biological role in the cardiovascular system due to the processes it influences, and its production is impacted by various CVD risk factors. Research in different populations has shown single nucleotide polymorphisms (SNPs) may affect circulating VEGF-A plasma levels, with some variants associated with the development of CVDs, as well as CVD risk factors. This minireview aims to give an overview of the VEGF family, and of the SNPs reported to influence VEGF-A levels, cardiovascular disease, and other risk factors used in CVD risk assessments.
Collapse
Affiliation(s)
| | | | | | | | - B. R. Palmer
- School of Health Sciences, Massey University, Wellington, New Zealand
| |
Collapse
|
12
|
Ciurea A, Rednic NV, Soancă A, Micu IC, Stanomir A, Oneț D, Șurlin P, Filipescu I, Roman A, Stratul ȘI, Pamfil C. Current Perspectives on Periodontitis in Systemic Sclerosis: Associative Relationships, Pathogenic Links, and Best Practices. Diagnostics (Basel) 2023; 13:diagnostics13050841. [PMID: 36899985 PMCID: PMC10000920 DOI: 10.3390/diagnostics13050841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Systemic sclerosis is a chronic, autoimmune, multisystemic disease characterized by aberrant extracellular matrix protein deposition and extreme progressive microvasculopathy. These processes lead to damage within the skin, lungs, or gastrointestinal tract, but also to facial changes with physiognomic and functional alterations, and dental and periodontal lesions. Orofacial manifestations are common in SSc but are frequently overshadowed by systemic complications. In clinical practice, oral manifestations of SSc are suboptimally addressed, while their management is not included in the general treatment recommendations. Periodontitis is associated with autoimmune-mediated systemic diseases, including systemic sclerosis. In periodontitis, the microbial subgingival biofilm induces host-mediated inflammation with subsequent tissue damage, periodontal attachment, and bone loss. When these diseases coexist, patients experience additive damage, increasing malnutrition, and morbidity. The present review discusses the links between SSc and periodontitis, and provides a clinical guide for preventive and therapeutical approaches in the management of these patients.
Collapse
Affiliation(s)
- Andreea Ciurea
- Department of Periodontology, Faculty of Dental Medicine, Iuliu Hațieganu University of Medicine and Pharmacy Cluj-Napoca, Victor Babeș St., No. 15, 400012 Cluj-Napoca, Romania
| | - Nicolae Voicu Rednic
- Department of Gastroenterology, Iuliu Hațieganu University of Medicine and Pharmacy Cluj-Napoca, “Prof. Dr. Octavian Fodor” Regional Institute of Gastroenterology and Hepatology, Croitorilor St., No. 19, 400394 Cluj-Napoca, Romania
| | - Andrada Soancă
- Department of Periodontology, Faculty of Dental Medicine, Iuliu Hațieganu University of Medicine and Pharmacy Cluj-Napoca, Victor Babeș St., No. 15, 400012 Cluj-Napoca, Romania
| | - Iulia Cristina Micu
- Department of Periodontology, Faculty of Dental Medicine, Iuliu Hațieganu University of Medicine and Pharmacy Cluj-Napoca, Victor Babeș St., No. 15, 400012 Cluj-Napoca, Romania
| | - Alina Stanomir
- Department of Periodontology, Faculty of Dental Medicine, Iuliu Hațieganu University of Medicine and Pharmacy Cluj-Napoca, Victor Babeș St., No. 15, 400012 Cluj-Napoca, Romania
| | - Diana Oneț
- Department of Periodontology, Faculty of Dental Medicine, Iuliu Hațieganu University of Medicine and Pharmacy Cluj-Napoca, Victor Babeș St., No. 15, 400012 Cluj-Napoca, Romania
| | - Petra Șurlin
- Department of Periodontology, University of Medicine and Pharmacy Craiova, Petru Rareș St., No. 2, 200349 Craiova, Romania
| | - Ileana Filipescu
- Department of Rheumatology, Iuliu Hațieganu University of Medicine and Pharmacy Cluj-Napoca, Clinicilor St., No. 2, 400000 Cluj-Napoca, Romania
| | - Alexandra Roman
- Department of Periodontology, Faculty of Dental Medicine, Iuliu Hațieganu University of Medicine and Pharmacy Cluj-Napoca, Victor Babeș St., No. 15, 400012 Cluj-Napoca, Romania
- Correspondence: ; Tel.: +40-722-627-488
| | - Ștefan Ioan Stratul
- Department of Periodontology, Faculty of Dental Medicine, Anton Sculean Research Center for Periodontal and Peri-Implant Diseases, Victor Babeș University of Medicine and Pharmacy Timișoara, Revoluției from 1989 St., No. 9, 300041 Timișoara, Romania
| | - Cristina Pamfil
- Department of Rheumatology, Iuliu Hațieganu University of Medicine and Pharmacy Cluj-Napoca, Clinicilor St., No. 2, 400000 Cluj-Napoca, Romania
| |
Collapse
|
13
|
Venkatakrishnan G, Parvathi VD. Decoding the mechanism of vascular morphogenesis to explore future prospects in targeted tumor therapy. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:178. [PMID: 36036322 DOI: 10.1007/s12032-022-01810-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/26/2022] [Indexed: 11/27/2022]
Abstract
The growth and formation of blood vessels is an undeniably fundamental biological process crucial to controlling overall development of an organism. This phenomenon consists of two separate processes, commencing with vasculogenesis, which refers to the process of blood vessel formation strictly in embryonic stages, via de novo endothelial cell synthesis. Angiogenesis continues the formation of the vascular network via sprouting and splitting. Tumor growth is dependent on the growth and supply of blood vessels around the tumor mass. Extracellular matrix (ECM) molecules can promote angiogenesis by establishing a vascular network and sequestering pro-angiogenic growth factors. Although the methods by which tumor-associated fibroblasts (which differ in phenotype from normal fibroblasts) influence angiogenesis are unknown, they are thought to be a major source of growth factors and cytokines that attract endothelial cells. Chemokines and growth factors (sourced from macrophages and neutrophils) are also regulators of angiogenesis. When considered as a whole, the tumor microenvironment is a heterogenous and dynamic mass of tissue, composed of a plethora of cell types and an ECM that can fundamentally control the pathological angiogenic switch. Angiogenesis is involved in numerous diseases, and understanding the various mechanisms surrounding this phenomenon is key to finding cures.
Collapse
Affiliation(s)
- Gayathri Venkatakrishnan
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, 600116, India
| | - Venkatachalam Deepa Parvathi
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, 600116, India.
| |
Collapse
|
14
|
Hizay A, Ozsoy U, Savas K, Yakut-Uzuner S, Ozbey O, Akkan SS, Bahsi P. Effect of Ultrasound Therapy on Expression of Vascular Endothelial Growth Factor, Vascular Endothelial Growth Factor Receptors, CD31 and Functional Recovery After Facial Nerve Injury. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1453-1467. [PMID: 35534304 DOI: 10.1016/j.ultrasmedbio.2022.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/08/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Functional recovery is provided by some neurotrophic factors released from the near vicinity of the injury site. Ultrasound treatment is known to increase neurotrophic factor expression. This study was aimed at determining the effect of ultrasound treatment on the expression of vascular endothelial growth factor (VEGF), its receptors and new vessel formation after facial nerve injury. Sixty-four Wistar rats were divided into four groups: control (group 1), sham (group 2), facial-facial coaptation (group 3), and facial-facial coaptation and ultrasound treatment (group 4). Animals in each group were evaluated on the 14th and 28th days. Immunohistochemical staining and electrophysiological and gene-level evaluations were performed for the expression of VEGF and its receptors. When the results were evaluated, it was determined that VEGF, VEGFR1 (VEGF receptor 1), VEGFR2 (VEGF receptor 2) and CD31 levels were significantly higher in groups 3 and 4 compared with the control and sham groups. The increase in these values was more prominent after 28 d of ultrasound treatment than all groups. Electrophysiological results revealed similar evident functional improvement in group 4 with decreased latency and increased amplitudes compared with group 3. Our findings suggest that ultrasound treatment might promote injured facial nerve regeneration by stimulating release of VEGF and its receptors and may result in functional improvement.
Collapse
Affiliation(s)
- Arzu Hizay
- Department of Anatomy, Faculty of Medicine, Akdeniz University, Antalya, Turkey.
| | - Umut Ozsoy
- Department of Anatomy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Kamil Savas
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Sezin Yakut-Uzuner
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Ozlem Ozbey
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Simla Su Akkan
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Pinar Bahsi
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
15
|
Amygdalin potentiates the anti-cancer effect of Sorafenib on Ehrlich ascites carcinoma and ameliorates the associated liver damage. Sci Rep 2022; 12:6494. [PMID: 35444229 PMCID: PMC9021277 DOI: 10.1038/s41598-022-10517-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/06/2022] [Indexed: 02/07/2023] Open
Abstract
The burden of cancer diseases is increasing every year, therefore, the demands to figure out novel drugs that can retain antitumor properties have been raised. This study aimed to investigate the anti-tumor properties of amygdalin (Amy) against Ehrlich ascites carcinoma (EAC) bearing mice and its protective properties against liver damage. Amy and the standard anticancer drug Sorafenib (Sor) were given alone or in combination to Swiss albino female mice that had been injected with EAC cells. Biochemical parameters of liver function (AST, ALT, GGT, total protein, albumin), tumor volume, oxidative stress [malondialdehyde, (MDA)] and antioxidative [superoxide dismutase (SOD), and reduced glutathione (GSH)] markers were measured. The hepatic expression of the antioxidant-related gene [nuclear factor erythroid-2-related factor 2 (Nrf2)], the migration-related gene [matrix metalloprotease 9 (MMP9)], and the angiogenesis-related gene [vascular endothelial growth factor (VEGF)] were evaluated by qPCR. The results revealed that EAC-bearing mice treated with Amy and/or Sor showed a decrease in the tumor burden and hepatic damage as evidenced by (1) decreased tumor volume, number of viable tumor cells; (2) increased number of dead tumor cells; (3) restored the liver function parameters; (4) reduced hepatic MDA levels; (5) enhanced hepatic GSH and SOD levels; (6) upregulated expression of Nrf2; (7) downregulated expression of MMP9 and VEGF, and (8) improved hepatic structure. Among all treatments, mice co-treated with Amy (orally) and Sor (intraperitoneally) showed the best effect. With these results, we concluded that the Amy improved the antitumor effect of Sor and had a protective role on liver damage induced by EAC in mice.
Collapse
|
16
|
Zhang M, Tombran-Tink J, Yang S, Zhang X, Li X, Barnstable CJ. PEDF is an endogenous inhibitor of VEGF-R2 angiogenesis signaling in endothelial cells. Exp Eye Res 2021; 213:108828. [PMID: 34742690 DOI: 10.1016/j.exer.2021.108828] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/20/2021] [Accepted: 11/01/2021] [Indexed: 01/03/2023]
Abstract
Pigment epithelium derived factor (PEDF), an endogenous inhibitor of angiogenesis, targets the growth of aberrant blood vessels in many tissues, including the eye. In this study we show that PEDF prevented early mitogenic signals of vascular endothelial growth factor (VEGF-A) in primate retinal endothelial cells, blocking proliferation, migration and tube formation. PEDF inhibited the phosphorylation and activation of five major downstream VEGF-A signaling partners, namely phosphoinositide-3-OH Kinase (PI3K), AKT, FAK, Src (Y416), and PLC-γ. It did so by binding to the extracellular domain of VEGF-R2, blocking VEGF-A-induced tyrosine phosphorylation (Tyr 951 and Tyr 1175), and inhibiting VEGF-R2 receptor kinase activity. PEDF had no effect on the transcription or translation of VEGF-R2 in cultured HUVECs. PEDF also bound to the extracellular domain of VEGF-R1. We conclude that PEDF blocks the growth of new blood vessels, in part, by reducing VEGF-A activation of its key mitogenic receptor, VEGF-R2, and by preventing its downstream signals in endothelial cells.
Collapse
Affiliation(s)
- Mingliang Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin, 300384, China
| | - Joyce Tombran-Tink
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin, 300384, China; Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, 17033, USA.
| | - Songyang Yang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin, 300384, China
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin, 300384, China.
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin, 300384, China.
| | - Colin J Barnstable
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin, 300384, China; Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
17
|
Niklander SE, Murdoch C, Hunter KD. IL-1/IL-1R Signaling in Head and Neck Cancer. FRONTIERS IN ORAL HEALTH 2021; 2:722676. [PMID: 35048046 PMCID: PMC8757896 DOI: 10.3389/froh.2021.722676] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/04/2021] [Indexed: 01/22/2023] Open
Abstract
Decades ago, the study of cancer biology was mainly focused on the tumor itself, paying little attention to the tumor microenvironment (TME). Currently, it is well recognized that the TME plays a vital role in cancer development and progression, with emerging treatment strategies focusing on different components of the TME, including tumoral cells, blood vessels, fibroblasts, senescent cells, inflammatory cells, inflammatory factors, among others. There is a well-accepted relationship between chronic inflammation and cancer development. Interleukin-1 (IL-1), a potent pro-inflammatory cytokine commonly found at tumor sites, is considered one of the most important inflammatory factors in cancer, and has been related with carcinogenesis, tumor growth and metastasis. Increasing evidence has linked development of head and neck squamous cell carcinoma (HNSCC) with chronic inflammation, and particularly, with IL-1 signaling. This review focuses on the most important members of the IL-1 family, with emphasis on how their aberrant expression can promote HNSCC development and metastasis, highlighting possible clinical applications.
Collapse
Affiliation(s)
- Sven E. Niklander
- Unidad de Patología y Medicina Oral, Facultad de Odontologia, Universidad Andres Bello, Viña del Mar, Chile
| | - Craig Murdoch
- Unit of Oral and Maxillofacial Medicine, Pathology and Surgery, School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | - Keith D. Hunter
- Unit of Oral and Maxillofacial Medicine, Pathology and Surgery, School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
- Oral Biology and Pathology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|