1
|
Zhang W, Yan Y, Yi C, Jiang X, Guo L, Huang S, Xia T, Huang F, Jiao Y, Li H, Yu B, Dai Y. Targeting ferroptosis in the neurovascular unit: A promising approach for treating diabetic cognitive impairment. Int Immunopharmacol 2024; 142:113146. [PMID: 39298819 DOI: 10.1016/j.intimp.2024.113146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/12/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
The cognitive decline associated with chronic metabolic disease diabetes has garnered extensive scrutiny, yet its pathogenesis remains incompletely understood, and the advancement of targeted therapeutics has posed a persistent challenge. Ferroptosis, a novel form of cell death characterized by intracellular lipid peroxidation and iron overload, has recently emerged as a significant factor. Numerous contemporary studies have corroborated that ferroptosis within the neurovascular unit is intimately associated with the onset of diabetes-induced cognitive impairment. Numerous contemporary studies have corroborated that ferroptosis within the neurovascular unit is intimately associated with the onset of diabetic cognitive impairment (DCI). This article initially conducts a profound analysis of the mechanism of ferroptosis, followed by a detailed elucidation of the specific manifestations of neurovascular unit ferroptosis in the context of diabetic cognitive function impairment. Furthermore, an exhaustive review of pertinent literature from April 2020 to March 2024 has been undertaken, resulting in the selection of 31 documents of significant reference value. These documents encompass studies on 11 distinct drugs, all of which are centered around investigating methods to inhibit the ferroptosis pathway as a potential treatment for DCI. Simultaneously, we conducted a review of 12 supplementary literary sources that presented 10 pharmacological agents with anti-ferroptosis properties in other neurodegenerative disorders. This article critically examines the potential influence of neurovascular unit ferroptosis on the progression of cognitive impairment in diabetes, from the three aforementioned perspectives, and organizes the existing and potential therapeutic drugs. It is our aspiration that this article will serve as a theoretical foundation for scholars in related disciplines when conceptualizing, investigating, and developing novel clinical drugs for DCI.
Collapse
Affiliation(s)
- Wenlan Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yijing Yan
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chunmei Yi
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shanshan Huang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tong Xia
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Fayin Huang
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yike Jiao
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Huhu Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Bin Yu
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yongna Dai
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
2
|
Ma H, Xing C, Wei H, Li Y, Wang L, Liu S, Wu Q, Sun C, Ning G. Berberine attenuates neuronal ferroptosis via the AMPK-NRF2-HO-1-signaling pathway in spinal cord-injured rats. Int Immunopharmacol 2024; 142:113227. [PMID: 39321704 DOI: 10.1016/j.intimp.2024.113227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Ferroptosis, characterized by iron-dependent accumulation of lipid peroxides, plays an important role in spinal cord injury (SCI). Berberine (BBR), as a lipid peroxide scavenger, has been widely used in treating other diseases; however, its role in ferroptosis has not been fully elucidated. Therefore, here, to test our hypothesis that BBR can reduce the severity of SCI and promote motor function recovery by inhibiting neuronal ferroptosis, we evaluated the changes in ferroptosis-related indicators after BBR administration by establishing a cellular ferroptosis model and an SCI contusion model. We found that BBR administration significantly reduces lipid peroxidation damage, maintains normal mitochondrial function, reduces excessive accumulation of iron ions, enhances antioxidant capacity, and activates the ferroptosis defense system in vivo and in vitro. Mechanistically, BBR alleviates neuronal ferroptosis by inducing adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and up-regulating nuclear factor erythroid 2-related factor 2 (NRF2) and heme oxygenase-1 (HO-1) protein expression to promote glutathione production. BBR administration also significantly improves motor function recovery in SCI rats. Meanwhile, applying the AMPK inhibitor Compound C blocks the neuroprotective and all other effects of BBR. Collectively, our findings demonstrate that BBR can attenuate neuronal ferroptosis after SCI by activating the AMPK-NRF2-HO-1 pathway.
Collapse
Affiliation(s)
- Hongpeng Ma
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China; Tianjin Institute of Orthopedic Innovation and Transformation, Tianjin, China
| | - Cong Xing
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China; Tianjin Institute of Orthopedic Innovation and Transformation, Tianjin, China
| | - Haitao Wei
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China; Tianjin Institute of Orthopedic Innovation and Transformation, Tianjin, China
| | - Yan Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China; Tianjin Institute of Orthopedic Innovation and Transformation, Tianjin, China
| | - Liyue Wang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China; Tianjin Institute of Orthopedic Innovation and Transformation, Tianjin, China
| | - Song Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China; Tianjin Institute of Orthopedic Innovation and Transformation, Tianjin, China
| | - Qiang Wu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China; Tianjin Institute of Orthopedic Innovation and Transformation, Tianjin, China
| | - Chao Sun
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China; Tianjin Institute of Orthopedic Innovation and Transformation, Tianjin, China
| | - Guangzhi Ning
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China; Tianjin Institute of Orthopedic Innovation and Transformation, Tianjin, China.
| |
Collapse
|
3
|
Hussain S, Gupta G, Shahwan M, Bansal P, Kaur H, Deorari M, Pant K, Ali H, Singh SK, Rama Raju Allam VS, Paudel KR, Dua K, Kumarasamy V, Subramaniyan V. Non-coding RNA: A key regulator in the Glutathione-GPX4 pathway of ferroptosis. Noncoding RNA Res 2024; 9:1222-1234. [PMID: 39036600 PMCID: PMC11259992 DOI: 10.1016/j.ncrna.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/26/2024] [Accepted: 05/19/2024] [Indexed: 07/23/2024] Open
Abstract
Ferroptosis, a form of regulated cell death, has emerged as a crucial process in diverse pathophysiological states, encompassing cancer, neurodegenerative ailments, and ischemia-reperfusion injury. The glutathione (GSH)-dependent lipid peroxidation pathway, chiefly governed by glutathione peroxidase 4 (GPX4), assumes an essential part in driving ferroptosis. GPX4, as the principal orchestrator of ferroptosis, has garnered significant attention across cancer, cardiovascular, and neuroscience domains over the past decade. Noteworthy investigations have elucidated the indispensable functions of ferroptosis in numerous diseases, including tumorigenesis, wherein robust ferroptosis within cells can impede tumor advancement. Recent research has underscored the complex regulatory role of non-coding RNAs (ncRNAs) in regulating the GSH-GPX4 network, thus influencing cellular susceptibility to ferroptosis. This exhaustive review endeavors to probe into the multifaceted processes by which ncRNAs control the GSH-GPX4 network in ferroptosis. Specifically, we delve into the functions of miRNAs, lncRNAs, and circRNAs in regulating GPX4 expression and impacting cellular susceptibility to ferroptosis. Moreover, we discuss the clinical implications of dysregulated interactions between ncRNAs and GPX4 in several conditions, underscoring their capacity as viable targets for therapeutic intervention. Additionally, the review explores emerging strategies aimed at targeting ncRNAs to modulate the GSH-GPX4 pathway and manipulate ferroptosis for therapeutic advantage. A comprehensive understanding of these intricate regulatory networks furnishes insights into innovative therapeutic avenues for diseases associated with perturbed ferroptosis, thereby laying the groundwork for therapeutic interventions targeting ncRNAs in ferroptosis-related pathological conditions.
Collapse
Affiliation(s)
- Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Gaurav Gupta
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, 346, United Arab Emirates
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, 346, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, 346, United Arab Emirates
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, 560069, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Kumud Pant
- Graphic Era (Deemed to be University), Clement Town, Dehradun, 248002, India
- Graphic Era Hill University, Clement Town, Dehradun, 248002, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
- Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- School of Medical and Life Sciences, Sunway University, 47500 Sunway City, Malaysia
| | | | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW, 2007, Australia
| | - Kamal Dua
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, P.O. Box: 123 Broadway, Ultimo, NSW, 2007, Australia
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
4
|
Zeng Q, Jiang T. Molecular mechanisms of ferroptosis in cardiovascular disease. Mol Cell Biochem 2024; 479:3181-3193. [PMID: 38374233 DOI: 10.1007/s11010-024-04940-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/12/2024] [Indexed: 02/21/2024]
Abstract
Ferroptosis is a newly recognized type of regulated cell death that is characterized by the accumulation of iron and lipid peroxides in cells. Studies have shown that ferroptosis plays a significant role in the pathogenesis of various diseases, including cardiovascular diseases. In cardiovascular disease, ferroptosis is associated with ischemia-reperfusion injury, myocardial infarction, heart failure, and atherosclerosis. The molecular mechanisms underlying ferroptosis include the iron-dependent accumulation of lipid peroxidation products, glutathione depletion, and dysregulation of lipid metabolism, among others. This review aims to summarize the current knowledge of the molecular mechanisms of ferroptosis in cardiovascular disease and discuss the potential therapeutic strategies targeting ferroptosis as a treatment for cardiovascular disease.
Collapse
Affiliation(s)
- Qun Zeng
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Tingting Jiang
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| |
Collapse
|
5
|
Shan H, Gao L, Zhao S, Dou Z, Pan Y. Bone marrow mesenchymal stem cells with PTBP1 knockdown protect against cerebral ischemia-reperfusion injury by inhibiting ferroptosis via the JNK/P38 pathway in rats. Neuroscience 2024; 560:130-142. [PMID: 39306318 DOI: 10.1016/j.neuroscience.2024.09.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Over the years, the neuroprotective potential of bone marrow mesenchymal stem cells (BMSCs) in acute ischemic stroke has attracted significant attention. However, BMSCs face challenges like short metabolic cycles and low survival rates post-transplant. Polypyrimidine tract-binding protein 1 (PTBP1) is an immunomodulatory RNA-binding protein that regulates the cell cycle and increases cell viability. This study investigated the protective effects and underlying mechanism of PTBP1 knockdown in BMSCs (PTBP1KD-BMSCs) following ischemia-reperfusion injury (IRI) in neurons. BMSCs were isolated from Sprague-Dawley rat femurs and characterized through flow cytometry and differentiation induction. PTBP1 knockdown inhibited BMSCs proliferation. Co-culture with PTBP1KD-BMSCs decreased reactive oxygen species (ROS) and malondialdehyde (MDA) levels, while increasing glutathione (GSH) production in oxygen and glucose deprivation/reperfusion-induced PC12 cells. Transcriptome sequencing analysis of PC12 cells suggested that the protective effect of PTBP1KD-BMSCs against injury may involve ferroptosis. Furthermore, western blotting showed upregulation of glutathione synthetase (GSS), glutathione peroxidase 4 (GPX4), and solute carrier family 7 member 11 (SLC7A11) in PTBP1KD-BMSCs, known negative regulators of ferroptosis. Moreover, PTBP1KD-BMSCs inhibited p38MAPK and JNK activation. In addition, PTBP1KD-BMSCs transplantation into middle cerebral artery occlusion/reperfusion (MCAO/R) rats reduced cerebral infarction volume and improved neurological function. Immunofluorescence analysis confirmed the upregulation of GSS expression in neurons of the ischemic cortex, while immunohistochemistry indicated a downregulation of p-P38. These result suggest that PTBP1KD-BMSCs can alleviate neuronal IRI by reducing oxidative stress, inhibiting ferroptosis, and modulating the MAPK pathway, providing a theoretical basis for potential treatment strategies for cerebral IRI.
Collapse
Affiliation(s)
- Hailei Shan
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; Department of Neurology, The Affiliated Hospital of Chengde Medical University, Chengde 067000, China; Hebei Key Laboratory of Panvascular Diseases, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Limin Gao
- Department of Neurology, The Affiliated Hospital of Chengde Medical University, Chengde 067000, China
| | - Shuang Zhao
- Department of Neurology, The Affiliated Hospital of Chengde Medical University, Chengde 067000, China
| | - Zhijie Dou
- Department of Neurology, The Affiliated Hospital of Chengde Medical University, Chengde 067000, China.
| | - Yujun Pan
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| |
Collapse
|
6
|
Tan M, Yin Y, Chen W, Zhang J, Jin Y, Zhang Y, Zhang L, Jiang T, Jiang B, Li H. Trimetazidine attenuates Ischemia/Reperfusion-Induced myocardial ferroptosis by modulating the Sirt3/Nrf2-GSH system and reducing Oxidative/Nitrative stress. Biochem Pharmacol 2024; 229:116479. [PMID: 39134283 DOI: 10.1016/j.bcp.2024.116479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/11/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
Ferroptosis is a newly defined mode of cellular demise. The increasing investigation supports that ferroptosis is a crucial factor in the complex mechanisms of myocardial ischemia-reperfusion (I/R) injury. Hence, targeting ferroptosis is a novel strategy for treating myocardial injury. Although evidence suggests that trimetazidine (TMZ) is potentially efficacious against myocardial injury, the exact mechanism of this efficacy is yet to be fully elucidated. This study aimed to determine whether TMZ can act as a ferroptosis resistor and affect I/R-mediated myocardial injury. To this end, researchers have constructed in vitro and in vivo models of I/R using H9C2 cardiomyocytes, primary cardiomyocytes, and SD rats. Here, I/R mediated the onset of ferroptosis in vitro and in vivo, as reflected by excessive iron aggregation, GSH depletion, and the increase in lipid peroxidation. TMZ largely reversed this alteration and attenuated cardiomyocyte injury. Mechanistically, we found that TMZ upregulated the expression of Sirt3. Therefore, we used si-Sirt3 and 3-TYP to interfere with Sirt3 action in vitro and in vivo, respectively. Both si-Sirt3 and 3-TYP partly mitigated the inhibitory effect of TMZ on I/R-mediated ferroptosis and upregulated the expression of Nrf2 and its downstream target, GPX4-SLC7A11. These results indicate that TMZ attenuates I/R-mediated ferroptosis by activating the Sirt3-Nrf2/GPX4/SLC7A11 signaling pathway. Our study offers insights into the mechanism underlying the cardioprotective benefits of TMZ and establishes a groundwork for expanding its potential applications.
Collapse
Affiliation(s)
- Mingyue Tan
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Yunfei Yin
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Weixiang Chen
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Jun Zhang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Yifeng Jin
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Yue Zhang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Lei Zhang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Tingbo Jiang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China.
| | - Bin Jiang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China.
| | - Hongxia Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China.
| |
Collapse
|
7
|
Wang R, Xu J, Wei S, Liu X. Increased Lipocalin 2 detected by RNA sequencing regulates apoptosis and ferroptosis in COPD. BMC Pulm Med 2024; 24:535. [PMID: 39462322 PMCID: PMC11515215 DOI: 10.1186/s12890-024-03357-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a complex respiratory condition influenced by environmental and genetic factors. Using next-generation sequencing, we aimed to identify dysregulated genes and potential therapeutic targets for COPD. METHODS Peripheral blood leukocyte RNA profiles from COPD patients and healthy controls were analyzed using next-generation sequencing. Key genes involved in COPD pathogenesis were identified through protein-protein interaction network analysis. In vitro, bronchial epithelial cells treated with cigarette smoke extract (CSE) were used to study the effects on gene expression, cell viability, apoptosis, and ferroptosis. Additionally, Lipocalin 2 (LCN2) inhibition experiments were conducted to elucidate its role in COPD-related cellular processes. RESULTS Analysis of RNA profiles revealed consistent downregulation of 17 genes and upregulation of 21 genes across all COPD groups. Among these, Cathelicidin Antimicrobial Peptide(CAMP), Defensin Alpha 4(DEFA4), Neutrophil Elastase(ELANE), LCN2 and Lactotransferrin(LTF) were identified as potentially important players in COPD pathogenesis. Particularly, LCN2 exhibited a close association with COPD and was found to be involved in cellular processes. In vitro experiments demonstrated that CSE treatment significantly increased LCN2 expression in bronchial epithelial cells in a concentration-dependent manner. Moreover, CSE-induced apoptosis and ferroptosis were observed, along with alterations in cell viability, Glutathione content, Fe2 + accumulation, ROS: Reactive Oxygen Species and Malondialdehyde levels, Lactate Dehydrogenase(LDH) release and Glutathione Peroxidase 4(GPX4) expression. Inhibition of LCN2 expression partially reversed these effects, indicating the pivotal role of LCN2 in COPD-related cellular processes. CONCLUSION Our study identified six candidate genes: CAMP, DEFA4, ELANE, LCN2, and LTF were upregulated, HSPA1B was downregulated. Notably, LCN2 emerges as a significant biomarker in COPD pathogenesis, exerting its effects by promoting apoptosis and ferroptosis in bronchial epithelial cells.
Collapse
Affiliation(s)
- Ruiying Wang
- Department of Pulmonary and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences,Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, China.
| | - Jianying Xu
- Department of Pulmonary and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences,Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, China
| | - Shuang Wei
- Department of Pulmonary and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences,Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, China
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiansheng Liu
- Department of Pulmonary and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences,Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, China.
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
8
|
Bao L, Zhao Y, Duan S, Wu K, Shan R, Liu Y, Yang Y, Chen Q, Song C, Li W. Ferroptosis is involved in Staphylococcus aureus-induced mastitis through autophagy activation by endoplasmic reticulum stress. Int Immunopharmacol 2024; 140:112818. [PMID: 39083924 DOI: 10.1016/j.intimp.2024.112818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
Cell death caused by severe Staphylococcus aureus (S. aureus) infection is a fatal threat to humans and animals. However, whether ferroptosis, an iron-dependent form of cell death, is involved in S. aureus-induced cell death and its role in S. aureus-induced diseases are unclear. Using a mouse mastitis model and mammary epithelial cells (MMECs), we investigated the role of ferroptosis in the pathogenesis of S. aureus infection. The results revealed that S. aureus-induced ferroptosis in vivo and in vitro as demonstrated by dose-dependent increases in cell death; the level of malondialdehyde (MDA), the final product of lipid peroxidation; and dose-dependent decrease the production of the antioxidant glutathione (GSH). Treatment with typical inhibitors of ferroptosis, including ferrostatin-1 (Fer-1) and deferiprone (DFO), significantly inhibited S. aureus-induced death in MMECs. Mechanistically, treatment with S. aureus activated the protein kinase RNA-like ER kinase (PERK)-eukaryotic initiation factor 2, α subunit (eIF2α)-activating transcription factor 4 (ATF4)-C/EBP homologous protein (CHOP) pathway, which subsequently upregulated autophagy and promoted S. aureus-induced ferroptosis. The activation of autophagy degraded ferritin, resulting in iron dysregulation and ferroptosis. In addition, we found that excessive reactive oxygen species (ROS) production induced ferroptosis and activated endoplasmic reticulum (ER) stress, manifesting as elevated p-PERK-p-eIF2α-ATF4-CHOP pathway protein levels. Collectively, our findings indicate that ferroptosis is involved in S. aureus-induced mastitis via ER stress-mediated autophagy activation, implying a potential strategy for the prevention of S. aureus-associated diseases by targeting ferroptosis. In conclusion, the ROS-ER stress-autophagy axis is involved in regulating S. aureus-induced ferroptosis in MMECs. These findings not only provide a new potential mechanism for mastitis induced by S. aureus but also provide a basis for the treatment of other ferroptotic-related diseases.
Collapse
Affiliation(s)
- Lijuan Bao
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Erdao District, 126 Sendai Street, Changchun, Jilin Province 130033, China; Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Yihong Zhao
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Erdao District, 126 Sendai Street, Changchun, Jilin Province 130033, China; Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Shiyu Duan
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Erdao District, 126 Sendai Street, Changchun, Jilin Province 130033, China; Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Keyi Wu
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Erdao District, 126 Sendai Street, Changchun, Jilin Province 130033, China; Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Ruping Shan
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Erdao District, 126 Sendai Street, Changchun, Jilin Province 130033, China; Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Yi Liu
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Erdao District, 126 Sendai Street, Changchun, Jilin Province 130033, China; Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Yang Yang
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Erdao District, 126 Sendai Street, Changchun, Jilin Province 130033, China; Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Qiujie Chen
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Erdao District, 126 Sendai Street, Changchun, Jilin Province 130033, China; Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Changlong Song
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Erdao District, 126 Sendai Street, Changchun, Jilin Province 130033, China.
| | - Wenjia Li
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Erdao District, 126 Sendai Street, Changchun, Jilin Province 130033, China.
| |
Collapse
|
9
|
Wei C. The role of glutathione peroxidase 4 in neuronal ferroptosis and its therapeutic potential in ischemic and hemorrhagic stroke. Brain Res Bull 2024; 217:111065. [PMID: 39243947 DOI: 10.1016/j.brainresbull.2024.111065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/22/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Ferroptosis is a type of cell death that depends on iron and is driven by lipid peroxidation, playing a crucial role in neuronal death during stroke. A central element in this process is the inactivation of glutathione peroxidase 4 (GPx4), an antioxidant enzyme that helps maintain redox balance by reducing lipid hydroperoxides. This review examines the critical function of GPx4 in controlling neuronal ferroptosis following ischemic and hemorrhagic stroke. We explore the mechanisms through which GPx4 becomes inactivated in various stroke subtypes. In strokes, excess glutamate depletes glutathione (GSH) and products of hemoglobin breakdown overwhelm GPx4. Studies using genetic models with GPx4 deficiency underscore its vital role in maintaining neuronal survival and function. We also consider new therapeutic approaches to enhance GPx4 activity, including novel small molecule activators, adjustments in GSH metabolism, and selenium supplementation. Additionally, we outline the potential benefits of combining these GPx4-focused strategies with other anti-ferroptotic methods like iron chelation and lipoxygenase inhibition for enhanced neuroprotection. Furthermore, we highlight the significance of understanding the timing of GPx4 inactivation during stroke progression to design effective therapeutic interventions.
Collapse
Affiliation(s)
- Chao Wei
- Feinberg school of medicine, Northwestern University, IL 60611, USA
| |
Collapse
|
10
|
Meng J, Xiao L, Li Q, Gong L, Luo P, Zhao Y, Wang S. Di-(2-ethylhexyl) phthalate exposure induces ferroptosis by regulating the Nrf2-mediated signaling pathway in mouse ovaries. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117104. [PMID: 39321527 DOI: 10.1016/j.ecoenv.2024.117104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP), an endocrine-disrupting chemical present in plasticized products, exerts strong modulation on the anatomy and function of the female reproductive system. However, the potential mechanisms underlying DEHP-induced regulation of prepubertal female reproductive toxicity have not yet been elucidated. Therefore, this study was designed to elucidate the molecular mechanism of ovarian injury induced by DEHP exposure in mice. Elevated serum mono-2-ethylhexyl phthalate (MEHP) concentrations, decreased levels of ovarian hormones (E2 and P4), and observed ovarian injury were found after DEHP exposure. Ovarian transcriptome analysis revealed significant alterations in ferroptosis-associated gene expression, with potential regulation by Nrf2. Subsequent analysis of ferrous iron, malondialdehyde (MDA), Western blotting, and immunofluorescence of the ovaries confirmed the RNA-seq findings. Transcriptome analysis of granulosa cells revealed a direct or indirect regulatory relationship between Nrf2 and downstream ferroptosis-related proteins following MEHP exposure. Further experiments demonstrated that ferrostatin-1 attenuated MEHP-induced ferroptosis in granulosa cells. Additionally, Nrf2 stabilization and accumulation in the nucleus of granulosa cells were observed following MEHP treatment. RNAi-mediated knockdown of Nrf2 exacerbated MEHP-induced ferroptosis in granulosa cells. This evidence indicates that DEHP exposure induces ferroptosis through regulation of the Nrf2-mediated signaling pathway in mouse ovaries, laying the groundwork for future studies aiming to develop therapeutic strategies against DEHP toxicity.
Collapse
Affiliation(s)
- Jinzhu Meng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China; Guizhou Provincial Key Laboratory for Biodiversity Conservation and Utilization in the Fanjing Mountain Region, Tongren University, Tongren, China
| | - Lilin Xiao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Qiuye Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Ling Gong
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Ping Luo
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Yuanyuan Zhao
- Guizhou Provincial Key Laboratory for Biodiversity Conservation and Utilization in the Fanjing Mountain Region, Tongren University, Tongren, China.
| | - Shuilian Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China.
| |
Collapse
|
11
|
Cai J, Song L, Hu Z, Gao X, Wang Y, Chen Y, Xi K, Lu X, Shi Y. Astragalin alleviates oligoasthenospermia via promoting nuclear translocation of Nrf2 and reducing ferroptosis of testis. Heliyon 2024; 10:e38778. [PMID: 39444397 PMCID: PMC11497445 DOI: 10.1016/j.heliyon.2024.e38778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
Oligoasthenospermia (OAS) is a global human developmental disease and the most common type of male infertility. There are currently no sufficiently effective therapeutic strategies for OAS. Wuziyanzong Pill (WZYZP) is a traditional Chinese prescription for the clinical treatment of male infertility, and its efficacy is well known in China. Therefore, due to the complexity of traditional Chinese medicine, the specific mechanism of action of WZYZP on OAS has not been elucidated. Astragalin (AG), one of the main active substances in WZYZP, has good antioxidant effect. The aim of this research is to investigate whether AG, the active substance in WZYZP, can treat OAS by promoting Nrf2 nuclear translocation and inhibiting ferroptosis. The OAS model was established by intraperitoneal injection of cyclophosphamide, and the therapeutic effects of AG and WZYZP on OAS were evaluated by detecting sperm quality, sex hormone levels and testicular pathological changes after intragastric administration of AG and WZYZP. Western blot was used to measure the expression levels of TFR1, SLC7A11, GPX4 and FTH1. The nuclear translocation of Nrf2 was detected by immunofluorescence staining and nuclear/intracellular expression of Nrf2. The results showed that AG could improve sperm quality and serum sex hormone levels in OAS rats, reduce the expression of testicular Fe2+ and TFR1, up-regulate testicular SLC7A11, GPX4 and FTH1, and inhibit testicular ferroptosis. At the same time, AG can promote the expression and nuclear translocation of Nrf2 in the testis of OAS rats. AG can alleviate OAS via promoting nuclear translocation of Nrf2 and inhibiting ferroptosis of testis.
Collapse
Affiliation(s)
- Jiayu Cai
- Traditional Chinese Medicine Department, Jinling Hospital, Nanjing 210002,China
| | - Lingxiong Song
- Department of Clinical Laboratory, Jinling Hospital, Nanjing University School of Medicine, Nanjing University, Nanjing, China
| | - Zebo Hu
- Department of Clinical Laboratory, Jinling Hospital, Nanjing University School of Medicine, Nanjing University, Nanjing, China
| | - Xiaojiao Gao
- Department of Clinical Laboratory, Jinling Hospital, Nanjing University School of Medicine, Nanjing University, Nanjing, China
| | - Yuhan Wang
- School of Public Health and Management, Ningxia Medicine University, Ningxia, China
| | - Yang Chen
- Department of Clinical Laboratory, Jinling Hospital, Nanjing University School of Medicine, Nanjing University, Nanjing, China
| | - Ke Xi
- Department of Clinical Laboratory, Jinling Hospital, Nanjing University School of Medicine, Nanjing University, Nanjing, China
| | - Xin Lu
- Department of Clinical Laboratory, Jinling Hospital, Nanjing University School of Medicine, Nanjing University, Nanjing, China
| | - Yonghui Shi
- Department of Clinical Laboratory, Jinling Hospital, Nanjing University School of Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
12
|
Ru Q, Li Y, Chen L, Wu Y, Min J, Wang F. Iron homeostasis and ferroptosis in human diseases: mechanisms and therapeutic prospects. Signal Transduct Target Ther 2024; 9:271. [PMID: 39396974 PMCID: PMC11486532 DOI: 10.1038/s41392-024-01969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/08/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Iron, an essential mineral in the body, is involved in numerous physiological processes, making the maintenance of iron homeostasis crucial for overall health. Both iron overload and deficiency can cause various disorders and human diseases. Ferroptosis, a form of cell death dependent on iron, is characterized by the extensive peroxidation of lipids. Unlike other kinds of classical unprogrammed cell death, ferroptosis is primarily linked to disruptions in iron metabolism, lipid peroxidation, and antioxidant system imbalance. Ferroptosis is regulated through transcription, translation, and post-translational modifications, which affect cellular sensitivity to ferroptosis. Over the past decade or so, numerous diseases have been linked to ferroptosis as part of their etiology, including cancers, metabolic disorders, autoimmune diseases, central nervous system diseases, cardiovascular diseases, and musculoskeletal diseases. Ferroptosis-related proteins have become attractive targets for many major human diseases that are currently incurable, and some ferroptosis regulators have shown therapeutic effects in clinical trials although further validation of their clinical potential is needed. Therefore, in-depth analysis of ferroptosis and its potential molecular mechanisms in human diseases may offer additional strategies for clinical prevention and treatment. In this review, we discuss the physiological significance of iron homeostasis in the body, the potential contribution of ferroptosis to the etiology and development of human diseases, along with the evidence supporting targeting ferroptosis as a therapeutic approach. Importantly, we evaluate recent potential therapeutic targets and promising interventions, providing guidance for future targeted treatment therapies against human diseases.
Collapse
Affiliation(s)
- Qin Ru
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China.
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
13
|
Sun T, Liu C, Kong L, Zha J, Ni G. Cold plasma irradiation inhibits skin cancer via ferroptosis. Biomed Phys Eng Express 2024; 10:065036. [PMID: 39390682 DOI: 10.1088/2057-1976/ad8200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
Cold atmospheric plasma (CAP) has been extensively utilized in medical treatment, particularly in cancer therapy. However, the underlying mechanism of CAP in skin cancer treatment remains elusive. In this study, we established a skin cancer model using CAP treatmentin vitro. Also, we established the Xenograft experiment modelin vivo. The results demonstrated that treatment with CAP induced ferroptosis, resulting in a significant reduction in the viability, migration, and invasive capacities of A431 squamous cell carcinoma, a type of skin cancer. Mechanistically, the significant production of reactive oxygen species (ROS) by CAP induces DNA damage, which then activates Ataxia-telangiectasia mutated (ATM) and p53 through acetylation, while simultaneously suppressing the expression of Solute Carrier Family 7 Member 11 (SLC7A11). Consequently, this cascade led to the down-regulation of intracellular Glutathione peroxidase 4 (GPX4), ultimately resulting in ferroptosis. CAP exhibits a favorable impact on skin cancer treatment, suggesting its potential medical application in skin cancer therapy.
Collapse
Affiliation(s)
- Tao Sun
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Changqing Liu
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Ling Kong
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Jingjing Zha
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- Anhui Province Key Laboratory of Medical Physics and Technology, Hefei 230031, People's Republic of China
| | - Guohua Ni
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- Anhui Province Key Laboratory of Medical Physics and Technology, Hefei 230031, People's Republic of China
| |
Collapse
|
14
|
Zhao L, Luo T, Zhang H, Fan X, Zhang Q, Chen H. Kaempferol enhances intestinal repair and inhibits the hyperproliferation of aging intestinal stem cells in Drosophila. Front Cell Dev Biol 2024; 12:1491740. [PMID: 39450272 PMCID: PMC11499188 DOI: 10.3389/fcell.2024.1491740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Introduction Intestinal stem cells (ISCs) are crucial for tissue repair and homeostasis because of their ability to self-renew and differentiate. However, their functionality declines significantly with age, resulting in reduced tissue regeneration and a higher risk of age-related diseases. Addressing this decline in ISC performance during aging presents a substantial challenge. The specific impact of nutrients or dietary elements on ISC adaptive resizing is urgent to explore. Methods Drosophila ISCs are an ideal model for studying development and aging because of their genetic richness, ease of manipulation, and similarity to mammalian tissues. As the primary mitotically active cells in the Drosophila gut, ISCs are flexible in response to dietary and stress signals. Manipulating signaling pathways or dietary restrictions has shown promise in regulating ISC functions and extending lifespan in flies, these approaches face broader applications for aging research. Results Kaempferol is well-regarded for its antioxidant, anti-inflammatory, and potential anticancer effects. However, its impacts on ISCs and the associated mechanisms remain inadequately understood. Our findings indicate that Kaempferol accelerates gut recovery after damage and improves the organism's stress tolerance. Moreover, Kaempferol suppresses the hyperproliferation of aging ISCs in Drosophila. Further investigation revealed that the regulatory effects of Kaempferol on ISCs are mediated through the reduction of endoplasmic reticulum (ER) stress in aging flies and the modulation of excessive reactive oxygen species (ROS) levels via ER-stress pathways. Furthermore, Kaempferol exerts regulatory effects on the insulin signaling pathway, thereby contributing to the attenuation of ISC senescence. Discussion This study reveals that Kaempferol promotes intestinal homeostasis and longevity in aging flies by targeting ER stress and insulin signaling pathways, though the exact molecular mechanisms require further exploration. Future research will aim to dissect the downstream signaling events involved in these pathways to better understand how Kaempferol exerts its protective effects at the molecular level.
Collapse
Affiliation(s)
- Liusha Zhao
- Center of Gerontology and Geriatrics and Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ting Luo
- Center of Gerontology and Geriatrics and Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Zhang
- Department of Gastroenterology and Hepatology and Laboratory of Inflammatory Bowel, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xinxin Fan
- Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiaoqiao Zhang
- Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haiyang Chen
- Center of Gerontology and Geriatrics and Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Lusha E, Zhao P. PCSK9 inhibitor protects against myocardial ischemia-reperfusion injury via inhibiting LRP8/GPX4-mediated ferroptosis. Clin Hemorheol Microcirc 2024:CH242444. [PMID: 39422930 DOI: 10.3233/ch-242444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Myocardial ischemia-reperfusion injury is accompanied by ferroptosis mediated by reactive oxygen species and iron ions, which aggravates myocardial tissue damage. The present study aims to explore the molecular mechanism underlying the mitigating effects f PCSK9 on myocardial ischemia-reperfusion injury. MI/R rat model and OGD/R induced H9c2 model were established. The interaction between PCSK9 inhibitor and LRP8 was predicted by STRING database and verified by Immunoprecipitation assay experiment. CCK-8 kit results confirmed that PCSK9 inhibitor effectively protected against cardiomyocyte damage induced by OGD/R. TTC and histological examination via H&E staining revealed a significant alleviation of myocardial infarction and pathological alterations upon treatment with the PCSK9 inhibitor. Besides, DCFH-DA staining and biochemical kit results showed that PCSK9 inhibitor could regulate the changes of ferroptosis related indicators [ROS, iron level, MDA, SOD] and inhibit ferroptosis. Rescue experiments showed that PCSK9 inhibitors targeted LRP8 expression and inhibited GPX4/ROS-mediated ferroptosis in I/R-induced rats. Our study suggested that PCSK9 inhibitors could attenuate myocardial I/R injury, with the underlying mechanism intimately tied to the targeted modulation of LRP8/GPX4-mediated ferroptosis.
Collapse
Affiliation(s)
- E Lusha
- Department of Cardiology, Inner Mongolia People's Hospital, Huhhot, China
| | - Ping Zhao
- Department of Cardiology, Inner Mongolia People's Hospital, Huhhot, China
| |
Collapse
|
16
|
Fang C, Liu X, Zhang F, Song T. Baicalein Inhibits Cerebral Ischemia-Reperfusion Injury through SIRT6-Mediated FOXA2 Deacetylation to Promote SLC7A11 Expression. eNeuro 2024; 11:ENEURO.0174-24.2024. [PMID: 39299807 PMCID: PMC11470267 DOI: 10.1523/eneuro.0174-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024] Open
Abstract
Ischemic stroke (IS) poses a serious threat to patient survival. The inhibition of ferroptosis can effectively alleviate ischemia-reperfusion (I/R) injury, suggesting potential targets in the ferroptosis pathway for the treatment of IS. In this study, MCAO/R mice and OGD/R-induced HT22 cell were constructed. It was found that baicalein decreased ROS, MDA, and Fe2+ levels, upregulated GSH levels, and enhanced the expression of ferroptosis-related proteins (GPX4 and SLC7A11), downregulated the expression of proapoptotic proteins (Bax, cytochrome c, and cleaved caspase-3), and upregulated the expression of an antiapoptotic protein (Bcl-2), ameliorating cerebral I/R injury. In animal and cell models, Sirtuin6 (SIRT6) is downregulated, and Forkhead boxA2 (FOXA2) expression and acetylation levels are abnormally upregulated. SIRT6 inhibited FOXA2 expression and acetylation. Baicalein promoted FOXA2 deacetylation by upregulating SIRT6 expression. FOXA2 transcriptionally inhibits SLC7A11 expression. In conclusion, baicalein inhibited apoptosis and partially suppressed the role of ferroptosis to alleviate cerebral I/R injury via SIRT6-mediated FOXA2 deacetylation to promote SLC7A11 expression.
Collapse
Affiliation(s)
- Cuini Fang
- Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province 410000, People's Republic of China
| | - Xirong Liu
- Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province 410000, People's Republic of China
| | - Fuxiu Zhang
- Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province 410000, People's Republic of China
| | - Tao Song
- Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province 410000, People's Republic of China
| |
Collapse
|
17
|
Xiao F, Li HL, Yang B, Che H, Xu F, Li G, Zhou CH, Wang S. Disulfidptosis: A new type of cell death. Apoptosis 2024; 29:1309-1329. [PMID: 38886311 PMCID: PMC11416406 DOI: 10.1007/s10495-024-01989-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2024] [Indexed: 06/20/2024]
Abstract
Disulfidptosis is a novel form of cell death that is distinguishable from established programmed cell death pathways such as apoptosis, pyroptosis, autophagy, ferroptosis, and oxeiptosis. This process is characterized by the rapid depletion of nicotinamide adenine dinucleotide phosphate (NADPH) in cells and high expression of solute carrier family 7 member 11 (SLC7A11) during glucose starvation, resulting in abnormal cystine accumulation, which subsequently induces andabnormal disulfide bond formation in actin cytoskeleton proteins, culminating in actin network collapse and disulfidptosis. This review aimed to summarize the underlying mechanisms, influencing factors, comparisons with traditional cell death pathways, associations with related diseases, application prospects, and future research directions related to disulfidptosis.
Collapse
Affiliation(s)
- Fei Xiao
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hui-Li Li
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Department of Emergency, The State Key Laboratory for Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Bei Yang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hao Che
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Fei Xu
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Gang Li
- Pediatric Cardiac Center, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Cheng-Hui Zhou
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Sheng Wang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
- Linzhi People's Hospital, Linzhi, Tibet, China.
| |
Collapse
|
18
|
Hou Q, Ouyang S, Xie Z, He Y, Deng Y, Guo J, Yu P, Tan X, Ma W, Li P, Yu J, Mo Q, Zhang Z, Chen D, Lin X, Liu Z, Chen X, Peng T, Li L, Xie W. Exosome is a Fancy Mobile Sower of Ferroptosis. J Cardiovasc Transl Res 2024; 17:1067-1082. [PMID: 38776048 DOI: 10.1007/s12265-024-10508-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/01/2024] [Indexed: 10/29/2024]
Abstract
Exosomes, nano-sized small extracellular vesicles, have been shown to serve as mediators between intercellular communications by transferring bioactive molecules, such as non-coding RNA, proteins, and lipids from secretory to recipient cells, modulating a variety of physiological and pathophysiological processes. Recent studies have gradually demonstrated that altered exosome charges may represent a key mechanism driving the pathological process of ferroptosis. This review summarizes the potential mechanisms and signal pathways relevant to ferroptosis and then discusses the roles of exosome in ferroptosis. As well as transporting iron, exosomes may also indirectly convey factors related to ferroptosis. Furthermore, ferroptosis may be transmitted to adjacent cells through exosomes, resulting in cascading effects. It is expected that further research on exosomes will be conducted to explore their potential in ferroptosis and will lead to the creation of new therapeutic avenues for clinical diseases.
Collapse
Affiliation(s)
- Qin Hou
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Siyu Ouyang
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhongcheng Xie
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yinling He
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yunong Deng
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jiamin Guo
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Panpan Yu
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xiaoqian Tan
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Wentao Ma
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Pin Li
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jiang Yu
- Class of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Qinger Mo
- Class of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhixia Zhang
- Class of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Dandan Chen
- Class of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xiaoyan Lin
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhiyang Liu
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xi Chen
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Tianhong Peng
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Liang Li
- Department of Physiology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Wei Xie
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
19
|
He C, Wang T, Han Y, Zuo C, Wang G. Jun-activated SOCS1 enhances ubiquitination and degradation of CCAAT/enhancer-binding protein β to ameliorate cerebral ischaemia/reperfusion injury. J Physiol 2024; 602:4959-4985. [PMID: 39197117 DOI: 10.1113/jp285673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 06/18/2024] [Indexed: 08/30/2024] Open
Abstract
This study investigates the molecular mechanisms behind ischaemia/reperfusion (I/R) injury in the brain, focusing on neuronal apoptosis. It scrutinizes the role of the Jun proto-oncogene in apoptosis, involvement of SOCS1 in neural precursor cell accumulation in ischaemic regions, and the upregulation of C-EBPβ in the hippocampus following I/R. Key to the study is understanding how Jun controls C-EBPβ degradation via SOCS1, potentially offering new clinical treatment avenues for I/R. Techniques such as mRNA sequencing, KEGG enrichment analysis and protein-protein interaction (PPI) in mouse models have indicated involvement of Jun (AP-1) in I/R-induced cerebral damage. The study employs middle cerebral artery occlusion in different mouse models and oxygen-glucose deprivation/reoxygenation in cortical neurons to examine the impacts of Jun and SOCS1 manipulation on cerebral I/R injury and neuronal damage. The findings reveal that I/R reduces Jun expression in the brain, but its restoration lessens cerebral I/R injury and neuron death. Jun activates SOCS1 transcriptionally, leading to C-EBPβ degradation, thereby diminishing cerebral I/R injury through the SOCS1/C-EBPβ pathway. These insights provide a deeper understanding of post-I/R cerebral injury mechanisms and suggest new therapeutic targets for cerebral I/R injury. KEY POINTS: Jun and SOCS1 are poorly expressed, and C-EBPβ is highly expressed in ischaemia/reperfusion mouse brain tissues. Jun transcriptionally activates SOCS1. SOCS1 promotes the ubiquitination-dependent C-EBPβ protein degradation. Jun blunts oxygen-glucose deprivation/reoxygenation-induced neuron apoptosis and alleviates neuronal injury. This study provides a theoretical basis for the management of post-I/R brain injury.
Collapse
Affiliation(s)
- Chuan He
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, P.R. China
| | - Tie Wang
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, P.R. China
| | - Yanwu Han
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, P.R. China
| | - Changyang Zuo
- Department of Neurosurgery, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, P.R. China
| | - Guangming Wang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
20
|
Li Y, Huang L, Li J, Li S, Lv J, Zhong G, Gao M, Yang S, Han S, Hao W. Targeting TLR4 and regulating the Keap1/Nrf2 pathway with andrographolide to suppress inflammation and ferroptosis in LPS-induced acute lung injury. Chin J Nat Med 2024; 22:914-928. [PMID: 39428183 DOI: 10.1016/s1875-5364(24)60727-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 10/22/2024]
Abstract
Acute lung injury (ALI) is a severe inflammatory condition with a high mortality rate, often precipitated by sepsis. The pathophysiology of ALI involves complex mechanisms, including inflammation, oxidative stress, and ferroptosis, a novel form of regulated cell death. This study explores the therapeutic potential of andrographolide (AG), a bioactive compound derived from Andrographis, in mitigating Lipopolysaccharide (LPS)-induced inflammation and ferroptosis. Our research employed in vitro experiments with RAW264.7 macrophage cells and in vivo studies using a murine model of LPS-induced ALI. The results indicate that AG significantly suppresses the production of pro-inflammatory cytokines and inhibits ferroptosis in LPS-stimulated RAW264.7 cells. In vivo, AG treatment markedly reduces lung edema, decreases inflammatory cell infiltration, and mitigates ferroptosis in lung tissues of LPS-induced ALI mice. These protective effects are mediated via the modulation of the Toll-like receptor 4 (TLR4)/Kelch-like ECH-associated protein 1(Keap1)/Nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. Molecular docking simulations identified the binding sites of AG on the TLR4 protein (Kd value: -33.5 kcal·mol-1), and these interactions were further corroborated by Cellular Thermal Shift Assay (CETSA) and SPR assays. Collectively, our findings demonstrate that AG exerts potent anti-inflammatory and anti-ferroptosis effects in LPS-induced ALI by targeting TLR4 and modulating the Keap1/Nrf2 pathway. This study underscores AG's potential as a therapeutic agent for ALI and provides new insights into its underlying mechanisms of action.
Collapse
Affiliation(s)
- Yichen Li
- Life Sciences Institute, Guangxi Medical University, Nanning 530021, China
| | - Liting Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Jilang Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Siyuan Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Jianzhen Lv
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Guoyue Zhong
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal. Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China
| | - Ming Gao
- Life Sciences Institute, Guangxi Medical University, Nanning 530021, China
| | - Shilin Yang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Shan Han
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China; National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal. Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China.
| | - Wenhui Hao
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830017, China.
| |
Collapse
|
21
|
Wang TT, Yu LL, Zheng JM, Han XY, Jin BY, Hua CJ, Chen YS, Shang SS, Liang YZ, Wang JR. Berberine Inhibits Ferroptosis and Stabilizes Atherosclerotic Plaque through NRF2/SLC7A11/GPX4 Pathway. Chin J Integr Med 2024; 30:906-916. [PMID: 39167283 DOI: 10.1007/s11655-024-3666-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2024] [Indexed: 08/23/2024]
Abstract
OBJECTIVE To investigate potential mechanisms of anti-atherosclerosis by berberine (BBR) using ApoE-/- mice. METHODS Eight 8-week-old C57BL/6J mice were used as a blank control group (normal), and 56 8-week-old AopE-/- mice were fed a high-fat diet for 12 weeks, according to a completely random method, and were divided into the model group, BBR low-dose group (50 mg/kg, BBRL), BBR medium-dose group (100 mg/kg, BBRM), BBR high-dose group (150 mg/kg, BBRH), BBR+nuclear factor erythroid 2-related factor 2 (NRF2) inhibitor group (100 mg/kg BBR+30 mg/kg ML385, BBRM+ML385), NRF2 inhibitor group (30 mg/kg, ML385), and positive control group (2.5 mg/kg, atorvastatin), 8 in each group. After 4 weeks of intragastric administration, samples were collected and serum, aorta, heart and liver tissues were isolated. Biochemical kits were used to detect serum lipid content and the expression levels of malondialdehyde (MDA) and superoxide dismutase (SOD) in all experimental groups. The pathological changes of atherosclerosis (AS) were observed by aorta gross Oil Red O, aortic sinus hematoxylin-eosin (HE) and Masson staining. Liver lipopathy was observed in mice by HE staining. The morphology of mitochondria in aorta cells was observed under transmission electron microscope. Flow cytometry was used to detect reactive oxygen species (ROS) expression in aorta of mice in each group. The content of ferrous ion Fe2+ in serum of mice was detected by biochemical kit. The mRNA and protein relative expression levels of NRF2, glutathione peroxidase 4 (GPX4) and recombinant solute carrier family 7 member 11 (SLC7A11) were detected by quantitative real time polymerase chain reaction (RT-qPCR) and Western blot, respectively. RESULTS BBRM and BBRH groups delayed the progression of AS and reduced the plaque area (P<0.01). The characteristic morphological changes of ferroptosis were rarely observed in BBR-treated AS mice, and the content of Fe2+ in BBR group was significantly lower than that in the model group (P<0.01). BBR decreased ROS and MDA levels in mouse aorta, increased SOD activity (P<0.01), significantly up-regulated NRF2/SLC7A11/GPX4 protein and mRNA expression levels (P<0.01), and inhibited lipid peroxidation. Compared with the model group, the body weight, blood lipid level and aortic plaque area of ML385 group increased (P<0.01); the morphology of mitochondria showed significant ferroptosis characteristics; the serum Fe2+, MDA and ROS levels increased (P<0.05 or P<0.01), and the activity of SOD decreased (P<0.01). Compared with BBRM group, the iron inhibition effect of BBRM+ML385 group was significantly weakened, and the plaque area significantly increased (P<0.01). CONCLUSION Through NRF2/SLC7A11/GPX4 pathway, BBR can resist oxidative stress, inhibit ferroptosis, reduce plaque area, stabilize plaque, and exert anti-AS effects.
Collapse
Affiliation(s)
- Ting-Ting Wang
- Heart Center, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Li-Li Yu
- Heart Center, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Jun-Meng Zheng
- Heart Center, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Xin-Yi Han
- Heart Center, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Bo-Yuan Jin
- Heart Center, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Cheng-Jun Hua
- Heart Center, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Yu-Shan Chen
- Heart Center, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China.
| | - Sha-Sha Shang
- Heart Center, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Ya-Zhou Liang
- Heart Center, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Jian-Ru Wang
- Heart Center, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| |
Collapse
|
22
|
Jiang Z, Zhang W, Zhang J. LncRNA OIP5-AS1 regulates ferroptosis and mitochondrial dysfunction-mediated apoptosis in spinal cord injury by targeting the miR-128-3p/Nrf2 axis. Heliyon 2024; 10:e37704. [PMID: 39309798 PMCID: PMC11416499 DOI: 10.1016/j.heliyon.2024.e37704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Background Ferroptosis is an important way of neuronal cell death in acute phase and participates in the inflammatory cascade after spinal cord injury (SCI). It is reported that microRNA (miRNA) and long non-coding RNA (lncRNA) are key mediators in the regulation of ferroptosis. This study will explore the inhibitory effect of LncRNA OIP5-AS1 on ferroptosis and mitochondrial dysfunction-mediated apoptosis in SCI. Methods The ferric ammonium citrate (FAC)-induced cell model and the SCI rat model were established. The expression of LncRNA OIP5-AS1, miR-128-3p and Nrf2 were transfected to evaluated the effect on the viability and apoptosis of FAC-induced cell. The interaction between LncRNA OIP5-AS1 and miR-128-3p or miR-128-3p and Nrf2 were analyzed. In addition, expressions of markers related to ferroptosis and mitochondrial dysfunction were analyzed in vitro and in vivo. Histopathologic slide staining was used to analyze spinal cord injury in vivo. Results LncRNA OIP5-AS1 expression was abnormally down-regulated in FAC-induced SCI cell model and SCI rats. The LncRNA OIP5-AS1 deficiency induced decreased Nrf2 level by less sponging miR-128-3p, thus, aggravating spinal cord injury and inducing more apoptosis, ferroptosis and mitochondrial dysfunction in neural stem cells with SCI. However, overexpression of LncRNA OIP5-AS1 inhibited apoptosis, ferroptosis and mitochondrial dysfunction, thus effectively ameliorating spinal cord injury. Conclusion This finding demonstrates that LncRNA OIP5-AS1 overexpression could enhance the recovery of spinal cord injury by regulating the miR-128-3p/Nrf2 axis.
Collapse
Affiliation(s)
- Zhensong Jiang
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Weimin Zhang
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Jianru Zhang
- Department of Health Examination, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, China
| |
Collapse
|
23
|
Liu F, Chen Y, Huang K. Electro-acupuncture Suppresses Ferroptosis to Alleviate Cerebral Ischemia-Reperfusion Injury Through KAT3B-Mediated Succinylation of ACSL4. Appl Biochem Biotechnol 2024:10.1007/s12010-024-05063-6. [PMID: 39340629 DOI: 10.1007/s12010-024-05063-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Electro-acupuncture (EA) is identified as an effective therapeutic method for cerebral ischemia/reperfusion injury (CIRI), which is a combination of Chinese traditional acupuncture and modern electro-therapy. However, the downstream molecular mechanisms of EA in CIRI process remains largely unknown. The purpose of the present study is to unveil the therapeutic effect of EA on CIRI rat and its regulatory mechanisms. At first, we constructed middle cerebral artery occlusion (MCAO) rat models and then treated them with EA to observe the pathological changes. The results indicated that EA decreased the infarct volume (43.81 ± 3.34 vs 15.96 ± 2.22) and the neurological scores (3.33 ± 0.52 vs 1.67 ± 0.52) and suppressed the apoptosis in MCAO model rats. For ferroptosis analysis, EA decreased the Fe2 + (0.08 ± 0.01 vs 0.06 ± 0.01), MDA (36.61 ± 4.29 vs 21.72 ± 2.79), and LPS (5.25 ± 0.69 vs 2.89 ± 0.42) contents and increased the GSH (4.94 ± 1.04 vs 11.69 ± 1.88) content in MCAO model rats. We next detected whether succinylation mediated EA-treated I/R injury. According to immunoprecipitation and western blot analysis, EA treatment could lower both levels of succinylation and KAT3B in MCAO rats. Moreover, mechanism experiments unveiled that KAT3B promoted the succinylation of the ferroptosis-related protein ACSL4 at K661 site and thus stabilizing ACSL4. Finally, EA-treated MCAO rats were further injected with KAT3B expression vector. The results showed that KAT3B overexpression increased the infarct volume (31.44 ± 3.92 vs 7.94 ± 2.84) and the neurological scores (2.67 ± 0.51 vs 1.33 ± 0.51) and promoted the apoptosis in EA treated MCAO model rats. For ferroptosis analysis, KAT3B overexpression increased the Fe2 + (0.08 ± 0.01 vs 0.05 ± 0.01), MDA (29.24 ± 4.30 vs 22.06 ± 1.89), and LPO (5.07 ± 0.45 vs 2.88 ± 0.49) contents and decreased the GSH (7.86 ± 1.09 vs 11.06 ± 1.76) content in EA treated MCAO model rats. Collectively, our study demonstrates that EA plays a therapeutic role in CIRI through suppressing KAT3B-induced stabilization of ACSL4 to inhibit ferroptosis. These findings contribute to our understanding of the molecular mechanisms underlying the neuroprotective effects of EA and open new avenues for the development of innovative therapeutic strategies for CIRI.
Collapse
Affiliation(s)
- Fang Liu
- Department of Chinese Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Ying Chen
- Department of Chinese Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Kangbai Huang
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, China.
| |
Collapse
|
24
|
Liu H, Yue Q, Zhang W, Ding Q, Yang J, Lin M, Sun J. Xinglou Chengqi Decoction Protects against Cerebral Ischemia/Reperfusion Injury by Inhibiting Ferroptosis via SLC7A11/GPX4 Signaling. Adv Biol (Weinh) 2024:e2400180. [PMID: 39334526 DOI: 10.1002/adbi.202400180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/27/2024] [Indexed: 09/30/2024]
Abstract
Xinglou Chengqi decoction (XLCQD) is a Chinese formula that offers benefits in ischemic stroke. However, the underlying mechanism of the effects of XLCQD-mediated anti-ischemic stroke effects remains obscure. This study investigates the ferroptosis mechanism of XLCQD against cerebral ischemia/reperfusion (I/R) injury using rat models of middle cerebral artery occlusion/reperfusion (MCAO/R). Ferroptosis differs from traditional cell death pathways and is linked to oxidative stress-induced lipid peroxidation and glutathione (GSH) depletion, which is essential to the development of ischemic stroke. In this study, it is shown that XLCQD improves brain infarction, neurological dysfunction, and histopathological changes caused by MCAO/R exposure, and improving I/R-induced oxidative damage through inhibition of ferroptosis via (Solute Carrier Family 7 Member 11) SLC7A11/ (glutathione peroxidase 4) GPX4 pathway. Interestingly, it is found that XLCQD-mediated protection in I/R is reversed by the silence of SLC7A11. XLCQD intervention significantly promotes GSH content and suppresses Reactive Oxygen Species(ROS), iron accumulation, as well as Malondialdehyde (MDA) generation, are markedly abrogated when SLC7A11 is knockdown by SLC7A11-shRNA transfection, indicating that SLC7A11 is the main target of XLCQD to further trigger intracellular events. In conclusion, XLCQD attenuates in vivo cerebral I/R injury by reducing ferroptosis via the SLC7A11/GPX4 pathway.
Collapse
Affiliation(s)
- Hua Liu
- Department of Neurology, Yixing Traditional Chinese Medicine Hospital, Yixing, Jiangsu, 214200, China
| | - Qiyu Yue
- Division of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wenyue Zhang
- Department of Neurology, Yixing Traditional Chinese Medicine Hospital, Yixing, Jiangsu, 214200, China
| | - Qi Ding
- Department of Rehabilitation, Yixing Traditional Chinese Medicine Hospital, Yixing, Jiangsu, 214200, China
| | - Junjie Yang
- Yixing Traditional Chinese Medicine Hospital, Yixing, Jiangsu, 214200, China
| | - Mu Lin
- Yixing Traditional Chinese Medicine Hospital, Yixing, Jiangsu, 214200, China
| | - Jia Sun
- Department of Neurology, Yixing Traditional Chinese Medicine Hospital, Yixing, Jiangsu, 214200, China
| |
Collapse
|
25
|
Li Z, Xing J. Nuclear factor erythroid 2-related factor-mediated signaling alleviates ferroptosis during cerebral ischemia-reperfusion injury. Biomed Pharmacother 2024; 180:117513. [PMID: 39341075 DOI: 10.1016/j.biopha.2024.117513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 09/30/2024] Open
Abstract
Cardiac arrest (CA) is a significant challenge for emergency physicians worldwide and leads to increased morbidity and mortality rates. The poor prognosis of CA primarily stems from the complexity and irreversibility of cerebral ischemia-reperfusion injury (CIRI). Ferroptosis, a form of programmed cell death characterized by iron overload and lipid peroxidation, plays a crucial role in the progression and treatment of CIRI. In this review, we highlight the mechanisms of ferroptosis within the context of CIRI, focusing on its role as a key contributor to neuronal damage and dysfunction post-CA. We explore the crucial involvement of the nuclear factor erythroid 2-related factor (Nrf2)-mediated signaling pathway in modulating ferroptosis-associated processes during CIRI. Through comprehensive analysis of the regulatory role of Nrf2 in the cellular responses to oxidative stress, we highlight its potential as a therapeutic target for mitigating ferroptotic cell death and improving the neurological prognosis of patients experiencing CA. Furthermore, we discuss interventions targeting the Kelch-like ECH-associated protein 1/Nrf2/antioxidant response element pathway, including the use of traditional Chinese medicine and Western medicine, which demonstrate potential for attenuating ferroptosis and preserving neuronal function in CIRI. Owing to the limitations in the safety, specificity, and effectiveness of Nrf2-targeted drugs, as well as the technical difficulties and ethical constraints in obtaining the results related to the brain pathological examination of patients, most of the studies focusing on Nrf2-related regulation of ferroptosis in CIRI are still in the basic research stage. Overall, this review aims to provide a comprehensive understanding of the mechanisms underlying ferroptosis in CIRI, offering insights into novel therapeutics aimed at enhancing the clinical outcomes of patients with CA.
Collapse
Affiliation(s)
- Zheng Li
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Jihong Xing
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
26
|
Yoon HJ, Won JP, Lee HG, Seo HG. Green Onion-Derived Exosome-like Nanoparticles Prevent Ferroptotic Cell Death Triggered by Glutamate: Implication for GPX4 Expression. Nutrients 2024; 16:3257. [PMID: 39408223 PMCID: PMC11478619 DOI: 10.3390/nu16193257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
In recent years, alongside research on mammalian-derived exosomes, there has been increasing interest in the physiological activities of plant-derived exosome-like nanoparticles (PDEN). The biocompatibility, minimal side effects, and diverse bioactive ingredients contained in PDEN make them valuable as potential therapeutic agents for an extensive range of diseases. In this study, we cost-effectively isolated exosome-like nanoparticles from green onion (Allium fistulosum) using polyethylene glycol and examined their biological activity in HT-22 cells exposed to glutamate. The isolated green onion-derived exosome-like nanoparticle (GDEN) had an average diameter of 167.4 nm and a zeta potential of -16.06 mV. GDEN effectively inhibited glutamate-induced Ca2+ influx and lipid peroxidation, thereby preventing ferroptotic cell death in HT-22 mouse hippocampal cells. Additionally, GDEN reduced the intracellular iron accumulation by modulating the expression of proteins associated with iron metabolism, including transferrin receptor 1, ferroportin 1, divalent metal transporter 1, and ferritin. Notably, GDEN upregulated the expression of glutathione peroxidase 4, a potent antioxidant protein involved in ferroptosis, along with an increase in glutathione synthesis. These findings indicate that GDENs have the potential to serve as bioactives from natural sources against glutamate-induced neuronal cell death, like ferroptosis. This study advances the investigation into the potential medical applications of GDEN and may provide a new approach for the utilization of these bioactive components against neuronal disorders.
Collapse
Affiliation(s)
| | | | | | - Han Geuk Seo
- Department of Animal Food Resources, College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (H.J.Y.); (J.P.W.); (H.G.L.)
| |
Collapse
|
27
|
Zhang N, Wang Q, Lu Y, Wang F, He Z. The deubiquitinating enzyme USP11 regulates breast cancer progression by stabilizing PGAM5. Breast Cancer Res 2024; 26:135. [PMID: 39300548 DOI: 10.1186/s13058-024-01892-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
Breast cancer is common worldwide. Phosphoglycerate mutase 5 (PGAM5) belongs to the phosphoglycerate mutase family and plays an important role in many cancers. However, research on its role in breast cancer remains unclear. The present investigation highlights the significant expression of PGAM5 in breast cancer and its essential role in cell proliferation, invasion, apoptosis and the regulation of ferroptosis in breast cancer cells. Overexpression or knockdown of ubiquitin-specific protease 11 (USP11) promotes or inhibits the growth and metastasis of breast cancer cells, respectively, in vitro and in vivo. Mechanistically, USP11 stabilizes PGAM5 via de-ubiquitination, protecting it from proteasome-mediated degradation. In addition, the USP11/PGAM5 complex promotes breast cancer progression by activating iron death-related proteins, indicating that the synergy between USP11 and PGAM5 may serve as a predictor of disease outcome and provide a new treatment strategy for breast cancer.
Collapse
Affiliation(s)
- Nannan Zhang
- Department of General Surgery, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, 226000, China
| | - Quhui Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, 226000, China
| | - Yunpeng Lu
- Department of General Surgery, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, 226000, China
| | - Feiran Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, 226000, China
| | - Zhixian He
- Department of General Surgery, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, 226000, China.
| |
Collapse
|
28
|
Wang Y, Song SY, Song Y, Wang Y, Wan ZW, Sun P, Yu XM, Deng B, Zeng KH. Resveratrol Protects Müller Cells Against Ferroptosis in the Early Stage of Diabetic Retinopathy by Regulating the Nrf2/GPx4/PTGS2 Pathway. Mol Neurobiol 2024:10.1007/s12035-024-04496-8. [PMID: 39292340 DOI: 10.1007/s12035-024-04496-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
The aim of this study was to investigate the anti-ferroptotic effect of resveratrol (RSV) on retinal Müller cells (RMCs) in the early stages of diabetic retinopathy (DR) via the nuclear factor erythroid 2-related factor 2 (Nrf2)/glutathione peroxidase 4 (GPx4)/prostaglandin-endoperoxide synthase 2 (PTGS2). The retina was obtained from normal and diabetic Sprague-Dawley rats or wild-type and Nrf2 knockout (KO) diabetic mice, with or without RSV (10 mg/kg/d) treatment for 12 weeks. RMCs transfected with or without SiNrf2 were cultured with high glucose and RSV (20 mM). The retinal neurofunctional changes were measured by electroretinogram (ERG). The retinal inner nuclear layer cell mitochondrial morphological changes were detected by transmission electron microscopy. The cell viabilities were measured by cell counting kit-8 (CCK-8) assay. The levels of Fe2+, malonic dialdehyde (MDA), and glutathione (GSH) were measured by colorimetric method. The expression of Nrf2, GPx4, and PTGS2 was detected by quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, and immunocytochemistry. In vivo, RSV inhibited retinal neurofunctional changes and mitochondrial morphological changes; decreased Fe2+, MDA, and PTGS2; and increased GSH, Nrf2, and GPx4 in retina of DM rats. In vitro, RSV decreased MDA and PTGS2 and increased cell viability, GSH, Nrf2, and GPx4. In vivo and vitro, the role of Nrf2-regulated signaling pathway in anti-ferroptosis by RSV was further confirmed using Nrf2 KO mice and pre-transfected SiNrf2 in RMCs. These findings indicated that RSV is a potential therapeutic option for DR and that Nrf2/GPx4/PTGS2 plays a role in the anti-ferroptosis mechanism of RSV on RMCs.
Collapse
Affiliation(s)
- Yi Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Si-Yuan Song
- Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yi Song
- Department of Clinical Nutrition, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yuan Wang
- Department of Clinical Nutrition, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Zheng-Wei Wan
- Institute of Health Management & Department of Health Management Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Ping Sun
- Institute of Health Management & Department of Health Management Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xue-Mei Yu
- Department of Clinical Nutrition, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Bo Deng
- Department of Clinical Nutrition, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Kai-Hong Zeng
- Institute of Health Management & Department of Health Management Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
29
|
Zhang X, Zheng G, Zhou Z, Zhu M, Tang S. Co-delivery of siRNA and cisplatin via electrospun Nanofibrous membranes for synergistic treatment of malignant melanoma. Heliyon 2024; 10:e37517. [PMID: 39290263 PMCID: PMC11407083 DOI: 10.1016/j.heliyon.2024.e37517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/13/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
Tumor recurrence and metastasis remain formidable challenges in clinical oncology. Although surgery is an effective treatment for early-stage solid tumors, residual cancer cells can lead to subsequent recurrence or metastasis. Conventional treatments for melanoma, such as anti-tumor medications and gene therapy, have distinct limitations. The rapid systemic distribution of anti-tumor drugs poses a significant challenge, often resulting in notable side effects and inadequate drug concentrations at the tumor site. Melanoma (MM), a deadly form of skin cancer, is known for its high mortality rate. In this study, we propose a novel strategy for treating MM by combining the controlled release of chemotherapeutic drugs encapsulated within Metal-Organic Frameworks (MOFs) and liposomes with gene therapy targeting Minichromosome Maintenance Proteins 4 (MCM4) using electrospinning and surface modification techniques. In vitro and in vivo results confirmed that this hierarchical membrane system can effectively deliver therapeutic MCM4 siRNA and release cisplatin to inhibit tumor growth. Furthermore, we demonstrated that MCM4 silencing promoted the sensitivity of melanoma cells to ferroptosis both in vitro and in vivo. The proposed strategy, by allowing for a controlled and sustained release of medication, could alleviate the challenges in drug delivery and aid in prevent tumor recurrence.
Collapse
Affiliation(s)
- Xuewei Zhang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, 515000, China
| | - Guoxing Zheng
- Department of Spine Surgery, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, 515000, China
| | - Zibin Zhou
- Department of Spine Surgery, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, 515000, China
| | - Mingyu Zhu
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Shijie Tang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, 515000, China
| |
Collapse
|
30
|
Sun J, Zhao K, Zhang W, Guo C, Liu H. Ecdysterone improves oxidative damage induced by acute ischemic stroke via inhibiting ferroptosis in neurons through ACSL4. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118204. [PMID: 38679397 DOI: 10.1016/j.jep.2024.118204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/05/2024] [Accepted: 04/13/2024] [Indexed: 05/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acute ischemic stroke (AIS) is a prominent cause of disability and mortality around the world. Achyranthes bidentata Blume, a regularly prescribed traditional Chinese herb, plays a significant role in traditional Chinese stroke therapy due to its ability to promote blood circulation and remove stasis. Ecdysterone (EDS) is one of the key active components in Achyranthes bidentata Blume, which exhibits antioxidant and anti-cerebral hypoxia properties. However, whether EDS improves AIS and the mechanism of action of AIS is still unclear. AIM OF THE STUDY The objective of this study was to observe whether EDS ameliorates oxidative damage caused by AIS by inhibiting ferroptosis in neurons via ACSL4. MATERIALS AND METHODS In vivo, the Middle cerebral artery occlusion (MCAO) rat model was established for research. After treatment with EDS, Neurologic score, TTC, HE and FJC staining were performed, followed by measurements of oxidative stress-related indicators, the content of Fe2+, iron deposition levels and expression of ACSL4, NCOA4 and FTH1 in brain tissue. In vitro, oxygen-glucose deprivation and reperfusion (OGD/R) cell model was established. After treatment with EDS, cell viability, oxidative stress-related indicators, the content of Fe2+ and expression of ACSL4, NCOA4 and FTH1 were detected. In addition, the overexpression of ACSL4 and CETSA technology further elucidated that EDS improves AIS through ACSL4. RESULTS The results showed that the treatment of EDS could improve the oxidative damage of MCAO rats by inhibiting ferroptosis, and then improve AIS. Importantly, EDS inhibited ferroptosis via ACSL4, thereby inhibiting oxidative stress in MCAO rats or OGD/R-induced PC12 cells. CONCLUSIONS These results provide evidence that EDS ameliorates oxidative damage caused by AIS by inhibiting ferroptosis via ACSL4, and provide new insights into the potential use of EDS as an effective drug development candidate for AIS.
Collapse
Affiliation(s)
- Jia Sun
- Department of Encephalopathy, Yixing Traditional Chinese Medicine Hospital, Yixing, 214200, China
| | - Keke Zhao
- College of Pharmacy, Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Wenyue Zhang
- Department of Encephalopathy, Yixing Traditional Chinese Medicine Hospital, Yixing, 214200, China
| | - Chen Guo
- Department of Brain Surgery, Yixing Traditional Chinese Medicine Hospital, Yixing, 214200, China
| | - Hua Liu
- Department of Encephalopathy, Yixing Traditional Chinese Medicine Hospital, Yixing, 214200, China.
| |
Collapse
|
31
|
Wang Z, Mao Y, Zang Y, Zha Y, Sun J, Wei Z, He S, Zhang X, Wang M, Yang Y. Transcriptomic analysis reveals the mechanism of isorhamnetin in the treatment of diabetes mellitus erectile dysfunction. Free Radic Biol Med 2024; 224:366-381. [PMID: 39233218 DOI: 10.1016/j.freeradbiomed.2024.08.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/17/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
PURPOSE Exploring the therapeutic effect and mechanism of isorhamnetin in the treatment of DMED. METHODS Using a high glucose environment to induce endothelial cells damage in the corpus cavernosum, and combining with intervention agents such as ferroptosis inhibitors to observe the process of cell damage and repair, evaluating cell status through CCK-8 and DAPI; To establish the STZ-induced diabetes rat model and detect the erectile function and tissue changes; Perform transcriptomic sequencing on rat models and samples treated with isorhamnetin to analyze differentially expressed genes and their GO functions; Identify critical pathways by combining with the ferroptosis database; Flow cytometry was used to detect ROS and mitochondrial membrane potential, and RT-PCR was used to verify gene expression, Seahorse detects mitochondrial oxygen consumption rate, revealing the mechanism of action of isorhamnetin. RESULTS Ferroptosis inhibitors and isorhamnetin can effectively reverse the damage of corpus cavernosum endothelial cells induced by high glucose and ferroptosis agonists. Isorhamnetin has the ability to reinstate the erectile function of diabetic rats, while enhancing the quantity of endothelial cells and refining the morphology of collagen fibers. Immunohistochemistry revealed that ferroptosis existed in the penis tissue of diabetes rats. Transcriptomic analysis showed that isorhamnetin improves gene expression in DM rats by regulating genes such as GFER, IGHM, GPX4 and HMOX1, involving multiple pathways and biological processes. Flow cytometry and RT-PCR confirmed that isorhamnetin can reduce reactive oxygen species levels, restore essential gene expression, improve mitochondrial membrane potential, and alleviate oxidative stress and ferroptosis. Seahorse detection found that isorhamnetin can restore mitochondrial oxygen consumption rate. CONCLUSION Isorhamnetin attenuates high glucose damage to cavernous endothelial cells by inhibiting ferroptosis and oxidative stress, restores erectile function and improves tissue morphology in diabetic rats, and its multi-pathway and multi-targeting regulatory mechanism suggests that it is promising to be an effective drug for the treatment of DMED.
Collapse
Affiliation(s)
- Zhuo Wang
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yinhui Mao
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yueyue Zang
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yarong Zha
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Juntao Sun
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Zhitao Wei
- Department of Urology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Shuangyan He
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xiangxiang Zhang
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Mingxing Wang
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130021, China.
| | - Yong Yang
- Changchun University of Chinese Medicine, Changchun, 130117, China; Department of Urology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, China.
| |
Collapse
|
32
|
Wang Z, Wang B, Jin X. Amentoflavone attenuates homocysteine-induced neuronal ferroptosis-mediated inflammatory response: Involvement of the SLC7A11/GPX4 axis activation. Brain Res Bull 2024; 215:111005. [PMID: 38852649 DOI: 10.1016/j.brainresbull.2024.111005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Elevated homocysteine (Hcy) levels, referred to hyperhomocysteinemia, are associated with an increased risk of several neurological disorders. Ferroptosis and inflammation play a vital role in Hcy-induced neuronal dysfunction. Amentoflavone (AMF), an active natural biflavone compound, exhibits antioxidative, anti-inflammatory, and neuroprotective activities. This study aimed to explore the potential effects of AMF on Hcy-induced neuronal injury, with a particular focus on the underlying mechanisms involving ferroptosis and inflammation. We assessed neuronal damage in HT22 cells by measuring cell viability, lactate dehydrogenase (LDH) release, and proliferation rates. Additionally, we evaluated oxidative stress markers including the levels of reactive oxygen species (ROS), MitoSOX, mitochondrial membrane potential (MMP), malondialdehyde (MDA), and glutathione (GSH). Iron metabolism and ferroptosis-related gene expressions (Ptgs2, Tfr1, and Fth1) were quantified. TheSLC7A11/GPX4 axis was also detected. Our results showed that AMF treatment dramatically mitigated Hcy-induced neuronal injury by increasing cell viability, decreasing LDH release, and promoting cell proliferation. AMF treatment also reduced Hcy-induced oxidative stress and lipid peroxidation, as evidenced by reduced ROS, MitoSOX, MMP, and MDA levels, along with an increased GSH content in HT22 cells. In addition, AMF treatment reduced iron content and ferroptosis-related gene mRNA levels. However, Erastin, a ferroptosis inducer, blocked these neuroprotective effects of AMF. Ferroptosis inhibitor Ferrostatin-1 also attenuated Hcy-induced ferroptosis. Moreover, both AMF and Ferrostatin-1 effectively mitigated Hcy-induced inflammation, which was again antagonized by Erastin. Mechanistically, AMF treatment enhanced SLC7A11/GPX4 axis in Hcy-treated HT22 cells. In conclusion, these findings suggest that AMF possesses neuroprotection against Hcy-induced injury primarily by inhibiting ferroptosis-mediated inflammation, partly through the activation of SLC7A11/GPX4 axis.
Collapse
Affiliation(s)
- Ziyao Wang
- The Affiliated Nanhua Hospital, Department of Ultrasound Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; The First Affiliated Hospital, Department of Ultrasound Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Bo Wang
- The First Affiliated Hospital, Institute of Anesthesiology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Xin Jin
- The Affiliated Nanhua Hospital, Department of Anesthesiology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
33
|
Li Q, Zhang Y, Liu P, Wang C, Pan Y, Nie Y, Tang W, Wang Q, Song Q. Astragaloside IV attenuates ferroptosis and protects against iron overload-induced retinal injury. Exp Eye Res 2024; 246:110021. [PMID: 39117136 DOI: 10.1016/j.exer.2024.110021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/27/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Retinal injury may be exacerbated by iron overload. Astragaloside IV (AS-IV) has potential applications in the food and healthcare industry to promote eye health. We sought to determine the mechanisms responsible for the protective effects of AS-IV on photoreceptor and retinal pigment epithelium cell death induced by iron overload. We conducted in vitro and in vivo experiments involving AS-IV pretreatment. We tested AS-IV for its ability to protect iron-overload mice from retinal injury. In particular, we analyzed the effects of AS-IV on iron overload-induced ferroptosis in 661W and ARPE-19 cells. AS-IV not only attenuated iron deposition and retinal injury in iron-overload mice but also effectively reduced iron overload-induced ferroptotic cell death in 661W and ARPE-19 cells. AS-IV effectively prevented ferroptosis by inhibiting iron accumulation and lipid peroxidation. In addition, inhibiting nuclear factor erythroid 2-related factor 2 (Nrf2) eliminated the protective effect of AS-IV against ferroptosis. The results suggest that ferroptosis might be a significant cause of retinal cell death associated with iron overload. AS-IV provides protection from iron overload-induced ferroptosis, partly by activating the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Qiang Li
- Eye School of Chengdu University of Traditional Chinese Medicine, No.37 Twelve Bridge Road, Chengdu, 610075, Sichuan, China; Ineye Hospital of Chengdu University of Traditional Chinese Medicine, No.8 Xinghui Road, Chengdu, 610084, Sichuan, China; Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with Traditional Chinese Medicine, No.37 Twelve Bridge Road, Chengdu, 610075, Sichuan, China; Guangzhou Ineye Vision Health Innovation Institute, No.2 Fenghuang 3rd Road, Guangzhou, 510555, Guangdong, China
| | - Yuanyuan Zhang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, No.326 Xinshi South Road, Shijiazhuang, 050200, Hebei, China
| | - Pan Liu
- Department of General Surgery, Chengdu First People's Hospital/Chengdu Integrated TCM & Western Medicine Hospital, No. 18, Wangxiang North Road, Chengdu, 610041, Sichuan, China
| | - Cong Wang
- Eye School of Chengdu University of Traditional Chinese Medicine, No.37 Twelve Bridge Road, Chengdu, 610075, Sichuan, China
| | - Yuxu Pan
- Sichuan Vocational College of Health and Rehabilitation, No.3 Deming Road, Zigong, 643030, Sichuan, China
| | - Yingying Nie
- Eye School of Chengdu University of Traditional Chinese Medicine, No.37 Twelve Bridge Road, Chengdu, 610075, Sichuan, China; Ineye Hospital of Chengdu University of Traditional Chinese Medicine, No.8 Xinghui Road, Chengdu, 610084, Sichuan, China
| | - Wen Tang
- Eye School of Chengdu University of Traditional Chinese Medicine, No.37 Twelve Bridge Road, Chengdu, 610075, Sichuan, China
| | - Qun Wang
- Eye School of Chengdu University of Traditional Chinese Medicine, No.37 Twelve Bridge Road, Chengdu, 610075, Sichuan, China; Ineye Hospital of Chengdu University of Traditional Chinese Medicine, No.8 Xinghui Road, Chengdu, 610084, Sichuan, China; Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with Traditional Chinese Medicine, No.37 Twelve Bridge Road, Chengdu, 610075, Sichuan, China
| | - Qiongtao Song
- Eye School of Chengdu University of Traditional Chinese Medicine, No.37 Twelve Bridge Road, Chengdu, 610075, Sichuan, China; Ineye Hospital of Chengdu University of Traditional Chinese Medicine, No.8 Xinghui Road, Chengdu, 610084, Sichuan, China; Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with Traditional Chinese Medicine, No.37 Twelve Bridge Road, Chengdu, 610075, Sichuan, China; Guangzhou Ineye Vision Health Innovation Institute, No.2 Fenghuang 3rd Road, Guangzhou, 510555, Guangdong, China.
| |
Collapse
|
34
|
Sun M, Chen J, Liu F, Li P, Lu J, Ge S, Wang L, Zhang X, Wang X. Butylphthalide inhibits ferroptosis and ameliorates cerebral Ischaemia-Reperfusion injury in rats by activating the Nrf2/HO-1 signalling pathway. Neurotherapeutics 2024; 21:e00444. [PMID: 39353831 DOI: 10.1016/j.neurot.2024.e00444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 10/04/2024] Open
Abstract
This study aims to investigate whether butylphthalide can inhibit ferroptosis and ameliorate cerebral ischaemia-reperfusion (I/R) injury in rats by activating the nuclear factor erythroid 2-related factor 2 (Nrf2) / heme oxygenase-1 (HO-1) signalling pathway, known for its antioxidative and cytoprotective properties. Middle cerebral artery occlusion reperfusion (MCAO/R) rat models were established. Male rats were randomly divided into five groups: a sham-operated group (sham), MCAO/R group, MCAO/R + ML385 (Nrf2-specific inhibitor) group, MCAO/R + NBP (butylphthalide) group and MCAO/R + ML385 + NBP group. The effect of butylphthalide on cerebral I/R injury was evaluated using neurological deficit scores. The expression levels of Nrf2, HO-1, glutathione peroxidase 4 (GPX4), acyl-CoA synthetase long-chain family member 4 (ACSL4) and transferrin receptor 1 (TfR1) protein were detected using Western blot. Moreover, the expression levels of GPX4, HO-1 and TfR1 mRNA were determined through real-time fluorescence quantitative reverse transcription polymerase chain reaction. The distribution of Nrf2, HO-1, GPX4 and TfR1 was detected using immunohistochemical staining. The levels of iron and related lipid peroxidation indexes, such as reduced glutathione, reactive oxygen species, malondialdehyde and nitric oxide, were measured using a kit. The changes in mitochondria were observed through transmission electron microscopy. Butylphthalide treatment significantly improved neurological dysfunction, reduced cerebral infarction volume and mitigated histopathological damage in MCAO/R rats. It induced the nuclear translocation of Nrf2 and upregulated HO-1 expression, which was attenuated by ML385. Butylphthalide also attenuated lipid peroxidation, iron accumulation and mitochondrial damage induced by MCAO/R. The expression of GPX4, ACSL4 and TfR1 proteins, as well as their mRNA levels, was modulated through butylphthalide treatment, with improvements observed in mitochondrial morphology. Butylphthalide exerts neuroprotective effects by attenuating neurological dysfunction and ferroptosis in MCAO/R rats through the activation of the Nrf2/HO-1 pathway and inhibition of lipid peroxidation and iron accumulation.
Collapse
Affiliation(s)
- Meilin Sun
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China; Department of Neurology, Xingtai People's Hospital, Xingtai 054001, Hebei, China
| | - Junmin Chen
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Fan Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Pei Li
- Department of Neurology, Tangshan Gongren Hospital, Tangshan 063000, Hebei, China
| | - Jundong Lu
- Department of Neurology, Baoding First Central Hospital, Baoding 071000, Hebei, China
| | - Shihao Ge
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Lele Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Xin Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Xiaopeng Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China.
| |
Collapse
|
35
|
Peng C, Kang S, Jiang M, Yang M, Gong X. Antioxidant Carbon Dots and Ursolic Acid Co-Encapsulated Liposomes Composite Hydrogel for Alleviating Adhesion Formation and Enhancing Tendon Healing in Tendon Injury. Int J Nanomedicine 2024; 19:8709-8727. [PMID: 39220191 PMCID: PMC11365533 DOI: 10.2147/ijn.s466312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
Background The formation of adhesion after tendon injury represents a major obstacle to tendon repair, and currently there is no effective anti-adhesion method in clinical practice. Oxidative stress, inflammation, and fibrosis can occur in tendon injury and these factors can lead to tendon adhesion. Antioxidant carbon dots and ursolic acid (UA) both possess antioxidant and anti-inflammatory properties. In this experiment, we have for the first time created RCDs/UA@Lipo-HAMA using red fluorescent carbon dots and UA co-encapsulated liposomes composite hyaluronic acid methacryloyl hydrogel. We found that RCDs/UA@Lipo-HAMA could better attenuate adhesion formation and enhance tendon healing in tendon injury. Materials and Methods RCDs/UA@Lipo-HAMA were prepared and characterized. In vitro experiments on cellular oxidative stress and fibrosis were performed. Reactive oxygen species (ROS), and immunofluorescent staining of collagens type I (COL I), collagens type III (COL III), and α-smooth muscle actin (α-SMA) were used to evaluate anti-oxidative and anti-fibrotic abilities. In vivo models of Achilles tendon injury repair (ATI) and flexor digitorum profundus tendon injury repair (FDPI) were established. The major organs and blood biochemical indicators of rats were tested to determine the toxicity of RCDs/UA@Lipo-HAMA. Biomechanical testing, motor function analysis, immunofluorescence, and immunohistochemical staining were performed to assess the tendon adhesion and repair after tendon injury. Results In vitro, the RCDs/UA@Lipo group scavenged excessive ROS, stabilized the mitochondrial membrane potential (ΔΨm), and reduced the expression of COL I, COL III, and α-SMA. In vivo, assessment results showed that the RCDs/UA@Lipo-HAMA group improved collagen arrangement and biomechanical properties, reduced tendon adhesion, and promoted motor function after tendon injury. Additionally, the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) in the RCDs/UA@Lipo-HAMA group increased; the levels of cluster of differentiation 68 (CD68), inducible Nitric Oxide Synthase (iNOS), COL III, α-SMA, Vimentin, and matrix metallopeptidase 2 (MMP2) decreased. Conclusion In this study, the RCDs/UA@Lipo-HAMA alleviated tendon adhesion formation and enhanced tendon healing by attenuating oxidative stress, inflammation, and fibrosis. This study provided a novel therapeutic approach for the clinical treatment of tendon injury.
Collapse
Affiliation(s)
- Cheng Peng
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Province Key Laboratory on Tissue Repair, Reconstruction and Regeneration, The First Hospital of Jilin University, Jilin University, Changchun, 130021, People’s Republic of China
| | - Shiqi Kang
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Province Key Laboratory on Tissue Repair, Reconstruction and Regeneration, The First Hospital of Jilin University, Jilin University, Changchun, 130021, People’s Republic of China
| | - Meijun Jiang
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Province Key Laboratory on Tissue Repair, Reconstruction and Regeneration, The First Hospital of Jilin University, Jilin University, Changchun, 130021, People’s Republic of China
| | - Mingxi Yang
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Province Key Laboratory on Tissue Repair, Reconstruction and Regeneration, The First Hospital of Jilin University, Jilin University, Changchun, 130021, People’s Republic of China
| | - Xu Gong
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Province Key Laboratory on Tissue Repair, Reconstruction and Regeneration, The First Hospital of Jilin University, Jilin University, Changchun, 130021, People’s Republic of China
| |
Collapse
|
36
|
Yao D, Bao L, Wang S, Tan M, Xu Y, Wu T, Zhang Z, Gong K. Isoliquiritigenin alleviates myocardial ischemia-reperfusion injury by regulating the Nrf2/HO-1/SLC7a11/GPX4 axis in mice. Free Radic Biol Med 2024; 221:1-12. [PMID: 38734270 DOI: 10.1016/j.freeradbiomed.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Ischemia-reperfusion (I/R) injury, a multifaceted pathological process, occurs when the prolongation of reperfusion duration triggers ferroptosis-mediated myocardial damage. Isoliquiritigenin (ISL), a single flavonoid from licorice, exhibits a wide range of pharmacological impacts, but its function in ferroptosis caused by myocardial I/R injury remains unclear. This study delved into the protective effect of ISL on myocardial I/R injury-induced ferroptosis and its mechanism. Neonatal mouse cardiomyocytes (NMCM) underwent hypoxia/reoxygenation (H/R) to simulate the pathological process of myocardial I/R. ISL significantly attenuated H/R-triggered production of reactive oxygen species in NMCM, reduced the expression of malondialdehyde and the activity of lactate dehydrogenase, enhanced superoxide dismutase and catalase activity, and increased the expression of nuclear factor E2-related factor 2 (Nrf2) and its downstream heme oxygenase 1 (HO-1), thereby mitigating oxidative stress damage. CCK8 experiment revealed that the ferroptosis inhibitor Ferrostatin-1 significantly improved myocardial cell viability after 24 h of reoxygenation, and ISL treatment showed a similar effect. ISL reduced intracellular free iron accumulation, up-regulated glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11) expression, and inhibited lipid peroxidation accumulation, thereby alleviating ferroptosis. The Nrf2-specific inhibitor ML385 counteracted ISL's defensive role against H/R-triggered oxidative stress damage and ferroptosis. In vivo experiments further confirmed that by regulating the translocation of Nrf2 into the nucleus, ISL treatment increased the levels of HO-1, GPX4, and SLC7A11, inhibited the expression of ACSL4, Drp1 to exert the antioxidant role, alleviated mitochondrial damage, and ferroptosis, ultimately reducing myocardial infarction area and injury induced by I/R. ML385 nearly abolished ISL's protective impact on the I/R model by inhibiting Nrf2 function. In summary, ISL is capable of mitigating oxidative stress, mitochondrial damage, and cardiomyocyte ferroptosis caused by I/R, thereby reducing myocardial injury. A key mechanism includes triggering the Nrf2/HO-1/SLC7A11/GPX4 pathway to prevent oxidative stress damage and cardiomyocyte ferroptosis caused by I/R.
Collapse
Affiliation(s)
- Deshan Yao
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou Key Lab of Innovation Frontiers in Cardiovascular Disease, Yangzhou, Jiangsu, 225001, China
| | - Liuxiang Bao
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou Key Lab of Innovation Frontiers in Cardiovascular Disease, Yangzhou, Jiangsu, 225001, China
| | - Sichuan Wang
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou Key Lab of Innovation Frontiers in Cardiovascular Disease, Yangzhou, Jiangsu, 225001, China
| | - Meng Tan
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou Key Lab of Innovation Frontiers in Cardiovascular Disease, Yangzhou, Jiangsu, 225001, China
| | - Yuanyuan Xu
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou Key Lab of Innovation Frontiers in Cardiovascular Disease, Yangzhou, Jiangsu, 225001, China; Heze Medical College, Shandong, 274000, China
| | - Tianxu Wu
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou Key Lab of Innovation Frontiers in Cardiovascular Disease, Yangzhou, Jiangsu, 225001, China
| | - Zhengang Zhang
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou Key Lab of Innovation Frontiers in Cardiovascular Disease, Yangzhou, Jiangsu, 225001, China
| | - Kaizheng Gong
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou Key Lab of Innovation Frontiers in Cardiovascular Disease, Yangzhou, Jiangsu, 225001, China.
| |
Collapse
|
37
|
Tang R, Lin L, Liu Y, Li H. Bibliometric and visual analysis of global publications on kaempferol. Front Nutr 2024; 11:1442574. [PMID: 39221164 PMCID: PMC11362042 DOI: 10.3389/fnut.2024.1442574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Kaempferol, a flavonoid found in numerous foods and medicinal plants, offers a range of health benefits such as anti-inflammatory, antioxidant, antiviral, anticancer, cardioprotective, and neuroprotective effects. Methods Herein, a bibliometric and visual analysis of global publications on kaempferol was performed to map the evolution of frontiers and hotspots in the field. Using the search string TS = kaempferol, bibliometric data for this analysis was extracted from the Web of Science Core Collection database and analyzed using the VOSviewer, CiteSpace, and Scimago Graphica software. Results As a result, by February 26, 2024, 11,214 publications were identified, comprising articles (n = 10,746, 96%) and review articles (n = 468, 4%). Globally, the annual number of kaempferol publications surpassed 100 per year since 2000, exceeded 500 per year since 2018, and further crossed the threshold of 1,000 per year starting in 2022. The major contributing countries were China, the United States of America, and India, while the top three institutes of the citations of kaempferol were the Chinese Academy of Sciences, Consejo Superio de Investigaciones Cientficas, and Uniersidade do Porto. These publications were mainly published in agricultural and food chemistry journals, food chemistry, and phytochemistry. Discussion The keywords frequently mentioned include phenolic compounds, antioxidant activity, flavonoids, NF-kappa B, inflammation, bioactive compounds, etc. Anti-inflammation, anti-oxidation, and anti-cancer have consistently been the focus of kaempferol research, while cardiovascular protection, neuroprotection, antiviral, and anti-bacterial effects have emerged as recent highlights. The field of kaempferol research is thriving.
Collapse
Affiliation(s)
- Ruying Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Longfei Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, China
| |
Collapse
|
38
|
Wu JW, Gao W, Shen LP, Chen YL, Du SQ, Du ZY, Zhao XD, Lu XJ. Leonurus japonicus Houtt. modulates neuronal apoptosis in intracerebral hemorrhage: Insights from network pharmacology and molecular docking. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118223. [PMID: 38642624 DOI: 10.1016/j.jep.2024.118223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Leonurus japonicus Houtt. (Labiatae), commonly known as Chinese motherwort, is a herbaceous flowering plant that is native to Asia. It is widely acknowledged in traditional medicine for its diuretic, hypoglycemic, antiepileptic properties and neuroprotection. Currently, Leonurus japonicus (Leo) is included in the Pharmacopoeia of the People's Republic of China. Traditional Chinese Medicine (TCM) recognizes Leo for its myriad pharmacological attributes, but its efficacy against ICH-induced neuronal apoptosis is unclear. AIMS OF THE STUDY This study aimed to identify the potential targets and regulatory mechanisms of Leo in alleviating neuronal apoptosis after ICH. MATERIALS AND METHODS The study employed network pharmacology, UPLC-Q-TOF-MS technique, molecular docking, pharmacodynamic studies, western blotting, and immunofluorescence techniques to explore its potential mechanisms. RESULTS Leo was found to assist hematoma absorption, thus improving the neurological outlook in an ICH mouse model. Importantly, molecular docking highlighted JAK as Leo's potential therapeutic target in ICH scenarios. Further experimental evidence demonstrated that Leo adjusts JAK1 and STAT1 phosphorylation, curbing Bax while augmenting Bcl-2 expression. CONCLUSION Leo showcases potential in mitigating neuronal apoptosis post-ICH, predominantly via the JAK/STAT mechanism.
Collapse
Affiliation(s)
- Jia-Wei Wu
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, PR China; Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province, 214122, PR China; Wuxi Neurosurgical Institute, Wuxi, Jiangsu Province, 214122, PR China
| | - Wei Gao
- Department of Neurology, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu Province, 214122, PR China
| | - Li-Ping Shen
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province, 214122, PR China; Wuxi Neurosurgical Institute, Wuxi, Jiangsu Province, 214122, PR China
| | - Yong-Lin Chen
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, PR China; Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province, 214122, PR China; Wuxi Neurosurgical Institute, Wuxi, Jiangsu Province, 214122, PR China
| | - Shi-Qing Du
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, PR China; Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province, 214122, PR China; Wuxi Neurosurgical Institute, Wuxi, Jiangsu Province, 214122, PR China
| | - Zhi-Yong Du
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, PR China; Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province, 214122, PR China; Wuxi Neurosurgical Institute, Wuxi, Jiangsu Province, 214122, PR China
| | - Xu-Dong Zhao
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, PR China; Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province, 214122, PR China; Wuxi Neurosurgical Institute, Wuxi, Jiangsu Province, 214122, PR China.
| | - Xiao-Jie Lu
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, PR China; Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province, 214122, PR China; Wuxi Neurosurgical Institute, Wuxi, Jiangsu Province, 214122, PR China.
| |
Collapse
|
39
|
Sun K, Gao L, Li S, Zheng J, Zhu Z, Zhi K, Ren W. Circ-CDK8 regulates SLC7A11-mediated ferroptosis by inhibiting miR-615-5p to promote progression in oral squamous cell carcinomas. Front Pharmacol 2024; 15:1432520. [PMID: 39170701 PMCID: PMC11335485 DOI: 10.3389/fphar.2024.1432520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/18/2024] [Indexed: 08/23/2024] Open
Abstract
Introduction: Ferroptosis is a new mode of programmed cell death distinct from necrosis, apoptosis, and autophagy, induced by iron-ion-dependent lipid peroxide accumulation. Circular RNAs are a class of endogenous non-coding RNAs that regulate the biological behavior of tumors. However, the role of circ-CDK8 in regulating ferroptosis, migration, and invasion of oral squamous cell carcinoma (OSCC) remains unknown. Methods: The effect of circ-CDK8 on OSCC cell ferroptosis, migration, and invasion was evaluated using CCK-8, wound healing, transwell, reactive oxygen species (ROS), malondialdehyde (MDA), and GSH assays and Western blotting. Bioinformatics analyses and luciferase reporter assays were performed and revealed targeted relationships between circ-CDK8 and miR-615-5p, miR-615-5p and SLC7A11. Interference with circ-CDK8 expression reduced SLC7A11 expression by sponging miR-615-5p, suppressed OSCC cell migration and invasion, and promoted ferroptosis by increasing ROS, MDA, and iron levels and decreasing GSH and GPX4 levels in OSCC cells. Furthermore, in vivo, animal experiments confirmed that circ-CDK8 interference inhibited OSCC cell proliferation and SLC7A11 expression. Results: Collectively, this study revealed a novel strategy to upregulate erastin-induced ferroptosis in OSCC cells via the circ-CDK8/miR-615-5p/SLC7A11 axis, providing new insights into OSCC and a potential therapeutic strategy for OSCC.
Collapse
Affiliation(s)
- Kai Sun
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ling Gao
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shaoming Li
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jingjing Zheng
- Department of Endodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhuang Zhu
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Keqian Zhi
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenhao Ren
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
40
|
Althaus O, ter Jung N, Stahlke S, Theiss C, Herzog-Niescery J, Vogelsang H, Weber T, Gude P, Matschke V. Region-specific protective effects of monomethyl fumarate in cerebellar and hippocampal organotypic slice cultures following oxygen-glucose deprivation. PLoS One 2024; 19:e0308635. [PMID: 39110748 PMCID: PMC11305562 DOI: 10.1371/journal.pone.0308635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
To date, apart from moderate hypothermia, there are almost no adequate interventions available for neuroprotection in cases of brain damage due to cardiac arrest. Affected persons often have severe limitations in their quality of life. The aim of this study was to investigate protective properties of the active compound of dimethyl fumarate, monomethyl fumarate (MMF), on distinct regions of the central nervous system after ischemic events. Dimethyl fumarate is an already established drug in neurology with known anti-inflammatory and antioxidant properties. In this study, we chose organotypic slice cultures of rat cerebellum and hippocampus as an ex vivo model. To simulate cardiac arrest and return of spontaneous circulation we performed oxygen-glucose-deprivation (OGD) followed by treatments with different concentrations of MMF (1-30 μM in cerebellum and 5-30 μM in hippocampus). Immunofluorescence staining with propidium iodide (PI) and 4',6-diamidine-2-phenylindole (DAPI) was performed to analyze PI/DAPI ratio after imaging with a spinning disc confocal microscope. In the statistical analysis, the relative cell death of the different groups was compared. In both, the cerebellum and hippocampus, the MMF-treated group showed a significantly lower PI/DAPI ratio compared to the non-treated group after OGD. Thus, we showed for the first time that both cerebellar and hippocampal slice cultures treated with MMF after OGD are significantly less affected by cell death.
Collapse
Affiliation(s)
- Oliver Althaus
- Department of Cytology, Medical Faculty, Institute of Anatomy, Ruhr University Bochum, Bochum, Germany
| | - Nico ter Jung
- Department of Cytology, Medical Faculty, Institute of Anatomy, Ruhr University Bochum, Bochum, Germany
| | - Sarah Stahlke
- Department of Cytology, Medical Faculty, Institute of Anatomy, Ruhr University Bochum, Bochum, Germany
| | - Carsten Theiss
- Department of Cytology, Medical Faculty, Institute of Anatomy, Ruhr University Bochum, Bochum, Germany
| | - Jennifer Herzog-Niescery
- Department of Anesthesiology and Intensive Care Medicine, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Heike Vogelsang
- Department of Anesthesiology and Intensive Care Medicine, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Thomas Weber
- Department of Anesthesiology and Intensive Care Medicine, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Philipp Gude
- Department of Anesthesiology and Intensive Care Medicine, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Veronika Matschke
- Department of Cytology, Medical Faculty, Institute of Anatomy, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
41
|
Liu X, Xie C, Wang Y, Xiang J, Chen L, Yuan J, Chen C, Tian H. Ferritinophagy and Ferroptosis in Cerebral Ischemia Reperfusion Injury. Neurochem Res 2024; 49:1965-1979. [PMID: 38834843 PMCID: PMC11233298 DOI: 10.1007/s11064-024-04161-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/07/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
Cerebral ischemia-reperfusion injury (CIRI) is the second leading cause of death worldwide, posing a huge risk to human life and health. Therefore, investigating the pathogenesis underlying CIRI and developing effective treatments are essential. Ferroptosis is an iron-dependent mode of cell death, which is caused by disorders in iron metabolism and lipid peroxidation. Previous studies demonstrated that ferroptosis is also a form of autophagic cell death, and nuclear receptor coactivator 4(NCOA4) mediated ferritinophagy was found to regulate ferroptosis by interfering with iron metabolism. Ferritinophagy and ferroptosis are important pathogenic mechanisms in CIRI. This review mainly summarizes the link and regulation between ferritinophagy and ferroptosis and further discusses their mechanisms in CIRI. In addition, the potential treatment methods targeting ferritinophagy and ferroptosis for CIRI are presented, providing new ideas for the prevention and treatment of clinical CIRI in the future.
Collapse
Affiliation(s)
- Xiaoyue Liu
- School of Acupuncture-moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Canming Xie
- School of Acupuncture-moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yao Wang
- School of Acupuncture-moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jing Xiang
- School of Acupuncture-moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Litong Chen
- School of Acupuncture-moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jia Yuan
- School of Acupuncture-moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Chutao Chen
- School of Acupuncture-moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Haomei Tian
- School of Acupuncture-moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
42
|
Miyara SJ, Shinozaki K, Hayashida K, Shoaib M, Choudhary RC, Zafeiropoulos S, Guevara S, Kim J, Molmenti EP, Volpe BT, Becker LB. Differential Mitochondrial Bioenergetics in Neurons and Astrocytes Following Ischemia-Reperfusion Injury and Hypothermia. Biomedicines 2024; 12:1705. [PMID: 39200170 PMCID: PMC11352110 DOI: 10.3390/biomedicines12081705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 09/02/2024] Open
Abstract
The close interaction between neurons and astrocytes has been extensively studied. However, the specific behavior of these cells after ischemia-reperfusion injury and hypothermia remains poorly characterized. A growing body of evidence suggests that mitochondria function and putative transference between neurons and astrocytes may play a fundamental role in adaptive and homeostatic responses after systemic insults such as cardiac arrest, which highlights the importance of a better understanding of how neurons and astrocytes behave individually in these settings. Brain injury is one of the most important challenges in post-cardiac arrest syndrome, and therapeutic hypothermia remains the single, gold standard treatment for neuroprotection after cardiac arrest. In our study, we modeled ischemia-reperfusion injury by using in vitro enhanced oxygen-glucose deprivation and reperfusion (eOGD-R) and subsequent hypothermia (HPT) (31.5 °C) to cell lines of neurons (HT-22) and astrocytes (C8-D1A) with/without hypothermia. Using cell lysis (LDH; lactate dehydrogenase) as a measure of membrane integrity and cell viability, we found that neurons were more susceptible to eOGD-R when compared with astrocytes. However, they benefited significantly from HPT, while the HPT effect after eOGD-R on astrocytes was negligible. Similarly, eOGD-R caused a more significant reduction in adenosine triphosphate (ATP) in neurons than astrocytes, and the ATP-enhancing effects from HPT were more prominent in neurons than astrocytes. In both neurons and astrocytes, measurement of reactive oxygen species (ROS) revealed higher ROS output following eOGD-R, with a non-significant trend of differential reduction observed in neurons. HPT after eOGD-R effectively downregulated ROS in both cells; however, the effect was significantly more effective in neurons. Lipid peroxidation was higher after eOGD-R in neurons, while in astrocytes, the increase was not statistically significant. Interestingly, HPT had similar effects on the reduction in lipoperoxidation after eOGD-R with both types of cells. While glutathione (GSH) levels were downregulated after eOGD-R in both cells, HPT enhanced GSH in astrocytes, but worsened GSH in neurons. In conclusion, neuron and astrocyte cultures respond differently to eOGD-R and eOGD-R + HTP treatments. Neurons showed higher sensitivity to ischemia-reperfusion insults than astrocytes; however, they benefited more from HPT therapy. These data suggest that given the differential effects from HPT in neurons and astrocytes, future therapeutic developments could potentially enhance HPT outcomes by means of neuronal and astrocytic targeted therapies.
Collapse
Affiliation(s)
- Santiago J. Miyara
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY 11030, USA
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Koichiro Shinozaki
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Department of Emergency Medicine, Northwell Health, Manhasset, NY 11030, USA
| | - Kei Hayashida
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Department of Emergency Medicine, Northwell Health, Manhasset, NY 11030, USA
| | - Muhammad Shoaib
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | | | | | - Sara Guevara
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Junhwan Kim
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Ernesto P. Molmenti
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Department of Surgery, Renown Health, Reno, NV 89502, USA
| | - Bruce T. Volpe
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY 11030, USA
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Lance B. Becker
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY 11030, USA
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Department of Emergency Medicine, Northwell Health, Manhasset, NY 11030, USA
- Department of Emergency Medicine, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| |
Collapse
|
43
|
Żabińska M, Wiśniewska K, Węgrzyn G, Pierzynowska K. Exploring the physiological role of the G protein-coupled estrogen receptor (GPER) and its associations with human diseases. Psychoneuroendocrinology 2024; 166:107070. [PMID: 38733757 DOI: 10.1016/j.psyneuen.2024.107070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/15/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Estrogen is a group of hormones that collaborate with the nervous system to impact the overall well-being of all genders. It influences many processes, including those occurring in the central nervous system, affecting learning and memory, and playing roles in neurodegenerative diseases and mental disorders. The hormone's action is mediated by specific receptors. Significant roles of classical estrogen receptors, ERα and ERβ, in various diseases were known since many years, but after identifying a structurally and locationally distinct receptor, the G protein-coupled estrogen receptor (GPER), its role in human physiology and pathophysiology was investigated. This review compiles GPER-related information, highlighting its impact on homeostasis and diseases, while putting special attention on functions and dysfunctions of this receptor in neurobiology and biobehavioral processes. Understanding the receptor modulation possibilities is essential for therapy, as disruptions in receptors can lead to diseases or disorders, irrespective of correct estrogen levels. We conclude that studies on the GPER receptor have the potential to develop therapies that regulate estrogen and positively impact human health.
Collapse
Affiliation(s)
- Magdalena Żabińska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Karolina Wiśniewska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland.
| |
Collapse
|
44
|
Wang Y, Lan X, Liu N, Ma L, DU J, Wei W, Hai D, Wu J, Yu J, Liu Y. Traditional Chinese medicines derived natural inhibitors of ferroptosis on ischemic stroke. Chin J Nat Med 2024; 22:746-755. [PMID: 39197964 DOI: 10.1016/s1875-5364(24)60603-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Indexed: 09/01/2024]
Abstract
Ischemic stroke (IS) is a globally prevalent cerebrovascular disorder resulting from cerebral vessel occlusion, leading to significant morbidity and mortality. The intricate pathological mechanisms underlying IS complicate the development of effective therapeutic interventions. Ferroptosis, a form of programmed cell death (PCD) characterized by iron overload and accumulation of lipid peroxidation products, has been increasingly recognized as a key contributor to IS pathology. Traditional Chinese medicines (TCMs) have long been utilized in the management of IS, prompting extensive research into their potential as sources of natural ferroptosis inhibitors. This review investigates the critical role of ferroptosis in IS and provides a comprehensive analysis of current research on natural ferroptosis inhibitors identified in TCMs, aiming to lay a theoretical groundwork for the development of innovative anti-IS therapies.
Collapse
Affiliation(s)
- Yongliang Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China
| | - Xiaobing Lan
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China
| | - Ning Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China; Ningxia Characteristic Traditional Chinese Medicine Modern Engineering Research Center, Ningxia Medical University, Yinchuan 750000, China
| | - Lin Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China; Ningxia Key Laboratory of Drug Development and Generic Drug Research, Ningxia Medical University, Yinchuan 750000, China
| | - Juan DU
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China
| | - Wei Wei
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China
| | - Dongmei Hai
- Ningxia Key Laboratory of Drug Development and Generic Drug Research, Ningxia Medical University, Yinchuan 750000, China; Ningxia Characteristic Traditional Chinese Medicine Modern Engineering Research Center, Ningxia Medical University, Yinchuan 750000, China
| | - Jing Wu
- Ningxia Key Laboratory of Drug Development and Generic Drug Research, Ningxia Medical University, Yinchuan 750000, China; College of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750000, China.
| | - Jianqiang Yu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China; Ningxia Key Laboratory of Drug Development and Generic Drug Research, Ningxia Medical University, Yinchuan 750000, China; Ningxia Characteristic Traditional Chinese Medicine Modern Engineering Research Center, Ningxia Medical University, Yinchuan 750000, China.
| | - Yue Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China.
| |
Collapse
|
45
|
El-Gazar AA, Soubh AA, Abdallah DM, Ragab GM, El-Abhar HS. Elucidating PAR1 as a therapeutic target for delayed traumatic brain injury: Unveiling the PPAR-γ/Nrf2/HO-1/GPX4 axis to suppress ferroptosis and alleviate NLRP3 inflammasome activation in rats. Int Immunopharmacol 2024; 139:112774. [PMID: 39067398 DOI: 10.1016/j.intimp.2024.112774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Repetitive traumatic brain injury (RTBI) is acknowledged as a silent overlooked public health crisis, with an incomplete understanding of its pathomechanistic signaling pathways. Mounting evidence suggests the involvement of thrombin and its receptor, the protease-activated receptor (PAR)1, in the development of secondary injury in TBI; however, the consequences of PAR1 modulation and its impact on ferroptosis-redox signaling, and NLRP3 inflammasome activation in RTBI, remain unclear. Further, the utilitarian function of PAR1 as a therapeutic target in RTBI has not been elucidated. To study this crosstalk, RTBI was induced in Wistar rats by daily weight drops on the right frontal region for five days. Three groups were included: normal control, untreated RTBI, and RTBI+SCH79797 (a PAR1 inhibitor administered post-trauma at 25 μg/kg/day). The concomitant treatment of PAR1 antagonism improved altered behavior function, cortical histoarchitecture, and neuronal cell survival. Moreover, the receptor blockade downregulated mRNA expression of PAR1 but upregulatedthat of the neuroprotective receptor PPAR-γ. The anti-inflammatory impact of SCH79797 was signified by the low immune expression/levels of NF-κB p65,TNF-α, IL-1β, and IL-18. Consequently, the PAR1 blocker hindered the formation of inflammasome components NLRP3, ASC, and activated caspase-1. Ultimately, SCH79797 treatment abated ferroptosis-dependent iron redox signaling through the activation of the antioxidant Nrf2/HO-1 axis and its subsequent antioxidant machinery (GPX4, SOD) to limit lipid peroxidation, iron accumulation, and transferrin serum increment. Collectively, SCH79797 offered putative preventive mechanisms against secondary RTBI consequences in rats by impeding ferroptosis and NLRP3 inflammasome through activating the PPAR-γ/Nrf2 antioxidant cue.
Collapse
Affiliation(s)
- Amira A El-Gazar
- Department of Pharmacology & Toxicology, October 6 University, Giza, Egypt
| | - Ayman A Soubh
- Department of Pharmacology & Toxicology, Ahram Canadian University, Giza, Egypt
| | - Dalaal M Abdallah
- Department of Pharmacology & Toxicology, Cairo University, Cairo, Egypt.
| | - Ghada M Ragab
- Department of Pharmacology & Toxicology, Misr University for Science and Technology, Giza, Egypt
| | - Hanan S El-Abhar
- Department of Pharmacology, Toxicology & Biochemistry, Future University in Egypt, Cairo, Egypt
| |
Collapse
|
46
|
Zhang Y, Lu H, Guo T, Wang J. SMAD1 Regulates the Hippocampal Neuronal Death and Ferroptosis via Affecting the Transcription of PDCD4 in Cerebral Ischemia. Mol Neurobiol 2024:10.1007/s12035-024-04379-y. [PMID: 39052186 DOI: 10.1007/s12035-024-04379-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Results of previous studies suggested that programmed cell death 4 (PDCD4) was overexpressed in cerebral ischemia (CI), and mothers against decapentaplegic homolog 1 (SMAD1) is a transcription factor of PDCD4, and it is also elevated in CI; however, the regulatory mechanism of SMAD1/PDCD4 axis in CI remains unclear. The current work has been designed to explore the role and associated mechanisms of SMAD1/PDCD4 in CI. PDCD4 and SMAD1 expressions have been examined by real-time reverse transcription-polymerase chain reaction (RT-qPCR) method, and receiver operating characteristic (ROC) curve analysis has been performed to determine the potential diagnostic value of PDCD4 and SMAD1. An oxygen-glucose deprivation (OGD) model has been used to investigate the effects of PDCD4 and SMAD1 on CI in vitro. Cell apoptosis was evaluated using TdT-mediated dUTP nick end labeling (TUNEL) assays. The interaction between SMAD1 and PDCD4 axis has been confirmed by using dual-luciferase reporter as well as chromatin immunoprecipitation (Ch-IP) assays. Finally, the effects of SMAD1/PDCD4 axis on the ferroptosis of neuron cells have been examined. PDCD4 was overexpressed in blood samples of CI patients. ROC analysis showed the AUC for PDCD4 was 0.7478, and NIHSS and MRS scores were positively correlated with PDCD4 expression. Moreover, the cellular OGD model was established and knockdown of PDCD4 suppressed the apoptosis of neurons. Besides, knockdown of PDCD4 also inhibited ferroptosis of OGD-treated neuron cells in vitro. Additionally, SMAD1 was upregulated in blood samples of CI patients, NIHSS and MRS scores were positively correlated with SMAD1 expression, and SMAD1 is a transcriptional factor of PDCD4, and SMAD1 could transcriptionally regulate the expression of PDCD4. Finally, SMAD1 could regulate the ferroptosis of neuron cells through regulating the transcription of PDCD4. The SMAD1/PDCD4 axis regulates the growth, apoptosis, and ferroptosis of neuron cells, suggesting that targeting the SMAD1/PDCD4 axis may be a potential therapeutic method.
Collapse
Affiliation(s)
- Yuezhan Zhang
- Department of Geriatrics, Lianyungang Affiliated Hospital of Nanjing University of Chinese Medicine, Lianyungang, 222004, China
| | - Hongxiang Lu
- Department of Laboratory, Lianyungang Affiliated Hospital of Nanjing University of Chinese Medicine, Lianyungang, 222004, China
| | - Ting Guo
- Central Laboratory, Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical Unive, Taizhou, 225300, China
| | - Jun Wang
- Emergency Department, Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, China.
| |
Collapse
|
47
|
Ren C, Zhu Y, Li Q, Wang M, Qi S, Sun D, Wu L, Zhao L. Lespedeza bicolor Turcz. Honey Prevents Inflammation Response and Inhibits Ferroptosis by Nrf2/ HO-1 Pathway in DSS-Induced Human Caco-2 Cells. Antioxidants (Basel) 2024; 13:900. [PMID: 39199146 PMCID: PMC11351236 DOI: 10.3390/antiox13080900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
Lespedeza bicolor Turcz. (L. bicolor) honey, a monofloral honey, has garnered increased attention due to its origin in the L. bicolor plant. A previous study has shown that L. bicolor honey can ameliorate inflammation. In this study, we aimed to investigate the effects of L. bicolor honey extract and its biomarker (Trifolin) on DSS-induced ulcerative colitis (UC). Our results demonstrated that L. bicolor honey extract and Trifolin significantly increased the expression levels of the tight junction cytokines Claudin-1 and ZO-1. Additionally, they decreased the pro-inflammatory factors TNF-α and IL-6 and enhanced the antioxidant factors NQO1 and GSTA1. Based on metabolomic analyses, L. bicolor honey extract and Trifolin regulated the progression of UC by inhibiting ferroptosis. Mechanistically, they improved the levels of SOD and iron load, increased the GSH/GSSG ratio, reduced MDA content and ROS release, and upregulated the Nrf2/HO-1 pathway, thereby inhibiting DSS-induced UC. Moreover, the expression levels of ferroptosis-related genes indicated that they decreased FTL, ACSL4, and PTGS2 while increasing SLC7A11 expression to resist ferroptosis. In conclusion, our study found that L. bicolor honey improves DSS-induced UC by inhibiting ferroptosis by activating the Nrf2/HO-1 pathway. These findings further elucidate the understanding of anti-inflammatory and antioxidant activities of L. bicolor honey.
Collapse
Affiliation(s)
- Caijun Ren
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (C.R.); (Y.Z.); (Q.L.); (M.W.); (S.Q.); (D.S.)
| | - Yuying Zhu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (C.R.); (Y.Z.); (Q.L.); (M.W.); (S.Q.); (D.S.)
| | - Qiangqiang Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (C.R.); (Y.Z.); (Q.L.); (M.W.); (S.Q.); (D.S.)
| | - Miao Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (C.R.); (Y.Z.); (Q.L.); (M.W.); (S.Q.); (D.S.)
| | - Suzhen Qi
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (C.R.); (Y.Z.); (Q.L.); (M.W.); (S.Q.); (D.S.)
| | - Dandan Sun
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (C.R.); (Y.Z.); (Q.L.); (M.W.); (S.Q.); (D.S.)
| | - Liming Wu
- Risk Assessment Laboratory for Bee Products Quality and Safety of Ministry of Agriculture, Beijing 100093, China
| | - Liuwei Zhao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (C.R.); (Y.Z.); (Q.L.); (M.W.); (S.Q.); (D.S.)
| |
Collapse
|
48
|
Li TQ, Liu Y, Feng C, Bai J, Wang ZR, Zhang XY, Wang XX. Saikosaponin A attenuates osteoclastogenesis and bone loss by inducing ferroptosis. Front Mol Biosci 2024; 11:1390257. [PMID: 39114369 PMCID: PMC11303733 DOI: 10.3389/fmolb.2024.1390257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/15/2024] [Indexed: 08/10/2024] Open
Abstract
To alleviate bone loss, most current drugs target osteoclasts. Saikosaponin A (Ssa), a triterpene saponin derived from Bupleurum falcatum (also known as Radix bupleuri), has immunoregulatory, neuromodulatory, antiviral, anticancer, anti-convulsant, anti-inflammatory, and anti-proliferative effects. Recently, modulation of bone homeostasis was shown to involve ferroptosis. Herein, we aimed to determine Ssa's inhibitory effects on osteoclastogenesis and differentiation, whether ferroptosis is involved, and the underlying mechanisms. Tartrate-resistant acid phosphatase (TRAP) staining, F-actin staining, and pit formation assays were conducted to confirm Ssa-mediated inhibition of RANKL-induced osteoclastogenesis in vitro. Ssa could promote osteoclast ferroptosis and increase mitochondrial damage by promoting lipid peroxidation, as measured by iron quantification, FerroOrange staining, Dichloro-dihydro-fluorescein diacetate, MitoSOX, malondialdehyde, glutathione, and boron-dipyrromethene 581/591 C11 assays. Pathway analysis showed that Ssa can promote osteoclasts ferroptosis by inhibiting the Nrf2/SCL7A11/GPX4 axis. Notably, we found that the ferroptosis inhibitor ferrostatin-1 and the Nrf2 activator tert-Butylhydroquinone reversed the inhibitory effects of Ssa on RANKL-induced osteoclastogenesis. In vivo, micro-computed tomography, hematoxylin and eosin staining, TRAP staining, enzyme-linked immunosorbent assays, and immunofluorescence confirmed that in rats with periodontitis induced by lipopolysaccharide, treatment with Ssa reduced alveolar bone resorption dose-dependently. The results suggested Ssa as a promising drug to treat osteolytic diseases.
Collapse
Affiliation(s)
- Tian-Qi Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Yan Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Chong Feng
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Jin Bai
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Zi-Rou Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xiang-Yu Zhang
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Xin-Xing Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| |
Collapse
|
49
|
Chai Z, Zheng J, Shen J. Mechanism of ferroptosis regulating ischemic stroke and pharmacologically inhibiting ferroptosis in treatment of ischemic stroke. CNS Neurosci Ther 2024; 30:e14865. [PMID: 39042604 PMCID: PMC11265528 DOI: 10.1111/cns.14865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/25/2024] Open
Abstract
Ferroptosis is a newly discovered form of programmed cell death that is non-caspase-dependent and is characterized by the production of lethal levels of iron-dependent lipid reactive oxygen species (ROS). In recent years, ferroptosis has attracted great interest in the field of cerebral infarction because it differs morphologically, physiologically, and genetically from other forms of cell death such as necrosis, apoptosis, autophagy, and pyroptosis. In addition, ROS is considered to be an important prognostic factor for ischemic stroke, making it a promising target for stroke treatment. This paper summarizes the induction and defense mechanisms associated with ferroptosis, and explores potential treatment strategies for ischemic stroke in order to lay the groundwork for the development of new neuroprotective drugs.
Collapse
Affiliation(s)
- Zhaohui Chai
- Department of NeurosurgeryFirst Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou CityChina
| | - Jiesheng Zheng
- Department of NeurosurgeryFirst Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou CityChina
| | - Jian Shen
- Department of NeurosurgeryFirst Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou CityChina
| |
Collapse
|
50
|
Dong H, Ma YP, Cui MM, Qiu ZH, He MT, Zhang BG. Recent advances in potential therapeutic targets of ferroptosis‑associated pathways for the treatment of stroke (Review). Mol Med Rep 2024; 30:128. [PMID: 38785160 PMCID: PMC11134507 DOI: 10.3892/mmr.2024.13252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Stroke is a severe neurological disease that is associated with high rates of morbidity and mortality, and the underlying pathological processes are complex. Ferroptosis fulfills a significant role in the progression and treatment of stroke. It is well established that ferroptosis is a type of programmed cell death that is distinct from other forms or types of cell death. The process of ferroptosis involves multiple signaling pathways and regulatory mechanisms that interact with mechanisms inherent to stroke development. Inducers and inhibitors of ferroptosis have been shown to exert a role in the onset of this cell death process. Furthermore, it has been shown that interfering with ferroptosis affects the occurrence of stroke, indicating that targeting ferroptosis may offer a promising therapeutic approach for treating patients of stroke. Hence, the present review aimed to summarize the latest progress that has been made in terms of using therapeutic interventions for ferroptosis as treatment targets in cases of stroke. It provides an overview of the relevant pathways and molecular mechanisms that have been investigated in recent years, highlighting the roles of inducers and inhibitors of ferroptosis in stroke. Additionally, the intervention potential of various types of Traditional Chinese Medicine is also summarized. In conclusion, the present review provides a comprehensive overview of the potential therapeutic targets afforded by ferroptosis‑associated pathways in stroke, offering new insights into how ferroptosis may be exploited in the treatment of stroke.
Collapse
Affiliation(s)
- Hao Dong
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261042, P.R. China
| | - Ya-Ping Ma
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261042, P.R. China
| | - Mei-Mei Cui
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261042, P.R. China
| | - Zheng-Hao Qiu
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261042, P.R. China
| | - Mao-Tao He
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261042, P.R. China
- Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261041, P.R. China
| | - Bao-Gang Zhang
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261042, P.R. China
| |
Collapse
|