1
|
Wei G, Xu M, Shi X, Wang Y, Shi Y, Wang J, Feng L. Integrative analysis of miRNA profile and degradome reveals post-transcription regulation involved in fragrance formation of Rosa rugosa. Int J Biol Macromol 2024; 279:135266. [PMID: 39244114 DOI: 10.1016/j.ijbiomac.2024.135266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Rosa rugosa is renowned for its fragrant essential oils (EOs) including the primary volatile compounds such as terpenes (geraniol and citronellol) and 2-phenylethanol. While the role of miRNAs in plant secondary metabolism has been explored, their involvement in EOs metabolism remains largely unknown. Sequencing of the petals of R. rugosa identified 383 conserved miRNAs and 625 novel miRNAs including 53 miRNAs differentially expressed in a strong fragrance variety R. rugosa 'White Purple Branch'. Degradome sequencing predicted 1969 targets enriched in GO terms involved in the negative regulation of macromolecule metabolic process. Furthermore, 122 targets of differentially expressed miRNAs were enriched in phenylalanine metabolism and other KEGG pathways. A post-transcriptional regulation network of 52 miRNAs and 70 miRNA-transcription factor modules target terpene and 2-phenylethanol biosynthesis pathways. Six interactions including miR535f-RrHMGR, NOV146-RrNUDX1, miR166l-RrHY5 and miR156c-RrSPL2 were validated using RNA ligase-mediated RACE. Sequence alignment revealed that the NOV146-RrNUDX1 was conserved in the Rosa genus. Moreover, weaker silencing of RrNUDX1 by NOV146 contributed to the stronger fragrance of R. rugosa. These findings offer a comprehensive understanding of the post-transcriptional regulation involved in essential oil biosynthesis and identify candidate miRNAs for further genetic improvement of EO yields in R. rugosa.
Collapse
Affiliation(s)
- Guo Wei
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Mengmeng Xu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Xinwei Shi
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Yue Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Yuqing Shi
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Jianwen Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| | - Liguo Feng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
2
|
Huo J, Zhe W, Zhang Y, Yang Q, Zeng Z. High-coverage characterization and discovery of molecular markers for quality control of natural fragrant plant extracts using UPLC-HRMS-based untargeted metabolomics. Anal Bioanal Chem 2024; 416:5639-5654. [PMID: 39167185 DOI: 10.1007/s00216-024-05478-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/20/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024]
Abstract
The chemical components of natural fragrant plant extracts are of high complexity, and the strategies for quality control (QC) and further discovery of fragrance mechanisms still need to be further investigated. This study integrated the strategies and methods of untargeted metabolomics and chemometrics and statistical modeling to attain the goal. The techniques of reversed-phase and HILIC analysis of ultra-performance liquid chromatography-high-resolution mass spectrometry (UPLC-HRMS) were simultaneously used to collect data in both positive and negative ion modes. The pattern analysis of fingerprints and discovery of characteristic molecular markers for QC analysis were comprehensively employed to reach in-depth analysis of the quality variation and discovery of differential molecules among natural fragrant plant extracts. The former uses fingerprint technique to analyze their overall similarities and differences, and the latter comprehensively discovers molecular substances characterizing the chemical characteristics of fragrant extracts with the help of metabolomics and univariate and multivariate methods. The findings are expected to be used as the molecular markers in product manufacturing, sales, and consumption to achieve accurate quality control and recognition of targeted molecules for potential quality monitoring using spectroscopy techniques. In this work, 27 natural fragrant extracts were applied as examples, and their chemical components were comprehensively analyzed with discovery of markers for quality control. After data integration, 1178 molecules were annotated, and 267 differential metabolite molecules with the values of variable importance in the projection (VIP) larger than 1.0 were found. The results show that the method proposed in this work is of great significance for high-coverage analysis, QC marker discovery, and aroma mechanism elucidation, which has potential applications in the areas of food, cosmetics, pharmaceuticals, tobacco, and others.
Collapse
Affiliation(s)
- Jinfeng Huo
- College of Environmental and Chemical Engineering, Dalian University, Dalian, 116622, China
| | - Wei Zhe
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd, Kunming, 650231, China
| | - Yipeng Zhang
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd, Kunming, 650231, China.
| | - Qianxu Yang
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd, Kunming, 650231, China.
| | - Zhongda Zeng
- College of Environmental and Chemical Engineering, Dalian University, Dalian, 116622, China.
| |
Collapse
|
3
|
Almeida HHS, Fernandes IP, Amaral JS, Rodrigues AE, Barreiro MF. Unlocking the Potential of Hydrosols: Transforming Essential Oil Byproducts into Valuable Resources. Molecules 2024; 29:4660. [PMID: 39407589 PMCID: PMC11477756 DOI: 10.3390/molecules29194660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
The global demand for sustainable and non-toxic alternatives across various industries is driving the exploration of naturally derived solutions. Hydrosols, also known as hydrolates, represent a promising yet underutilised byproduct of the extraction process of essential oils (EOs). These aqueous solutions contain a complex mixture of EO traces and water-soluble compounds and exhibit significant biological activity. To fully use these new solutions, it is necessary to understand how factors, such as distillation time and plant-to-water ratio, affect their chemical composition and biological activity. Such insights are crucial for the standardisation and quality control of hydrosols. Hydrosols have demonstrated noteworthy properties as natural antimicrobials, capable of preventing biofilm formation, and as antioxidants, mitigating oxidative stress. These characteristics position hydrosols as versatile ingredients for various applications, including biopesticides, preservatives, food additives, anti-browning agents, pharmaceutical antibiotics, cosmetic bioactives, and even anti-tumour agents in medical treatments. Understanding the underlying mechanisms of these activities is also essential for advancing their use. In this context, this review compiles and analyses the current literature on hydrosols' chemical and biological properties, highlighting their potential applications and envisioning future research directions. These developments are consistent with a circular bio-based economy, where an industrial byproduct derived from biological sources is repurposed for new applications.
Collapse
Affiliation(s)
- Heloísa H. S. Almeida
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252 Bragança, Portugal; (H.H.S.A.); (I.P.F.)
- Laboratório Associado para a Sustentabilidade em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252 Bragança, Portugal
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Isabel P. Fernandes
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252 Bragança, Portugal; (H.H.S.A.); (I.P.F.)
- Laboratório Associado para a Sustentabilidade em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252 Bragança, Portugal
| | - Joana S. Amaral
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252 Bragança, Portugal; (H.H.S.A.); (I.P.F.)
- Laboratório Associado para a Sustentabilidade em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252 Bragança, Portugal
| | - Alírio E. Rodrigues
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria-Filomena Barreiro
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252 Bragança, Portugal; (H.H.S.A.); (I.P.F.)
- Laboratório Associado para a Sustentabilidade em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252 Bragança, Portugal
| |
Collapse
|
4
|
Prosche S, Stappen I. Flower Power: An Overview on Chemistry and Biological Impact of Selected Essential Oils from Blossoms. PLANTA MEDICA 2024; 90:595-626. [PMID: 38843799 DOI: 10.1055/a-2215-2791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Natural raw materials such as essential oils have received more and more attention in recent decades, whether in the food industry, as flavorings and preservatives, or as insecticides and insect repellents. They are, furthermore, very popular as fragrances in perfumes, cosmetics, and household products. In addition, aromatherapy is widely used to complement conventional medicine. This review summarizes investigations on the chemical composition and the most important biological impacts of essential oils and volatile compounds extracted from selected aromatic blossoms, including Lavandula angustifolia, Matricaria recutita, Rosa x damascena, Jasminum grandiflorum, Citrus x aurantium, Cananga odorata, and Michelia alba. The literature was collected from PubMed, Google Scholar, and Science Direct. Blossom essential oils discussed in this work are used in a wide variety of clinical issues. The application is consistently described as safe in studies and meta-analyses, although there are notes that using essential oils can also have side effects, especially dermatologically. However, it can be considered as confirmed that essential oils have positive influences on humans and can improve quality of life in patients with psychiatric disorders, critically ill patients, and patients in other exceptional situations. Although the positive effect of essential oils from blossoms has repeatedly been reported, evidence-based clinical investigations are still underrepresented, and the need for research is demanded.
Collapse
Affiliation(s)
- Sinah Prosche
- Department of Pharmaceutical Sciences, University of Vienna, Austria
| | - Iris Stappen
- Department of Pharmaceutical Sciences, University of Vienna, Austria
| |
Collapse
|
5
|
Parra-Pacheco B, Cruz-Moreno BA, Aguirre-Becerra H, García-Trejo JF, Feregrino-Pérez AA. Bioactive Compounds from Organic Waste. Molecules 2024; 29:2243. [PMID: 38792105 PMCID: PMC11123749 DOI: 10.3390/molecules29102243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The reuse and reincorporation of waste are the principles of circular economies. Compost, biofuels, animal feed, dyes, and bioactive compounds can be obtained from the revaluation of organic waste. Research on this subject is scarce and limited to specific sectors, such as agriculture and agroindustry, leaving aside others that generate large quantities of organic waste, such as floriculture. The remains of these sectors have a low decomposition rate compared to other organic wastes. They are a source of bioactive compounds (e.g., essential oils, pigments, phenols) that can be reincorporated into the production chain of various industries. This review describes the composition of waste from agroindustry, agriculture, and floriculture, analyzing their potential revalorization as a source of bioactive compounds and an alternative supply source.
Collapse
Affiliation(s)
| | | | | | - Juan Fernando García-Trejo
- Research and Postgraduate Division, School of Engineering, Universidad Autónoma de Querétaro, Campus Amazcala, Carretera a Chichimequillas Km 1 s/n, Amazcala, El Marqués 76265, Querétaro, Mexico; (B.P.-P.); (B.A.C.-M.); (H.A.-B.)
| | - Ana Angélica Feregrino-Pérez
- Research and Postgraduate Division, School of Engineering, Universidad Autónoma de Querétaro, Campus Amazcala, Carretera a Chichimequillas Km 1 s/n, Amazcala, El Marqués 76265, Querétaro, Mexico; (B.P.-P.); (B.A.C.-M.); (H.A.-B.)
| |
Collapse
|
6
|
Flórez González SJ, Stashenko EE, Ocazionez RE, Vinardell MP, Fuentes JL. In vitro Safety Assessment of Extracts and Compounds From Plants as Sunscreen Ingredients. Int J Toxicol 2024; 43:243-252. [PMID: 38183303 DOI: 10.1177/10915818231225661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2024]
Abstract
This work investigated the safety of extracts obtained from plants growing in Colombia, which have previously shown UV-filter/antigenotoxic properties. The compounds in plant extracts obtained by the supercritical fluid (CO2) extraction method were identified using gas chromatography coupled to mass spectrometry (GC/MS) analysis. Cytotoxicity measured as cytotoxic concentration 50% (CC50) and genotoxicity of the plant extracts and some compounds were studied in human fibroblasts using the trypan blue exclusion assay and the Comet assay, respectively. The extracts from Pipper eriopodon and Salvia aratocensis species and the compound trans-β-caryophyllene were clearly cytotoxic to human fibroblasts. Conversely, Achyrocline satureioides, Chromolaena pellia, and Lippia origanoides extracts were relatively less cytotoxic with CC50 values of 173, 184, and 89 μg/mL, respectively. The C. pellia and L. origanoides extracts produced some degree of DNA breaks at cytotoxic concentrations. The cytotoxicity of the studied compounds was as follows, with lower CC50 values representing the most cytotoxic compounds: resveratrol (91 μM) > pinocembrin (144 μM) > quercetin (222 μM) > titanium dioxide (704 μM). Quercetin was unique among the compounds assayed in being genotoxic to human fibroblasts. Our work indicates that phytochemicals can be cytotoxic and genotoxic, demonstrating the need to establish safe concentrations of these extracts for their potential use in cosmetics.
Collapse
Affiliation(s)
- Silvia Juliana Flórez González
- Laboratorio de Microbiología y Mutagénesis Ambiental (LMMA), Grupo de Investigación en Microbiología y Genética, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia
| | - Elena E Stashenko
- Centro de Investigación en Biomoléculas (CIBIMOL), Universidad Industrial de Santander, Bucaramanga, Santander, Colombia
- Centro de Cromatografía y Espectrometría de Masas (CROM-MASS), Universidad Industrial de Santander, Bucaramanga, Santander, Colombia
| | - Raquel Elvira Ocazionez
- Centro de Cromatografía y Espectrometría de Masas (CROM-MASS), Universidad Industrial de Santander, Bucaramanga, Santander, Colombia
| | - María Pilar Vinardell
- Departamento de Bioquímica y Fisiología, Facultad de Farmacia y Ciencias de la Alimentación, Universitat de Barcelona, Barcelona 08028, Spain
| | - Jorge Luis Fuentes
- Laboratorio de Microbiología y Mutagénesis Ambiental (LMMA), Grupo de Investigación en Microbiología y Genética, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia
- Centro de Investigación en Biomoléculas (CIBIMOL), Universidad Industrial de Santander, Bucaramanga, Santander, Colombia
| |
Collapse
|
7
|
Ren H, Yang W, Jing W, Shahid MO, Liu Y, Qiu X, Choisy P, Xu T, Ma N, Gao J, Zhou X. Multi-omics analysis reveals key regulatory defense pathways and genes involved in salt tolerance of rose plants. HORTICULTURE RESEARCH 2024; 11:uhae068. [PMID: 38725456 PMCID: PMC11079482 DOI: 10.1093/hr/uhae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/21/2024] [Indexed: 05/12/2024]
Abstract
Salinity stress causes serious damage to crops worldwide, limiting plant production. However, the metabolic and molecular mechanisms underlying the response to salt stress in rose (Rosa spp.) remain poorly studied. We therefore performed a multi-omics investigation of Rosa hybrida cv. Jardin de Granville (JDG) and Rosa damascena Mill. (DMS) under salt stress to determine the mechanisms underlying rose adaptability to salinity stress. Salt treatment of both JDG and DMS led to the buildup of reactive oxygen species (H2O2). Palisade tissue was more severely damaged in DMS than in JDG, while the relative electrolyte permeability was lower and the soluble protein content was higher in JDG than in DMS. Metabolome profiling revealed significant alterations in phenolic acid, lipids, and flavonoid metabolite levels in JDG and DMS under salt stress. Proteome analysis identified enrichment of flavone and flavonol pathways in JDG under salt stress. RNA sequencing showed that salt stress influenced primary metabolism in DMS, whereas it substantially affected secondary metabolism in JDG. Integrating these datasets revealed that the phenylpropane pathway, especially the flavonoid pathway, is strongly enhanced in rose under salt stress. Consistent with this, weighted gene coexpression network analysis (WGCNA) identified the key regulatory gene chalcone synthase 1 (CHS1), which is important in the phenylpropane pathway. Moreover, luciferase assays indicated that the bHLH74 transcription factor binds to the CHS1 promoter to block its transcription. These results clarify the role of the phenylpropane pathway, especially flavonoid and flavonol metabolism, in the response to salt stress in rose.
Collapse
Affiliation(s)
- Haoran Ren
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
| | - Wenjing Yang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
| | - Weikun Jing
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Muhammad Owais Shahid
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
| | - Yuming Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
| | - Xianhan Qiu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
| | - Patrick Choisy
- LVMH Recherche, 185 avenue de Verdun F-45800 St., Jean de Braye, France
| | - Tao Xu
- LVMH Recherche, 185 avenue de Verdun F-45800 St., Jean de Braye, France
| | - Nan Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
| | - Xiaofeng Zhou
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
8
|
Oargă (Porumb) DP, Cornea-Cipcigan M, Cordea MI. Unveiling the mechanisms for the development of rosehip-based dermatological products: an updated review. Front Pharmacol 2024; 15:1390419. [PMID: 38666029 PMCID: PMC11043540 DOI: 10.3389/fphar.2024.1390419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Rosa spp., commonly known as rosehips, are wild plants that have traditionally been employed as herbal remedies for the treatment of a wide range of disorders. Rosehip is a storehouse of vitamins, including A, B complex, C, and E. Among phytonutrients, vitamin C is found in the highest amount. As rosehips contain significant levels of vitamin C, they are perfect candidates for the development of skincare formulations that can be effectively used in the treatment of different skin disorders (i.e., scarring, anti-aging, hyperpigmentation, wrinkles, melasma, and atopic dermatitis). This research focuses on the vitamin C content of several Rosa sp. by their botanical and geographic origins, which according to research studies are in the following order: R. rugosa > R. montana > R. canina > R. dumalis, with lower levels in R. villosa and R. arvensis, respectively. Among rosehip species, R. canina is the most extensively studied species which also displays significant amounts of bioactive compounds, but also antioxidant, and antimicrobial activities (e.g., against Propionibacterium acnes, Staphylococcus aureus, S, epidermis, and S. haemolyticus). The investigation also highlights the use of rosehip extracts and oils to minimise the harmful effects of acne, which primarily affects teenagers in terms of their physical appearance (e.g., scarring, hyperpigmentation, imperfections), as well as their moral character (e.g., low self-confidence, bullying). Additionally, for higher vitamin C content from various rosehip species, the traditional (i.e., infusion, maceration, Soxhlet extraction) and contemporary extraction methods (i.e., supercritical fluid extraction, microwave-assisted, ultrasonic-assisted, and enzyme-assisted extractions) are highlighted, finally choosing the best extraction method for increased bioactive compounds, with emphasis on vitamin C content. Consequently, the current research focuses on assessing the potential of rosehip extracts as medicinal agents against various skin conditions, and the use of rosehip concentrations in skincare formulations (such as toner, serum, lotion, and sunscreen). Up-to-date studies have revealed that rosehip extracts are perfect candidates as topical application products in the form of nanoemulsions. Extensive in vivo studies have revealed that rosehip extracts also exhibit specific activities against multiple skin disorders (i.e., wound healing, collagen synthesis, atopic dermatitis, melasma, and anti-aging effects). Overall, with multiple dermatological actions and efficacies, rosehip extracts and oils are promising agents that require a thorough investigation of their functioning processes to enable their safe use in the skincare industry.
Collapse
Affiliation(s)
| | - Mihaiela Cornea-Cipcigan
- Laboratory of Cell Analysis and Plant Breeding, Department of Horticulture, Faculty of Horticulture and Business in Rural Development, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Mirela Irina Cordea
- Laboratory of Cell Analysis and Plant Breeding, Department of Horticulture, Faculty of Horticulture and Business in Rural Development, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
9
|
Sumbul, Sultana A, Heyat MBB, Rahman K, Akhtar F, Parveen S, Urbano MB, Lipari V, De la Torre Díez I, Khan AA, Malik A. Efficacy and classification of Sesamum indicum linn seeds with Rosa damascena mill oil in uncomplicated pelvic inflammatory disease using machine learning. Front Chem 2024; 12:1361980. [PMID: 38629105 PMCID: PMC11018920 DOI: 10.3389/fchem.2024.1361980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/05/2024] [Indexed: 04/19/2024] Open
Abstract
Background and objectives: As microbes are developing resistance to antibiotics, natural, botanical drugs or traditional herbal medicine are presently being studied with an eye of great curiosity and hope. Hence, complementary and alternative treatments for uncomplicated pelvic inflammatory disease (uPID) are explored for their efficacy. Therefore, this study determined the therapeutic efficacy and safety of Sesamum indicum Linn seeds with Rosa damascena Mill Oil in uPID with standard control. Additionally, we analyzed the data with machine learning. Materials and methods: We included 60 participants in a double-blind, double-dummy, randomized standard-controlled study. Participants in the Sesame and Rose oil group (SR group) (n = 30) received 14 days course of black sesame powder (5 gm) mixed with rose oil (10 mL) per vaginum at bedtime once daily plus placebo capsules orally. The standard group (SC), received doxycycline 100 mg twice and metronidazole 400 mg thrice orally plus placebo per vaginum for the same duration. The primary outcome was a clinical cure at post-intervention for visual analogue scale (VAS) for lower abdominal pain (LAP), and McCormack pain scale (McPS) for abdominal-pelvic tenderness. The secondary outcome included white blood cells (WBC) cells in the vaginal wet mount test, safety profile, and health-related quality of life assessed by SF-12. In addition, we used AdaBoost (AB), Naïve Bayes (NB), and Decision Tree (DT) classifiers in this study to analyze the experimental data. Results: The clinical cure for LAP and McPS in the SR vs SC group was 82.85% vs 81.48% and 83.85% vs 81.60% on Day 15 respectively. On Day 15, pus cells less than 10 in the SR vs SC group were 86.6% vs 76.6% respectively. No adverse effects were reported in both groups. The improvement in total SF-12 score on Day 30 for the SR vs SC group was 82.79% vs 80.04% respectively. In addition, our Naive Bayes classifier based on the leave-one-out model achieved the maximum accuracy (68.30%) for the classification of both groups of uPID. Conclusion: We concluded that the SR group is cost-effective, safer, and efficacious for curing uPID. Proposed alternative treatment (test drug) could be a substitute of standard drug used for Female genital tract infections.
Collapse
Affiliation(s)
- Sumbul
- Department of Ilmul Qabalat wa Amraze Niswan, National Institute of Unani Medicine, Ministry of AYUSH, Government of India, Bengaluru, Karnataka, India
| | - Arshiya Sultana
- Department of Ilmul Qabalat wa Amraze Niswan, National Institute of Unani Medicine, Ministry of AYUSH, Government of India, Bengaluru, Karnataka, India
| | - Md Belal Bin Heyat
- CenBRAIN Neurotech Center of Excellence, School of Engineering, Westlake University, Hangzhou, Zhejiang, China
| | - Khaleequr Rahman
- Department of Ilmul Saidla, National Institute of Unani Medicine, Ministry of AYUSH, Government of India, Bengaluru, Karnataka, India
| | - Faijan Akhtar
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Saba Parveen
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Mercedes Briones Urbano
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea Del Atlántico, Santander, Spain
- Research Group on Foods, Nutritional Biochemistry and Health, Universidade Internacional do Cuanza, Kuito, Angola
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Internacional Iberoamericana, Arecibo, PR, United States
| | - Vivian Lipari
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea Del Atlántico, Santander, Spain
- Research Group on Foods, Nutritional Biochemistry and Health, Universidade Internacional do Cuanza, Kuito, Angola
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Internacional Iberoamericana, Arecibo, PR, United States
| | - Isabel De la Torre Díez
- Department of Signal Theory and Communications and Telemedicine Engineering, University of Valladolid, Valladolid, Spain
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Noh YM, Ait Hida A, Raymond O, Comte G, Bendahmane M. The scent of roses, a bouquet of fragrance diversity. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1252-1264. [PMID: 38015983 DOI: 10.1093/jxb/erad470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023]
Abstract
Roses have been domesticated since antiquity for their therapeutic, cosmetic, and ornamental properties. Their floral fragrance has great economic value, which has influenced the production of rose varieties. The production of rose water and essential oil is one of the most lucrative activities, supplying bioactive molecules to the cosmetic, pharmaceutical, and therapeutic industries. In recent years, major advances in molecular genetics, genomic, and biochemical tools have paved the way for the identification of molecules that make up the specific fragrance of various rose cultivars. The aim of this review is to highlight current knowledge on metabolite profiles, and more specifically on fragrance compounds, as well as the specificities and differences between rose species and cultivars belonging to different rose sections and how they contribute to modern roses fragrance.
Collapse
Affiliation(s)
- Yuo-Myoung Noh
- Laboratoire Reproduction et Développement des Plantes, INRA-CNRS-Lyon1-ENS, Ecole Normale Supérieure de Lyon, Lyon, France
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Lyon, France
| | - Amal Ait Hida
- Institut Agronomique et Vétérinaire, Complexe Horticole, Agadir, Morocco
| | - Olivier Raymond
- Laboratoire Reproduction et Développement des Plantes, INRA-CNRS-Lyon1-ENS, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Gilles Comte
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Lyon, France
| | - Mohammed Bendahmane
- Laboratoire Reproduction et Développement des Plantes, INRA-CNRS-Lyon1-ENS, Ecole Normale Supérieure de Lyon, Lyon, France
| |
Collapse
|
11
|
Simin N, Živanović N, Božanić Tanjga B, Lesjak M, Narandžić T, Ljubojević M. New Garden Rose ( Rosa × hybrida) Genotypes with Intensely Colored Flowers as Rich Sources of Bioactive Compounds. PLANTS (BASEL, SWITZERLAND) 2024; 13:424. [PMID: 38337955 PMCID: PMC10857594 DOI: 10.3390/plants13030424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Garden roses, known as Rosa × hybrida, hold a prominent position as one of the most important and economically valuable plants in horticulture. Additionally, their products-essential oil, rose water, concrete, and concentrate-find extensive use in the cosmetic, pharmaceutical, and food industries, due to their specific fragrances and potential health benefits. Rose flowers are rich in biologically active compounds, such as phenolics, flavonoids, anthocyanins, and carotenoids. This study aims to investigate the potential of five new garden rose genotypes with intensely colored flowers to serve as sources of biologically active compounds. Phenolic profile was evaluated by determination of total phenolic (TPC), flavonoid (TFC), and monomeric anthocyanins (TAC) contents and LC-MS/MS analysis of selected compounds. Antioxidant activity was evaluated via DPPH and FRAP assays, neuroprotective potential via acethylcholinesterase inhibition assay, and antidiabetic activity viaα-amylase and α-glucosidase inhibition assays. The flowers of investigated genotypes were rich in phenolics (TPC varied from 148 to 260 mg galic acid eq/g de, TFC from 19.9 to 59.7 mg quercetin eq/g de, and TAC from 2.21 to 13.1 mg cyanidin 3-O-glucoside eq/g de). Four out of five genotypes had higher TPC than extract of R. damascene, the most famous rose cultivar. The dominant flavonoids in all investigated genotypes were glycosides of quercetin and kaempferol. The extracts showed high antioxidant activity comparable to synthetic antioxidant BHT, very high α-glucosidase inhibitory potential, moderate neuroprotective activity, and low potential to inhibit α-amylase.
Collapse
Affiliation(s)
- Nataša Simin
- Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Nemanja Živanović
- Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | | | - Marija Lesjak
- Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Tijana Narandžić
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| | - Mirjana Ljubojević
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| |
Collapse
|
12
|
Antoniadou M, Rozos G, Vaiou N, Zaralis K, Ersanli C, Alexopoulos A, Tzora A, Varzakas T, Voidarou C(C. The In Vitro Assessment of Antibacterial and Antioxidant Efficacy in Rosa damascena and Hypericum perforatum Extracts against Pathogenic Strains in the Interplay of Dental Caries, Oral Health, and Food Microbiota. Microorganisms 2023; 12:60. [PMID: 38257885 PMCID: PMC10819596 DOI: 10.3390/microorganisms12010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
The rising demand for novel antibiotic agents prompts an investigation into natural resources, notably plant-derived compounds. In this study, various extracts (aqueous, ethanolic, aqueous-ethanolic, and enzymatic) of Rosa damascena and Hypericum perforatum were systematically evaluated against bacterial strains isolated from dental lesions (n = 6) and food sources (raw milk and broiler carcass, n = 2). Minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC), antibiofilm activity, and time-kill kinetics were assessed across a range of extract concentrations, revealing a dose-responsive effect. Notably, some extracts exhibited superior antibacterial efficacy compared to standard clinical antibiotics, and the time-kill kinetics demonstrated a rapid elimination of bacterial loads within 24 h. The susceptibility pattern proved strain-specific, contingent upon the extract type, yet all tested pathogens exhibited sensitivity. The identified extracts, rich in phenolic and polyphenolic compounds, as well as other antioxidant properties, contributed to their remarkable antibiotic effects. This comprehensive investigation not only highlights the potential of Rosa damascena and Hypericum perforatum extracts as potent antibacterial agents against diverse bacterial strains including caries pathogens, but also underscores their rapid action and dose-dependent efficacy. The findings suggest a promising avenue for harnessing plant-derived compounds in the development of novel antimicrobial strategies against dental caries and other oral inflammations, bridging the gap between natural resources and antibiotic discovery.
Collapse
Affiliation(s)
- Maria Antoniadou
- Department of Dentistry, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece;
- CSAP, Executive Mastering Program in Systemic Management, University of Piraeus, 18534 Piraeus, Greece
| | - Georgios Rozos
- Department of Agriculture, School of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece; (G.R.); (K.Z.)
- Department of Agriculture, School of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.E.); (A.T.)
| | - Natalia Vaiou
- Laboratory of Microbiology, Department of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Konstantinos Zaralis
- Department of Agriculture, School of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece; (G.R.); (K.Z.)
| | - Caglar Ersanli
- Department of Agriculture, School of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.E.); (A.T.)
| | - Athanasios Alexopoulos
- Laboratory of Microbiology, Biotechnology & Hygiene, Department of Agricultural Development, Democritus University of Thrace, 68200 Orestiada, Greece;
| | - Athina Tzora
- Department of Agriculture, School of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.E.); (A.T.)
| | - Theodoros Varzakas
- Department Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece
| | - Chrysoula (Chrysa) Voidarou
- Department of Agriculture, School of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.E.); (A.T.)
| |
Collapse
|
13
|
Zumsteg J, Bossard E, Gourguillon L, Villette C, Heintz D. Comparison of nocturnal and diurnal metabolomes of rose flowers and leaves. Metabolomics 2023; 20:4. [PMID: 38066353 DOI: 10.1007/s11306-023-02063-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023]
Abstract
INTRODUCTION Roses are one of the most essential ornamental flowers and are commonly used in perfumery, cosmetics, and food. They are rich in bioactive compounds, which are of interest for therapeutic effects. OBJECTIVES The objective of this study was to understand the kinds of changes that occur between the nocturnal and diurnal metabolism of rose and to suggest hypotheses. METHODS Reversed-phase ultrahigh-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry or triple quadrupole mass spectrometry (TQ MS/MS) was used for nontargeted metabolomics and hormonal profiling respectively. For metabolite annotation, accurate mass spectra were compared with those in databases. RESULTS The hormonal profile of flowers showed an increase in jasmonate at night, while that of leaves indicated an increase in the salicylic acid pathway. Nontargeted analyses of the flower revealed a switch in the plant's defense mechanisms from glycosylated metabolites during the day to acid metabolites at night. In leaves, a significant decrease in flavonoids was observed at night in favor of acid metabolism to maintain a level of protection. Moreover, it might be possible to place back some of the annotated molecules on the shikimate pathway. CONCLUSION The influence of day and night on the metabolome of rose flowers and leaves has been clearly demonstrated. The hormonal modulations occurring during the night and at day are consistent with the plant circadian cycle. A proposed management of the sesquiterpenoid and triterpenoid biosynthetic pathway may explain these changes in the flower. In leaves, the metabolic differences may reflect night-time regulation in favor of the salicylic acid pathway.
Collapse
Affiliation(s)
- Julie Zumsteg
- Plant Imaging & Mass Spectrometry (PIMS), Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France
| | - Elodie Bossard
- Advanced Biobased and Bioinspired Ingredients, LVMH Recherche, 185 avenue de Verdun, 45804, Saint-Jean-de-Braye Cedex, France
| | - Lorène Gourguillon
- Advanced Biobased and Bioinspired Ingredients, LVMH Recherche, 185 avenue de Verdun, 45804, Saint-Jean-de-Braye Cedex, France
| | - Claire Villette
- Plant Imaging & Mass Spectrometry (PIMS), Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France
| | - Dimitri Heintz
- Plant Imaging & Mass Spectrometry (PIMS), Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France.
| |
Collapse
|
14
|
Lee Y, Park E, Jang B, Hwang J, Lee J, Oh ES. Antifungal Activity of Bulgarian Rose Damascena Oil against Vaginitis-Causing Opportunistic Fungi. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:5054865. [PMID: 38074845 PMCID: PMC10708955 DOI: 10.1155/2023/5054865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/08/2023] [Accepted: 11/21/2023] [Indexed: 10/16/2024]
Abstract
Since Bulgarian rose damascena oil is known for its anti-inflammatory, antioxidant, and antimicrobial properties, we investigated its antifungal activity against the species of Candida, which are among the most common opportunistic fungal pathogens. Our disk-diffusion assay revealed that Bulgarian rose damascena oil effectively inhibited the growth of Candida albicans along with various bacteria. The minimum inhibitory and fungicidal concentrations against Candida albicans and Candida glabrata were all 0.25%. Under our experimental conditions, Bulgarian rose damascena oil showed better inhibitory effects on Candida glabrata and Candida albicans than several popular essential oils reported to have antifungal activity other than Origanum vulgare oil. Interestingly, Bulgarian rose damascena oil showed better antifungal activity against Candida species at acidic pH and induced cell death of Candida species in the culture medium, with cell death seen in 25-35% of the cells exposed to 0.05% Bulgarian rose damascena oil. Furthermore, Bulgarian rose damascena oil inhibited the hyphal growth of Candida albicans cultured in the RPMI medium with fetal bovine serum. These findings collectively suggest that Bulgarian rose damascena oil has antifungal activity against Candida species and thus could potentially be developed in novel therapies for vaginitis-causing pathogenic fungi.
Collapse
Affiliation(s)
- Yejin Lee
- Department of Life Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Eunhye Park
- Department of Life Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Bohee Jang
- Department of Life Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jisun Hwang
- Department of Life Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jinmin Lee
- Jayeonin Inc., Seoul 04995, Republic of Korea
| | - Eok-Soo Oh
- Department of Life Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
15
|
Bashir A, Manzoor MM, Ahmad T, Farooq S, Sultan P, Gupta AP, Riyaz-Ul-Hassan S. Endophytic fungal community of Rosa damascena Mill. as a promising source of indigenous biostimulants: Elucidating its spatial distribution, chemical diversity, and ecological functions. Microbiol Res 2023; 276:127479. [PMID: 37639964 DOI: 10.1016/j.micres.2023.127479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/28/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023]
Abstract
The role of endophytes in maintaining healthy plant ecosystems and holding promise for agriculture and food security is deeply appreciated. In the current study, we determine the community structure, spatial distribution, chemical diversity, and ecological functions of fungal endophytes of Rosa damascena growing in the North-Western Himalayas. Culture-dependent methods revealed that R. damascena supported a rich endophyte diversity comprising 32 genera and 68 OTUs. The diversity was governed by climate, altitude, and tissue type. Species of Aspergillus, Cladosporium, Penicillium, and Diaporthe were the core endophytes of the host plant consisting of 48.8% of the endophytes collectively. The predominant pathogen of the host was Alternaria spp., especially A. alternata. GC-MS analyses affirmed the production of diverse arrays of volatile organic compounds (VOC) by individual endophytes. Among the primary rose oil components, Diaporthe melonis RDE257, and Periconia verrucosa RDE85 produced phenyl ethyl alcohol (PEA) and benzyl alcohol (BA). The endophytes displayed varied levels of plant growth-promoting, colonization, and anti-pathogenic traits. Between the selected endophytes, P. verrucosa and D. melonis significantly potentiated plant growth and the flavonoids and chlorophyll content in the host. The potential of these two endophytes and their metabolites PEA and BA was confirmed on Nicotiana tabacum. The treatments of the metabolites and individual endophytes enhanced the growth parameters in the model plant significantly. The results imply that P. verrucosa and D. melonis are potential plant growth enhancers and their activity may be partially due to the production of PEA and BA. Thus, R. damascena harbors diverse endophytes with potential applications in disease suppression and host growth promotion. Further investigations at the molecular level are warranted to develop green endophytic agents for sustainable cultivation of R. damascena and biocontrol of leaf spot disease.
Collapse
Affiliation(s)
- Abid Bashir
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar 190005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Malik Muzafar Manzoor
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar 190005, India
| | - Tanveer Ahmad
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar 190005, India
| | - Sadaqat Farooq
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar 190005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Phalisteen Sultan
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar 190005, India
| | - Ajai P Gupta
- Quality Management & Instrumentation Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Syed Riyaz-Ul-Hassan
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar 190005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
16
|
Choi YG, Choi WS, Song JY, Lee Y, Lee SH, Lee JS, Lee S, Choi SR, Lee CH, Lee JY. Antiinflammatory effect of the ethanolic extract of Korean native herb Potentilla rugulosa Nakai in Bisphenol-a-stimulated A549 cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:758-773. [PMID: 37527000 DOI: 10.1080/15287394.2023.2240835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Potentilla rugulosa Nakai (P. rugulosa) is a perennial herb in the Rosaceae family and found in the Korean mountains. Previously, our findings demonstrated that P. rugulosa contains numerous polyphenols and flavonoids exhibiting important antioxidant and anti-obesity bioactivities. Bisphenol A (BPA) is a xenoestrogen that was shown to produce pulmonary inflammation in humans. However, the mechanisms underlying BPA-induced inflammation remain to be determined. The aim of this study was to examine whether ethanolic extract of P. rugulosa exerted an inhibitory effect on BPA-induced inflammation utilizing an adenocarcinoma human alveolar basal epithelial cell line A549. The P. rugulosa extract inhibited BPA-mediated cytotoxicity by reducing levels of reactive oxygen species (ROS). Further, P. rugulosa extract suppressed the upregulation of various pro-inflammatory mediators induced by activation of the nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. In addition, inhibition of the NF-κB and MAPK signaling pathways by P. rugulosa extract was found to occur via decrease in the transcriptional activity of NF-κB. Further, blockade of phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and stress-activated protein kinase/Jun N-terminal kinase (SAPK/JNK) was noted. Thus, our findings suggest that the ethanolic extract of P. rugulosa may act as a natural anti-inflammatory therapeutic agent.
Collapse
Affiliation(s)
- Yong Geon Choi
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Won Seok Choi
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Jin Yong Song
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Yubin Lee
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Su Hyun Lee
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Jong Seok Lee
- Biological Material Analysis Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Sarah Lee
- Biological Material Analysis Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Se Rin Choi
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | - Ji-Yun Lee
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
17
|
Xu X, Wang N, Feng L, Wang J. Simple Sequence Repeat Fingerprint Identification of Essential-Oil-Bearing Rosa rugosa via High-Resolution Melting (HRM) Analysis. Biomolecules 2023; 13:1468. [PMID: 37892150 PMCID: PMC10605111 DOI: 10.3390/biom13101468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Oil-bearing Rosa rugosa are popular in the essential oil and perfume markets. The similar botanical characteristics between high-oil-yield or low-oil-yield cultivars are confusing and it is hard for farmers or breeders to identify the high-oil-yield cultivar by phenotype difference. High-resolution melting (HRM) analysis of simple sequence repeats (SSRs) can construct accurate DNA fingerprints quickly, which was shown to be effective for identification of closely related cultivars of R. rugosa. Optimization of HRM-SSR indicated that the 10 µL HRM reaction mixture containing 20 ng of genomic DNA of R. rugosa and 0.75 µL of 10 µmol/L of each primer with an annealing temperature of 64 °C was a robust SSR genotyping protocol. Using this protocol, 9 polymorphic SSR markers with 3-9 genotypes among the 19 R. rugosa cultivars were identified. The top three polymorphic makers SSR9, SSR12 and SSR19 constructed a fingerprint of all cultivars, and the rare insertion in the flanking sequences of the repeat motif of SSR19 generated three characteristic genotypes of three high-oil-yield cultivars. These results may be economical and practical for the identification of high-oil-yield R. rugosa and be helpful for the selection and breeding of oil-bearing roses.
Collapse
Affiliation(s)
| | | | - Liguo Feng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (X.X.); (N.W.)
| | - Jianwen Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (X.X.); (N.W.)
| |
Collapse
|
18
|
Charoimek N, Phusuwan S, Petcharak C, Huanhong K, Prasad SK, Junmahasathien T, Khemacheewakul J, Sommano SR, Sunanta P. Do Abiotic Stresses Affect the Aroma of Damask Roses? PLANTS (BASEL, SWITZERLAND) 2023; 12:3428. [PMID: 37836168 PMCID: PMC10574685 DOI: 10.3390/plants12193428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023]
Abstract
Roses are popular ornamental plants all over the world. Rosa damascena Mill., also known as the damask rose, is a well-known scented rose species cultivated to produce essential oil. The essential oils obtained are high in volatile organic compounds (VOCs), which are in demand across the pharmaceutical, food, perfume, and cosmetic industries. Citronellol, nonadecane, heneicosane, caryophyllene, geraniol, nerol, linalool, and phenyl ethyl acetate are the most important components of the rose essential oil. Abiotic factors, including as environmental stress and stress generated by agricultural practises, frequently exert a selective impact on particular floral characteristics, hence influencing the overall quality and quantity of rose products. Additionally, it has been observed that the existence of stress exerts a notable impact on the chemical composition and abundance of aromatic compounds present in roses. Therefore, understanding the factors that affect the biosynthesis of VOCs, especially those representing the aroma and scent of rose, as a response to abiotic stress is important. This review provides comprehensive information on plant taxonomy, an overview of the volatolomics involving aromatic profiles, and describes the influence of abiotic stresses on the biosynthesis of the VOCs in damask rose.
Collapse
Affiliation(s)
- Nutthawut Charoimek
- Department of Pharmaceutical Science, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (N.C.); (T.J.)
- Plant Bioactive Compound Laboratory (BAC), Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (K.H.); (S.K.P.); (S.R.S.)
| | - Sirinun Phusuwan
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (S.P.); (C.P.)
| | - Chaleerak Petcharak
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (S.P.); (C.P.)
| | - Kiattisak Huanhong
- Plant Bioactive Compound Laboratory (BAC), Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (K.H.); (S.K.P.); (S.R.S.)
- Department of Animal and Aquatic Science, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Shashanka K. Prasad
- Plant Bioactive Compound Laboratory (BAC), Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (K.H.); (S.K.P.); (S.R.S.)
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| | - Taepin Junmahasathien
- Department of Pharmaceutical Science, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (N.C.); (T.J.)
| | - Julaluk Khemacheewakul
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
- Division of Food Science and Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Sarana Rose Sommano
- Plant Bioactive Compound Laboratory (BAC), Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (K.H.); (S.K.P.); (S.R.S.)
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Piyachat Sunanta
- Plant Bioactive Compound Laboratory (BAC), Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (K.H.); (S.K.P.); (S.R.S.)
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
19
|
Aituarova A, Zhusupova GE, Zhussupova A, Ross SA. Study of the Chemical Composition of Rosa beggeriana Schrenk's Fruits and Leaves. PLANTS (BASEL, SWITZERLAND) 2023; 12:3297. [PMID: 37765460 PMCID: PMC10536339 DOI: 10.3390/plants12183297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023]
Abstract
Rosa species are widely used in folk medicine in different countries of Asia and Europe, but not all species are studied in-depth. For instance, Rosa beggeriana Schrenk, a plant which grows in Central Asia, Iran, and some parts of China, is little described in articles. Column and thin-layer chromatography methods were used to isolate biologically active substances. From a study of fruits and leaves of Rosa beggeriana Schrenk, a large number of compounds were identified, seven of which were isolated: 3β,23-dihydroxyurs-12-ene (1), β-sitosterol (2), betulin (3), (+)-catechin (4), lupeol (5), ethyl linoleate (6), and ethyl linolenoate (7). Their structures were elucidated by 1H, DEPT and 13C NMR spectroscopy, mass spectrometry, and GC-MS (gas chromatography-mass spectrometry). The study also identified the structures of organic compounds, including volatile esters and acids. Consequently, comprehensive data were acquired concerning the chemical constitution of said botanical specimen.
Collapse
Affiliation(s)
- Aigerim Aituarova
- Department of Chemistry and Technology of Organic Substances, Natural Compounds and Polymers, NPJSC Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050040, Kazakhstan;
| | - Galiya E. Zhusupova
- Department of Chemistry and Technology of Organic Substances, Natural Compounds and Polymers, NPJSC Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050040, Kazakhstan;
| | - Aizhan Zhussupova
- Department of Molecular Biology and Genetics, NPJSC Al-Farabi Kazakh National University, Al-Farabi, Ave. 71, Almaty 050040, Kazakhstan;
| | - Samir A. Ross
- School of Pharmacy, University of Mississippi, P.O. Box 1848, Oxford, MS 38677, USA;
- School of Pharmacy, S.D. Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan
| |
Collapse
|
20
|
Kędzierska M, Sala K, Bańkosz M, Wroniak D, Gajda P, Potemski P, Tyliszczak B. Investigation of Physicochemical Properties and Surface Morphology of Hydrogel Materials Incorporating Rosehip Extract. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6037. [PMID: 37687730 PMCID: PMC10488629 DOI: 10.3390/ma16176037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/20/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
Hydrogel materials are used in many fields of science and industry. They are of particular importance in biomedical applications. In this work, hydrogels were obtained that could act as a dressing for wounds, at the same time being a carrier of substances with antioxidant activity. The discussed materials were obtained in the field of UV radiation. The correlation between the amount of photoinitiator used and the physicochemical properties and surface morphology of the obtained materials was investigated. In addition, the hydrogels have been incorporated with wild rose extract, which is characterized by antioxidant and anti-inflammatory effects. The analysis of the sorption capacity confirmed that the obtained material is able to absorb significant amounts of incubation fluids, which, in terms of application, will enable the absorption of exudate from the wound. The highest stability of materials was noted for hydrogels obtained with the use of intermediate amounts of photoinitiator, i.e., 50 µL and 70 µL. In the case of using 20 µL or 100 µL, the photopolymerization process did not proceed properly and the obtained material was characterized by a lack of homogeneity and high brittleness. With the increase in the amount of photoinitiator, an increase in the surface roughness of hydrogel materials was confirmed. In turn, spectroscopic analysis ruled out the degradation of materials in incubation fluids, indicating the potential for their use in biomedical applications.
Collapse
Affiliation(s)
- Magdalena Kędzierska
- Department of Chemotherapy, Medical University of Lodz, Copernicus Memorial Hospital of Lodz, 90-549 Lodz, Poland; (M.K.); (P.P.)
| | - Katarzyna Sala
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (K.S.); (D.W.)
| | - Magdalena Bańkosz
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (K.S.); (D.W.)
| | - Dominika Wroniak
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (K.S.); (D.W.)
| | - Paweł Gajda
- Department of Sustainable Energy Development, Faculty of Energy and Fuels, AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Krakow, Poland;
| | - Piotr Potemski
- Department of Chemotherapy, Medical University of Lodz, Copernicus Memorial Hospital of Lodz, 90-549 Lodz, Poland; (M.K.); (P.P.)
| | - Bożena Tyliszczak
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (K.S.); (D.W.)
| |
Collapse
|
21
|
Liu X, Wang S, Cui L, Zhou H, Liu Y, Meng L, Chen S, Xi X, Zhang Y, Kang W. Flowers: precious food and medicine resources. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Koljančić N, Vyviurska O, Špánik I. Aroma Compounds in Essential Oils: Analyzing Chemical Composition Using Two-Dimensional Gas Chromatography-High Resolution Time-of-Flight Mass Spectrometry Combined with Chemometrics. PLANTS (BASEL, SWITZERLAND) 2023; 12:2362. [PMID: 37375987 DOI: 10.3390/plants12122362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
Analyzing essential oils is a challenging task for chemists because their composition can vary depending on various factors. The separation potential of volatile compounds using enantioselective two-dimensional gas chromatography coupled with high-resolution time-of-flight mass spectrometry (GC×GC-HRTOF-MS) with three different stationary phases in the first dimension was evaluated to classify different types of rose essential oils. The results showed that selecting only ten specific compounds was enough for efficient sample classification instead of the initial 100 compounds. The study also investigated the separation efficiencies of three stationary phases in the first dimension: Chirasil-Dex, MEGA-DEX DET-β, and Rt-βDEXsp. Chirasil-Dex had the largest separation factor and separation space, ranging from 47.35% to 56.38%, while Rt-βDEXsp had the smallest, ranging from 23.36% to 26.21%. MEGA-DEX DET-β and Chirasil-Dex allowed group-type separation based on factors such as polarity, H-bonding ability, and polarizability, whereas group-type separation with Rt-βDEXsp was almost imperceptible. The modulation period was 6 s with Chirasil-Dex and 8 s with the other two set-ups. Overall, the study showed that analyzing essential oils using GC×GC-HRTOF-MS with a specific selection of compounds and stationary phase can be effective in classifying different oil types.
Collapse
Affiliation(s)
- Nemanja Koljančić
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Olga Vyviurska
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Ivan Špánik
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
| |
Collapse
|
23
|
Wang C, Kim IJ, Seong HR, Noh CH, Park S, Kim TM, Jeong HS, Kim KY, Kim ST, Yuk HG, Kwon SC, Choi EK, Kim YB. Antioxidative and Anti-Inflammatory Activities of Rosebud Extracts of Newly Crossbred Roses. Nutrients 2023; 15:nu15102376. [PMID: 37242259 DOI: 10.3390/nu15102376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Oxidative stress and inflammation are basic pathogenic factors involved in tissue injury and pain, as well as acute and chronic diseases. Since long-term uses of synthetic steroids and non-steroidal anti-inflammatory drugs (NSAIDs) cause severe adverse effects, novel effective materials with minimal side effects are required. In this study, polyphenol content and antioxidative activity of rosebud extracts from 24 newly crossbred Korean roses were analyzed. Among them, Pretty Velvet rosebud extract (PVRE) was found to contain high polyphenols and to show in vitro antioxidative and anti-inflammatory activities. In RAW 264.7 cells stimulated with lipopolysaccharide (LPS), PVRE down-regulated mRNA expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and thereby decreased nitric oxide (NO) and prostaglandin E2 (PGE2) production. In a subcutaneous air-pouch inflammation model, treatment with PVRE decreased λ-carrageenan-induced tissue exudation, infiltration of inflammatory cells, and inflammatory cytokines such as tumor necrosis factor-α and interleukin-1β concentrations, as achieved with dexamethasone (a representative steroid). Notably, PVRE also inhibited PGE2, similar to dexamethasone and indomethacin (a representative NSAID). The anti-inflammatory effects of PVRE were confirmed by microscopic findings, attenuating tissue erythema, edema, and inflammatory cell infiltration. These results indicate that PVRE exhibits dual (steroid- and NSAID-like) anti-inflammatory activities by blocking both the iNOS-NO and COX-2-PG pathways, and that PVRE could be a potential candidate as an anti-inflammatory material for diverse tissue injuries.
Collapse
Affiliation(s)
- Cuicui Wang
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - In-Jeong Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hye-Rim Seong
- Central Research Institute, Designed Cells Co., Ltd., Cheongju 28576, Republic of Korea
| | - Chan Ho Noh
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
- Central Research Institute, Designed Cells Co., Ltd., Cheongju 28576, Republic of Korea
| | - Sangryong Park
- Central Research Institute, Designed Cells Co., Ltd., Cheongju 28576, Republic of Korea
| | - Tae Myoung Kim
- Central Research Institute, Designed Cells Co., Ltd., Cheongju 28576, Republic of Korea
| | - Heon Sang Jeong
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Ka Young Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Seung Tae Kim
- Gumi Floriculture Research Institute, Gyeongsanbuk-do Agricultural Research & Extension Services, Gumi 39102, Republic of Korea
| | - Hyun-Gyun Yuk
- Department of Food Science and Biotechnology, Korea National University of Transportation, Jeungpyeong 27909, Republic of Korea
| | - Sang-Chul Kwon
- Department of Food Science and Biotechnology, Korea National University of Transportation, Jeungpyeong 27909, Republic of Korea
| | - Ehn-Kyoung Choi
- Central Research Institute, Designed Cells Co., Ltd., Cheongju 28576, Republic of Korea
| | - Yun-Bae Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
- Central Research Institute, Designed Cells Co., Ltd., Cheongju 28576, Republic of Korea
| |
Collapse
|
24
|
Bashir A, Ahmad T, Farooq S, Lone WI, Manzoor MM, Nalli Y, Sultan P, Chaubey A, Ali A, Riyaz-Ul-Hassan S. A Secondary Metabolite of Cercospora sp., Associated with Rosa damascena Mill., Inhibits Proliferation, Biofilm Production, Ergosterol Synthesis and Other Virulence Factors in Candida albicans. MICROBIAL ECOLOGY 2023; 85:1276-1287. [PMID: 35366684 DOI: 10.1007/s00248-022-02003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/22/2022] [Indexed: 05/10/2023]
Abstract
Here we describe the antimicrobial potential of secondary metabolites, fulvic acid (F.A.) and anhydrofulvic acid (AFA), produced by RDE147, an endophyte of Rosa damascena Mill. The endophyte was identified as Cercospora piaropi by ITS and β-tubulin-based phylogenetic analyses, while chemoprofiling of the endophyte by column chromatography and spectroscopy yielded two pure compounds, F.A. and AFA. The compounds demonstrated different antimicrobial profiles, with AFA suppressing the growth of C. albicans at 7.3 µg ml-1 IC50. Further studies revealed that AFA strongly restricted the biofilm production and hyphae formation in C. albicans by down-regulating several biofilm and morphogenesis-related genes. The time-kill assays confirmed the fungicidal activity of AFA against C. albicans, killing 83.6% of the pathogen cells in 24 h at the MIC concentration, and the post-antibiotic effect (PAE) experiments established the suppression of C. albicans growth for extended time periods. The compound acted synergistically with amphotericin B and nystatin and reduced ergosterol biosynthesis by the pathogen, confirmed by ergosterol estimation and comparative expression profiling of selected genes and molecular docking of AFA with C. albicans squalene epoxidase. AFA also suppressed the expression of several other virulence genes of the fungal pathogen. The study determines the anti-C. albicans potential of AFA and its impact on the biology of the pathogen. It also indicates that Cercospora species may yield potential bioactive molecules, especially fulvic acid derivatives. However, it is imperative to conduct in vivo studies to explore this molecule's therapeutic potential further.
Collapse
Affiliation(s)
- Abid Bashir
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, 190005, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Tanveer Ahmad
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, 190005, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sadaqat Farooq
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, 190005, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Waseem I Lone
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Natural Products Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Malik M Manzoor
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, 190005, India
| | - Yedukondalu Nalli
- Natural Products Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Phalisteen Sultan
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, 190005, India
| | - Asha Chaubey
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Asif Ali
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Natural Products Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Syed Riyaz-Ul-Hassan
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, 190005, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
25
|
Dobreva A, Nedeltcheva-Antonova D. Comparative Chemical Profiling and Citronellol Enantiomers Distribution of Industrial-Type Rose Oils Produced in China. Molecules 2023; 28:molecules28031281. [PMID: 36770946 PMCID: PMC9919184 DOI: 10.3390/molecules28031281] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
The chemical composition and aroma profile of industrial essential oils (EOs) from species of rose grown in China, including the native Kushui rose (R. sertata × R. rugosa) and R. rugosa Thunb. cv. Plena, and the recently introduced Damask rose (R. damascena Mill.), were studied in comparison by means of GC/MS and GC-FID. More than 150 individual compounds were detected in Chinese rose samples, of which 112 were identified and their quantitative content determined, representing 88.7%, 96.7% and 97.9% of the total EO content, respectively. It was found that the main constituents of the Chinese rose EOs were representatives of terpenoid compounds (mono- and sesquiterpenoids, predominantly) and aliphatic hydrocarbons. Comparative chemical profiling revealed different chemical composition and aroma profiles: while the R. damascena oil showed a balance between the eleoptene and stearoptene fractions of the oil (the average ratio between the main terpene alcohols and paraffins was 2.65), in the Kushui and R. rugosa oils, the odorous liquid phase strongly dominated over the stearopten, with a ratio of 16.91 and 41.43, respectively. The most abundant terpene was citronellol, ranging from 36.69% in R. damascena to 48.32% in R. rugosa oil. In addition, the citronellol enantiomers distribution, which is an important marker for rose oil authenticity, was studied for the first time in R. rugosa oil.
Collapse
Affiliation(s)
- Ana Dobreva
- Institute of Roses and Aromatic Plants, Agricultural Academy, 6100 Kazanlak, Bulgaria
| | - Daniela Nedeltcheva-Antonova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Correspondence:
| |
Collapse
|
26
|
Fang R, Zweig M, Li J, Mirzababaei J, Simmonds MS. Diversity of volatile organic compounds in 14 rose cultivars. JOURNAL OF ESSENTIAL OIL RESEARCH 2023. [DOI: 10.1080/10412905.2023.2167878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Rui Fang
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
| | - Michal Zweig
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
| | - Jianjun Li
- The Procter & Gamble Company, Mason Business Center, Mason, Ohio, USA
| | | | | |
Collapse
|
27
|
Bentley PR, Fisher JC, Dallimer M, Fish RD, Austen GE, Irvine KN, Davies ZG. Nature, smells, and human wellbeing. AMBIO 2023; 52:1-14. [PMID: 35849312 PMCID: PMC9289359 DOI: 10.1007/s13280-022-01760-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 06/12/2023]
Abstract
The link between nature and human wellbeing is well established. However, few studies go beyond considering the visual and auditory underpinnings of this relationship, even though engaging with nature is a multisensory experience. While research linking smell to wellbeing exists, it focuses predominantly on smells as a source of nuisance/offence. Smells clearly have a prominent influence, but a significant knowledge gap remains in the nexus of nature, smell, and wellbeing. Here, we examine how smells experienced in woodlands contribute to wellbeing across four seasons. We show that smells are associated with multiple wellbeing domains, both positively and negatively. They are linked to memories, and specific ecological characteristics and processes over space/time. By making the link between the spatiotemporal variability in biodiversity and wellbeing explicit, we unearth a new line of enquiry. Overall, the multisensory experience must be considered by researchers, practitioners, policy-makers and planners looking to improve wellbeing through nature.
Collapse
Affiliation(s)
- Phoebe R Bentley
- Durrell Institute of Conservation and Ecology (DICE), School of Anthropology and Conservation, University of Kent, Canterbury, CT2 8NR, UK
| | - Jessica C Fisher
- Durrell Institute of Conservation and Ecology (DICE), School of Anthropology and Conservation, University of Kent, Canterbury, CT2 8NR, UK.
| | - Martin Dallimer
- Sustainability Research Institute, School of Earth and Environment, University of Leeds, Leeds, LS9 2JT, UK
| | - Robert D Fish
- Durrell Institute of Conservation and Ecology (DICE), School of Anthropology and Conservation, University of Kent, Canterbury, CT2 8NR, UK
| | - Gail E Austen
- Durrell Institute of Conservation and Ecology (DICE), School of Anthropology and Conservation, University of Kent, Canterbury, CT2 8NR, UK
| | - Katherine N Irvine
- Social, Economic and Geographic Sciences Department, James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Zoe G Davies
- Durrell Institute of Conservation and Ecology (DICE), School of Anthropology and Conservation, University of Kent, Canterbury, CT2 8NR, UK
| |
Collapse
|
28
|
Musolino V, Marrelli M, Perri MR, Palermo M, Gliozzi M, Mollace V, Conforti F. Centranthus ruber (L.) DC. and Tropaeolum majus L.: Phytochemical Profile, In Vitro Anti-Denaturation Effects and Lipase Inhibitory Activity of Two Ornamental Plants Traditionally Used as Herbal Remedies. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010032. [PMID: 36615228 PMCID: PMC9822419 DOI: 10.3390/molecules28010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Ornamental plants often gain relevance not only for their decorative use, but also as a source of phytochemicals with interesting healing properties. Herein, spontaneous Centranthus ruber (L.) DC. and Tropaeolum majus L., mainly used as ornamental species but also traditionally consumed and used in popular medicine, were investigated. The aerial parts were extracted with methanol trough maceration, and resultant crude extracts were partitioned using solvents with increasing polarity. As previous studies mostly dealt with the phenolic content of these species, the phytochemical investigation mainly focused on nonpolar constituents, detected with GC-MS. The total phenolic and flavonoid content was also verified, and HPTLC analyses were performed. In order to explore the potential antiarthritic and anti-obesity properties, extracts and their fractions were evaluated for their anti-denaturation effects, with the use of the BSA assay, and for their ability to inhibit pancreatic lipase. The antioxidant properties and the inhibitory activity on the NO production were verified, as well. Almost all the extracts and fractions demonstrated good inhibitory effects on NO production. The n-hexane and dichloromethane fractions from T. majus, as well as the n-hexane fraction from C. ruber, were effective in protecting the protein from heat-induced denaturation (IC50 = 154.0 ± 1.9, 270.8 ± 2.3 and 450.1 ± 15.5 μg/mL, respectively). The dichloromethane fractions from both raw extracts were also effective in inhibiting pancreatic lipase, with IC50 values equal to 2.23 ± 0.02 mg/mL (for C. ruber sample), and 2.05 ± 0.02 mg/mL (T. majus). Obtained results support the traditional use of these species for their beneficial health properties and suggest that investigated plant species could be potential sources of novel antiarthritic and anti-obesity agents.
Collapse
Affiliation(s)
- Vincenzo Musolino
- Laboratory of Pharmaceutical Biology, Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
- Correspondence:
| | - Mariangela Marrelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy
| | - Maria Rosaria Perri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy
| | - Martina Palermo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy
| | - Micaela Gliozzi
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Filomena Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy
| |
Collapse
|
29
|
Hegde AS, Gupta S, Sharma S, Srivatsan V, Kumari P. Edible rose flowers: A doorway to gastronomic and nutraceutical research. Food Res Int 2022; 162:111977. [DOI: 10.1016/j.foodres.2022.111977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/29/2022] [Accepted: 09/21/2022] [Indexed: 11/04/2022]
|
30
|
Fuentes JL, Pedraza Barrera CA, Villamizar Mantilla DA, Flórez González SJ, Sierra LJ, Ocazionez RE, Stashenko EE. Flower Extracts from Ornamental Plants as Sources of Sunscreen Ingredients: Determination by In Vitro Methods of Photoprotective Efficacy, Antigenotoxicity and Safety. Molecules 2022; 27:5525. [PMID: 36080288 PMCID: PMC9458080 DOI: 10.3390/molecules27175525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Plants are sources of sunscreen ingredients that prevent cellular mutations involved in skin cancer and aging. This study investigated the sunscreen properties of the extracts from some ornamental plants growing in Colombia. The UV filter capability of the flower extracts obtained from Rosa centifolia L., Posoqueria latifolia (Rudge) Schult, and Ipomoea horsfalliae Hook. was examined. Photoprotection efficacies were evaluated using in vitro indices such as sun protection factor and critical wavelength. UVB antigenotoxicity estimates measured with the SOS Chromotest were also obtained. Extract cytotoxicity and genotoxicity were studied in human fibroblasts using the trypan blue exclusion and Comet assays, respectively. Major compounds of the promising flower extracts were identified by UHPLC-ESI+-Orbitrap-MS. The studied extracts showed high photoprotection efficacy and antigenotoxicity against UVB radiation, but only the P. latifolia extract showed broad-spectrum photoprotection at non-cytotoxic concentrations. The P. latifolia extract appeared to be safer for human fibroblast cells and the R. centifolia extract was shown to be moderately cytotoxic and genotoxic at the highest assayed concentrations. The I. horsfalliae extract was unequivocally cytotoxic and genotoxic. The major constituents of the promising extracts were as follows: chlorogenic acid, ecdysterone 20E, rhamnetin-rutinoside, cis-resveratrol-diglucoside, trans-resveratrol-diglucoside in P. latifolia; quercetin, quercetin-glucoside, quercetin-3-rhamnoside, kaempferol, kaempferol-3-glucoside, and kaempferol-rhamnoside in R. centifolia. The potential of the ornamental plants as sources of sunscreen ingredients was discussed.
Collapse
Affiliation(s)
- Jorge Luis Fuentes
- Grupo de Investigación en Microbiología y Genética (GIMG), Universidad Industrial de Santander, Bucaramanga 680002, Colombia
- Centro de Investigación en Biomoléculas (CIBIMOL), Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | - Carlos Adolfo Pedraza Barrera
- Grupo de Investigación en Microbiología y Genética (GIMG), Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | | | - Silvia Juliana Flórez González
- Grupo de Investigación en Microbiología y Genética (GIMG), Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | - Lady Johanna Sierra
- Centro de Investigación en Biomoléculas (CIBIMOL), Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | - Raquel Elvira Ocazionez
- Centro de Cromatografía y Espectrometría de Masas (CROM-MASS), Universidad Industrial de Santander, Bucaramanga 68000, Colombia
| | - Elena E. Stashenko
- Centro de Investigación en Biomoléculas (CIBIMOL), Universidad Industrial de Santander, Bucaramanga 680002, Colombia
- Centro de Cromatografía y Espectrometría de Masas (CROM-MASS), Universidad Industrial de Santander, Bucaramanga 68000, Colombia
| |
Collapse
|
31
|
Alborzi SS, Roosta A. The effect of different solvents on the production of rose concrete and rose absolute, experimental study and thermodynamic aspects using the UNIFAC model. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
32
|
Li J, Yao A, Yao J, Zhou J, Zhang J, Wei L, Gong Z, Zhang Z. Dynamic profiles of rose jam metabolomes reveal sugar-pickling impacts on their nutrient content. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Koyama S, Heinbockel T. Chemical Constituents of Essential Oils Used in Olfactory Training: Focus on COVID-19 Induced Olfactory Dysfunction. Front Pharmacol 2022; 13:835886. [PMID: 35721200 PMCID: PMC9201274 DOI: 10.3389/fphar.2022.835886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
The recent increase in the number of patients with post-viral olfactory dysfunction (PVOD) following the outbreak of COVID-19 has raised the general interest in and concern about olfactory dysfunction. At present, no clear method of treatment for PVOD has been established. Currently the most well-known method to improve the symptoms of olfactory dysfunction is "olfactory training" using essential oils. The essential oils used in olfactory training typically include rose, lemon, clove, and eucalyptus, which were selected based on the odor prism hypothesis proposed by Hans Henning in 1916. He classified odors based on six primary categories or dimensions and suggested that any olfactory stimulus fits into his smell prism, a three-dimensional space. The term "olfactory training" has been used based on the concept of training olfactory sensory neurons to relearn and distinguish olfactory stimuli. However, other mechanisms might contribute to how olfactory training can improve the recovery of the olfactory sense. Possibly, the essential oils contain chemical constituents with bioactive properties that facilitate the recovery of the olfactory sense by suppressing inflammation and enhancing regeneration. In this review, we summarize the chemical constituents of the essential oils of rose, lemon, clove, and eucalyptus and raise the possibility that the chemical constituents with bioactive properties are involved in improving the symptoms of olfactory dysfunction. We also propose that other essential oils that contain chemical constituents with anti-inflammatory effects and have binding affinity with SARS-CoV-2 can be new candidates to test their efficiencies in facilitating the recovery.
Collapse
Affiliation(s)
- Sachiko Koyama
- Department of Chemistry, College of Arts and Sciences, Indiana University, Bloomington, IN, United States
| | - Thomas Heinbockel
- Department of Anatomy, College of Medicine, Howard University, Washington, DC, United States
| |
Collapse
|
34
|
In Vitro Study of the Biological Potential of Wastewater Obtained after the Distillation of Four Bulgarian Oil-Bearing Roses. PLANTS 2022; 11:plants11081073. [PMID: 35448801 PMCID: PMC9028495 DOI: 10.3390/plants11081073] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 11/16/2022]
Abstract
The wastewater after rose oil distillation is usually discharged into the drainage systems and it represents a serious environmental problem. While being rich in polyphenols, which have beneficial biological activity and application in the pharmaceutical industry, limited research has been carried out about the biological activity of the specific wastewaters per se. Wastewaters after distillation of the four Bulgarian oil-bearing roses Rosa damascena Mill., R. alba L., R. centifolia L., and R. gallica L. exerted significant antioxidant activity and good antiherpes simplex virus type-1 (HSV-1) activity while maintaining a good toxicological safety profile (low cytotoxic effect) towards normal cell lines. More precisely, the non-tumorigenic cells were a human (HEK-293 embryonic kidney cells) and a mouse cell line (CCL-1 fibroblasts, which are recommended as a standard for cytotoxicity evaluation in Annex C of ISO 10993-5). The concentrations that achieved antioxidant and radical scavenging effects (0.04–0.92% v/v) were much lower than most of the maximum tolerated concentrations for the tissue culture cells (0.2–3.4% v/v). The wastewaters had a weak antiproliferative effect against Staphylococcus aureus. None of the wastewaters had activity against Gram-negative bacteria or a bactericidal or antifungal effect. We can conclude that these four species, which are the most preferred species worldwide for producing high-quality rose oil, have the potential to be developed as promising antioxidant and antiherpesvirus nutraceuticals.
Collapse
|
35
|
Li M, Zhang Y, Xi H, Fu Y, Wang H, Zhang Y, Sun S. Characterization of Rose Essential Oils by Double-Region Atmospheric Pressure Chemical Ionization Mass Spectrometry (DRAPCI-MS) with Principal Component Analysis (PCA), Hierarchical Cluster Analysis (HCA), and Heatmap Analysis. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2055563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Minglei Li
- Key Laboratory in Flavor & Fragrance Basic Research, China National Tobacco, Zhengzhou Tobacco Research Institute, Zhengzhou, China
| | - Yihan Zhang
- Technology Center, China Tobacco Hebei Tobacco Company, Shijiazhuang China
| | - Hui Xi
- Key Laboratory in Flavor & Fragrance Basic Research, China National Tobacco, Zhengzhou Tobacco Research Institute, Zhengzhou, China
| | - Yingjie Fu
- Key Laboratory in Flavor & Fragrance Basic Research, China National Tobacco, Zhengzhou Tobacco Research Institute, Zhengzhou, China
| | - Hui Wang
- Key Laboratory in Flavor & Fragrance Basic Research, China National Tobacco, Zhengzhou Tobacco Research Institute, Zhengzhou, China
| | - Yipeng Zhang
- Technology Center, China Tobacco Yunan Industrial Company, Kunming China
| | - Shihao Sun
- Key Laboratory in Flavor & Fragrance Basic Research, China National Tobacco, Zhengzhou Tobacco Research Institute, Zhengzhou, China
| |
Collapse
|
36
|
Galal TM, Al-Yasi HM, Fawzy MA, Abdelkader TG, Hamza RZ, Eid EM, Ali EF. Evaluation of the Phytochemical and Pharmacological Potential of Taif's Rose ( Rosa damascena Mill var. trigintipetala) for Possible Recycling of Pruning Wastes. Life (Basel) 2022; 12:273. [PMID: 35207560 PMCID: PMC8876584 DOI: 10.3390/life12020273] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/08/2023] Open
Abstract
This study investigated the phytochemical contents of Taif's rose pruning wastes and their potential application as phytomedicine, thereby practicing a waste-recycling perspective. In the Al-Shafa highland, four Taif rose farms of various ages were chosen for gathering the pruning wastes (leaves and stems) for phytochemical and pharmacological studies. The leaves and stems included significant amounts of carbohydrates, cardiac glycosides, alkaloids, flavonoids, and other phenolic compounds. The cardiac glycoside and flavonoid contents were higher in Taif rose stems, while the phenolic and alkaloid contents were higher in the plant leaves. Cardiovascular glycosides (2.98-5.69 mg g-1), phenolics (3.14-12.41 mg GAE g-1), flavonoids (5.09-9.33 mg RUE g -1), and alkaloids (3.22-10.96 mg AE g-1) were among the phytoconstituents found in rose tissues. According to the HPLC analysis of the phenolic compounds, Taif's rose contains flavonoid components such as luteolin, apigenin, quercetin, rutin, kaempferol, and chrysoeriol; phenolics such as ellagic acid, catechol, resorcinol, gallic acid, and phloroglucinol; alkaloids such as berbamine, jatrorrhizine, palmatine, reticuline, isocorydine, and boldine. Warm water extract was highly effective against Bacillus subtilis, Escherichia coli, and Proteus vulgaris, whereas methanol and cold water extracts were moderately effective against Aspergillus fumigatus and Candida albicans. The study's findings suggested that Taif's rose wastes could be used for varied medical purposes.
Collapse
Affiliation(s)
- Tarek M. Galal
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (T.M.G.); (H.M.A.-Y.); (M.A.F.); (T.G.A.); (R.Z.H.)
| | - Hatim M. Al-Yasi
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (T.M.G.); (H.M.A.-Y.); (M.A.F.); (T.G.A.); (R.Z.H.)
| | - Mustafa A. Fawzy
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (T.M.G.); (H.M.A.-Y.); (M.A.F.); (T.G.A.); (R.Z.H.)
| | - Tharwat G. Abdelkader
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (T.M.G.); (H.M.A.-Y.); (M.A.F.); (T.G.A.); (R.Z.H.)
| | - Reham Z. Hamza
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (T.M.G.); (H.M.A.-Y.); (M.A.F.); (T.G.A.); (R.Z.H.)
| | - Ebrahem M. Eid
- Biology Department, College of Science, King Khalid University, P.O. Box 9004, Abha 61321, Saudi Arabia;
- Botany Department, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Esmat F. Ali
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (T.M.G.); (H.M.A.-Y.); (M.A.F.); (T.G.A.); (R.Z.H.)
| |
Collapse
|
37
|
Bottoni M, Milani F, Galimberti PM, Vignati L, Romanini PL, Lavezzo L, Martinetti L, Giuliani C, Fico G. Ca' Granda, Hortus simplicium: Restoring an Ancient Medicinal Garden of XV-XIX Century in Milan (Italy). Molecules 2021; 26:6933. [PMID: 34834025 PMCID: PMC8620247 DOI: 10.3390/molecules26226933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/06/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
This work is based on the study of 150 majolica vases dated back to the mid XVII century that once preserved medicinal remedies prepared in the ancient Pharmacy annexed to the Ospedale Maggiore Ca' Granda in Milan (Lombardy, Italy). The Hortus simplicium was created in 1641 as a source of plant-based ingredients for those remedies. The main objective of the present work is to lay the knowledge base for the restoration of the ancient Garden for educational and informative purposes. Therefore, the following complementary phases were carried out: (i) the analysis of the inscriptions on the jars, along with the survey on historical medical texts, allowing for the positive identification of the plant ingredients of the remedies and their ancient use as medicines; (ii) the bibliographic research in modern pharmacological literature in order to validate or refute the historical uses; (iii) the realization of the checklist of plants potentially present in cultivation at the ancient Garden, concurrently with the comparison with the results of a previous in situ archaeobotanical study concerning pollen grains. For the species selection, considerations were made also regarding drug amounts in the remedies and pedoclimatic conditions of the study area. Out of the 150 vases, 108 contained plant-based remedies, corresponding to 148 taxa. The remedies mainly treated gastrointestinal and respiratory disorders. At least one of the medicinal uses was validated in scientific literature for 112 out of the 148 examined species. Finally, a checklist of 40 taxa, presumably hosted in the Hortus simplicium, was assembled.
Collapse
Affiliation(s)
- Martina Bottoni
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (M.B.); (F.M.); (P.L.R.); (L.L.); (G.F.)
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| | - Fabrizia Milani
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (M.B.); (F.M.); (P.L.R.); (L.L.); (G.F.)
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| | - Paolo M. Galimberti
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 28, 20122 Milan, Italy;
| | - Lucia Vignati
- Landscape Ecomuseum of Parabiago, P.za della Vittoria 7, 20015 Milan, Italy;
| | - Patrizia Luise Romanini
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (M.B.); (F.M.); (P.L.R.); (L.L.); (G.F.)
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| | - Luca Lavezzo
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (M.B.); (F.M.); (P.L.R.); (L.L.); (G.F.)
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| | - Livia Martinetti
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy, University of Milan, Via Celoria 2, 20133 Milan, Italy;
| | - Claudia Giuliani
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (M.B.); (F.M.); (P.L.R.); (L.L.); (G.F.)
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| | - Gelsomina Fico
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (M.B.); (F.M.); (P.L.R.); (L.L.); (G.F.)
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| |
Collapse
|
38
|
Georgieva A, Ilieva Y, Kokanova-Nedialkova Z, Zaharieva MM, Nedialkov P, Dobreva A, Kroumov A, Najdenski H, Mileva M. Redox-Modulating Capacity and Antineoplastic Activity of Wastewater Obtained from the Distillation of the Essential Oils of Four Bulgarian Oil-Bearing Roses. Antioxidants (Basel) 2021; 10:antiox10101615. [PMID: 34679750 PMCID: PMC8533594 DOI: 10.3390/antiox10101615] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 01/31/2023] Open
Abstract
The wastewater from the distillation of rose oils is discharged directly into the soil because it has a limited potential for future applications. The aim of the present study was to determine in vitro the chromatographic profile, redox-modulating capacity, and antineoplastic activity of wastewater obtained by distillation of essential oils from the Bulgarian Rosa alba L., Rosa damascena Mill., Rosa gallica L., and Rosa centifolia L. We applied UHPLC-HRMS for chromatographic analysis of rose wastewaters, studied their metal-chelating and Fe(III)-reducing ability, and performed MTT assay for the evaluation of cytotoxic potential against three tumorigenic (HEPG2-hepatocellular adenocarcinoma, A-375-malignant melanoma, A-431-non-melanoma epidermoid squamous skin carcinoma) and one non-tumorigenic human cell lines (HaCaT-immortalized keratinocytes). The median inhibitory concentrations (IC50) were calculated with nonlinear modeling using the MAPLE® platform. The potential of the wastewaters to induce apoptosis was also examined. Mono-, di-, and acylated glycosides of quercetin and kaempferol, ellagic acid and its derivatives as main chemical components, and gallic acid and its derivatives-such as catechin and epicatechin-were identified. The redox-modulating capacity of the samples (TPTZ test) showed that all four wastewaters exhibited the properties of excellent heavy metal cleaners, but did not exert very strong cytotoxic effects. The lowest IC50 rate was provided in wastewater from R. centifolia (34-35 µg/mL of gallic acid equivalents after a 72 h period for all cell lines). At 24 and 48 hours, the most resistant cell line was HEPG2, followed by HaCaT. After 72 h of exposure, the IC50 values were similar for tumor and normal cells. Still, R. damascena had a selectivity index over 2.0 regarding A-431 non-melanoma skin cancer cells, showing a good toxicological safety profile in addition to moderate activity-IC50 of 35 µg/mL polyphenols. The obtained results related to wastewaters acquired after the distillation of essential oils from the Bulgarian R. alba, R. damascena, R. gallica, and R. centifolia direct our attention to further studies for in-depth elucidation of their application as detoxifying agents under oxidative damage conditions in other experimental datasets.
Collapse
Affiliation(s)
- Almira Georgieva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev str., 1113 Sofia, Bulgaria; (A.G.); (Y.I.); (M.M.Z.); (A.K.); (H.N.)
- Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev str., 1113 Sofia, Bulgaria
| | - Yana Ilieva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev str., 1113 Sofia, Bulgaria; (A.G.); (Y.I.); (M.M.Z.); (A.K.); (H.N.)
| | | | - Maya Margaritova Zaharieva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev str., 1113 Sofia, Bulgaria; (A.G.); (Y.I.); (M.M.Z.); (A.K.); (H.N.)
| | - Paraskev Nedialkov
- Faculty of Pharmacy, Medical University of Sofia, 2 Dunav str., 1000 Sofia, Bulgaria; (Z.K.-N.); (P.N.)
| | - Ana Dobreva
- Department of Aromatic and Medicinal Plants, Institute for Roses and Aromatic Plants, 49 Osvobojdenie Blvd, 6100 Kazanlak, Bulgaria;
| | - Alexander Kroumov
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev str., 1113 Sofia, Bulgaria; (A.G.); (Y.I.); (M.M.Z.); (A.K.); (H.N.)
| | - Hristo Najdenski
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev str., 1113 Sofia, Bulgaria; (A.G.); (Y.I.); (M.M.Z.); (A.K.); (H.N.)
| | - Milka Mileva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev str., 1113 Sofia, Bulgaria; (A.G.); (Y.I.); (M.M.Z.); (A.K.); (H.N.)
- Correspondence: ; Tel.: +35-92-979-3185
| |
Collapse
|
39
|
Younis IY, El-Hawary SS, Eldahshan OA, Abdel-Aziz MM, Ali ZY. Green synthesis of magnesium nanoparticles mediated from Rosa floribunda charisma extract and its antioxidant, antiaging and antibiofilm activities. Sci Rep 2021; 11:16868. [PMID: 34413416 PMCID: PMC8376960 DOI: 10.1038/s41598-021-96377-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023] Open
Abstract
Flower based nanoparticles has gained a special attention as a new sustainable eco-friendly avenue. Rosa floribunda charisma belongs to modern roses with bright yellow, red flowers with marvellous rose scent. Different methods were used for the extraction of its floral scent such as hexane, microwave, and solid-phase micro-extraction. The latter was the most efficient method for the extraction of phenyl ethyl alcohol, the unique scent of roses. In the current study, magnesium nanoparticles (RcNps) have been synthesized using Rosa floribunda charisma petals that have privileges beyond chemical and physical routs. RcNps formation was confirmed using UV-Visible (UV-Vis) Spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), High Resolution-Transmission Electron Microscope (HR-TEM), Field Emission-Scanning Electron Microscope (FE-SEM), Energy dispersive X-ray (EDX), X-ray Diffractometer (XRD), and X-ray photoelectron spectroscopy (XPS). HR-TEM images detected the polyhedral shape of RcNps with a diverse size ranged within 35.25-55.14 nm. The resulting RcNps exhibited a high radical scavenging activity illustrated by inhibition of superoxide, nitric oxide, hydroxyl radical and xanthine oxidase by by IC50 values 26.2, 52.9, 31.9 and 15.9 µg/ml respectively as compared to ascorbic acid. Furthermore, RcNps at concentration of 100 µg/ml significantly reduced xanthine oxidase activity (15.9 ± 0.61 µg/ml) compared with ascorbic acid (12.80 ± 0.32 µg/ml) with p < 0.05. Moreover, RcNps showed an excellent antiaging activity demonstrated by inhibition of collagenase, elastase, hyaluronidase and tyrosinase enzymes in a dose-dependent manner with IC50 values of 58.7 ± 1.66 µg/ml, 82.5 ± 2.93 µg/ml, 191.4 ± 5.68 µg/ml and 158.6 ± 5.20 µg/ml as compared to EGCG respectively. RcNps also, exhibited a promising antibacterial activity against three skin pathogens delineate a significant threat to a public health, as Staphylococcus epidermidis, Streptococcus pyogenes, and Pseudomonas aeruginosa with MIC of 15.63, 7.81, 31.25 µg/ml as compared to ciprofloxacin (7.81, 3.9 and 15.63 µg/ml). Moreover, RcNps suppressed the formation of biofilms with minimum biofilm inhibitory concentrations 1.95, 1.95, 7.81 µg/ml against the fore mentioned strains, respectively. Overall, our findings indicate that Rosa floribunda nanoparticles could be used as a leading natural source in skin care cosmetic industry.
Collapse
Affiliation(s)
- Inas Y Younis
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, El Kaser El-Aini, Cairo, 11562, Egypt.
| | - Seham S El-Hawary
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, El Kaser El-Aini, Cairo, 11562, Egypt
| | - Omayma A Eldahshan
- Pharmacognosy Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Marwa M Abdel-Aziz
- Medical Microbiology, The Regional Center for Mycology and Biotechnology (RCMB), Al-Azhar University, Cairo, Egypt
| | - Zeinab Y Ali
- Department of Biochemistry, Egyptian Drug Authority (EDA), Giza, 12553, Egypt
| |
Collapse
|
40
|
Dobreva A, Nedeltcheva-Antonova D, Nenov N, Getchovska K, Antonov L. Subcritical Extracts from Major Species of Oil-Bearing Roses-A Comparative Chemical Profiling. Molecules 2021; 26:4991. [PMID: 34443579 PMCID: PMC8398789 DOI: 10.3390/molecules26164991] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/03/2021] [Accepted: 08/12/2021] [Indexed: 11/16/2022] Open
Abstract
A comprehensive chemical profiling of 1,1,1,2-tetrafluoroethane (freon R134a) subcritical extracts from the main genotypes of oil-bearing roses, was performed by gas chromatography-mass spectrometry (GC/MS) and gas chromatography with flame ionization detection (GC-FID) in order to reveal the differences in their chemical composition. One hundred and three individual compounds were identified using GC/MS and their quantitative content was determined using GC-FID, representing 89.8, 92.5, 89.7 and 93.7% of the total content of Rosa gallica L., Rosa damascena Mill., Rosa alba L. and Rosa centifolia L. extracts, respectively. The compounds found in the extracts are representatives of the following main chemical classes: mono-, sesqui- and triterpenoids, phenylethanoids and phenylpropanoids and aliphatic hydrocarbons. Fatty acids, esters and waxes were found, as well. The study revealed that 2-phenylethanol is the most abundant component, ranging 9.0-60.9% followed by nonadecane and nonadecene with 5.1-18.0% geraniol (2.9-14.4%), heneicosane (3.1-11.8%), tricosane (0.1-8.6%), nerol (1.3-6.1%) and citronellol (1.7-5.3%). The extracts demonstrate a specific chemical profile, depending on the botanical species-phenylethanoids and phenyl propanoids are the main group for R. damascena, aliphatic hydrocarbons for R. alba and R. centifolia, while both are found in almost equal amounts in R. gallica. The terpenoid compounds show relatively broad variations: monoterpenes-11.9-25.5% with maximum in R. centifolia; sesquiterpenes-0.6-7.0% with maximum in R. gallica and triterpenes-0.4-3.7% with maximum in R. gallica extract.
Collapse
Affiliation(s)
- Ana Dobreva
- Institute of Roses and Aromatic Plants, Agricultural Academy, 6100 Kazanlak, Bulgaria;
| | - Daniela Nedeltcheva-Antonova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Nenko Nenov
- Department of Heat Engineering, Technical Faculty, University of Food Technologies, 4002 Plovdiv, Bulgaria;
| | - Kamelia Getchovska
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Liudmil Antonov
- Institute of Electronics, Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria;
| |
Collapse
|
41
|
Antiviral Activity of Rosa damascena Mill. and Rosa alba L. Essential Oils against the Multiplication of Herpes Simplex Virus Type 1 Strains Sensitive and Resistant to Acyclovir. BIOLOGY 2021; 10:biology10080746. [PMID: 34439978 PMCID: PMC8389625 DOI: 10.3390/biology10080746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 11/24/2022]
Abstract
Simple Summary Herpes simplex virus type 1 (HSV) is a coated DNA virus of the Herpesviridae family. It causes painful infections of the mouth, throat, face, eyes, central nervous system, as well as infections of the anal–genital area. The specific drugs for chemotherapy of HSV have been based on nucleoside analogues, with acyclovir (ACV) being the most widely used. The most serious problem in the application of nucleoside analogues is the rapid formation of resistant mutants, which also often leads to treatment failure. The search for new therapeutic alternatives for the treatment of HSV is necessary for the successful control of diseases caused by herpes infection. Rose essential oils are widely used in alternative medicine due to their many proven benefits for human health. In the treatment of bacterial and viral infections, they reduce the chance of developing resistance. In this study, we investigated the effects of the Bulgarian Rosa damascena Mill. and Rosa alba L. essential oils on the viral reproduction of susceptible (Victoria strain) and acyclovir-resistant (R-100) strains individually and in combination with acyclovir. When the rose oils were added after the virus entered the cell, co-administered with ACV at a concentration four times lower than the IC50, they contributed to a significant reduction in viral yield by more than 20% of the expected inhibition of viral replication in the Victoria strain and more than 10% of the previously presumptive inhibition in the R-100 strain. Abstract Background: The specific chemotherapeutics against herpes simplex virus type 1 (HSV) are nucleoside analogues such as acyclovir (ACV), but the most important problem is the formation of resistant mutants. The search for new therapeutic alternatives leads us to the purpose of investigating the effects of Rosa damascena Mill. and Rosa alba L. essential oils on the viral reproduction of susceptible (Victoria) and acyclovir-resistant (R-100) strains of HSV-1 replication in vitro, individually and in combination with acyclovir. Methods: Cytopathic effect inhibition test was used for assessment of antiviral activity of the oils, and the three-dimensional model of Prichard and Shipman was applied to evaluate the combined effect of oils with ACV on HSV-1 replication. Results: Both oils do not affect the replication of viral strains; they are able to influence only viral adsorption and extracellular virions and protect healthy cells from subsequent infection. In combination with lower doses of acyclovir, both oils demonstrate a significant synergistic effect on the replication of HSV-1, which is more contagious than the Victoria strain. Conclusions: The nonspecific mechanism of the reduction in viral reproduction caused by rose oils and the synergistic effect of their co-administration with the lower doses of specific inhibitor ACV makes them suitable therapeutics for overcoming viral resistance to HSV-1 infections.
Collapse
|